Projections in the combination of Operators of Finite Orders

Priyadarshi Dey
Department of Mathematics \& Statistics
Kenyon College

South Eastern Analysis Meeting (SEAM 40)
University of Florida
March 15-17, 2024

Outline

(1) Introduction
(2) Preliminaries
(3) Projections as averages of isometries \& reflections
(4) Ongoing and Future Plans

Why to study projections and isometries?

Why to study projections and isometries?

- Projections are operators with a simple spectral structure (with eigenvalues being 0 and 1 only) and easy to understand.

Why to study projections and isometries?

- Projections are operators with a simple spectral structure (with eigenvalues being 0 and 1 only) and easy to understand.
- Projections are the building blocks of many other operators (for example, Spectral theorem for compact self-adjoint operators).

Why to study projections and isometries?

- Projections are operators with a simple spectral structure (with eigenvalues being 0 and 1 only) and easy to understand.
- Projections are the building blocks of many other operators (for example, Spectral theorem for compact self-adjoint operators). Orthogonal projections have applications in linear regression, Multivariate distributions, QR decomposition etc.

Why to study projections and isometries?

- Projections are operators with a simple spectral structure (with eigenvalues being 0 and 1 only) and easy to understand.
- Projections are the building blocks of many other operators (for example, Spectral theorem for compact self-adjoint operators). Orthogonal projections have applications in linear regression, Multivariate distributions, QR decomposition etc.
- Isometries are distance preserving maps and are fun to study. Isometries are kind of "isomorphisms" and "preserves" many interesting properties.

Why to study projections and isometries?

- Projections are operators with a simple spectral structure (with eigenvalues being 0 and 1 only) and easy to understand.
- Projections are the building blocks of many other operators (for example, Spectral theorem for compact self-adjoint operators). Orthogonal projections have applications in linear regression, Multivariate distributions, QR decomposition etc.
- Isometries are distance preserving maps and are fun to study. Isometries are kind of "isomorphisms" and "preserves" many interesting properties.
- Isometries and projections are interconnected.

Definitions \& Examples

Definitions \& Examples

Definition (Isometry)

Given two normed spaces X and Y, a (linear) map $T: X \rightarrow Y$ is an isometry if

$$
\|T x\|=\|x\| \text { for every } x \text { in } X
$$

Definitions \& Examples

Definition (Isometry)

Given two normed spaces X and Y, a (linear) map $T: X \rightarrow Y$ is an isometry if

$$
\|T x\|=\|x\| \text { for every } x \text { in } X
$$

Definitions \& Examples

Definition (Isometry)

Given two normed spaces X and Y, a (linear) map $T: X \rightarrow Y$ is an isometry if

$$
\|T x\|=\|x\| \text { for every } x \text { in } X
$$

Example

- The map $T: \mathbb{C} \rightarrow \mathbb{C}$ given by $T(z)=\bar{z}$.

Definitions \& Examples

Definition (Isometry)

Given two normed spaces X and Y, a (linear) map $T: X \rightarrow Y$ is an isometry if

$$
\|T x\|=\|x\| \text { for every } x \text { in } X
$$

Example

- The map $T: \mathbb{C} \rightarrow \mathbb{C}$ given by $T(z)=\bar{z}$. Isometries need not be linear!

Projections \& Reflections

Projections \& Reflections

Definition (Projection operator)

A (bounded) operator P from a normed linear space X to X is a projection if $P^{2}=P$.

Projections \& Reflections

Definition (Projection operator)

A (bounded) operator P from a normed linear space X to X is a projection if $P^{2}=P$.

Definition (Reflection operator)

An operator R from a normed space X to another normed space X is a reflection if $R^{2}=I$.

Projections \& Reflections

Definition (Projection operator)

A (bounded) operator P from a normed linear space X to X is a projection if $P^{2}=P$.

Definition (Reflection operator)

An operator R from a normed space X to another normed space X is a reflection if $R^{2}=I$.

Projection of v_{1} on v_{2}

Creating Projections from reflections (and isometries)

Example

Consider \mathbb{R}^{3} and consider the norm

$$
\left\|\left(x_{1}, x_{2}, x_{3}\right)\right\|_{\infty}=\max \left\{\left|x_{1}\right|,\left|x_{2}\right|,\left|x_{3}\right|\right\} .
$$

Creating Projections from reflections (and isometries)

Example

Consider \mathbb{R}^{3} and consider the norm

$$
\left\|\left(x_{1}, x_{2}, x_{3}\right)\right\|_{\infty}=\max \left\{\left|x_{1}\right|,\left|x_{2}\right|,\left|x_{3}\right|\right\} .
$$

Define, an operator $R: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ by

$$
R\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{2}, x_{1}, x_{3}\right) .
$$

Creating Projections from reflections (and isometries)

Example

Consider \mathbb{R}^{3} and consider the norm

$$
\left\|\left(x_{1}, x_{2}, x_{3}\right)\right\|_{\infty}=\max \left\{\left|x_{1}\right|,\left|x_{2}\right|,\left|x_{3}\right|\right\} .
$$

Define, an operator $R: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ by

$$
R\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{2}, x_{1}, x_{3}\right) .
$$

- $R^{2}=1$

Creating Projections from reflections (and isometries)

Example

Consider \mathbb{R}^{3} and consider the norm

$$
\left\|\left(x_{1}, x_{2}, x_{3}\right)\right\|_{\infty}=\max \left\{\left|x_{1}\right|,\left|x_{2}\right|,\left|x_{3}\right|\right\} .
$$

Define, an operator $R: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ by

$$
R\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{2}, x_{1}, x_{3}\right) .
$$

- $R^{2}=1$
- R is an isometry.

Creating Projections from reflections (and isometries)

Example

Consider \mathbb{R}^{3} and consider the norm

$$
\left\|\left(x_{1}, x_{2}, x_{3}\right)\right\|_{\infty}=\max \left\{\left|x_{1}\right|,\left|x_{2}\right|,\left|x_{3}\right|\right\} .
$$

Define, an operator $R: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ by

$$
R\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{2}, x_{1}, x_{3}\right) .
$$

- $R^{2}=1$
- R is an isometry.

Define P as $P\left(x_{1}, x_{2}, x_{3}\right)=\frac{1}{2}(I+R)\left(x_{1}, x_{2}, x_{3}\right)$

Creating Projections from reflections (and isometries)

Example

Consider \mathbb{R}^{3} and consider the norm

$$
\left\|\left(x_{1}, x_{2}, x_{3}\right)\right\|_{\infty}=\max \left\{\left|x_{1}\right|,\left|x_{2}\right|,\left|x_{3}\right|\right\} .
$$

Define, an operator $R: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ by

$$
R\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{2}, x_{1}, x_{3}\right) .
$$

- $R^{2}=1$
- R is an isometry.

Define P as $P\left(x_{1}, x_{2}, x_{3}\right)=\frac{1}{2}(I+R)\left(x_{1}, x_{2}, x_{3}\right)=\frac{1}{2}\left(x_{1}+x_{2}, x_{1}+x_{2}, 2 x_{3}\right)$.

Creating Projections from reflections (and isometries)

Example

Consider \mathbb{R}^{3} and consider the norm

$$
\left\|\left(x_{1}, x_{2}, x_{3}\right)\right\|_{\infty}=\max \left\{\left|x_{1}\right|,\left|x_{2}\right|,\left|x_{3}\right|\right\}
$$

Define, an operator $R: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ by

$$
R\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{2}, x_{1}, x_{3}\right) .
$$

- $R^{2}=1$
- R is an isometry.

Define P as $P\left(x_{1}, x_{2}, x_{3}\right)=\frac{1}{2}(I+R)\left(x_{1}, x_{2}, x_{3}\right)=\frac{1}{2}\left(x_{1}+x_{2}, x_{1}+x_{2}, 2 x_{3}\right)$. Note: P is a projection!

An example in the infinite dimensional world!

Example

Consider the space $C[0,1]$, the space of all continuous functions on the interval $[0,1]$ with the norm $\|f\|_{\infty}=\max _{t \in[0,1]} f(t)$.

An example in the infinite dimensional world!

Example

Consider the space $C[0,1]$, the space of all continuous functions on the interval $[0,1]$ with the norm $\|f\|_{\infty}=\max _{t \in[0,1]} f(t)$. Consider the operator
$R: C[0,1] \rightarrow C[0,1]$ defined by

$$
R f(t)=f(1-t) .
$$

An example in the infinite dimensional world!

Example

Consider the space $C[0,1]$, the space of all continuous functions on the interval $[0,1]$ with the norm $\|f\|_{\infty}=\max _{t \in[0,1]} f(t)$. Consider the operator
$R: C[0,1] \rightarrow C[0,1]$ defined by

$$
R f(t)=f(1-t) .
$$

It is easy to check that $R^{2}=I$ and R is an isometry.

An example in the infinite dimensional world!

Example

Consider the space $C[0,1]$, the space of all continuous functions on the interval $[0,1]$ with the norm $\|f\|_{\infty}=\max _{t \in[0,1]} f(t)$. Consider the operator
$R: C[0,1] \rightarrow C[0,1]$ defined by

$$
R f(t)=f(1-t) .
$$

It is easy to check that $R^{2}=I$ and R is an isometry. Define an operator P by $P(f)=\frac{1}{2}(f+R(f))=\frac{1}{2}(f(t)+f(1-t))$.

An example in the infinite dimensional world!

Example

Consider the space $C[0,1]$, the space of all continuous functions on the interval $[0,1]$ with the norm $\|f\|_{\infty}=\max _{t \in[0,1]} f(t)$. Consider the operator
$R: C[0,1] \rightarrow C[0,1]$ defined by

$$
R f(t)=f(1-t) .
$$

It is easy to check that $R^{2}=I$ and R is an isometry. Define an operator P by $P(f)=\frac{1}{2}(f+R(f))=\frac{1}{2}(f(t)+f(1-t))$. Note: Again, P is a projection!

An example in the infinite dimensional world!

Example

Consider the space $C[0,1]$, the space of all continuous functions on the interval $[0,1]$ with the norm $\|f\|_{\infty}=\max _{t \in[0,1]} f(t)$. Consider the operator
$R: C[0,1] \rightarrow C[0,1]$ defined by

$$
R f(t)=f(1-t) .
$$

It is easy to check that $R^{2}=I$ and R is an isometry. Define an operator P by $P(f)=\frac{1}{2}(f+R(f))=\frac{1}{2}(f(t)+f(1-t))$. Note: Again, P is a projection!

Remark

In general, if R is an (isometry), and a reflection, then the operator P defined as the average of I and R (i.e., $P=\frac{1}{2}(I+R)$) is a projection.

Projections as a combination of two isometries

(DBE, 2023) For two isometries T_{0} and T_{1} on a Banach space X, consider an operator Q defined as $Q=\lambda_{0} T_{0}+\lambda_{1} T_{1}(Q \neq I)$ with
$\lambda_{0}, \lambda_{1}>0$ and $\lambda_{0}+\lambda_{1}=1$. If Q is a projection, then $\lambda_{0}=\lambda_{1}=\frac{1}{2}$.

Projections as a combination of two isometries

(DBE, 2023) For two isometries T_{0} and T_{1} on a Banach space X, consider an operator Q defined as $Q=\lambda_{0} T_{0}+\lambda_{1} T_{1}(Q \neq I)$ with $\lambda_{0}, \lambda_{1}>0$ and $\lambda_{0}+\lambda_{1}=1$. If Q is a projection, then $\lambda_{0}=\lambda_{1}=\frac{1}{2}$.

Projections in the "convex hull" of operators of finite order

(DBE, 2023) For an operator T of order n, (i.e., $T^{n}=I$), and positive scalars $\lambda_{0}, \lambda_{1}, \cdots, \lambda_{n-1}$ with sum equal to 1 , we consider an operator Q defined as

$$
Q=\lambda_{0} I+\lambda_{1} T+\lambda_{2} T^{2}+\cdots+\lambda_{n-1} T^{n-1} .
$$

Then Q is a projection if and ony if $\lambda_{0}=\lambda_{1}=\cdots=\lambda_{n-1}=\frac{1}{n}$.

Projections in the "convex hull" of operators of finite order

(DBE, 2023) For an operator T of order n, (i.e., $T^{n}=I$), and positive scalars $\lambda_{0}, \lambda_{1}, \cdots, \lambda_{n-1}$ with sum equal to 1 , we consider an operator Q defined as

$$
Q=\lambda_{0} I+\lambda_{1} T+\lambda_{2} T^{2}+\cdots+\lambda_{n-1} T^{n-1} .
$$

Then Q is a projection if and ony if $\lambda_{0}=\lambda_{1}=\cdots=\lambda_{n-1}=\frac{1}{n}$.

Progection In The Convex Hull Of Operators
.

Ongoing Work

- For isometries $T_{0}, T_{1}, \cdots, T_{n-1}$, and positive scalars $\lambda_{0}, \lambda_{1}, \cdots, \lambda_{n-1}$ with sum equal to 1 , we consider an operator Q defined as

$$
Q=\lambda_{0} T_{0}+\lambda_{1} T_{1}+\lambda_{2} T_{2}+\cdots+\lambda_{n-1} T_{n-1} .
$$

For what values of the scalar $\lambda_{0}, \lambda_{1}, \cdots, \lambda_{n-1}$ is Q a projection?

Definition

An operator T is said to be n-potent if $T^{n}=T$.

Ongoing Work

- For isometries $T_{0}, T_{1}, \cdots, T_{n-1}$, and positive scalars $\lambda_{0}, \lambda_{1}, \cdots, \lambda_{n-1}$ with sum equal to 1 , we consider an operator Q defined as

$$
Q=\lambda_{0} T_{0}+\lambda_{1} T_{1}+\lambda_{2} T_{2}+\cdots+\lambda_{n-1} T_{n-1} .
$$

For what values of the scalar $\lambda_{0}, \lambda_{1}, \cdots, \lambda_{n-1}$ is Q a projection?

- For an operator T with $T^{n}=T$, and scalars $a_{0}, a_{1}, a_{2}, \cdots, a_{n-1}$ we consider the operator

$$
Q=a_{0} I+a_{1} T+a_{2} T^{2}+\cdots+a_{n-1} T^{n-1} .
$$

For what values of the scalars $a_{0}, a_{1}, a_{2} \cdots, a_{n-1}$, is Q a projection?

Ongoing Work

- For isometries $T_{0}, T_{1}, \cdots, T_{n-1}$, and positive scalars $\lambda_{0}, \lambda_{1}, \cdots, \lambda_{n-1}$ with sum equal to 1 , we consider an operator Q defined as

$$
Q=\lambda_{0} T_{0}+\lambda_{1} T_{1}+\lambda_{2} T_{2}+\cdots+\lambda_{n-1} T_{n-1}
$$

For what values of the scalar $\lambda_{0}, \lambda_{1}, \cdots, \lambda_{n-1}$ is Q a projection?

- For an operator T with $T^{n}=T$, and scalars $a_{0}, a_{1}, a_{2}, \cdots, a_{n-1}$ we consider the operator

$$
Q=a_{0} I+a_{1} T+a_{2} T^{2}+\cdots+a_{n-1} T^{n-1} .
$$

For what values of the scalars $a_{0}, a_{1}, a_{2} \cdots, a_{n-1}$, is Q a projection?

Definition

An operator T is said to be n-potent if $T^{n}=T$.

For $\mathrm{n}=2$ and beyond

For $n=2$, let T be such that $T^{2}=T$. Then

$$
Q=a_{0} I+a_{1} T
$$

is a projection if and only if Q is of the form

$$
Q=0, I, T \text { or } Q=I-T .
$$

For $\mathrm{n}=2$ and beyond

For $n=2$, let T be such that $T^{2}=T$. Then

$$
Q=a_{0} I+a_{1} T
$$

is a projection if and only if Q is of the form

$$
Q=0, I, T \text { or } Q=I-T .
$$

$n=2$	Comments
$0, I$	"trivial projection"
T	"eigen-projection"
$I-T$	"eigen-projection"

For $\mathrm{n}=3$

For $n=3$, let T be such that $T^{3}=T$. Then

$$
Q=a_{0} I+a_{1} T+a_{2} T^{2}
$$

is a projection if and only if

For $n=3$

For $n=3$ ，let T be such that $T^{3}=T$ ．Then

$$
Q=a_{0} I+a_{1} T+a_{2} T^{2}
$$

is a projection if and only if

$n=3$	Comments
$0, I$	＂trivial projection＂
$\frac{T+T^{2}}{2}, \frac{-T+T^{2}}{2}$	＂eigen－projection＂
$I-T^{2}$	＂eigen－projection
$I \pm \frac{1}{2}\left(T \mp T^{2}\right)$	$*$
T^{2}	$*$

For $n=3$

For $n=3$, let T be such that $T^{3}=T$. Then

$$
Q=a_{0} I+a_{1} T+a_{2} T^{2}
$$

is a projection if and only if

$n=3$	Comments
$0, I$	"trivial projection"
$\frac{T+T^{2}}{2}, \frac{-T+T^{2}}{2}$	"eigen-projection"
$I-T^{2^{2}}$	"eigen-projection
$I \pm \frac{1}{2}\left(T \mp T^{2}\right)$	$*$
T^{2}	$*$

Observation: $(*)$ is the sum of the eigen-projections!

Eigen-projections and Examples

Eigen-projections and Examples

Definition (Eigen-projection)

Let T be a bounded operator on X and let λ be an eigenvalue of T. Let U be an open set in \mathbb{C} such that $\sigma(T) \subset U$. Let $\Gamma_{\lambda}: \rightarrow U \backslash \sigma(T)$ be a loop that contains λ in its interior.

Eigen-projections and Examples

Definition (Eigen-projection)

Let T be a bounded operator on X and let λ be an eigenvalue of T. Let U be an open set in \mathbb{C} such that $\sigma(T) \subset U$. Let $\Gamma_{\lambda}: \rightarrow U \backslash \sigma(T)$ be a loop that contains λ in its interior. The projection given by:

$$
\begin{equation*}
P_{\lambda}:=-\frac{1}{2 \pi i} \int_{\Gamma_{\lambda}}(T-z I)^{-1} d z \tag{1}
\end{equation*}
$$

is said to be the eigenprojection of T associated with the eigenvalue λ.

Eigen-projections and Examples

Definition (Eigen-projection)

Let T be a bounded operator on X and let λ be an eigenvalue of T. Let U be an open set in \mathbb{C} such that $\sigma(T) \subset U$. Let $\Gamma_{\lambda}: \rightarrow U \backslash \sigma(T)$ be a loop that contains λ in its interior. The projection given by:

$$
\begin{equation*}
P_{\lambda}:=-\frac{1}{2 \pi i} \int_{\Gamma_{\lambda}}(T-z I)^{-1} d z \tag{1}
\end{equation*}
$$

is said to be the eigenprojection of T associated with the eigenvalue λ.

Example

For $n=3$, let T be such that $T^{3}=T$.

Eigenvalue	Eigen-projection
0	$I-T^{2}$
1	$\frac{1}{2}\left(T+T^{2}\right)$
-1	$\frac{1}{2}\left(-T+T^{2}\right)$

List of projections for $n=4$ and the general case

List of projections for $\mathrm{n}=4$ and the general case

Example

For $n=4$, let T be such that $T^{4}=T$.

Number	$n=3$	Comments
1	$0, I$	"trivial projection"
2	$\frac{1}{3}\left(T+T^{2}+T^{3}\right)$	"eigen-projection"
3	$\frac{1}{3}\left(\omega T+\omega^{2} T^{2}+T^{3}\right)$	"eigen-projection"
4	$1-T^{3}$	"eigen-projection"
5	$\frac{1}{3}\left(\omega^{2} T+\omega T^{2}+T^{3}\right)$	"eigen-projection"
6	$\left(\alpha T+\beta T^{2}+\frac{2}{3} T^{3}\right)$	"(\#2)+(\#3)"
7	$\left(\beta T+\alpha T^{2}+\frac{2}{3} T^{3}\right)$	"(\#2)+(\#5)"
8	$\frac{1}{3}\left(-T-T^{2}+2 T^{3}\right)$	"(\#3)+(\#5)"
9	T^{3}	"(\#2)+(\#3)+(\#5)"
where, $\alpha=\frac{1+\sqrt{3} i}{6}, \beta=\frac{1-\sqrt{3} i}{6}, \omega=\frac{-1+\sqrt{3} i}{2}$		

The General Case

For an n-potent operator T (i.e., $T^{n}=T$), is it possible to classify all the projections in the combination of operators $\left\{I, T, T^{2}, \cdots, T^{n-1}\right\}$ in terms of the "eigen-projections?"

The General Case

For an n-potent operator T (i.e., $T^{n}=T$), is it possible to classify all the projections in the combination of operators $\left\{I, T, T^{2}, \cdots, T^{n-1}\right\}$ in terms of the "eigen-projections?"
(DBE 2024) For a projection P in the combination of powers of T (i.e., $P=$ $\left.a_{0} I+a_{1} T+a_{2} T^{2}+\cdots+a_{k-1} T^{k-1}\right)$ we have

$$
P=\sum_{j: \omega j \in \sigma(T)} \lambda_{j} P_{j}
$$

where λ_{j} are scalars of modulus 1 and P_{j} is an eigen-projection associated with the eigenvalue ω^{j}.

Introduction Preliminaries
Projections as averages of isometries \& reflections Ongoing and Future Plans

