Weighted norm inequalities for multiplier weak-type inequalities

David V. Cruz-Uribe, OFS

University of Alabama

SEAM 40

Cruz-Uribe (UA)

Multiplier weak-type inequalities

Acknowledgments

Joint work with Brandon Sweeting and Michael Penrod, University of Alabama

Classical weak type inequalities

For $1 \le p < \infty$ we say an operator *T* satisfies the weak (p, p) inequality if

$$w(\{x \in \mathbb{R}^n : |Tf(x)| > \lambda\}) \leq \frac{C}{\lambda^{p}} \int_{\mathbb{R}^n} |f(x)|^{p} w(x) dx.$$

These follow from strong (p, p) inequality by Chebyshev's inequality:

$$\int_{\mathbb{R}^n} |Tf(x)|^p w(x) \, dx \leqslant C \int_{\mathbb{R}^n} |f(x)|^p w(x) \, dx.$$

Classical weak type inequalities

For $1 \le p < \infty$ we say an operator *T* satisfies the weak (p, p) inequality if

$$w(\{x \in \mathbb{R}^n : |Tf(x)| > \lambda\}) \leq \frac{C}{\lambda^{\rho}} \int_{\mathbb{R}^n} |f(x)|^{\rho} w(x) \, dx.$$

These follow from strong (p, p) inequality by Chebyshev's inequality:

$$\int_{\mathbb{R}^n} |Tf(x)|^p w(x) \, dx \leqslant C \int_{\mathbb{R}^n} |f(x)|^p w(x) \, dx.$$

Muckenhoupt A_p weights

For $1 , <math>w \in A_p$ if

$$[w]_{A_p} = \sup_{Q} \oint_{Q} w \, dx \left(\oint_{Q} w^{1-p'} \, dx \right)^{p-1} < \infty.$$

When p = 1, $w \in A_1$ if

$$[w]_{A_1} = \sup_{Q} \operatorname{ess\,sup}_{x \in Q} w(x)^{-1} \oint_{Q} w \, dx < \infty.$$

Classical weighted norm inequalities I

Theorem (The A_2 conjecture) For $1 and <math>w \in A_p$, if T is an SIO,

$$\left(\int_{\mathbb{R}^n} |Tf|^p w \, dx\right)^{\frac{1}{p}} \leq C[w]_{A_p}^{\max\{1,\frac{1}{p-1}\}} \left(\int_{\mathbb{R}^n} |f|^p w \, dx\right)^{\frac{1}{p}}.$$

Classical weighted norm inequalities I

Theorem (The A_2 conjecture) For $1 and <math>w \in A_p$, if T is an SIO,

$$\left(\int_{\mathbb{R}^n} |Tf|^p w \, dx\right)^{\frac{1}{p}} \leq C[w]_{A_p}^{\max\{1,\frac{1}{p-1}\}} \left(\int_{\mathbb{R}^n} |f|^p w \, dx\right)^{\frac{1}{p}}.$$

Classical weighted norm inequalities II

Theorem

For $1 and <math>w \in A_p$, if T is an SIO,

$$w(\{x \in \mathbb{R}^n : |Tf(x)| > \lambda\})^{\frac{1}{p}} \leq C[w]_{A_p}\lambda^{-1}\left(\int_{\mathbb{R}^n} |f(x)|^p w(x) dx\right)^{\frac{1}{p}}.$$

True when p = 1 *with constant* $C[w]_{A_1} \log(e + [w]_{A_1})$.

Classical weighted norm inequalities II

Theorem

For $1 and <math>w \in A_p$, if T is an SIO,

$$w(\{x \in \mathbb{R}^n : |Tf(x)| > \lambda\})^{\frac{1}{p}} \leq C[w]_{A_p} \lambda^{-1} \left(\int_{\mathbb{R}^n} |f(x)|^p w(x) \, dx\right)^{\frac{1}{p}}.$$

True when p = 1 with constant $C[w]_{A_1} \log(e + [w]_{A_1})$.

Classical weighted norm inequalities II

Theorem

For $1 and <math>w \in A_p$, if T is an SIO,

$$w(\{x \in \mathbb{R}^n : |Tf(x)| > \lambda\})^{\frac{1}{p}} \leq C[w]_{A_p} \lambda^{-1} \left(\int_{\mathbb{R}^n} |f(x)|^p w(x) \, dx\right)^{\frac{1}{p}}.$$

True when p = 1 *with constant* $C[w]_{A_1} \log(e + [w]_{A_1})$.

Weights as multipliers

Restate strong (p, p) inequalities: pull weight inside the power and replace *f* by $w^{-\frac{1}{p}f}$ to get multiplier strong (p, p):

$$\int_{\mathbb{R}^n} |w^{\frac{1}{p}}T(w^{-\frac{1}{p}}f)|^p \, dx \leqslant C \int_{\mathbb{R}^n} |f|^p \, dx.$$

Unweighted inequality for weighted operator $T_w f = w^{\frac{1}{p}} T(w^{-\frac{1}{p}} f)$.

Weights as multipliers

Restate strong (p, p) inequalities: pull weight inside the power and replace *f* by $w^{-\frac{1}{p}f}$ to get multiplier strong (p, p):

$$\int_{\mathbb{R}^n} |w^{\frac{1}{p}}T(w^{-\frac{1}{p}}f)|^p \, dx \leqslant C \int_{\mathbb{R}^n} |f|^p \, dx.$$

Unweighted inequality for weighted operator $T_w f = w^{\frac{1}{p}} T(w^{-\frac{1}{p}} f)$.

Multiplier weak-type inequalities

By Chebyshev's inequality, multiplier strong (p, p) implies

$$|\{x \in \mathbb{R}^n : |w^{\frac{1}{p}}(x)T(w^{-\frac{1}{p}}f)(x)| > \lambda\}| \leq \frac{C}{\lambda^p} \int_{\mathbb{R}^n} |f(x)|^p \, dx.$$

We refer to this as a **multiplier** weak (p, p) inequality.

Multiplier weak-type inequalities

By Chebyshev's inequality, multiplier strong (p, p) implies

$$|\{x \in \mathbb{R}^n : |w^{\frac{1}{p}}(x)T(w^{-\frac{1}{p}}f)(x)| > \lambda\}| \leq \frac{C}{\lambda^p} \int_{\mathbb{R}^n} |f(x)|^p \, dx.$$

We refer to this as a **multiplier** weak (p, p) inequality.

Endpoint multiplier inequality

Theorem (Muckenhoupt-Wheeden 1977, DCU-JMM-CP 2005) For $1 \le p < \infty$ and $w \in A_p$, if T is an SIO,

$$|\{x \in \mathbb{R}^n : |w^{\frac{1}{p}}(x)T(w^{-\frac{1}{p}}f)(x)| > \lambda\}|^{\frac{1}{p}} \leq C\lambda^{-1} \left(\int_{\mathbb{R}^n} |f(x)|^p dx\right)^{\frac{1}{p}}$$

Same inequality is true if T is replaced by the maximal operator.

Endpoint multiplier inequality

Theorem (Muckenhoupt-Wheeden 1977, DCU-JMM-CP 2005) For $1 \le p < \infty$ and $w \in A_p$, if T is an SIO,

$$|\{x \in \mathbb{R}^n : |w^{\frac{1}{p}}(x)T(w^{-\frac{1}{p}}f)(x)| > \lambda\}|^{\frac{1}{p}} \leq C\lambda^{-1}\left(\int_{\mathbb{R}^n} |f(x)|^p dx\right)^{\frac{1}{p}}.$$

Same inequality is true if T is replaced by the maximal operator.

- A_p condition sufficient but not necessary: if n = 1, p = 1, this theorem holds if w(x) = 1/|x|.
- 2 Different conditions required for maximal operators and SIOs when p > 1.
- These inequalities arise in interpolation with change of measure (S-W 1958)

- A_p condition sufficient but not necessary: if n = 1, p = 1, this theorem holds if w(x) = 1/|x|.
- 2 Different conditions required for maximal operators and SIOs when p > 1.
- These inequalities arise in interpolation with change of measure (S-W 1958)

- A_p condition sufficient but not necessary: if n = 1, p = 1, this theorem holds if w(x) = 1/|x|.
- 2 Different conditions required for maximal operators and SIOs when p > 1.
- These inequalities arise in interpolation with change of measure (S-W 1958)

- A_p condition sufficient but not necessary: if n = 1, p = 1, this theorem holds if w(x) = 1/|x|.
- 2 Different conditions required for maximal operators and SIOs when p > 1.
- These inequalities arise in interpolation with change of measure (S-W 1958)

Quantitative estimates

Question: what is the sharp dependence on $[w]_{A_p}$?

New motivation

Multiplier weak type inequalities allow us to define weak type inequalities for matrix weights.

Matrix weights

Let S_d be $d \times d$, self-adjoint, positive semi-definite matrices.

A matrix weight is a measurable function

 $W: \mathbb{R}^n \to \mathcal{S}_d.$

$$|\boldsymbol{W}(\boldsymbol{x})|_{\rm op} = \sup_{|\xi|=1} |\boldsymbol{W}(\boldsymbol{x})\xi|.$$

$$\|\mathbf{f}\|_{L^p(W)} = \left(\int_{\mathbb{R}^n} |W^{\frac{1}{p}}(x)\mathbf{f}(x)|^p \, dx\right)^{\frac{1}{p}} < \infty.$$

Matrix A_p

For $1 , <math>W \in \mathbf{A}_{\rho}$ if

$$[W]_{\mathbf{A}_{p}} = \sup_{Q} \oint_{Q} \left(\oint_{Q} |W(x)^{\frac{1}{p}}W(y)^{-\frac{1}{p}}|_{\mathrm{op}}^{p'} dy \right)^{\frac{p}{p'}} dx < \infty.$$

 $W \in \mathbf{A}_1$ if

$$[\boldsymbol{W}]_{\mathbf{A}_1} = \operatorname*{ess\,sup}_{x \in \mathbb{R}^d} \sup_{Q \ni x} \oint_Q |\boldsymbol{W}(y) \boldsymbol{W}^{-1}(x)|_{\mathrm{op}} \, dy < \infty.$$

Matrix weights and SIOs

Theorem (NTV, CG, NPTV, DCU-JI-KM) If $1 , <math>W \in \mathbf{A}_p$, and T an SIO, then

$$\left(\int_{\mathbb{R}^n} |W^{\frac{1}{p}}(x)T(W^{-\frac{1}{p}}\mathbf{f})(x)|^p dx\right)^{\frac{1}{p}} \leq C[W]_{\mathbf{A}_p}^{1+\frac{1}{p-1}-\frac{1}{p}} \left(\int_{\mathbb{R}^n} |\mathbf{f}(x)|^p dx\right)^{\frac{1}{p}}.$$

This exponent is sharp when p = 2 (DPTV 2024).

Matrix weights and SIOs

Theorem (NTV, CG, NPTV, DCU-JI-KM) If $1 , <math>W \in \mathbf{A}_p$, and T an SIO, then

$$\left(\int_{\mathbb{R}^n} |W^{\frac{1}{p}}(x)T(W^{-\frac{1}{p}}\mathbf{f})(x)|^p dx\right)^{\frac{1}{p}} \leq C[W]_{\mathbf{A}_p}^{1+\frac{1}{p-1}-\frac{1}{p}} \left(\int_{\mathbb{R}^n} |\mathbf{f}(x)|^p dx\right)^{\frac{1}{p}}.$$

This exponent is sharp when p = 2 (DPTV 2024).

Matrix weights and Maximal operator

Christ-Goldberg maximal operator

$$M_{W}f(x) = \sup_{Q} \int_{Q} |W^{\frac{1}{p}}(x)W^{-\frac{1}{p}}(y)\mathbf{f}(y)| \, dy \cdot \chi_{Q}(x).$$

Theorem (MC-MG 2003, KM-JI 2019) If $1 , <math>W \in \mathbf{A}_{\rho}$,

$$\left(\int_{\mathbb{R}^n} M_W \mathbf{f}(x)^p \, dx\right)^{\frac{1}{p}} \leqslant C[W]_{\mathbf{A}_p}^{\frac{1}{p-1}} \left(\int_{\mathbb{R}^n} |\mathbf{f}(x)|^p \, dx\right)^{\frac{1}{p}}$$

This exponent is sharp.

Matrix weights and Maximal operator

Christ-Goldberg maximal operator

$$M_W f(x) = \sup_{Q} \int_{Q} |W^{\frac{1}{p}}(x) W^{-\frac{1}{p}}(y) \mathbf{f}(y)| \, dy \cdot \chi_Q(x).$$

Theorem (MC-MG 2003, KM-JI 2019) If $1 , <math>W \in \mathbf{A}_{\rho}$,

$$\left(\int_{\mathbb{R}^n} M_W \mathbf{f}(x)^p \, dx\right)^{\frac{1}{p}} \leq C[W]_{\mathbf{A}_p}^{\frac{1}{p-1}} \left(\int_{\mathbb{R}^n} |\mathbf{f}(x)|^p \, dx\right)^{\frac{1}{p}}$$

This exponent is sharp.

Matrix endpoint inequality

Theorem (DCU-JI-KM-SP-IRR 2021) For $1 \le p < \infty$ and $w \in A_1$, if T is an SIO,

$$|\{x \in \mathbb{R}^n : |W(x)T(W^{-1}\mathbf{f})(x)| > \lambda\}| \leq \frac{C[W]_{A_1}^2}{\lambda} \int_{\mathbb{R}^n} |\mathbf{f}(x)| \, dx.$$

The same inequality holds for M_W .

This exponent is sharp! (AL-KL-SO-IRR 2023)

Matrix endpoint inequality

Theorem (DCU-JI-KM-SP-IRR 2021) For $1 \le p < \infty$ and $w \in A_1$, if T is an SIO,

$$|\{x \in \mathbb{R}^n : |W(x)T(W^{-1}\mathbf{f})(x)| > \lambda\}| \leq \frac{C[W]_{A_1}^2}{\lambda} \int_{\mathbb{R}^n} |\mathbf{f}(x)| \, dx.$$

The same inequality holds for M_W .

This exponent is sharp! (AL-KL-SO-IRR 2023)

Matrix endpoint inequality

Theorem (DCU-JI-KM-SP-IRR 2021) For $1 \le p < \infty$ and $w \in A_1$, if T is an SIO,

$$|\{x \in \mathbb{R}^n : |W(x)T(W^{-1}\mathbf{f})(x)| > \lambda\}| \leq \frac{C[W]_{\mathcal{A}_1}^2}{\lambda} \int_{\mathbb{R}^n} |\mathbf{f}(x)| \, dx.$$

The same inequality holds for M_W .

This exponent is sharp! (AL-KL-SO-IRR 2023)

Quantitative estimates I

Theorem (DCU-BS 2023) For $1 \le p < \infty$ and $w \in A_p$, if T is an SIO,

$$\begin{split} |\{x \in \mathbb{R}^n : |W(x)^{\frac{1}{p}} T(W^{-\frac{1}{p}} \mathbf{f})(x)| > \lambda\}|^{\frac{1}{p}} \\ \leqslant \frac{C[W]_{A_p}^{1+\frac{1}{p}}}{\lambda} \bigg(\int_{\mathbb{R}^n} |\mathbf{f}(x)|^p \, dx \bigg)^{\frac{1}{p}}. \end{split}$$

The same inequality holds for M_W .

Quantitative estimates I

Theorem (DCU-BS 2023) For $1 \le p < \infty$ and $w \in A_p$, if T is an SIO,

$$\begin{split} |\{x \in \mathbb{R}^n : |W(x)^{\frac{1}{p}} T(W^{-\frac{1}{p}} \mathbf{f})(x)| > \lambda\}|^{\frac{1}{p}} \\ &\leqslant \frac{C[W]_{A_p}^{1+\frac{1}{p}}}{\lambda} \bigg(\int_{\mathbb{R}^n} |\mathbf{f}(x)|^p \, dx \bigg)^{\frac{1}{p}}. \end{split}$$

The same inequality holds for M_W .

- Use convex-body sparse domination (NPTV 2017)
- Ise alternative formulation of $L^{p,\infty}$ norm

$$\|f\|_{L^{p,\infty}} \approx \sup_{\substack{E \subset \mathbb{R}^n \\ 0 < |E| < \infty}} \inf_{\substack{F \subset E \\ |F| \ge \frac{1}{2}|E|}} |E|^{-1+\frac{1}{p}} \bigg| \int_F f(x) \, dx \bigg|.$$

- 3 Apply Hölder's inequality and matrix A_p condition.
- Reduce to scalar case. Apply reverse Hölder inequality.

Use convex-body sparse domination (NPTV 2017)

2 Use alternative formulation of $L^{p,\infty}$ norm

$$\|f\|_{L^{p,\infty}} \approx \sup_{\substack{E \subset \mathbb{R}^n \\ 0 < |E| < \infty}} \inf_{\substack{F \subset E \\ |F| \ge \frac{1}{2}|E|}} |E|^{-1+\frac{1}{p}} \bigg| \int_F f(x) \, dx \bigg|.$$

3 Apply Hölder's inequality and matrix A_p condition.

Reduce to scalar case. Apply reverse Hölder inequality.

Use convex-body sparse domination (NPTV 2017)

Use alternative formulation of L^{p,∞} norm

$$\|f\|_{L^{p,\infty}} \approx \sup_{\substack{E \subset \mathbb{R}^n \\ 0 < |E| < \infty}} \inf_{\substack{F \subset E \\ |F| \ge \frac{1}{2}|E|}} |E|^{-1+\frac{1}{p}} \bigg| \int_F f(x) \, dx \bigg|.$$

- 3 Apply Hölder's inequality and matrix A_p condition.
- Reduce to scalar case. Apply reverse Hölder inequality.

Use convex-body sparse domination (NPTV 2017)

Use alternative formulation of L^{p,∞} norm

$$\|f\|_{L^{p,\infty}} \approx \sup_{\substack{E \subset \mathbb{R}^n \\ 0 < |E| < \infty}} \inf_{\substack{F \subset E \\ |F| \ge \frac{1}{2}|E|}} |E|^{-1+\frac{1}{p}} \bigg| \int_F f(x) \, dx \bigg|.$$

- Apply Hölder's inequality and matrix A_p condition.
- Reduce to scalar case. Apply reverse Hölder inequality.

- Use convex-body sparse domination (NPTV 2017)
- Use alternative formulation of L^{p,∞} norm

$$\|f\|_{L^{p,\infty}} \approx \sup_{\substack{E \subset \mathbb{R}^n \\ 0 < |E| < \infty}} \inf_{\substack{F \subset E \\ |F| \ge \frac{1}{2}|E|}} |E|^{-1+\frac{1}{p}} \bigg| \int_F f(x) \, dx \bigg|.$$

- Apply Hölder's inequality and matrix A_p condition.
- Beduce to scalar case. Apply reverse Hölder inequality.

Quantitative estimates II, 1

Theorem (AL-KL-SO-IRR 2024) For $1 \le p < 2$ and $W \in A_p$

$$\|\boldsymbol{M}_{\boldsymbol{W}}\boldsymbol{\mathsf{f}}\|_{L^{p,\infty}} \leqslant [\boldsymbol{W}]_{\boldsymbol{A}_{p}}^{\frac{2}{p}}\|\boldsymbol{\mathsf{f}}\|_{L^{p}}$$

and the exponent is sharp.

In the scalar case, if T is an SIO

$$\|w^{\frac{1}{p}}T(w^{-\frac{1}{p}}f)\|_{L^{p,\infty}} \leq [w]_{A_{p}}^{1+\frac{1}{p^{2}}}\log(e+[w]_{A_{p}})^{\frac{1}{p}}\|f\|_{L^{p}}$$

Quantitative estimates II, 1

Theorem (AL-KL-SO-IRR 2024) For $1 \le p < 2$ and $W \in A_p$

$$\|\boldsymbol{M}_{\boldsymbol{W}}\boldsymbol{\mathsf{f}}\|_{L^{p,\infty}} \leqslant [\boldsymbol{W}]_{\boldsymbol{A}_{p}}^{\frac{2}{p}}\|\boldsymbol{\mathsf{f}}\|_{L^{p}}$$

and the exponent is sharp.

In the scalar case, if T is an SIO

$$\|w^{\frac{1}{p}}T(w^{-\frac{1}{p}}f)\|_{L^{p,\infty}} \leq [w]_{A_{p}}^{1+\frac{1}{p^{2}}}\log(e+[w]_{A_{p}})^{\frac{1}{p}}\|f\|_{L^{p}}$$

Quantitative estimates II, $p \ge 2$

In addition, they proved when $p \ge 2$:

- Best exponent in scalar case for Hilbert transform is 1, as gotten from strong (p, p) inequality and Chebyshev's inequality.
- Best constant for maximal operator is bounded below by

$$[W]_{A_p}^{\frac{1}{p-1}}\log(e+[W]_{A_p})^{-\frac{1}{p}}.$$

So exponent from strong (p, p) inequality and Chebyshev's inequality is best possible.

Quantitative estimates II, $p \ge 2$

In addition, they proved when $p \ge 2$:

- Best exponent in scalar case for Hilbert transform is 1, as gotten from strong (p, p) inequality and Chebyshev's inequality.
- Best constant for maximal operator is bounded below by

$$[W]_{A_p}^{\frac{1}{p-1}}\log(e+[W]_{A_p})^{-\frac{1}{p}}.$$

So exponent from strong (p, p) inequality and Chebyshev's inequality is best possible.

Quantitative estimates II, $p \ge 2$

In addition, they proved when $p \ge 2$:

- Best exponent in scalar case for Hilbert transform is 1, as gotten from strong (p, p) inequality and Chebyshev's inequality.
- Best constant for maximal operator is bounded below by

$$[\boldsymbol{W}]_{\boldsymbol{A}_{\boldsymbol{p}}}^{\frac{1}{\boldsymbol{p}-1}}\log(\boldsymbol{e}+[\boldsymbol{W}]_{\boldsymbol{A}_{\boldsymbol{p}}})^{-\frac{1}{\boldsymbol{p}}}.$$

So exponent from strong (p, p) inequality and Chebyshev's inequality is best possible.

Two operators

Fractional integral operator: $0 < \alpha < n$

$$J_{lpha}\mathbf{f}(x) = \int_{\mathbb{R}^n} rac{\mathbf{f}(y)}{|x-y|^{n-lpha}} \, dy$$

Fractional Christ-Goldberg maximal operator:

$$M_{W,\alpha} = \sup_{Q} |Q|^{\frac{\alpha}{n}} \int_{Q} |W(x)W^{-1}\mathbf{f}(y)| \, dy \cdot \chi_{Q}(x).$$

Two operators

Fractional integral operator: $0 < \alpha < n$

$$J_{lpha}\mathbf{f}(x) = \int_{\mathbb{R}^n} rac{\mathbf{f}(y)}{|x-y|^{n-lpha}} \, dy$$

Fractional Christ-Goldberg maximal operator:

$$M_{W,\alpha} = \sup_{Q} |Q|^{\frac{\alpha}{n}} \int_{Q} |W(x)W^{-1}\mathbf{f}(y)| \, dy \cdot \chi_{Q}(x).$$

Matrix $A_{p,q}$ weights

$$W \in A_{p,q}, 1 if$$

$$[W]_{\mathcal{A}_{p,q}} := \sup_{Q} \oint_{Q} \left(\oint_{Q} |W(x)W^{-1}(y)|_{\mathrm{op}}^{p'} dy \right)^{\frac{q}{p'}} dx < \infty.$$

When p = 1, $W \in A_{1,q}$ if

$$[W]_{\mathcal{A}_{1,q}} := \sup_{Q} \operatorname{ess\,sup}_{x \in Q} \int_{Q} |W(y)W^{-1}(x)|_{\operatorname{op}}^{q} dy < \infty.$$

Strong (p, q) inequalities

Theorem (JI-KM 2019)
If
$$W \in A_{p,q}$$
, $1 , $\frac{1}{p} - \frac{1}{q} = \frac{\alpha}{n}$,
 $\|M_{W,\alpha}\mathbf{f}\|_{L^q} \leq C[W]_{A_{p,q}}^{(1-\frac{\alpha}{n})\frac{p'}{q}}\|\mathbf{f}\|_{L^p}$,$

and this exponent is sharp.

$$\|WI_{\alpha}(W^{-1}\mathbf{f})\|_{L^{q}} \leqslant C[W]_{\mathcal{A}_{p,q}}^{(1-\frac{\alpha}{n})\frac{p'}{q})+1}\|\mathbf{f}\|_{L^{p}}.$$

Strong (p, q) inequalities

Theorem (JI-KM 2019)
If
$$W \in A_{p,q}$$
, $1 , $\frac{1}{p} - \frac{1}{q} = \frac{\alpha}{n}$,
 $\|M_{W,\alpha}\mathbf{f}\|_{L^q} \leq C[W]_{A_{p,q}}^{(1-\frac{\alpha}{n})\frac{p'}{q}} \|\mathbf{f}\|_{L^p}$,$

and this exponent is sharp.

$$\|W\!I_{\alpha}(W^{-1}\mathbf{f})\|_{L^{q}} \leqslant C[W]_{A_{p,q}}^{(1-\frac{\alpha}{n})\frac{p'}{q})+1}\|\mathbf{f}\|_{L^{p}}.$$

Sharp strong (p, q) constants

Open question: find the sharp exponent for I_{α} in matrix case.

Known in scalar case:

$$\left(1-\frac{\alpha}{n}\right)\max\left(1,\frac{p'}{q}\right).$$

(ML-KM-CP-RT 2010)

Sharp strong (p, q) constants

Open question: find the sharp exponent for I_{α} in matrix case.

Known in scalar case:

$$\left(1-rac{lpha}{n}
ight)\max\left(1,rac{p'}{q}
ight).$$

(ML-KM-CP-RT 2010)

Multiplier weak (p, q) inequalities

Theorem (DCU-BS 2024)

$$f W \in A_{p,q}, 1 \leq p < \frac{n}{\alpha}, \frac{1}{p} - \frac{1}{q} = \frac{\alpha}{n},$$

$$|\{x \in \mathbb{R}^d : |W(x)I_{\alpha}(W^{-1}\mathbf{f})(x)| > \lambda\}|^{\frac{1}{q}}$$

$$\leq C)[W]_{\mathcal{A}_{p,q}}^{1+\frac{1}{q}}\frac{1}{\lambda}\left(\int_{\mathbb{R}^n} |\mathbf{f}|^p dx\right)$$

The same inequality holds for $M_{W,\alpha}$.

 $\frac{1}{p}$

Multiplier weak (p, q) inequalities

Theorem (DCU-BS 2024)

$$f W \in A_{p,q}, 1 \leq p < \frac{n}{\alpha}, \frac{1}{p} - \frac{1}{q} = \frac{\alpha}{n},$$

$$|\{x \in \mathbb{R}^d : |W(x)I_{\alpha}(W^{-1}\mathbf{f})(x)| > \lambda\}|^{\frac{1}{q}}$$

$$\leq C)[W]_{\mathcal{A}_{p,q}}^{1+\frac{1}{q}}\frac{1}{\lambda}\left(\int_{\mathbb{R}^n} |\mathbf{f}|^p dx\right)^{\frac{1}{p}}$$

The same inequality holds for $M_{W,\alpha}$.

Sharp strong (p, q) constants

Open question: find the sharp exponent for I_{α} and $M_{W,\alpha}$ in matrix case.

A better definition of matrix weights

For $1 , <math>W \in \widehat{A}_p$ if

$$[W]_{\mathbf{A}_{p}} = \sup_{Q} \left(\oint_{Q} \left(\oint_{Q} |W(x)W^{-1}(y)|_{\mathrm{op}}^{p'} dy \right)^{\frac{p}{p'}} dx \right)^{\frac{1}{p}} < \infty.$$

When
$$p = 1$$
, $W \in \widehat{A}_1$ if

$$[W]_{\mathbf{A}_1} = \sup_{Q} \operatorname{ess\,sup}_{x \in Q} \oint_{Q} |W^{-1}(x)W(y)|_{\operatorname{op}} dy < \infty.$$

 $W \in \widehat{A}_{\rho}$ if and only if $W^{\rho} \in A_{\rho}$, and

$$[W]_{\widehat{A}_p} = [W^p]_{A_p}^{\frac{1}{p}}.$$

A better definition of matrix weights

For $1 , <math>W \in \widehat{A}_p$ if

$$[W]_{\mathbf{A}_{p}} = \sup_{Q} \left(\oint_{Q} \left(\oint_{Q} |W(x)W^{-1}(y)|_{\mathrm{op}}^{p'} dy \right)^{\frac{p}{p'}} dx \right)^{\frac{1}{p}} < \infty.$$

When
$$p = 1$$
, $W \in \widehat{A}_1$ if
 $[W]_{\mathbf{A}_1} = \sup_{Q} \operatorname{ess\,sup}_{x \in Q} \int_{Q} |W^{-1}(x)W(y)|_{\operatorname{op}} dy < \infty.$

 $W \in \widehat{A}_{\rho}$ if and only if $W^{\rho} \in A_{\rho}$, and

$$[W]_{\widehat{A}_{p}} = [W^{p}]_{A_{p}}^{\frac{1}{p}}$$

Multiplier weak-type inequalities

A better definition of matrix weights

For $1 , <math>W \in \widehat{A}_p$ if

$$[W]_{\mathbf{A}_{p}} = \sup_{Q} \left(\oint_{Q} \left(\oint_{Q} |W(x)W^{-1}(y)|_{\mathrm{op}}^{p'} dy \right)^{\frac{p}{p'}} dx \right)^{\frac{1}{p}} < \infty.$$

When
$$p = 1$$
, $W \in \widehat{A}_1$ if
 $[W]_{\mathbf{A}_1} = \sup_{Q} \operatorname{ess\,sup}_{x \in Q} \int_{Q} |W^{-1}(x)W(y)|_{\operatorname{op}} dy < \infty.$

 $W \in \widehat{A}_p$ if and only if $W^p \in A_p$, and

$$[\boldsymbol{W}]_{\hat{\boldsymbol{A}}_{p}} = [\boldsymbol{W}^{p}]_{\boldsymbol{A}_{p}}^{\frac{1}{p}}.$$

Left/right openness of \widehat{A}_{ρ}

Theorem (DCU-MP 2023)

If $1 and <math>W \in \widehat{A}_p$, there exists $\delta = \delta([W]_{\mathbf{A}_p}) > 0$ such that $|q - p| < \delta$, then $W \in \widehat{A}_q$.

Contrast this with

Theorem (MB 2001)

Given $1 , there exists <math>W \in A_p$ such that W is not in A_q , any q < p.

Left/right openness of \hat{A}_{p}

Theorem (DCU-MP 2023)

If $1 and <math>W \in \widehat{A}_p$, there exists $\delta = \delta([W]_{\mathbf{A}_p}) > 0$ such that $|q - p| < \delta$, then $W \in \widehat{A}_q$.

Contrast this with

Theorem (MB 2001)

Given $1 , there exists <math>W \in A_p$ such that W is not in A_q , any q < p.

Bounds for SIOs

Theorem (DCU-MP-BS 2024) If $1 , <math>W \in \hat{A}_p$, and T an SIO, then

$$\left(\int_{\mathbb{R}^n} |W(x)T(W^{-1}\mathbf{f})(x)|^p \, dx\right)^{\frac{1}{p}} \leq C \left(\int_{\mathbb{R}^n} |\mathbf{f}(x)|^p \, dx\right)^{\frac{1}{p}}$$

Same result holds for M_W .

Bounds for SIOs

Theorem (DCU-MP-BS 2024) If $1 , <math>W \in \hat{A}_p$, and T an SIO, then

$$\left(\int_{\mathbb{R}^n} |W(x)T(W^{-1}\mathbf{f})(x)|^p \, dx\right)^{\frac{1}{p}} \leq C \left(\int_{\mathbb{R}^n} |\mathbf{f}(x)|^p \, dx\right)^{\frac{1}{p}}$$

Same result holds for M_W .

- **1** $T_W \mathbf{f} = WT(W^{-1}\mathbf{f})$ is a linear operator independent of p
- 2 $W \in \widehat{A}_{\rho}$ implies $W \in \widehat{A}_{\rho \pm \epsilon}$ for some $\epsilon > 0$.
- 3 Use Marcinkiewicz interpolation from multiplier weak $(p \pm \epsilon, p \pm \epsilon)$ inequalities for T_W .

• $T_W \mathbf{f} = WT(W^{-1}\mathbf{f})$ is a linear operator independent of p

2 $W \in \widehat{A}_{\rho}$ implies $W \in \widehat{A}_{\rho \pm \epsilon}$ for some $\epsilon > 0$.

3 Use Marcinkiewicz interpolation from multiplier weak $(p \pm \epsilon, p \pm \epsilon)$ inequalities for T_W .

- $T_W \mathbf{f} = WT(W^{-1}\mathbf{f})$ is a linear operator independent of p
- 2 $W \in \widehat{A}_{\rho}$ implies $W \in \widehat{A}_{\rho \pm \epsilon}$ for some $\epsilon > 0$.
- 3 Use Marcinkiewicz interpolation from multiplier weak $(p \pm \epsilon, p \pm \epsilon)$ inequalities for T_W .

• $T_W \mathbf{f} = WT(W^{-1}\mathbf{f})$ is a linear operator independent of p

2
$$W \in \widehat{A}_{\rho}$$
 implies $W \in \widehat{A}_{\rho \pm \epsilon}$ for some $\epsilon > 0$.

• Use Marcinkiewicz interpolation from multiplier weak $(p \pm \epsilon, p \pm \epsilon)$ inequalities for T_W .

Roll Tide!

