Weighted norm inequalities for multiplier weak-type inequalities

David V. Cruz-Uribe, OFS

University of Alabama

SEAM 40

Acknowledgments

Joint work with Brandon Sweeting and Michael Penrod, University of Alabama

Classical weak type inequalities

For $1 \leqslant p<\infty$ we say an operator T satisfies the weak (p, p) inequality if

$$
w\left(\left\{x \in \mathbb{R}^{n}:|T f(x)|>\lambda\right\}\right) \leqslant \frac{C}{\lambda^{p}} \int_{\mathbb{R}^{n}}|f(x)|^{p} w(x) d x .
$$

These follow from strong (p, p) inequality by Chebyshev's inequality:

Classical weak type inequalities

For $1 \leqslant p<\infty$ we say an operator T satisfies the weak (p, p) inequality if

$$
w\left(\left\{x \in \mathbb{R}^{n}:|T f(x)|>\lambda\right\}\right) \leqslant \frac{C}{\lambda^{p}} \int_{\mathbb{R}^{n}}|f(x)|^{p} w(x) d x .
$$

These follow from strong (p, p) inequality by Chebyshev's inequality:

$$
\int_{\mathbb{R}^{n}}|T f(x)|^{p} w(x) d x \leqslant C \int_{\mathbb{R}^{n}}|f(x)|^{p} w(x) d x
$$

Muckenhoupt A_{p} weights

For $1<p<\infty, w \in A_{p}$ if

$$
[w]_{A_{p}}=\sup _{Q} f_{Q} w d x\left(f_{Q} w^{1-p^{\prime}} d x\right)^{p-1}<\infty
$$

When $p=1, w \in A_{1}$ if

$$
[w]_{A_{1}}=\sup _{Q} \underset{x \in Q}{\operatorname{ess} \sup } w(x)^{-1} f_{Q} w d x<\infty .
$$

Classical weighted norm inequalities I

Theorem (The A_{2} conjecture)
For $1<p<\infty$ and $w \in A_{p}$, if T is an SIO,

$$
\left.\left(\int_{\mathbb{R}^{n}}|T f|^{p} w d x\right)\right)^{\frac{1}{p}} \leqslant C[w]_{A_{\rho}}^{\max \left\{1, \frac{1}{\rho-1}\right\}}\left(\int_{\mathbb{R}^{n}}|f|^{p} w d x\right)^{\frac{1}{\rho}}
$$

The exponent on $[w]_{A_{p}}$ is sharp.

Classical weighted norm inequalities I

Theorem (The A_{2} conjecture)
For $1<p<\infty$ and $w \in A_{p}$, if T is an SIO,

$$
\left.\left(\int_{\mathbb{R}^{n}}|T f|^{p} w d x\right)\right)^{\frac{1}{p}} \leqslant C[w]_{A_{p}}^{\max \left\{1, \frac{1}{p-1}\right\}}\left(\int_{\mathbb{R}^{n}}|f|^{p} w d x\right)^{\frac{1}{p}}
$$

The exponent on $[w]_{A_{\rho}}$ is sharp.

Classical weighted norm inequalities II

Theorem

For $1<p<\infty$ and $w \in A_{p}$, if T is an SIO,
$w\left(\left\{x \in \mathbb{R}^{n}:|T f(x)|>\lambda\right\}\right)^{\frac{1}{p}} \leqslant C[w]_{A_{p}} \lambda^{-1}\left(\int_{\mathbb{R}^{n}}|f(x)|^{p} w(x) d x\right)^{\frac{1}{p}}$.

True when $p=1$ with constant $C[w]_{A_{1}} \log \left(e+[w]_{A_{1}}\right)$.

The exponent on $[\mathrm{w}]_{A_{p}}$ is sharp.

Classical weighted norm inequalities II

Theorem

For $1<p<\infty$ and $w \in A_{p}$, if T is an SIO,

$$
w\left(\left\{x \in \mathbb{R}^{n}:|T f(x)|>\lambda\right\}\right)^{\frac{1}{p}} \leqslant C[w]_{A_{p}} \lambda^{-1}\left(\int_{\mathbb{R}^{n}}|f(x)|^{p} w(x) d x\right)^{\frac{1}{p}} .
$$

True when $p=1$ with constant $C[w]_{A_{1}} \log \left(e+[w]_{A_{1}}\right)$.

The exponent on $[w]_{A_{p}}$ is sharp.

Classical weighted norm inequalities II

Theorem

For $1<p<\infty$ and $w \in A_{p}$, if T is an SIO,

$$
w\left(\left\{x \in \mathbb{R}^{n}:|T f(x)|>\lambda\right\}\right)^{\frac{1}{p}} \leqslant C[w]_{A_{p}} \lambda^{-1}\left(\int_{\mathbb{R}^{n}}|f(x)|^{p} w(x) d x\right)^{\frac{1}{p}} .
$$

True when $p=1$ with constant $C[w]_{A_{1}} \log \left(e+[w]_{A_{1}}\right)$.

The exponent on $[w]_{A_{p}}$ is sharp.

Weights as multipliers

Restate strong (p, p) inequalities: pull weight inside the power and replace f by $w^{-\frac{1}{p}} f$ to get multiplier strong (p, p) :

$$
\int_{\mathbb{R}^{n}}\left|W^{\frac{1}{p}} T\left(w^{-\frac{1}{\rho}} f\right)\right|^{p} d x \leqslant C \int_{\mathbb{R}^{n}}|f|^{p} d x .
$$

Unweighted inequality for weighted operator $T_{w} f=W^{\frac{1}{p}} T\left(w^{-\frac{1}{p}} f\right)$.

Weights as multipliers

Restate strong (p, p) inequalities: pull weight inside the power and replace f by $w^{-\frac{1}{p}} f$ to get multiplier strong (p, p) :

$$
\int_{\mathbb{R}^{n}}\left|w^{\frac{1}{p}} T\left(w^{-\frac{1}{\rho}} f\right)\right|^{p} d x \leqslant C \int_{\mathbb{R}^{n}}|f|^{p} d x .
$$

Unweighted inequality for weighted operator $T_{w} f=w^{\frac{1}{\rho}} T\left(w^{-\frac{1}{\rho}} f\right)$.

Multiplier weak-type inequalities

By Chebyshev's inequality, multiplier strong (p, p) implies

$$
\left|\left\{x \in \mathbb{R}^{n}:\left|w^{\frac{1}{p}}(x) T\left(w^{-\frac{1}{\rho}} f\right)(x)\right|>\lambda\right\}\right| \leqslant \frac{C}{\lambda^{p}} \int_{\mathbb{R}^{n}}|f(x)|^{p} d x .
$$

We refer to this as a multiplier weak (p, p) inequality.

Multiplier weak-type inequalities

By Chebyshev's inequality, multiplier strong (p, p) implies

$$
\left|\left\{x \in \mathbb{R}^{n}:\left|W^{\frac{1}{p}}(x) T\left(w^{-\frac{1}{p}} f\right)(x)\right|>\lambda\right\}\right| \leqslant \frac{C}{\lambda^{p}} \int_{\mathbb{R}^{n}}|f(x)|^{p} d x .
$$

We refer to this as a multiplier weak (p, p) inequality.

Endpoint multiplier inequality

Theorem (Muckenhoupt-Wheeden 1977, DCU-JMM-CP 2005) For $1 \leqslant p<\infty$ and $w \in A_{p}$, if T is an SIO,
$\left|\left\{x \in \mathbb{R}^{n}:\left|W^{\frac{1}{p}}(x) T\left(w^{-\frac{1}{\rho}} f\right)(x)\right|>\lambda\right\}\right|^{\frac{1}{p}} \leqslant C \lambda^{-1}\left(\int_{\mathbb{R}^{n}}|f(x)|^{p} d x\right)^{\frac{1}{p}}$.
Same inequality is true if T is replaced by the maximal operator.

Endpoint multiplier inequality

Theorem (Muckenhoupt-Wheeden 1977, DCU-JMM-CP 2005) For $1 \leqslant p<\infty$ and $w \in A_{p}$, if T is an SIO,

$$
\left|\left\{x \in \mathbb{R}^{n}:\left|W^{\frac{1}{p}}(x) T\left(w^{-\frac{1}{p}} f\right)(x)\right|>\lambda\right\}\right|^{\frac{1}{p}} \leqslant C \lambda^{-1}\left(\int_{\mathbb{R}^{n}}|f(x)|^{p} d x\right)^{\frac{1}{\rho}}
$$

Same inequality is true if T is replaced by the maximal operator.

Original motivation

(1) A_{p} condition sufficient but not necessary: if $n=1, p=1$, this theorem holds if $w(x)=1 /|x|$.
(2) Different conditions required for maximal operators and SIOs when $p>1$.

- These inequalities arise in interpolation with change of measure (S-W 1958)

Original motivation

(1) A_{p} condition sufficient but not necessary: if $n=1, p=1$, this theorem holds if $w(x)=1 /|x|$.
(2) Different conditions required for maximal operators and SIOs when $p>1$.

- These inequalities arise in interpolation with change of measure (S-W 1958)

Original motivation

(1) A_{p} condition sufficient but not necessary: if $n=1, p=1$, this theorem holds if $w(x)=1 /|x|$.
(2) Different conditions required for maximal operators and SIOs when $p>1$.
(C) These inequalities arise in interpolation with change of measure (S-W 1958)

Original motivation

(1) A_{p} condition sufficient but not necessary: if $n=1, p=1$, this theorem holds if $w(x)=1 /|x|$.
(2) Different conditions required for maximal operators and SIOs when $p>1$.
(3) These inequalities arise in interpolation with change of measure (S-W 1958)

Quantitative estimates

Question: what is the sharp dependence on $[w]_{A_{\rho}}$?

New motivation

Multiplier weak type inequalities allow us to define weak type inequalities for matrix weights.

Matrix weights

Let \mathcal{S}_{d} be $d \times d$, self-adjoint, positive semi-definite matrices.
A matrix weight is a measurable function

$$
\begin{gathered}
W: \mathbb{R}^{n} \rightarrow \mathcal{S}_{d} . \\
|W(x)|_{\text {op }}=\sup _{|\xi|=1}|W(x) \xi| . \\
\|\mathbf{f}\|_{L p(W)}=\left(\int_{\mathbb{R}^{n}}\left|W^{\frac{1}{\rho}}(x) \mathbf{f}(x)\right|^{p} d x\right)^{\frac{1}{p}}<\infty .
\end{gathered}
$$

Matrix A_{p}

For $1<p<\infty, W \in \mathbf{A}_{p}$ if

$$
[W]_{\mathbf{A}_{\rho}}=\sup _{Q} f_{Q}\left(f_{Q}\left|W(x)^{\frac{1}{p}} W(y)^{-\frac{1}{p}}\right|_{o p}^{p^{\prime}} d y\right)^{\frac{p}{p^{\prime}}} d x<\infty
$$

$W \in \mathbf{A}_{1}$ if

$$
[W]_{\mathbf{A}_{1}}=\underset{x \in \mathbb{R}^{d}}{\operatorname{ess} \sup } \sup _{Q \ni x} f_{Q}\left|W(y) W^{-1}(x)\right|_{\text {op }} d y<\infty .
$$

Matrix weights and SIOs

Theorem (NTV, CG, NPTV, DCU-JI-KM)
If $1<p<\infty, W \in \mathbf{A}_{p}$, and T an SIO, then

$$
\begin{aligned}
&\left(\int_{\mathbb{R}^{n}}\left|W^{\frac{1}{\rho}}(x) T\left(W^{-\frac{1}{\rho} f}\right)(x)\right|^{p} d x\right)^{\frac{1}{\rho}} \\
& \leqslant C[W]_{A_{p}}^{1+\frac{1}{\rho-1}-\frac{1}{p}}\left(\int_{\mathbb{R}^{n}}|f(x)|^{p} d x\right)^{\frac{1}{p}} .
\end{aligned}
$$

This exponent is sharp when $p=2$ (DPTV 2024).

Matrix weights and SIOs

Theorem (NTV, CG, NPTV, DCU-JI-KM)
If $1<p<\infty, W \in \mathbf{A}_{p}$, and T an SIO, then

$$
\begin{aligned}
&\left(\int_{\mathbb{R}^{n}}\left|W^{\frac{1}{\rho}}(x) T\left(W^{-\frac{1}{\rho}} \mathbf{f}\right)(x)\right|^{p} d x\right)^{\frac{1}{\rho}} \\
& \leqslant C[W]_{\mathbf{A}_{\rho}}^{1+\frac{1}{\rho-1}-\frac{1}{\rho}}\left(\int_{\mathbb{R}^{n}}|\mathbf{f}(x)|^{p} d x\right)^{\frac{1}{p}}
\end{aligned}
$$

This exponent is sharp when $p=2$ (DPTV 2024).

Matrix weights and Maximal operator

Christ-Goldberg maximal operator

$$
M_{W} f(x)=\sup _{Q} f_{Q}\left|W^{\frac{1}{\rho}}(x) W^{-\frac{1}{\rho}}(y) \mathbf{f}(y)\right| d y \cdot \chi_{Q}(x) .
$$

Theorem (MC-MG 2003, KM-JI 2019)
If $1<p<\infty, W \in \mathbf{A}_{p}$,

$$
\left(\int_{\mathbb{R}^{n}} M_{W} \mathbf{f}(x)^{p} d x\right)^{\frac{1}{p}} \leqslant C[W]_{\boldsymbol{A}_{p}}^{\frac{1}{p-1}}\left(\int_{\mathbb{R}^{n}}|\mathbf{f}(x)|^{p} d x\right)^{\frac{1}{p}}
$$

This exponent is sharp.

Matrix weights and Maximal operator

Christ-Goldberg maximal operator

$$
M_{W} f(x)=\sup _{Q} f_{Q}\left|W^{\frac{1}{\rho}}(x) W^{-\frac{1}{\rho}}(y) \mathbf{f}(y)\right| d y \cdot \chi_{Q}(x) .
$$

Theorem (MC-MG 2003, KM-JI 2019)
If $1<p<\infty, W \in \mathbf{A}_{p}$,

$$
\left(\int_{\mathbb{R}^{n}} M_{W} \mathbf{f}(x)^{p} d x\right)^{\frac{1}{p}} \leqslant C[W]_{\boldsymbol{A}_{p}}^{\frac{1}{p-1}}\left(\int_{\mathbb{R}^{n}}|\mathbf{f}(x)|^{p} d x\right)^{\frac{1}{p}}
$$

This exponent is sharp.

Matrix endpoint inequality

Theorem (DCU-JI-KM-SP-IRR 2021)
For $1 \leqslant p<\infty$ and $w \in A_{1}$, if T is an SIO,

$$
\left|\left\{x \in \mathbb{R}^{n}:\left|W(x) T\left(W^{-1} \mathbf{f}\right)(x)\right|>\lambda\right\}\right| \leqslant \frac{C[W]_{A_{1}}^{2}}{\lambda} \int_{\mathbb{R}^{n}}|f(x)| d x .
$$

The same inequality holds for M_{W}.

This exponent is sharp! (AL-KL-SO-IRR 2023)

Matrix endpoint inequality

Theorem (DCU-JI-KM-SP-IRR 2021)
For $1 \leqslant p<\infty$ and $w \in A_{1}$, if T is an SIO,

$$
\left|\left\{x \in \mathbb{R}^{n}:\left|W(x) T\left(W^{-1} \mathbf{f}\right)(x)\right|>\lambda\right\}\right| \leqslant \frac{C[W]_{A_{1}}^{2}}{\lambda} \int_{\mathbb{R}^{n}}|f(x)| d x .
$$

The same inequality holds for M_{W}.

This exponent is sharp! (AL-KL-SO-IRR 2023)

Matrix endpoint inequality

Theorem (DCU-JI-KM-SP-IRR 2021)
For $1 \leqslant p<\infty$ and $w \in A_{1}$, if T is an SIO,

$$
\left|\left\{x \in \mathbb{R}^{n}:\left|W(x) T\left(W^{-1} \mathbf{f}\right)(x)\right|>\lambda\right\}\right| \leqslant \frac{C[W]_{A_{1}}^{2}}{\lambda} \int_{\mathbb{R}^{n}}|f(x)| d x .
$$

The same inequality holds for M_{W}.

This exponent is sharp! (AL-KL-SO-IRR 2023)

Quantitative estimates I

Theorem (DCU-BS 2023)
For $1 \leqslant p<\infty$ and $w \in A_{p}$, if T is an SIO,

$$
\begin{aligned}
\left\lvert\,\left\{x \in \mathbb{R}^{n}:\left|W(x)^{\frac{1}{\rho}} T\left(W^{-\frac{1}{\rho} f} \mathbf{f}\right)(x)\right|\right.\right. & >\lambda\}\left.\right|^{\frac{1}{\rho}} \\
& \leqslant \frac{C[W]_{A_{p}}^{1+\frac{1}{\rho}}}{\lambda}\left(\int_{\mathbb{R}^{n}}|\mathbf{f}(x)|^{p} d x\right)^{\frac{1}{\rho}} .
\end{aligned}
$$

The same inequality holds for M_{W}.

Quantitative estimates I

Theorem (DCU-BS 2023)
For $1 \leqslant p<\infty$ and $w \in A_{p}$, if T is an SIO,

$$
\begin{aligned}
\left\lvert\,\left\{x \in \mathbb{R}^{n}:\left|W(x)^{\frac{1}{\rho}} T\left(W^{-\frac{1}{\rho} f} \mathbf{f}\right)(x)\right|\right.\right. & >\lambda\}\left.\right|^{\frac{1}{\rho}} \\
& \leqslant \frac{C[W]_{A_{\rho}}^{1+\frac{1}{\rho}}}{\lambda}\left(\int_{\mathbb{R}^{n}}|\mathbf{f}(x)|^{p} d x\right)^{\frac{1}{\rho}} .
\end{aligned}
$$

The same inequality holds for M_{W}.

Short outline of proof

(1) Use convex-body sparse domination (NPTV 2017)

- Use alternative formulation of $L^{p, \infty}$ norm

(3) Apply Hölder's inequality and matrix A_{p} condition.
a Reduce to scalar case. Apply reverse Hölder inequality.

Short outline of proof

(1) Use convex-body sparse domination (NPTV 2017)
(2) Use alternative formulation of $L^{p, \infty}$ norm

(3) Apply Hölder's inequality and matrix A_{p} condition.
a Reduce to scalar case. Anply reverse Hölder inequality.

Short outline of proof

(1) Use convex-body sparse domination (NPTV 2017)
(2) Use alternative formulation of $L^{p, \infty}$ norm

$$
\|f\|_{L \rho, \infty} \approx \sup _{\substack{\left.E \in \mathbb{R}^{n} \\
0<|E|<\infty \\
\inf _{\begin{subarray}{c}{ \\
F \subset E\\
} }}\left|E \frac{\mid}{2}\right| E \right\rvert\,}\end{subarray}}|E|^{-1+\frac{1}{\rho}}\left|\int_{F} f(x) d x\right| .
$$

© Apply Hölder's inequality and matrix A_{p} condition.
(- Reduce to scalar case. Apply reverse Hölder inequality.

Short outline of proof

(1) Use convex-body sparse domination (NPTV 2017)
(2) Use alternative formulation of $L^{p, \infty}$ norm

$$
\|f\|_{L \rho, \infty} \approx \sup _{\substack{E \in \mathbb{R}^{n} \\ 0<|\vec{E}|<\infty}} \inf _{\substack{F \subset E \\|F| \geq \frac{2}{2}|E|}}|E|^{-1+\frac{1}{\rho}}\left|\int_{F} f(x) d x\right| .
$$

(3) Apply Hölder's inequality and matrix A_{p} condition.
(- Reduce to scalar case. Apply reverse Hölder inequality.

Short outline of proof

(1) Use convex-body sparse domination (NPTV 2017)
(2) Use alternative formulation of $L^{p, \infty}$ norm

$$
\|f\|_{L p, \infty} \approx \sup _{\substack{E \in \mathbb{R}^{n} \\ 0<|E|<\infty}} \inf _{\substack{F \subset E \\|F| \geq \frac{1}{2}|E|}}|E|^{-1+\frac{1}{\rho}}\left|\int_{F} f(x) d x\right| .
$$

(3) Apply Hölder's inequality and matrix A_{p} condition.
(9) Reduce to scalar case. Apply reverse Hölder inequality.

Quantitative estimates II, $1<p<2$

Theorem (AL-KL-SO-IRR 2024)
For $1 \leqslant p<2$ and $W \in A_{p}$

$$
\left\|M_{W}\right\|_{L \rho, \infty} \leqslant[W]_{A_{\rho}}^{\frac{2}{\rho}}\|\mathbf{f}\|_{L \rho}
$$

and the exponent is sharp.
In the scalar case, if T is an SIO

Quantitative estimates II, $1<p<2$

Theorem (AL-KL-SO-IRR 2024)
For $1 \leqslant p<2$ and $W \in A_{p}$

$$
\left\|M_{W}\right\|_{L \rho, \infty} \leqslant[W]_{A_{\rho}}^{\frac{2}{\rho}}\|\mathbf{f}\|_{L \rho}
$$

and the exponent is sharp.
In the scalar case, if T is an SIO

$$
\left\|\boldsymbol{W}^{\frac{1}{p}} T\left(\boldsymbol{w}^{-\frac{1}{\rho}} f\right)\right\|_{L^{p, \infty}} \leqslant[\boldsymbol{w}]_{A_{p}}^{1+\frac{1}{\rho^{2}}} \log \left(\boldsymbol{e}+[\boldsymbol{w}]_{A_{p}}\right)^{\frac{1}{\rho}\|f\|_{L p}}
$$

Quantitative estimates II, $p \geqslant 2$

In addition, they proved when $p \geqslant 2$:
(a) Best exponent in scalar case for Hilbert transform is 1, as gotten from strong (p, p) inequality and Chebyshev's inequality.
(3) Best constant for maximal operator is bounded below by

So exponent from strong (p, p) inequality and Chebyshev's inequality is best possible.

Quantitative estimates II, $p \geqslant 2$

In addition, they proved when $p \geqslant 2$:
(1) Best exponent in scalar case for Hilbert transform is 1, as gotten from strong (p, p) inequality and Chebyshev's inequality.
(3) Best constant for maximal operator is bounded below by

So exponent from strong (p, p) inequality and Chebyshev's inequality is best possible.

Quantitative estimates II, $p \geqslant 2$

In addition, they proved when $p \geqslant 2$:
(1) Best exponent in scalar case for Hilbert transform is 1, as gotten from strong (p, p) inequality and Chebyshev's inequality.
(2) Best constant for maximal operator is bounded below by

$$
[W]_{A_{p}}^{\frac{1}{p-1}} \log \left(e+[W]_{A_{p}}\right)^{-\frac{1}{p}} .
$$

So exponent from strong (p, p) inequality and Chebyshev's inequality is best possible.

Two operators

Fractional integral operator: $0<\alpha<n$

$$
I_{\alpha} \mathbf{f}(x)=\int_{\mathbb{R}^{n}} \frac{\mathbf{f}(y)}{|x-y|^{n-\alpha}} d y
$$

Fractional Christ-Goldberg maximal operator:

Two operators

Fractional integral operator: $0<\alpha<n$

$$
I_{\alpha} \mathbf{f}(x)=\int_{\mathbb{R}^{n}} \frac{\mathbf{f}(y)}{|x-y|^{n-\alpha}} d y
$$

Fractional Christ-Goldberg maximal operator:

$$
M_{W, \alpha}=\sup _{Q}|Q|^{\frac{\alpha}{n}} \int_{Q}\left|W(x) W^{-1} \mathbf{f}(y)\right| d y \cdot \chi_{Q}(x) .
$$

Matrix $A_{p, q}$ weights

$W \in A_{p, q}, 1<p<\infty, \frac{1}{p}-\frac{1}{q}=\frac{\alpha}{n}$ if

$$
[W]_{\mathcal{A}_{p, q}}:=\sup _{Q} f_{Q}\left(f_{Q}\left|W(x) W^{-1}(y)\right|_{\text {op }}^{p^{\prime}} d y\right)^{\frac{q}{p}} d x<\infty
$$

When $p=1, W \in A_{1, q}$ if

$$
[W]_{\mathcal{A}_{1, q}}:=\sup _{Q} \operatorname{ess} \sup _{x \in Q} f_{Q}\left|W(y) W^{-1}(x)\right|_{\text {op }}^{q} d y<\infty .
$$

Strong (p, q) inequalities

Theorem (JI-KM 2019)
If $W \in A_{p, q}, 1<p<\infty, \frac{1}{p}-\frac{1}{q}=\frac{\alpha}{n}$,

$$
\left\|M_{W, \alpha} \mathbf{f}\right\|_{L q} \leqslant C[W]_{A_{p, q}}^{\left(1-\frac{\alpha}{q}\right) \frac{p^{\prime}}{q}}\|f\|_{L p},
$$

and this exponent is sharp.

Strong (p, q) inequalities

Theorem (JI-KM 2019)
If $W \in A_{p, q}, 1<p<\infty, \frac{1}{p}-\frac{1}{q}=\frac{\alpha}{n}$,

$$
\left\|M_{W, \alpha} \mathbf{f}\right\|_{L q} \leqslant C[W]_{A_{p, q}}^{\left(1-\frac{\alpha}{n}\right) \frac{\rho^{\prime}}{q}}\|f\|_{\|^{\rho}},
$$

and this exponent is sharp.

$$
\| W I_{\alpha}\left(W^{-1} \mathbf{f}\left\|_{L q} \leqslant C[W]_{A_{p, q}}^{\left.\left(1-\frac{\alpha}{q}\right) \frac{\rho^{\prime}}{q}\right)+1}\right\| f \|_{L^{\rho}} .\right.
$$

Sharp strong (p, q) constants

Open question: find the sharp exponent for I_{α} in matrix case.

Known in scalar case:

(ML-KM-CP-RT 2010)

Sharp strong (p, q) constants

Open question: find the sharp exponent for I_{α} in matrix case.
Known in scalar case:

$$
\left(1-\frac{\alpha}{n}\right) \max \left(1, \frac{p^{\prime}}{q}\right) .
$$

(ML-KM-CP-RT 2010)

Multiplier weak (p, q) inequalities

Theorem (DCU-BS 2024)
If $W \in A_{p, q}, 1 \leqslant p<\frac{n}{\alpha}, \frac{1}{p}-\frac{1}{q}=\frac{\alpha}{n}$,

$$
\left|\left\{x \in \mathbb{R}^{d}:\left|W(x) I_{\alpha}\left(W^{-1} \mathbf{f}\right)(x)\right|>\lambda\right\}\right|^{\frac{1}{a}}
$$

$$
\leqslant C)[W]_{\mathcal{A}_{p, q}}^{1+\frac{1}{q}} \frac{1}{\lambda}\left(\int_{\mathbb{R}^{n}} \mid f^{p} d x\right)^{\frac{1}{p}} .
$$

The same inequality holds for $M_{W, \alpha}$.

Multiplier weak (p, q) inequalities

Theorem (DCU-BS 2024)
If $W \in A_{p, q}, 1 \leqslant p<\frac{n}{\alpha}, \frac{1}{p}-\frac{1}{q}=\frac{\alpha}{n}$,

$$
\begin{aligned}
\mid\left\{x \in \mathbb{R}^{d}:\left|W(x) I_{\alpha}\left(W^{-1} \mathbf{f}\right)(x)\right|>\right. & \lambda\}\left.\right|^{\frac{1}{q}} \\
& \leqslant C)[W]_{\mathcal{A}_{p, q}}^{1+\frac{1}{q}} \frac{1}{\lambda}\left(\int_{\mathbb{R}^{n}}|\mathbf{f}|^{p} d x\right)^{\frac{1}{p}}
\end{aligned}
$$

The same inequality holds for $M_{W, \alpha}$.

Sharp strong (p, q) constants

Open question: find the sharp exponent for I_{α} and $M_{W, \alpha}$ in matrix case.

A better definition of matrix weights

For $1<p<\infty, W \in \hat{A}_{p}$ if

$$
[W]_{\mathbf{A}_{\rho}}=\sup _{Q}\left(f_{Q}\left(f_{Q}\left|W(x) W^{-1}(y)\right|_{o p}^{p^{\prime}} d y\right)^{\frac{p}{p^{\prime}}} d x\right)^{\frac{1}{p}}<\infty .
$$

When $p=1, W \in \widehat{A}_{1}$ if

$W \in \widehat{A}_{p}$ if and only if $W^{p} \in A_{p}$, and

A better definition of matrix weights

For $1<p<\infty, W \in \hat{A}_{p}$ if

$$
[W]_{\mathbf{A}_{p}}=\sup _{Q}\left(f_{Q}\left(f_{Q}\left|W(x) W^{-1}(y)\right|_{o p}^{p^{\prime}} d y\right)^{\frac{p}{p}} d x\right)^{\frac{1}{p}}<\infty .
$$

When $p=1, W \in \widehat{A}_{1}$ if

$$
[W]_{\mathbf{A}_{1}}=\operatorname{sup~ess~sup~}_{Q} f_{x \in Q}\left|W^{-1}(x) W(y)\right|_{\text {op }} d y<\infty .
$$

$W \in \widehat{A}_{p}$ if and only if $W^{p} \in A_{p}$, and

A better definition of matrix weights

For $1<p<\infty, W \in \widehat{A}_{p}$ if

$$
[W]_{\mathbf{A}_{\rho}}=\sup _{Q}\left(f_{Q}\left(f_{Q}\left|W(x) W^{-1}(y)\right|_{o p}^{p^{\prime}} d y\right)^{\frac{p}{p^{\prime}}} d x\right)^{\frac{1}{p}}<\infty
$$

When $p=1, W \in \widehat{A}_{1}$ if

$$
[W]_{\mathbf{A}_{1}}=\sup _{Q} \underset{x \in Q}{ } \operatorname{sessup}_{Q} f_{Q}\left|W^{-1}(x) W(y)\right|_{\text {op }} d y<\infty .
$$

$W \in \widehat{A}_{p}$ if and only if $W^{p} \in A_{p}$, and

$$
[W]_{\hat{A}_{\rho}}=\left[W^{p}\right]_{A_{p}}^{\frac{1}{p}} .
$$

Left/right openness of \widehat{A}_{p}

Theorem (DCU-MP 2023)

If $1<p<\infty$ and $W \in \hat{A}_{p}$, there exists $\delta=\delta\left([W]_{\mathbf{A}_{p}}\right)>0$ such that $|q-p|<\delta$, then $W \in \widehat{A}_{q}$.

Contrast this with

Theorem (MB 2001)
Given $1<p<\infty$, there exists $W \in A_{p}$ such that W is not in A_{q}, any $q<p$.

Left/right openness of \widehat{A}_{p}

Theorem (DCU-MP 2023)
If $1<p<\infty$ and $W \in \hat{A}_{p}$, there exists $\delta=\delta\left([W]_{\mathbf{A}_{p}}\right)>0$ such that $|q-p|<\delta$, then $W \in \widehat{A}_{q}$.

Contrast this with

Theorem (MB 2001)
Given $1<p<\infty$, there exists $W \in A_{p}$ such that W is not in A_{q}, any $q<p$.

Bounds for SIOs

Theorem (DCU-MP-BS 2024)
If $1<p<\infty, W \in \widehat{A}_{p}$, and T an SIO, then

$$
\left(\int_{\mathbb{R}^{n}}\left|W(x) T\left(W^{-1} \mathbf{f}\right)(x)\right|^{p} d x\right)^{\frac{1}{p}} \leqslant C\left(\int_{\mathbb{R}^{n}}|\mathbf{f}(x)|^{p} d x\right)^{\frac{1}{p}}
$$

Same result holds for M_{w}.

Bounds for SIOs

Theorem (DCU-MP-BS 2024)
If $1<p<\infty, W \in \widehat{A}_{p}$, and T an SIO, then

$$
\left(\int_{\mathbb{R}^{n}}\left|W(x) T\left(W^{-1} \mathbf{f}\right)(x)\right|^{p} d x\right)^{\frac{1}{p}} \leqslant C\left(\int_{\mathbb{R}^{n}}|\mathbf{f}(x)|^{p} d x\right)^{\frac{1}{p}}
$$

Same result holds for M_{W}.

Sketch of proof

(1) $T_{W} \mathbf{f}=W T\left(W^{-1} \mathbf{f}\right)$ is a linear operator independent of p
(C) $W \in \hat{A}_{p}$ implies $W \in \widehat{A}_{p \pm e}$ for some $\epsilon>0$.
(3) Use Marcinkiewicz interpolation from multiplier weak $(p \pm \epsilon, p \pm \epsilon)$ inequalities for T_{W}.

Cruz-Uribe (UA)

Sketch of proof

(1) $T_{W} \mathbf{f}=W T\left(W^{-1} \mathbf{f}\right)$ is a linear operator independent of p
(3) $W \in \widehat{A}_{p}$ implies $W \in \widehat{A}_{p \pm \epsilon}$ for some $\epsilon>0$.
(3) Use Marcinkiewicz interpolation from multiplier weak ($p \pm \epsilon, p \pm \epsilon$) inequalities for T_{W}.

Sketch of proof

(1) $T_{W} \mathbf{f}=W T\left(W^{-1} \mathbf{f}\right)$ is a linear operator independent of p
(2) $W \in \widehat{A}_{p}$ implies $W \in \widehat{A}_{p \pm \epsilon}$ for some $\epsilon>0$.
© Use Marcinkiewicz interpolation from multiplier weak ($p \pm \epsilon, p \pm \epsilon$) inequalities for T_{W}.

Sketch of proof

(1) $T_{W} \mathbf{f}=W T\left(W^{-1} \mathbf{f}\right)$ is a linear operator independent of p
(2) $W \in \widehat{A}_{p}$ implies $W \in \widehat{A}_{p \pm \epsilon}$ for some $\epsilon>0$.
(3) Use Marcinkiewicz interpolation from multiplier weak ($p \pm \epsilon, p \pm \epsilon$) inequalities for T_{w}.

Thank You!

 Roll Tide!

