Projections in the combination of Operators of Finite Orders

Priyadarshi Dey

Department of Mathematics & Statistics Kenyon College

South Eastern Analysis Meeting (SEAM 40) University of Florida March 15 – 17, 2024

Priyadarshi Dey Projections in combinations of finite order operators

・ 同 ト ・ ヨ ト ・ ヨ ト

Outline

2 Preliminaries

Projections as averages of isometries & reflections

Ongoing and Future Plans

3.1

Introduction

Preliminaries Projections as averages of isometries & reflections Ongoing and Future Plans

Why to study projections and isometries?

伺 ト イ ヨ ト イ ヨ

Why to study projections and isometries?

• Projections are operators with a simple spectral structure (with eigenvalues being 0 and 1 only) and easy to understand.

Why to study projections and isometries?

- Projections are operators with a simple spectral structure (with eigenvalues being 0 and 1 only) and easy to understand.
- Projections are the building blocks of many other operators (for example, Spectral theorem for compact self-adjoint operators).

Why to study projections and isometries?

- Projections are operators with a simple spectral structure (with eigenvalues being 0 and 1 only) and easy to understand.
- Projections are the building blocks of many other operators (for example, Spectral theorem for compact self-adjoint operators). Orthogonal projections have applications in linear regression, Multivariate distributions, QR decomposition etc.

Why to study projections and isometries?

- Projections are operators with a simple spectral structure (with eigenvalues being 0 and 1 only) and easy to understand.
- Projections are the building blocks of many other operators (for example, Spectral theorem for compact self-adjoint operators). Orthogonal projections have applications in linear regression, Multivariate distributions, QR decomposition etc.
- Isometries are distance preserving maps and are fun to study. Isometries are kind of "isomorphisms" and "preserves" many interesting properties.

周 ト イ ヨ ト イ ヨ ト

Why to study projections and isometries?

- Projections are operators with a simple spectral structure (with eigenvalues being 0 and 1 only) and easy to understand.
- Projections are the building blocks of many other operators (for example, Spectral theorem for compact self-adjoint operators). Orthogonal projections have applications in linear regression, Multivariate distributions, QR decomposition etc.
- Isometries are distance preserving maps and are fun to study. Isometries are kind of "isomorphisms" and "preserves" many interesting properties.
- Isometries and projections are interconnected.

周 ト イ ヨ ト イ ヨ ト

Introduction

Preliminaries

Projections as averages of isometries & reflections Ongoing and Future Plans

Definitions & Examples

э

・ 同 ト ・ ヨ ト ・ ヨ

Definitions & Examples

Definition (Isometry)

Given two normed spaces X and Y, a (linear) map $T: X \to Y$ is an isometry if

$$||Tx|| = ||x||$$
 for every x in X

伺 ト イヨト イヨト

Definitions & Examples

Definition (Isometry)

Given two normed spaces X and Y, a (linear) map $T: X \to Y$ is an isometry if

$$||Tx|| = ||x||$$
 for every x in X

< ロ > < 同 > < 三 > < 三 >

э

Definitions & Examples

Definition (Isometry)

Given two normed spaces X and Y, a (linear) map $T: X \to Y$ is an isometry if

||Tx|| = ||x|| for every x in X

Example

• The map
$$T: \mathbb{C} \to \mathbb{C}$$
 given by $T(z) = \overline{z}$.

Priyadarshi Dey

Projections in combinations of finite order operators

Definitions & Examples

Definition (Isometry)

Given two normed spaces X and Y, a (linear) map $T: X \to Y$ is an isometry if

||Tx|| = ||x|| for every x in X

Example

• The map $T: \mathbb{C} \to \mathbb{C}$ given by $T(z) = \overline{z}$. Isometries need not be linear!

Priyadarshi Dey

Projections in combinations of finite order operators

Introduction

Preliminaries

Projections as averages of isometries & reflections Ongoing and Future Plans

Projections & Reflections

э

・ 同 ト ・ ヨ ト ・ ヨ

Projections & Reflections

Definition (Projection operator)

A (bounded) operator P from a normed linear space X to X is a projection if $P^2 = P$.

伺 ト イヨト イヨト

Projections & Reflections

Definition (Projection operator)

A (bounded) operator P from a normed linear space X to X is a projection if $P^2 = P$.

Definition (Reflection operator)

An operator R from a normed space X to another normed space X is a reflection if $R^2 = I$.

< 同 > < 国 > < 国 >

Projections & Reflections

Definition (Projection operator)

A (bounded) operator P from a normed linear space X to X is a projection if $P^2 = P$.

Definition (Reflection operator)

An operator R from a normed space X to another normed space X is a reflection if $R^2 = I$.

Creating Projections from reflections (and isometries)

Example

Consider \mathbb{R}^3 and consider the norm

$$\|(x_1, x_2, x_3)\|_{\infty} = \max\{|x_1|, |x_2|, |x_3|\}.$$

Example

Consider \mathbb{R}^3 and consider the norm

$$\|(x_1, x_2, x_3)\|_{\infty} = \max\{|x_1|, |x_2|, |x_3|\}.$$

Define, an operator $R: \mathbb{R}^3 \to \mathbb{R}^3$ by

$$R(x_1, x_2, x_3) = (x_2, x_1, x_3).$$

Example

Consider \mathbb{R}^3 and consider the norm

$$\|(x_1, x_2, x_3)\|_{\infty} = \max\{|x_1|, |x_2|, |x_3|\}.$$

Define, an operator $R: \mathbb{R}^3 \to \mathbb{R}^3$ by

$$R(x_1, x_2, x_3) = (x_2, x_1, x_3).$$

• $R^2 = I$

Example

Consider \mathbb{R}^3 and consider the norm

$$\|(x_1, x_2, x_3)\|_{\infty} = \max\{|x_1|, |x_2|, |x_3|\}.$$

Define, an operator $R: \mathbb{R}^3 \to \mathbb{R}^3$ by

$$R(x_1, x_2, x_3) = (x_2, x_1, x_3).$$

- $R^2 = I$
- R is an isometry.

Example

Consider \mathbb{R}^3 and consider the norm

$$\|(x_1, x_2, x_3)\|_{\infty} = \max\{|x_1|, |x_2|, |x_3|\}.$$

Define, an operator $R: \mathbb{R}^3 \to \mathbb{R}^3$ by

$$R(x_1, x_2, x_3) = (x_2, x_1, x_3).$$

• $R^2 = I$

• R is an isometry.

Define *P* as $P(x_1, x_2, x_3) = \frac{1}{2}(I + R)(x_1, x_2, x_3)$

Example

Consider \mathbb{R}^3 and consider the norm

$$\|(x_1, x_2, x_3)\|_{\infty} = \max\{|x_1|, |x_2|, |x_3|\}.$$

Define, an operator $R: \mathbb{R}^3 \to \mathbb{R}^3$ by

$$R(x_1, x_2, x_3) = (x_2, x_1, x_3).$$

• $R^2 = I$

• R is an isometry.

Define P as $P(x_1, x_2, x_3) = \frac{1}{2}(I + R)(x_1, x_2, x_3) = \frac{1}{2}(x_1 + x_2, x_1 + x_2, 2x_3).$

Example

Consider \mathbb{R}^3 and consider the norm

$$\|(x_1, x_2, x_3)\|_{\infty} = \max\{|x_1|, |x_2|, |x_3|\}.$$

Define, an operator $R: \mathbb{R}^3 \to \mathbb{R}^3$ by

$$R(x_1, x_2, x_3) = (x_2, x_1, x_3).$$

• $R^2 = I$

• R is an isometry.

Define *P* as $P(x_1, x_2, x_3) = \frac{1}{2}(I + R)(x_1, x_2, x_3) = \frac{1}{2}(x_1 + x_2, x_1 + x_2, 2x_3)$. Note: *P* is a projection!

Example

Consider the space C[0,1], the space of all continuous functions on the interval [0,1] with the norm $||f||_{\infty} = \max_{t \in [0,1]} f(t)$.

• • • • • • •

Example

Consider the space C[0,1], the space of all continuous functions on the interval [0,1] with the norm $||f||_{\infty} = \max_{t \in [0,1]} f(t)$. Consider the operator $R: C[0,1] \rightarrow C[0,1]$ defined by

Rf(t)=f(1-t).

Example

Consider the space C[0,1], the space of all continuous functions on the interval [0,1] with the norm $||f||_{\infty} = \max_{t \in [0,1]} f(t)$. Consider the operator $R: C[0,1] \rightarrow C[0,1]$ defined by

$$Rf(t)=f(1-t).$$

It is easy to check that $R^2 = I$ and R is an isometry.

.

Example

Consider the space C[0,1], the space of all continuous functions on the interval [0,1] with the norm $||f||_{\infty} = \max_{t \in [0,1]} f(t)$. Consider the operator $R: C[0,1] \rightarrow C[0,1]$ defined by

$$Rf(t)=f(1-t).$$

It is easy to check that $R^2 = I$ and R is an isometry. Define an operator P by $P(f) = \frac{1}{2}(f + R(f)) = \frac{1}{2}(f(t) + f(1 - t))$.

伺 ト イヨト イヨト

Example

Consider the space C[0,1], the space of all continuous functions on the interval [0,1] with the norm $||f||_{\infty} = \max_{t \in [0,1]} f(t)$. Consider the operator $R: C[0,1] \rightarrow C[0,1]$ defined by

Rf(t)=f(1-t).

It is easy to check that $R^2 = I$ and R is an isometry. Define an operator P by $P(f) = \frac{1}{2}(f + R(f)) = \frac{1}{2}(f(t) + f(1 - t))$. Note: Again, P is a projection!

伺 ト イヨト イヨト

Example

Consider the space C[0,1], the space of all continuous functions on the interval [0,1] with the norm $||f||_{\infty} = \max_{t \in [0,1]} f(t)$. Consider the operator $R: C[0,1] \rightarrow C[0,1]$ defined by

Rf(t)=f(1-t).

It is easy to check that $R^2 = I$ and R is an isometry. Define an operator P by $P(f) = \frac{1}{2}(f + R(f)) = \frac{1}{2}(f(t) + f(1 - t))$. Note: Again, P is a projection!

Remark

In general, if R is an (isometry), and a reflection, then the operator P defined as the average of I and R (i.e., $P = \frac{1}{2}(I + R)$) is a projection.

イロト イポト イラト イラト

Projections as a combination of two isometries

(DBE, 2023) For two isometries T_0 and T_1 on a Banach space X, consider an operator Q defined as $Q = \lambda_0 T_0 + \lambda_1 T_1$ ($Q \neq I$) with $\lambda_0, \lambda_1 > 0$ and $\lambda_0 + \lambda_1 = 1$. If Q is a projection, then $\lambda_0 = \lambda_1 = \frac{1}{2}$.

Projections as a combination of two isometries

(DBE, 2023) For two isometries T_0 and T_1 on a Banach space X, consider an operator Q defined as $Q = \lambda_0 T_0 + \lambda_1 T_1 \ (Q \neq I)$ with $\lambda_0, \lambda_1 > 0$ and $\lambda_0 + \lambda_1 = 1$. If Q is a projection, then $\lambda_0 = \lambda_1 = \frac{1}{2}$.

Priyadarshi Dey Projections in combinations of finite order operators

Projections in the "convex hull" of operators of finite order

(DBE, 2023) For an operator T of order n, (i.e., $T^n = I$), and positive scalars $\lambda_0, \lambda_1, \dots, \lambda_{n-1}$ with sum equal to 1, we consider an operator Q defined as

$$Q = \lambda_0 I + \lambda_1 T + \lambda_2 T^2 + \dots + \lambda_{n-1} T^{n-1}.$$

Then *Q* is a projection if and ony if $\lambda_0 = \lambda_1 = \dots = \lambda_{n-1} = \frac{1}{n}$.

Projections in the "convex hull" of operators of finite order

(DBE, 2023) For an operator T of order n, (i.e., $T^n = I$), and positive scalars $\lambda_0, \lambda_1, \dots, \lambda_{n-1}$ with sum equal to 1, we consider an operator Q defined as $Q = \lambda_0 I + \lambda_1 T + \lambda_2 T^2 + \dots + \lambda_{n-1} T^{n-1}.$ Then Q is a projection if and ony if $\lambda_0 = \lambda_1 = \dots = \lambda_{n-1} = \frac{1}{n}$. PROJECTION IN THE CONVEX HULL OF OPERATORS n=5 $P = \frac{1}{5} \left(1 + \tau + \tau^{2} + \tau^{3} + \tau^{4} \right)$

医子宫医子宫下

Ongoing Work

• For isometries T_0, T_1, \dots, T_{n-1} , and positive scalars $\lambda_0, \lambda_1, \dots, \lambda_{n-1}$ with sum equal to 1, we consider an operator Q defined as

 $Q=\lambda_0\,T_0+\lambda_1\,T_1+\lambda_2\,T_2+\cdots+\lambda_{n-1}\,T_{n-1}.$

For what values of the scalar $\lambda_0, \lambda_1, \dots, \lambda_{n-1}$ is Q a projection?

Definition

An operator T is said to be *n*-potent if $T^n = T$.

Ongoing Work

• For isometries T_0, T_1, \dots, T_{n-1} , and positive scalars $\lambda_0, \lambda_1, \dots, \lambda_{n-1}$ with sum equal to 1, we consider an operator Q defined as

$$Q = \lambda_0 T_0 + \lambda_1 T_1 + \lambda_2 T_2 + \dots + \lambda_{n-1} T_{n-1}.$$

For what values of the scalar $\lambda_0, \lambda_1, \dots, \lambda_{n-1}$ is Q a projection?

• For an operator T with $T^n = T$, and scalars $a_0, a_1, a_2, \dots, a_{n-1}$ we consider the operator

$$Q = a_0 I + a_1 T + a_2 T^2 + \dots + a_{n-1} T^{n-1}.$$

For what values of the scalars $a_0, a_1, a_2, \dots, a_{n-1}$, is Q a projection?

(日)

Ongoing Work

For isometries T₀, T₁,..., T_{n-1}, and positive scalars λ₀, λ₁,..., λ_{n-1} with sum equal to 1, we consider an operator Q defined as Q = λ₀T₀ + λ₁T₁ + λ₂T₂ + ... + λ_{n-1}T_{n-1}. For what values of the scalar λ₀, λ₁,..., λ_{n-1} is Q a projection?
For an operator T with Tⁿ = T, and scalars a₀, a₁, a₂,..., a_{n-1} we consider the operator Q = a₀I + a₁T + a₂T² + ... + a_{n-1}Tⁿ⁻¹. For what values of the scalars a₀, a₁, a₂..., a_{n-1} is Q a projection?

Definition

An operator T is said to be *n*-potent if $T^n = T$.

< ロ > < 同 > < 三 > < 三 >

For n=2 and beyond

For n = 2, let T be such that $T^2 = T$. Then

 $Q = a_0 I + a_1 T$

is a projection if and only if Q is of the form

Q = 0, I, T or Q = I - T.

・ロト・日本・日本・日本・日本・日本

For n=2 and beyond

For n = 2, let T be such that $T^2 = T$. Then

$$Q = a_0 I + a_1 T$$

is a projection if and only if Q is of the form

$$Q = 0, I, T$$
 or $Q = I - T$.

<i>n</i> = 2	Comments
0, <i>I</i>	"trivial projection"
Т	"eigen-projection"
I - T	"eigen-projection"

Priyadarshi Dey Projections in combinations of finite order operators

< ロ > < 同 > < 三 > < 三 >

For n=3

For n=3

For
$$n = 3$$
, let T be such that $T^3 = T$. Then

$$Q = a_0 I + a_1 T + a_2 T^2$$

is a projection if and only if

<i>n</i> = 3	Comments
0,1	"trivial projection"
$\frac{T+T^2}{2}, \frac{-T+T^2}{2}$	"eigen-projection"
$I - T^2$	"eigen-projection
$I \pm \frac{1}{2}(T \mp T^2)$	*
T^2	*

For n=3

For
$$n = 3$$
, let T be such that $T^3 = T$. Then

$$Q = a_0 I + a_1 T + a_2 T^2$$

is a projection if and only if

<i>n</i> = 3	Comments
0,1	"trivial projection"
$\frac{T+T^2}{2}, \frac{-T+T^2}{2}$	"eigen-projection"
$I - T^2$	"eigen-projection
$I \pm \frac{1}{2}(T \mp T^2)$	*
T^2	*

Observation: (*) is the sum of the eigen-projections!

イロト イヨト イヨト

э

Eigen-projections and Examples

э

伺 ト イ ヨ ト イ ヨ

Eigen-projections and Examples

Definition (Eigen-projection)

Let T be a bounded operator on X and let λ be an eigenvalue of T. Let U be an open set in \mathbb{C} such that $\sigma(T) \subset U$. Let $\Gamma_{\lambda} :\to U \lor \sigma(T)$ be a loop that contains λ in its interior.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Eigen-projections and Examples

Definition (Eigen-projection)

Let T be a bounded operator on X and let λ be an eigenvalue of T. Let U be an open set in \mathbb{C} such that $\sigma(T) \in U$. Let $\Gamma_{\lambda} :\to U \setminus \sigma(T)$ be a loop that contains λ in its interior. The projection given by:

$$P_{\lambda} \coloneqq -\frac{1}{2\pi i} \int_{\Gamma_{\lambda}} (T - zI)^{-1} dz$$
(1)

is said to be the **eigenprojection** of T associated with the eigenvalue λ .

くロ と く 同 と く ヨ と 一

Eigen-projections and Examples

Definition (Eigen-projection)

Let T be a bounded operator on X and let λ be an eigenvalue of T. Let U be an open set in \mathbb{C} such that $\sigma(T) \subset U$. Let $\Gamma_{\lambda} :\to U \setminus \sigma(T)$ be a loop that contains λ in its interior. The projection given by:

$$P_{\lambda} \coloneqq -\frac{1}{2\pi i} \int_{\Gamma_{\lambda}} (T - zI)^{-1} dz$$
⁽¹⁾

is said to be the **eigenprojection** of T associated with the eigenvalue λ .

Example

For n = 3, let T be such that $T^3 = T$.

Eigenvalue	Eigen-projection
0	$I - T^2$
1	$\frac{1}{2}(T+T^2)$
-1	$\frac{1}{2}(-T+T^2)$

List of projections for n=4 and the general case

.

List of projections for n=4 and the general case

Example

For n = 4, let T be such that $T^4 = T$.

Number	<i>n</i> = 3	Comments		
1	0,1	"trivial projection"		
2	$\frac{1}{3}(T+T^2+T^3)$	"eigen-projection"		
3	$\frac{1}{3}(\omega T + \omega^2 T^2 + T^3)$	"eigen-projection"		
4	$I - T^3$	"eigen-projection"		
5	$\frac{1}{3}(\omega^2 T + \omega T^2 + T^3)$	"eigen-projection"		
6	$(\alpha T + \beta T^2 + \frac{2}{3}T^3)$	"(#2)+(#3)"		
7	$\left(\beta T + \alpha T^2 + \frac{2}{3}T^3\right)$	"(#2)+(#5)"		
8	$\frac{1}{3}(-T-T^2+2T^3)$	"(#3)+(#5)"		
9	T^3	"(#2)+(#3)+(#5)"		
where, $\alpha = \frac{1+\sqrt{3}i}{6}$, $\beta = \frac{1-\sqrt{3}i}{6}$, $\omega = \frac{-1+\sqrt{3}i}{2}$.				

The General Case

For an *n*-potent operator T (i.e., $T^n = T$), is it possible to classify all the projections in the combination of operators $\{I, T, T^2, \dots, T^{n-1}\}$ in terms of the "eigen-projections?"

The General Case

For an *n*-potent operator T (i.e., $T^n = T$), is it possible to classify all the projections in the combination of operators $\{I, T, T^2, \dots, T^{n-1}\}$ in terms of the "eigen-projections?"

(DBE 2024) For a projection P in the combination of powers of T (i.e., $P = a_0I + a_1T + a_2T^2 + \dots + a_{k-1}T^{k-1}$) we have

$$P = \sum_{j:\omega^j \in \sigma(T)} \lambda_j P_j,$$

where λ_j are scalars of modulus 1 and P_j is an eigen-projection associated with the eigenvalue ω^j .

周 ト イ ヨ ト イ ヨ ト

æ