Clark Measures for Rational Inner Functions on the Polydisk

Kelly Bickel
Bucknell University
Lewisburg, PA

Southeast Analysis Meeting
March 15, 2024

Clark Measures on $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$

Note: If μ is a positive Borel measure on $\mathbb{T}=\partial \mathbb{D}$, then

$$
\left(P_{\mu}\right)(z):=\int_{\mathbb{T}} \frac{1-|z|^{2}}{|\zeta-z|^{2}} d \mu(\zeta) \text { is positive and harmonic on } \mathbb{D}
$$

and the converse is true (Herglotz).
Def. ϕ is inner if $\phi \in \operatorname{Hol}(\mathbb{D}), \phi: \mathbb{D} \rightarrow \overline{\mathbb{D}}$ and for a.e. $\zeta \in \mathbb{T}$, $\lim _{r} \nearrow_{1}|\phi(r \zeta)|=1$.

Def. For ϕ a nonconstant inner function and $\alpha \in \mathbb{T}$,

$$
\operatorname{Re}\left(\frac{\alpha+\phi(z)}{\alpha-\phi(z)}\right)=\frac{1-|\phi(z)|^{2}}{|\alpha-\phi(z)|^{2}}=\int_{\mathbb{T}} \frac{1-|z|^{2}}{|\zeta-z|^{2}} d \sigma_{\alpha}(\zeta)
$$

for some positive, Borel measure σ_{α}. These measures $\left\{\sigma_{\alpha}: \alpha \in \mathbb{T}\right\}$ are called Clark measures associated to ϕ.

An Example

Ex. Let $\phi(z)=z^{n}$ and fix $\alpha \in \mathbb{T}$.
Goal: Find σ_{α} with $\frac{1-|z|^{2 n}}{\left|\alpha-z^{n}\right|^{2}}=\int_{\mathbb{T}} \frac{1-|z|^{2}}{|\zeta-z|^{2}} d \sigma_{\alpha}(\zeta)$.

- Let $z=r \tau$ with $\tau \in \mathbb{T}$ so, $\frac{1-r^{2 n}}{\left|\alpha-r^{n} \tau^{n}\right|^{2}}=\int_{\mathbb{T}} \frac{1-r^{2}}{|\zeta-r \tau|^{2}} d \sigma_{\alpha}(\zeta)$.
- Let $\zeta_{1}, \ldots, \zeta_{n}$ satisfy $\zeta_{j}^{n}=\alpha$. Then $\sigma_{\alpha}=\sum_{k=1}^{n} c_{k} \delta_{\zeta_{k}}$.
- By plugging in $z=r \zeta_{k}$, we can solve to get $c_{k}=\frac{1}{n}$.

Def. A finite Blaschke product is a function of the form

$$
\phi(z)=\lambda \prod_{j=1}^{n} \frac{z-a_{j}}{1-\bar{a}_{j} z}, \quad \text { where } a_{1}, \ldots, a_{n} \in \mathbb{D} \text { and } \lambda \in \mathbb{T} \text {. }
$$

Note: These are exactly the rational, inner functions on \mathbb{D}.

Examples \& Applications

Ex. Let $\phi(z)=\prod_{j=1}^{n} \frac{z-a_{j}}{1-\bar{a}_{j} z}$, where $a_{1}, \ldots, a_{n} \in \mathbb{D}$.

- Fix $\alpha \in \mathbb{T}$.
- Solve $\phi(\zeta)=\alpha$ to get $\zeta_{1}, \ldots, \zeta_{n} \in \mathbb{T}$.
- Then $\sigma_{\alpha}=\sum_{j=1}^{n} \frac{1}{\left|\phi^{\prime}\left(\zeta_{j}\right)\right|} \delta_{\zeta_{j}}$.

Some Applications

Aleksandrov Disintegration Theorem

For $g \in C(\mathbb{T}), \int_{\mathbb{T}} g(\zeta) d m(\zeta)=\int_{\mathbb{T}} \int_{\mathbb{T}} g(\zeta) d \sigma_{\alpha}(\zeta) d m(\alpha)$.

Clark Theory

- Let $H^{2}(\mathbb{D})=\left\{f \in \operatorname{Hol}(\mathbb{D}):\|f\|_{H^{2}}^{2}:=\lim _{r \neq 1} \int_{\mathbb{T}}|f(r \zeta)|^{2} d m(\zeta)<\infty\right\}$.
- For ϕ inner, define the associated model space $K_{\phi}:=H^{2} \ominus \phi H^{2}$ and the associated compression of the shift is $S_{\phi}=P_{K_{\phi}} M_{z} \mid K_{\phi}$.

Clark's Theorem

Let ϕ be inner with $\phi(0)=0$. Then

- the rank-one unitary perturbations of S_{ϕ} are of the form

$$
U_{\alpha}=S_{\phi}+\alpha\left\langle\cdot, \frac{\phi}{z}\right\rangle_{H^{2}} .
$$

- Each U_{α} is unitarily equivalent to M_{z} on $L^{2}\left(\sigma_{\alpha}\right)$.
- The operator $V_{\alpha}: K_{\phi} \rightarrow L^{2}\left(\sigma_{\alpha}\right)$ satisfying $M_{z} V_{\alpha}=V_{\alpha} U_{\alpha}$ is

$$
V_{\alpha}\left(\frac{1-\phi(z) \overline{\phi(w)}}{1-z \bar{w}}\right)=\frac{1-\alpha \overline{\phi(w)}}{1-z \bar{w}}, \quad \text { for all } w \in \mathbb{D}
$$

Clark Measures on the Polydisk

$$
\begin{aligned}
\text { Def. Let } \mathbb{D}^{d} & =\left\{z=\left(z_{1}, \ldots, z_{d}\right) \in \mathbb{C}^{d}: \text { each }\left|z_{j}\right|<1\right\}=\mathbb{D} \times \cdots \times \mathbb{D} . \\
\mathbb{T}^{d} & =\left\{\zeta=\left(\zeta_{1}, \ldots, \zeta_{d}\right) \in \mathbb{C}^{d}: \text { each }\left|\zeta_{j}\right|=1\right\}=\mathbb{T} \times \cdots \times \mathbb{T} .
\end{aligned}
$$

Note: If μ is a positive Borel measure on \mathbb{T}^{d} with Fourier coefficients supported in $\mathbb{Z}_{+}^{d} \cup\left(-\mathbb{Z}_{+}\right)^{d}$, then

$$
\left(P_{\mu}\right)(z):=\int_{\mathbb{T}^{d}}\left(\prod_{j=1}^{d} \frac{1-\left|z_{j}\right|^{2}}{\left|\zeta_{j}-z_{j}\right|^{2}}\right) d \mu(\zeta)
$$

is positive and pluriharmonic on \mathbb{D}^{d} and the converse is true.
Def. ϕ is inner if $\phi \in \operatorname{Hol}\left(\mathbb{D}^{d}\right)$ and for a.e. $\zeta \in \mathbb{T}^{d}, \lim _{r} \nearrow_{1}|\phi(r \zeta)|=1$. For ϕ nonconstant and $\alpha \in \mathbb{T}$,

$$
\operatorname{Re}\left(\frac{\alpha+\phi(z)}{\alpha-\phi(z)}\right)=\frac{1-|\phi(z)|^{2}}{|\alpha-\phi(z)|^{2}}=\int_{\mathbb{T}^{d}}\left(\prod_{j=1}^{d} \frac{1-\left|z_{j}\right|^{2}}{\left|\zeta_{j}-z_{j}\right|^{2}}\right) d \sigma_{\alpha}(\zeta)
$$

for some nice σ_{α}. These measures $\left\{\sigma_{\alpha}: \alpha \in \mathbb{T}\right\}$ are called Clark measures associated to ϕ.

An Example (E. Doubtsov)

Consider $\phi(z)=\frac{2 z_{1} z_{2}-z_{1}-z_{2}}{2-z_{1}-z_{2}}$, which is rational, inner on \mathbb{D}^{2}.
Each σ_{α} is supported on $\mathcal{L}_{\alpha}=$ the closure of $\left\{\zeta \in \mathbb{T}^{2}: \phi(\zeta)=\alpha\right\}$. To describe σ_{α}, describe its behavior on $f \in C\left(\mathbb{T}^{2}\right)$.

- $\alpha \neq-1$: If $g_{\alpha}\left(\zeta_{1}\right)=\frac{2 \alpha-\alpha \zeta_{1}+\zeta_{1}}{2 \zeta_{1}-1+\alpha}, \mathcal{L}_{\alpha}=\left\{\left(\zeta_{1}, g_{\alpha}\left(\zeta_{1}\right)\right): \zeta_{1} \in \mathbb{T}\right\} \&$

$$
\int_{\mathbb{T}^{2}} f(\zeta) d \sigma_{\alpha}(\zeta)=\int_{\mathbb{T}} f\left(\zeta_{1}, g_{\alpha}\left(\zeta_{1}\right)\right) \frac{2\left|1-\zeta_{1}\right|^{2}}{\left|2 \zeta_{1}-1+\alpha\right|^{2}} d m\left(\zeta_{1}\right)
$$

- $\alpha=-1: \mathcal{L}_{\alpha}=\left\{\left(\zeta_{1}, 1\right),\left(1, \zeta_{2}\right): \zeta_{1}, \zeta_{2} \in \mathbb{T}\right\} \&$

$$
\int_{\mathbb{T}^{2}} f(\zeta) d \sigma_{\alpha}(\zeta)=\frac{1}{2} \int_{\mathbb{T}} f\left(1, \zeta_{2}\right) d m\left(\zeta_{2}\right)+\frac{1}{2} \int_{\mathbb{T}} f\left(\zeta_{1}, 1\right) d m\left(\zeta_{1}\right)
$$

Some Results on \mathbb{D}^{d}

Aleksandrov Disintegration Theorem (Doubtsov 2020)

For $g \in C\left(\mathbb{T}^{d}\right), \int_{\mathbb{T}^{d}} g(\zeta) d m(\zeta)=\int_{\mathbb{T}} \int_{\mathbb{T}^{d}} g(\zeta) d \sigma_{\alpha}(\zeta) d m(\alpha)$.

Clark Theory:

- $H^{2}\left(\mathbb{D}^{d}\right)=\left\{f \in \operatorname{Hol}\left(\mathbb{D}^{d}\right):\|f\|_{H^{2}}^{2}:=\lim _{r>1} \int_{\mathbb{T}^{d}}|f(r \zeta)|^{2} d m(\zeta)<\infty\right\}$.
- For ϕ inner, the associated model space $K_{\phi}:=H^{2} \ominus \phi H^{2}$ and the associated compressions of the shift are $S_{\phi}=P_{K_{\phi}} M_{z_{j}} \mid K_{\phi}$.

Unitary Characterization (Doubtsov 2020)

The operator $V_{\alpha}: K_{\phi} \rightarrow L^{2}\left(\sigma_{\alpha}\right)$ given by

$$
V_{\alpha}\left(\frac{1-\phi(z) \overline{\phi(w)}}{\prod_{j=1}^{d}\left(1-z_{j} \bar{w}_{j}\right)}\right)=\frac{1-\alpha \overline{\phi(w)}}{\prod_{j=1}^{d}\left(1-z_{j} \bar{w}_{j}\right)}, \quad \text { for all } w \in \mathbb{D}^{d}
$$

is an isometry. It is unitary iff the polydisk algebra $A\left(\mathbb{D}^{d}\right)$ is dense in $L^{2}\left(\sigma_{\alpha}\right)$.

Main Question

Finite Blaschke product example: Let $\phi(z)=\prod_{j=1}^{n} \frac{z-a_{j}}{1-\bar{a}_{j} z}$, where $a_{1}, \ldots, a_{n} \in \mathbb{D}$. Then for $\alpha \in \mathbb{T}$,

$$
\sigma_{\alpha}=\sum_{j=1}^{n} \frac{1}{\left|\phi^{\prime}\left(\zeta_{j}\right)\right|} \delta_{\zeta_{j}}, \text { where } \zeta_{1}, \ldots, \zeta_{n} \in \mathbb{T} \text { solve } \phi(\zeta)=\alpha
$$

Question: Can we generalize this to rational inner functions on \mathbb{D}^{2} ?

- Paper 1 handles ϕ with $\operatorname{deg} \phi=(m, 1)$. (with J. Cima and A. Sola)
- Paper 2 handles ϕ with $\operatorname{deg} \phi=(m, n)$. (with J. Anderson, L. Bergqvist, J. Cima, A. Sola)

Examples: $\operatorname{deg} \phi=(3,1)$ and $\operatorname{deg} \psi=(2,2)$:
$\phi\left(z_{1}, z_{2}\right)=\frac{4 z_{1}^{3} z_{2}-z_{1}^{3}+z_{1}^{2}-3 z_{1}-1}{4-z_{2}+z_{1} z_{2}-3 z_{1}^{2} z_{2}-z_{1}^{3} z_{2}} \quad$ and $\quad \psi\left(z_{1}, z_{2}\right)=\frac{z_{1}+z_{2}-3 z_{2}^{2} z_{1}-3 z_{2} z_{1}^{2}+4 z_{1}^{2} z_{2}^{2}}{4-3 z_{1}-3 z_{2}+z_{1}^{2} z_{2}+z_{2} z_{1}^{2}}$

Key Background

Recall: Each σ_{α} is supported on $\mathcal{L}_{\alpha}=$ the closure of $\left\{\zeta \in \mathbb{T}^{2}: \phi(\zeta)=\alpha\right\}$.
Key Fact. (B.-Pascoe-Sola, 2018) Let ϕ be rational inner with $\operatorname{deg} \phi=(m, n)$ and let $\alpha \in \mathbb{T}$. Then, there are analytic functions $g_{\alpha}^{1}, \ldots, g_{\alpha}^{n}$ such that \mathcal{L}_{α} is given by either:

- Generic Alpha: $\quad \mathcal{L}_{\alpha}=\left\{\left(\zeta_{1}, g_{\alpha}^{j}\left(\zeta_{1}\right)\right): \zeta_{1} \in \mathbb{T}, 1 \leq j \leq n\right\}$.
- Exceptional Alpha: $\mathcal{L}_{\alpha}=\left\{\left(\zeta_{1}, g_{\alpha}^{j}\left(\zeta_{1}\right)\right): \zeta_{1} \in \mathbb{T}, 1 \leq j \leq n\right\}$ $\cup\left\{\left(\tau_{k}, \zeta_{2}\right): \zeta_{2} \in \mathbb{T}, 1 \leq k \leq K\right\}$ for some $\tau_{k} \in \mathbb{T}$ and $K \in \mathbb{N}$.

Note: Generically $\phi(\tau, \cdot)$ is a finite Blaschke product with $\operatorname{deg} \phi=n$. If α is exceptional,

- $\phi\left(\tau_{k}, \cdot\right) \equiv \alpha$ is constant for each τ_{k}.
- ϕ has a singularity on \mathbb{T}^{2} with z_{1}-coordinate equal to τ_{k} for each τ_{k}.

Example \mathcal{L}_{α}

Let $\phi\left(z_{1}, z_{2}\right)=\frac{4 z_{1}^{3} z_{2}-z_{1}^{3}+z_{1}^{2}-3 z_{1}-1}{4-z_{2}+z_{1} z_{2}-3 z_{1}^{2} z_{2}-z_{1}^{3} z_{2}}$ with $\operatorname{deg} \phi=(3,1)$.
Note: Graph sets in \mathbb{T}^{2} by identifying each $\left(\tau_{1}, \tau_{2}\right) \in \mathbb{T}^{2}$ with $\left(\operatorname{Arg}\left(\tau_{1}\right), \operatorname{Arg}\left(\tau_{2}\right)\right) \in(-\pi, \pi]^{2}$.

Figure: The sets \mathcal{L}_{α} for several generic and exceptional values of α.

Clark Measure Characterization

Theorem 1 (Anderson-Bergqvist-B.-Cima-Sola, 2023)

Let ϕ be a rational inner function on \mathbb{D}^{2} and $\alpha \in \mathbb{T}$ with $\operatorname{deg} \phi=(m, n)$. Then σ_{α} is supported on \mathcal{L}_{α} and for $f \in C\left(\mathbb{T}^{2}\right)$:

- Generic Alpha:

$$
\int_{\mathbb{T}^{2}} f(\zeta) d \sigma_{\alpha}(\zeta)=\sum_{j=1}^{n} \int_{\mathbb{T}} f\left(\zeta_{1}, g_{\alpha}^{j}\left(\zeta_{1}\right)\right) \frac{1}{\left|\frac{\partial \phi}{\partial z_{2}}\left(\zeta_{1}, g_{\alpha}^{j}\left(\zeta_{1}\right)\right)\right|} d m\left(\zeta_{1}\right)
$$

- Exceptional Alpha:

$$
\begin{align*}
\int_{\mathbb{T}^{2}} f(\zeta) d \sigma_{\alpha}(\zeta) & =\sum_{j=1}^{n} \int_{\mathbb{T}} f\left(\zeta_{1}, g_{\alpha}^{j}\left(\zeta_{1}\right)\right) \frac{1}{\left|\frac{\partial \phi}{\partial z_{2}}\left(\zeta_{1}, g_{\alpha}^{j}\left(\zeta_{1}\right)\right)\right|} d m\left(\zeta_{1}\right) \\
& +\sum_{k=1}^{K} \frac{1}{\left|\frac{\partial \phi}{\partial z_{1}}\left(\tau_{k}, z_{2}\right)\right|} \int_{\mathbb{T}} f\left(\tau_{k}, \zeta_{2}\right) d m\left(\zeta_{2}\right) .
\end{align*}
$$

Some Notes

- In the degree $(m, 1)$ paper, we worked explicitly with decompositions of $1-|\phi(z)|^{2}$ called Agler decompositions and formulas for \mathcal{L}_{α}.
- For α generic, we use the fact that the slices $\phi(\tau, \cdot)$ are finite Blaschke products, various properties of Poisson integrals, and one variable results.
- For α exceptional, we have to carefully decouple the two parts of σ_{α}.
- One key lemma is showing that $\frac{1}{\left|\frac{\partial \phi}{\partial z_{1}}\left(\tau_{k}, z_{2}\right)\right|}$ must be constant.

Higher Dimensions: If ϕ is rational, inner on the polydisk \mathbb{D}^{d} and continuous on $\overline{\mathbb{D}^{d}}$, then the two-variable "generic case" arguments generalize and allow us to obtain an analogous characterization of the Clark measures of ϕ.

Unitary Characterization

Recall: The operator $V_{\alpha}: K_{\phi} \rightarrow L^{2}\left(\sigma_{\alpha}\right)$ given by

$$
V_{\alpha}\left(\frac{1-\phi(z) \overline{\phi(w)}}{\prod_{j=1}^{d}\left(1-z_{j} \bar{w}_{j}\right)}\right)=\frac{1-\alpha \overline{\phi(w)}}{\prod_{j=1}^{d}\left(1-z_{j} \bar{w}_{j}\right)}, \quad \text { for all } w \in \mathbb{D}^{d}
$$

is an isometry.

Theorem 2 (Anderson-Bergqvist-B.-Cima-Sola, 2023)

Let ϕ be a rational inner function on \mathbb{D}^{2} and $\alpha \in \mathbb{T}$ with $\operatorname{deg} \phi=(m, n)$. Then V_{α} is unitary if and only if \mathcal{L}_{α} contains no vertical or horizontal lines.

Proof Idea: Trig polynomials are dense in $L^{2}\left(\sigma_{\alpha}\right)$.

- Most Alpha: For each trig polynomial p, find $f \in A\left(\mathbb{D}^{2}\right)$ such that $p \equiv f$ on \mathcal{L}_{α}.
- Alpha with lines: Show that $\bar{\zeta}_{2}$ or $\bar{\zeta}_{1}$ cannot be approximated by $f \in A\left(\mathbb{D}^{2}\right)$.

Connection to Contact Order

The contact order of ϕ at a singularity $\left(\tau_{1}, \tau_{2}\right)$ on \mathbb{T}^{2} is an even integer that measures how the zero set of ϕ, \mathcal{Z}_{ϕ}, approaches the singularity.

Note: Each branch $\zeta_{2}=g_{j}^{\alpha}\left(\zeta_{1}\right)$ of \mathcal{L}_{α} can be associated with a branch of \mathcal{Z}_{ϕ} and that branch has its own contact order K_{j}.

Theorem 3 (Anderson-Bergqvist-B.-Cima-Sola, 2023)

For all but finitely many $\alpha \in \mathbb{T}$, let $\zeta_{2}=g_{j}^{\alpha}\left(\zeta_{1}\right)$ be a branch of \mathcal{L}_{α} going through a singularity $\left(\tau_{1}, \tau_{2}\right)$ and let

$$
W_{j}^{\alpha}\left(\zeta_{1}\right)=\frac{1}{\left|\frac{\partial \phi}{\partial z_{2}}\left(\zeta_{1}, g_{\alpha}^{j}\left(\zeta_{1}\right)\right)\right|}
$$

Then there are constants $c_{1}, c_{2}>0$ with

$$
0<c_{1} \leq \frac{W_{j}^{\alpha}\left(\zeta_{1}\right)}{\left|\zeta_{1}-\tau_{1}\right|^{K_{j}}} \leq c_{2}, \quad \text { for } \zeta_{1} \text { near } \tau_{1}
$$

Example

Let $\phi\left(z_{1}, z_{2}\right)=\frac{4 z_{1}^{3} z_{2}-z_{1}^{3}+z_{1}^{2}-3 z_{1}-1}{4-z_{2}+z_{1} z_{2}-3 z_{1}^{2} z_{2}-z_{1}^{3} z_{2}}$ with $\operatorname{deg} \phi=(3,1)$.
$\phi\left(-1, \zeta_{2}\right) \equiv 1$ and $\phi\left(1, \zeta_{2}\right) \equiv-1$. So $\alpha=1,-1$ are exceptional.

Figure: Generic level curves \mathcal{L}_{α} for several values of α (black, gray, orange, pink). Level sets for exceptional values $\alpha=-1$ (green) and $\alpha=1$ (red).

Example (cont.)

Generic Alpha: For $\alpha \neq 1,-1$ and $f \in C\left(\mathbb{T}^{2}\right)$,

$$
\begin{gathered}
\int_{\mathbb{T}^{2}} f(\zeta) \sigma_{\alpha}(\zeta)=\int_{\mathbb{T}} f\left(\zeta_{1}, g_{\alpha}\left(\zeta_{1}\right)\right) W_{\alpha}\left(\zeta_{1}\right) d m\left(\zeta_{1}\right) \\
g_{\alpha}=\frac{1+4 \alpha+3 \zeta_{1}-\zeta_{1}^{2}+\zeta_{1}^{3}}{\alpha-\alpha \zeta_{1}+3 \alpha \zeta_{1}^{2}+4 z_{1}^{3}+\alpha \zeta_{1}^{3}}, W_{\alpha}=\frac{\left|\zeta_{1}-1\right|^{2}\left|\zeta_{1}+1\right|^{4}}{\left|4 \zeta_{1}^{3}+\alpha \zeta_{1}^{3}+3 \alpha \zeta_{1}^{2}-\alpha \zeta_{1}+\alpha\right|^{2}} .
\end{gathered}
$$

Exceptional Alpha: For $\alpha=-1$ and $f \in C\left(\mathbb{T}^{2}\right),(\alpha=1$ is similar $)$

$$
\begin{aligned}
& \int_{\mathbb{T}^{2}} f(\zeta) \sigma_{-1}(\zeta)=\int_{\mathbb{T}} f\left(\zeta_{1}, g_{-1}\left(\zeta_{1}\right)\right) W_{-1}\left(\zeta_{1}\right) d m\left(\zeta_{1}\right)+\int_{\mathbb{T}} f\left(1, \zeta_{2}\right) d m\left(\zeta_{2}\right) \\
& g_{-1}=\frac{3+\zeta_{1}^{2}}{3 \zeta_{1}^{2}+1}, W_{-1}=\frac{\left|\zeta_{1}+1\right|^{4}}{\left|3 \zeta_{1}^{2}+1\right|^{2}}
\end{aligned}
$$

The Last Slide

Takeaways

- Clark measures on the polydisk can be defined like those on the disk.
- If ϕ is rational, inner on \mathbb{D}^{2}, then the Clark measures σ_{α} have a similar structure to those on \mathbb{D} and the associated isometry $V_{\alpha}: K_{\phi} \rightarrow L^{2}\left(\sigma_{\alpha}\right)$ is often unitary.
- Other authors have studied other ϕ and other Clark measure generalizations (e.g. Jury 2014, Aleksandrov-Doubtsov 2020, Nell Paiz Jacobsson 2023)

Thanks to the organizers for organizing and the participants for participating!

