Clark Measures for Rational Inner Functions on the Polydisk

Kelly Bickel Bucknell University Lewisburg, PA

Southeast Analysis Meeting March 15, 2024

Clark Measures on $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$

Note: If μ is a positive Borel measure on $\mathbb{T} = \partial \mathbb{D}$, then

$$(P_{\mu})(z):=\int_{\mathbb{T}}rac{1-|z|^2}{|\zeta-z|^2}\;d\mu(\zeta)$$
 is positive and harmonic on $\mathbb{D},$

and the converse is true (Herglotz).

Def. ϕ is inner if $\phi \in \text{Hol}(\mathbb{D})$, $\phi : \mathbb{D} \to \overline{\mathbb{D}}$ and for a.e. $\zeta \in \mathbb{T}$, $\lim_{r \neq 1} |\phi(r\zeta)| = 1$.

Def. For ϕ a nonconstant inner function and $\alpha \in \mathbb{T}$,

$$\mathsf{Re}\left(\frac{\alpha+\phi(z)}{\alpha-\phi(z)}\right) = \frac{1-|\phi(z)|^2}{|\alpha-\phi(z)|^2} = \int_{\mathbb{T}} \frac{1-|z|^2}{|\zeta-z|^2} \,\, d\sigma_\alpha(\zeta),$$

for some positive, Borel measure σ_{α} . These measures $\{\sigma_{\alpha} : \alpha \in \mathbb{T}\}\$ are called **Clark measures associated to** ϕ .

An Example

Ex. Let $\phi(z) = z^n$ and fix $\alpha \in \mathbb{T}$.

Goal: Find
$$\sigma_{\alpha}$$
 with $\frac{1-|z|^{2n}}{|\alpha-z^n|^2} = \int_{\mathbb{T}} \frac{1-|z|^2}{|\zeta-z|^2} \ d\sigma_{\alpha}(\zeta).$

• Let
$$z = r\tau$$
 with $\tau \in \mathbb{T}$ so, $\frac{1 - r^{2n}}{|\alpha - r^n \tau^n|^2} = \int_{\mathbb{T}} \frac{1 - r^2}{|\zeta - r\tau|^2} \ d\sigma_{\alpha}(\zeta).$

• Let
$$\zeta_1, \ldots, \zeta_n$$
 satisfy $\zeta_j^n = \alpha$. Then $\sigma_\alpha = \sum_{k=1}^n c_k \delta_{\zeta_k}$.

• By plugging in
$$z=r\zeta_k$$
, we can solve to get $c_k=rac{1}{n}.$

Def. A finite Blaschke product is a function of the form

$$\phi(z) = \lambda \prod_{j=1}^n rac{z-a_j}{1-ar{a}_j z}, \qquad ext{ where } a_1,\ldots,a_n \in \mathbb{D} ext{ and } \lambda \in \mathbb{T}.$$

Note: These are exactly the rational, inner functions on \mathbb{D} .

Examples & Applications

Ex. Let
$$\phi(z) = \prod_{j=1}^{n} \frac{z-a_j}{1-\overline{a}_j z}$$
, where $a_1, \ldots, a_n \in \mathbb{D}$.

- Fix $\alpha \in \mathbb{T}$.
- Solve $\phi(\zeta) = \alpha$ to get $\zeta_1, \ldots, \zeta_n \in \mathbb{T}$.

• Then
$$\sigma_{\alpha} = \sum_{j=1}^{n} \frac{1}{|\phi'(\zeta_j)|} \delta_{\zeta_j}.$$

Some Applications

Aleksandrov Disintegration Theorem

For
$$g \in C(\mathbb{T})$$
, $\int_{\mathbb{T}} g(\zeta) dm(\zeta) = \int_{\mathbb{T}} \int_{\mathbb{T}} g(\zeta) d\sigma_{\alpha}(\zeta) dm(\alpha)$.

Clark Theory

• Let
$$H^2(\mathbb{D}) = \Big\{ f \in \operatorname{Hol}(\mathbb{D}) : \|f\|_{H^2}^2 := \lim_{r \nearrow 1} \int_{\mathbb{T}} |f(r\zeta)|^2 dm(\zeta) < \infty \Big\}.$$

 For φ inner, define the associated model space K_φ := H² ⊖ φH² and the associated compression of the shift is S_φ = P_{K_φ}M_z|_{K_φ}.

Clark's Theorem

Let ϕ be inner with $\phi(0) = 0$. Then

- the rank-one unitary perturbations of S_{ϕ} are of the form $U_{\alpha} = S_{\phi} + \alpha \langle \cdot, \frac{\phi}{z} \rangle_{H^2}.$
- Each U_{α} is unitarily equivalent to M_z on $L^2(\sigma_{\alpha})$.
- The operator $V_lpha: K_\phi o L^2(\sigma_lpha)$ satisfying $M_z V_lpha = V_lpha U_lpha$ is

$$V_{\alpha}\left(rac{1-\phi(z)\overline{\phi(w)}}{1-zar{w}}
ight)=rac{1-lpha\overline{\phi(w)}}{1-zar{w}}, \quad ext{ for all } w\in\mathbb{D}.$$

Clark Measures on the Polydisk

Def. Let
$$\mathbb{D}^d = \{z = (z_1, \dots, z_d) \in \mathbb{C}^d : \text{each } |z_j| < 1\} = \mathbb{D} \times \dots \times \mathbb{D}.$$

 $\mathbb{T}^d = \{\zeta = (\zeta_1, \dots, \zeta_d) \in \mathbb{C}^d : \text{each } |\zeta_j| = 1\} = \mathbb{T} \times \dots \times \mathbb{T}.$

Note: If μ is a positive Borel measure on \mathbb{T}^d with Fourier coefficients supported in $\mathbb{Z}^d_+ \cup (-\mathbb{Z}_+)^d$, then

$$(P_\mu)(z):=\int_{\mathbb{T}^d} \; \left(\prod_{j=1}^d rac{1-|z_j|^2}{|\zeta_j-z_j|^2}
ight) \; d\mu(\zeta),$$

is positive and pluriharmonic on \mathbb{D}^d and the converse is true.

Def. ϕ is inner if $\phi \in \text{Hol}(\mathbb{D}^d)$ and for a.e. $\zeta \in \mathbb{T}^d$, $\lim_{r \geq 1} |\phi(r\zeta)| = 1$. For ϕ nonconstant and $\alpha \in \mathbb{T}$,

$$\mathsf{Re}\left(\frac{\alpha+\phi(z)}{\alpha-\phi(z)}\right) = \frac{1-|\phi(z)|^2}{|\alpha-\phi(z)|^2} = \int_{\mathbb{T}^d} \left(\prod_{j=1}^d \frac{1-|z_j|^2}{|\zeta_j-z_j|^2}\right) \ d\sigma_\alpha(\zeta),$$

for some nice σ_{α} . These measures $\{\sigma_{\alpha} : \alpha \in \mathbb{T}\}\$ are called **Clark measures** associated to ϕ .

An Example (E. Doubtsov)

Consider $\phi(z) = \frac{2z_1z_2 - z_1 - z_2}{2 - z_1 - z_2}$, which is rational, inner on \mathbb{D}^2 .

Each σ_{α} is supported on \mathcal{L}_{α} = the closure of $\{\zeta \in \mathbb{T}^2 : \phi(\zeta) = \alpha\}$. To describe σ_{α} , describe its behavior on $f \in C(\mathbb{T}^2)$.

•
$$\alpha \neq -1$$
: If $g_{\alpha}(\zeta_{1}) = \frac{2\alpha - \alpha\zeta_{1} + \zeta_{1}}{2\zeta_{1} - 1 + \alpha}$, $\mathcal{L}_{\alpha} = \{(\zeta_{1}, g_{\alpha}(\zeta_{1})) : \zeta_{1} \in \mathbb{T}\}$ &
 $\int_{\mathbb{T}^{2}} f(\zeta) d\sigma_{\alpha}(\zeta) = \int_{\mathbb{T}} f(\zeta_{1}, g_{\alpha}(\zeta_{1})) \frac{2|1 - \zeta_{1}|^{2}}{|2\zeta_{1} - 1 + \alpha|^{2}} dm(\zeta_{1}).$
• $\alpha = -1$: $\mathcal{L}_{\alpha} = \{(\zeta_{1}, 1), (1, \zeta_{2}) : \zeta_{1}, \zeta_{2} \in \mathbb{T}\}$ &
 $\int_{\mathbb{T}^{2}} f(\zeta) d\sigma_{\alpha}(\zeta) = \frac{1}{2} \int_{\mathbb{T}} f(1, \zeta_{2}) dm(\zeta_{2}) + \frac{1}{2} \int_{\mathbb{T}} f(\zeta_{1}, 1) dm(\zeta_{1})$

Some Results on \mathbb{D}^d

Aleksandrov Disintegration Theorem (Doubtsov 2020)

For
$$g \in C(\mathbb{T}^d)$$
, $\int_{\mathbb{T}^d} g(\zeta) dm(\zeta) = \int_{\mathbb{T}} \int_{\mathbb{T}^d} g(\zeta) d\sigma_{\alpha}(\zeta) dm(\alpha)$.

Clark Theory:

•
$$H^2(\mathbb{D}^d) = \Big\{ f \in \operatorname{Hol}(\mathbb{D}^d) : \|f\|_{H^2}^2 := \lim_{r \nearrow 1} \int_{\mathbb{T}^d} |f(r\zeta)|^2 dm(\zeta) < \infty \Big\}.$$

• For ϕ inner, the associated model space $K_{\phi} := H^2 \ominus \phi H^2$ and the associated compressions of the shift are $S_{\phi} = P_{K_{\phi}} M_{z_j}|_{K_{\phi}}$.

Unitary Characterization (Doubtsov 2020)

The operator $V_{lpha}: K_{\phi}
ightarrow L^2(\sigma_{lpha})$ given by

$$V_{\alpha}\left(\frac{1-\phi(z)\overline{\phi(w)}}{\prod_{j=1}^{d}(1-z_{j}\bar{w}_{j})}\right) = \frac{1-\alpha\overline{\phi(w)}}{\prod_{j=1}^{d}(1-z_{j}\bar{w}_{j})}, \quad \text{ for all } w \in \mathbb{D}^{d}$$

is an isometry. It is unitary iff the polydisk algebra $A(\mathbb{D}^d)$ is dense in $L^2(\sigma_\alpha)$.

Main Question

Finite Blaschke product example: Let $\phi(z) = \prod_{j=1}^{n} \frac{z-a_j}{1-\bar{a}_j z}$, where $a_1, \ldots, a_n \in \mathbb{D}$. Then for $\alpha \in \mathbb{T}$,

$$\sigma_{\alpha} = \sum_{j=1}^{n} \frac{1}{|\phi'(\zeta_j)|} \delta_{\zeta_j}, \text{ where } \zeta_1, \dots, \zeta_n \in \mathbb{T} \text{ solve } \phi(\zeta) = \alpha.$$

Question: Can we generalize this to rational inner functions on \mathbb{D}^2 ?

- Paper 1 handles ϕ with deg $\phi = (m, 1)$. (with J. Cima and A. Sola)
- Paper 2 handles φ with deg φ = (m, n). (with J. Anderson, L. Bergqvist, J. Cima, A. Sola)

Examples: deg $\phi = (3, 1)$ and deg $\psi = (2, 2)$:

$$\phi(z_1, z_2) = \frac{4z_1^3 z_2 - z_1^3 + z_1^2 - 3z_1 - 1}{4 - z_2 + z_1 z_2 - 3z_1^2 z_2 - z_1^3 z_2} \quad \text{and} \quad \psi(z_1, z_2) = \frac{z_1 + z_2 - 3z_2^2 z_1 - 3z_2 z_1^2 + 4z_1^2 z_2^2}{4 - 3z_1 - 3z_2 + z_1^2 z_2 + z_2 z_1^2}$$

Key Background

Recall: Each σ_{α} is supported on \mathcal{L}_{α} = the closure of $\{\zeta \in \mathbb{T}^2 : \phi(\zeta) = \alpha\}$.

Key Fact. (B.-Pascoe-Sola, 2018) Let ϕ be rational inner with deg $\phi = (m, n)$ and let $\alpha \in \mathbb{T}$. Then, there are analytic functions $g_{\alpha}^{1}, \ldots, g_{\alpha}^{n}$ such that \mathcal{L}_{α} is given by either:

- Generic Alpha: $\mathcal{L}_{\alpha} = \{(\zeta_1, g^j_{\alpha}(\zeta_1)) : \zeta_1 \in \mathbb{T}, 1 \leq j \leq n\}.$
- Exceptional Alpha: $\mathcal{L}_{\alpha} = \{(\zeta_1, g_{\alpha}^j(\zeta_1)) : \zeta_1 \in \mathbb{T}, 1 \le j \le n\}$ $\cup \{(\tau_k, \zeta_2) : \zeta_2 \in \mathbb{T}, 1 \le k \le K\}$ for some $\tau_k \in \mathbb{T}$ and $K \in \mathbb{N}$.

Note: Generically $\phi(\tau, \cdot)$ is a finite Blaschke product with deg $\phi = n$. If α is exceptional,

- $\phi(\tau_k, \cdot) \equiv \alpha$ is constant for each τ_k .
- ϕ has a singularity on \mathbb{T}^2 with z_1 -coordinate equal to τ_k for each τ_k .

Let
$$\phi(z_1, z_2) = \frac{4z_1^3 z_2 - z_1^3 + z_1^2 - 3z_1 - 1}{4 - z_2 + z_1 z_2 - 3z_1^2 z_2 - z_1^3 z_2}$$
 with deg $\phi = (3, 1)$.

Note: Graph sets in \mathbb{T}^2 by identifying each $(\tau_1, \tau_2) \in \mathbb{T}^2$ with $(\operatorname{Arg}(\tau_1), \operatorname{Arg}(\tau_2)) \in (-\pi, \pi]^2$.

Figure: The sets \mathcal{L}_{α} for several generic and exceptional values of α . $_{11/18}$

Theorem 1 (Anderson-Bergqvist-B.-Cima-Sola, 2023)

Let ϕ be a rational inner function on \mathbb{D}^2 and $\alpha \in \mathbb{T}$ with deg $\phi = (m, n)$. Then σ_{α} is supported on \mathcal{L}_{α} and for $f \in C(\mathbb{T}^2)$:

Generic Alpha:

$$\int_{\mathbb{T}^2} f(\zeta) d\sigma_\alpha(\zeta) = \sum_{j=1}^n \int_{\mathbb{T}} f\left(\zeta_1, g_\alpha^j(\zeta_1)\right) \frac{1}{\left|\frac{\partial \phi}{\partial z_2}(\zeta_1, g_\alpha^j(\zeta_1))\right|} dm(\zeta_1).$$

• Exceptional Alpha:

$$\begin{split} \int_{\mathbb{T}^2} f(\zeta) d\sigma_\alpha(\zeta) &= \sum_{j=1}^n \int_{\mathbb{T}} f\left(\zeta_1, g_\alpha^j(\zeta_1)\right) \frac{1}{\left|\frac{\partial \phi}{\partial z_2}(\zeta_1, g_\alpha^j(\zeta_1))\right|} dm(\zeta_1) \\ &+ \sum_{k=1}^K \frac{1}{\left|\frac{\partial \phi}{\partial z_1}(\tau_k, z_2)\right|} \int_{\mathbb{T}} f(\tau_k, \zeta_2) \ dm(\zeta_2). \end{split}$$

Some Notes

- In the degree (m, 1) paper, we worked explicitly with decompositions of $1 |\phi(z)|^2$ called Agler decompositions and formulas for \mathcal{L}_{α} .
- For α generic, we use the fact that the slices $\phi(\tau, \cdot)$ are finite Blaschke products, various properties of Poisson integrals, and one variable results.
- For α exceptional, we have to carefully decouple the two parts of σ_{α} .

• One key lemma is showing that
$$\frac{1}{\left|\frac{\partial \phi}{\partial z_1}(\tau_k, z_2)\right|}$$
 must be constant.

Higher Dimensions: If ϕ is rational, inner on the polydisk \mathbb{D}^d and continuous on $\overline{\mathbb{D}^d}$, then the two-variable "generic case" arguments generalize and allow us to obtain an analogous characterization of the Clark measures of ϕ .

Unitary Characterization

Recall: The operator
$$V_{\alpha} : K_{\phi} \to L^2(\sigma_{\alpha})$$
 given by
 $V_{\alpha}\left(\frac{1-\phi(z)\overline{\phi(w)}}{\prod_{j=1}^d (1-z_j \overline{w}_j)}\right) = \frac{1-\alpha \overline{\phi(w)}}{\prod_{j=1}^d (1-z_j \overline{w}_j)}, \quad \text{ for all } w \in \mathbb{D}^d$

is an isometry.

Theorem 2 (Anderson-Bergqvist-B.-Cima-Sola, 2023)

Let ϕ be a rational inner function on \mathbb{D}^2 and $\alpha \in \mathbb{T}$ with deg $\phi = (m, n)$. Then V_{α} is unitary if and only if \mathcal{L}_{α} contains no vertical or horizontal lines.

Proof Idea: Trig polynomials are dense in $L^2(\sigma_{\alpha})$.

- Most Alpha: For each trig polynomial *p*, find *f* ∈ *A*(D²) such that *p* ≡ *f* on *L*_α.
- Alpha with lines: Show that $\overline{\zeta_2}$ or $\overline{\zeta_1}$ cannot be approximated by $f \in A(\mathbb{D}^2)$.

Connection to Contact Order

The **contact order** of ϕ at a singularity (τ_1, τ_2) on \mathbb{T}^2 is an even integer that measures how the zero set of ϕ , \mathcal{Z}_{ϕ} , approaches the singularity.

Note: Each branch $\zeta_2 = g_j^{\alpha}(\zeta_1)$ of \mathcal{L}_{α} can be associated with a branch of \mathcal{Z}_{ϕ} and that branch has its own contact order K_j .

Theorem 3 (Anderson-Bergqvist-B.-Cima-Sola, 2023)

For all but finitely many $\alpha \in \mathbb{T}$, let $\zeta_2 = g_j^{\alpha}(\zeta_1)$ be a branch of \mathcal{L}_{α} going through a singularity (τ_1, τ_2) and let

$$W^lpha_j(\zeta_1) = rac{1}{\left|rac{\partial \phi}{\partial z_2}(\zeta_1, oldsymbol{g}^j_lpha(\zeta_1))
ight|}.$$

Then there are constants $c_1, c_2 > 0$ with

$$0 < c_1 \leq \frac{W_j^{\alpha}(\zeta_1)}{|\zeta_1 - \tau_1|^{K_j}} \leq c_2, \quad \text{for } \zeta_1 \text{ near } \tau_1.$$

Example

Let
$$\phi(z_1, z_2) = \frac{4z_1^3 z_2 - z_1^3 + z_1^2 - 3z_1 - 1}{4 - z_2 + z_1 z_2 - 3z_1^2 z_2 - z_1^3 z_2}$$
 with deg $\phi = (3, 1)$.

 $\phi(-1,\zeta_2)\equiv 1$ and $\phi(1,\zeta_2)\equiv -1$. So $\alpha=1,-1$ are exceptional.

Figure: Generic level curves \mathcal{L}_{α} for several values of α (black, gray, orange, pink). Level sets for exceptional values $\alpha = -1$ (green) and $\alpha = 1$ (red).

Example (cont.)

Generic Alpha: For $\alpha \neq 1, -1$ and $f \in C(\mathbb{T}^2)$,

$$\int_{\mathbb{T}^2} f(\zeta) \sigma_{\alpha}(\zeta) = \int_{\mathbb{T}} f(\zeta_1, g_{\alpha}(\zeta_1)) W_{\alpha}(\zeta_1) \ dm(\zeta_1),$$
$$g_{\alpha} = \frac{1 + 4\alpha + 3\zeta_1 - \zeta_1^2 + \zeta_1^3}{\alpha - \alpha\zeta_1 + 3\alpha\zeta_1^2 + 4z_1^3 + \alpha\zeta_1^3}, W_{\alpha} = \frac{|\zeta_1 - 1|^2 |\zeta_1 + 1|^4}{|4\zeta_1^3 + \alpha\zeta_1^3 + 3\alpha\zeta_1^2 - \alpha\zeta_1 + \alpha|^2}.$$

Exceptional Alpha: For $\alpha = -1$ and $f \in C(\mathbb{T}^2)$, ($\alpha = 1$ is similar)

$$\int_{\mathbb{T}^2} f(\zeta) \sigma_{-1}(\zeta) = \int_{\mathbb{T}} f(\zeta_1, g_{-1}(\zeta_1)) W_{-1}(\zeta_1) \, dm(\zeta_1) + \int_{\mathbb{T}} f(1, \zeta_2) \, dm(\zeta_2)$$
$$g_{-1} = \frac{3 + \zeta_1^2}{3\zeta_1^2 + 1}, W_{-1} = \frac{|\zeta_1 + 1|^4}{|3\zeta_1^2 + 1|^2}.$$

Takeaways

- Clark measures on the polydisk can be defined like those on the disk.
- If ϕ is rational, inner on \mathbb{D}^2 , then the Clark measures σ_{α} have a similar structure to those on \mathbb{D} and the associated isometry $V_{\alpha} : K_{\phi} \to L^2(\sigma_{\alpha})$ is often unitary.
- Other authors have studied other ϕ and other Clark measure generalizations (e.g. Jury 2014, Aleksandrov-Doubtsov 2020, Nell Paiz Jacobsson 2023)

Thanks to the organizers for organizing and the participants for participating!