
The α-z-Bures Wasserstein divergence
and quantum α-z-fidelity

Trung Hoa Dinh
Troy University

SEAM40 - Gainesville

March 19, 2024



Introduction 2

Let A1, A2, · · · , Am be positive definite matrices. The problem of finding the
averaging of Ai is important.

▶ The least squares problem (LSP):

min lim
X>0

m∑
i=1

δ2(X,Ai),

where δ(A,B) is some distance function.

▶ Algebraic approach:

X =
∑

ωif(X,Ai),

or
F (X,A1, A2, · · · , An) = 0

The solution to these problems (if they exist) is called the Karcher mean of Ai.



Introduction 3

Let A,B be positive definite matrices.

▶ Moakher (2014), and Bhatia and Holbrook (2015):

minX>0(δ
2
2(X,A1) + δ22(X,A2)), (1)

where δ2(A,B) = || log(A−1B)||2 is the Riemannian distance between A and
B.

▶ Puzs and Woronowicz (1975): The algebraic Riccati equation:

XA−1X = B.

▶ The solution of both problems is the geometric mean

A♯B = A1/2(A−1/2BA−1/2)1/2A1/2.
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Let A1, A2, · · · , Am be positive definite matrices.

▶ The Karcher equation:

n∑
i=1

log(X1/2AiX
1/2) = 0.

▶ Lim-Palfia (JFA, 2012):

X =

m∑
i=1

1

n
X♯tAi.

▶ An equation that occurs in many applied fields:

Xp = A+

m∑
i

M∗
i f(X)Mi,
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▶ Introduce new distance functions, consider if they are applicable or not (for
example, Data Processing Inequality in quantum information theory).

▶ Study the LSP with respect to new distance functions.

▶ Study properties of the solution of LSP.

▶ Compare solutions of the LSPs in different distance functions.

▶ Find algorithms to approximate the solution of the LSP.

▶ etc.
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A map Φ : Dn ×Dn → [0,+∞) (Dn is the set of positive definite matrices) is a
quantum divergence if it satisfies the following properties:

(A) Φ (A,B) ≥ 0 and Φ (A,B) = 0 if and only if A = B.

(B) The first derivative with respect to the second variable vanishes on the
diagonal:

∂Φ

∂B
(A,B)

∣∣
B=A

(C) = 0 for all Hermitian matrices C.

(C) The second derivative is non-negative on the diagonal:

∂2Φ

∂B2
(A,B)

∣∣
B=A

(C,C) ≥ 0 for all Hermitian matrices C.
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▶ With the geometric mean (Bhatia, Gaubert, Jain, 2019):

d3(A,B) = Tr
A+B

2
− Tr (A♯B) .

▶ With a general Kubo-Ando mean (Pitrik, Virosztek, 2020):

d4(A,B) = Tr ((1− c)A+ cB −AσB),

where σ is a Kubo-Ando mean, fσ is the representing function of σ, and
c = f ′

σ(1) ∈ (0, 1) is the weight of σ.

▶ Kubo-Ando’s theory:

AσB = A1/2fσ(A
−1/2BA−1/2)A1/2.
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▶ Bures-Wasserstein distance in the theory of optimal transport:

d2b(A,B) = Tr(A+B)/2− Tr

((
A1/2BA1/2

)1/2
)
.

▶ The Log-Determinant distance or S-distance in machine learning and and
quantum information:

d2S(A,B) = log det
A+B

2
− 1

2
log det(AB).

▶ The Hellinger metric or Bhattacharya metric in quantum information:

d2h(A,B) = Tr(A+B)/2− Tr
(
A1/2B1/2

)
.
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Let Pα,z(A,B) = (B
1−α
2z A

α
z B

1−α
2z )z.

▶ Sandwiched quasi-relative entropy (Lieb, Ruskai, 1973): For A,B ≥ 0,
t ∈ [0, 1],

Ft(A,B) = Tr (A
1−t
2t BA

1−t
2t )t = Pt,t(B,A)

which appears in the definition of the weighted Bures-Wasserstein distance as

db,t(A,B) = (Tr ((1− t)A+ tB)− Tr (Ft(A,B))1/2.

▶ α-z-Renyi relative entropy (Audenaert, Datta, 2015): For positive definite
matrices A,B, α, z ∈ R,

Dα,z(A||B) =
1

α− 1
log Tr (Pα,z(A,B)).
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▶ The weighted Bures-Wasserstein distance:

db,t(A,B) = (Tr ((1− t)A+ tB)− Tr (Ft(A,B))1/2.

▶ Mention that (B
1−α
2z A

α
z B

1−α
2z )z and (A

1−t
2t BA

1−t
2t )t are matrix generalizations

of the geometric mean
√
ab and the weighted geometric mean a1−tbt of

positive numbers a and b, respectively.

▶ α-z-Bures Wasserstein divergence (D., Le, Vo, Vuong, LAA, 2021): For
0 ≤ α ≤ z ≤ 1, the following is a quantum divergence:

Φ(A,B) = Tr ((1− α)A+ αB)− Tr (Qα,z(A,B)),

where Qα,z(A,B) = Pα,z(B,A) is the matrix function in the α-z-Renyi relative
entropy.
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▶ The data processing inequality with respect to a quantum divergence Ψ
means that for any completely positive trace preserving map E and for any
positive semidefinite matrices A and B,

Ψ(E(A), E(B)) ≤ Ψ(A,B).

▶ A map Ψ(A,B) is jointly convex, unitarily invariant and invariant
under tensor product, then Ψ is monotone with respect to all completely
positive trace-preserving maps.

▶ The α-z-Bures Wasserstein divergence Φ(A,B) is jointly convex since the

trace function Tr
[(

X
q
2Y pX

q
2

)s]
is jointly concave for 0 ≤ p, q ≤ 1 and

0 ≤ s ≤ 1/(p+ q). It is unitarily invariant and invariant under tensor product,
hence, satisfies the Data Processing Inequality.
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Theorem (D., Le, Vo, Vuong, LAA, 2021). For 0 ≤ α ≤ z ≤ 1, the function

F (X) =

m∑
i=1

ωiΦ(Ai, X)

attains minimum at X0, where X0 is the unique positive definite solution of the
following matrix equation

m∑
j=1

wj(X
α
2zA

1−α
z

j X
α
2z )z =

m∑
j=1

wjQ1−α,z(X,Ai) = X.

▶ The solution X0 is called the α-z-weighted right mean, denoted by
Rα,z(ω,A).

▶ Some properties of this mean were recently studied by Jeong and Kim (2023).
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▶ Audenaert and Datta (2015) introduced the quantity so-called α-z-fidelity

fα,z(ρ, σ) := Tr
(
ρα/2zσ(1−α)/zρα/2z

)z
= Tr

(
σ(1−α)/2zρα/zσ(1−α)/2z

)z
. (2)

Bhatia and coauthors (2018) established some variational formulas for fα,α(ρ, σ)
via extreme values of the following matrix functions.

Let ρ and σ be positive definite matrices and let 0 < α < 1. Then

▶ fα,α(ρ, σ) = min
X>0

Tr[(1− α)
(
σ

α−1
2α Xσ

α−1
2α

) α
α−1

+ αXρ];

▶ fα,α(ρ, σ) = min
X>0

Tr[(σ
α−1
2α Xσ

α−1
2α )

α
α−1 ]1−α[Tr(Xρ)]α;

▶ fα,α(ρ, σ) = min
X>0

Tr[ασ
1−α
α X + (1− α)(ρ−

1
2Xρ−

1
2 )

α
α−1 ];

▶ fα,α(ρ, σ) = min
X>0

[Trσ
1−α
α X]α[Tr((ρ−

1
2Xρ−

1
2 )

α
α−1 ]1−α.
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▶ Chehade (2020) used the classical matrix inequalities to prove that for α > 1
and z > 1,

fα,z(ρ, σ) = max
X>0

P (X),

where

P (X) = zTr
(
σ

z−α
2z ρ

α
z σ

z−α
2z X

)
− (z − 1)Tr

((
σ

z−1
2z Xσ

z−1
2z

) z
z−1

)
.

▶ D., Le, Vuong (Int. J. Quantum Info, 2023): fα,z(ρ, σ) is also the minimum of
P (X) when 0 < α < z < 1. In addition, fα,z(ρ, σ) = min

X>0
Q(X), where

Q(X) =
(
Tr(σ

z−α
2z ρ

α
z σ

z−α
2z X)

)z
.
(
Tr(σ

z−1
2z Xσ

z−1
2x )

z
z−1

)1−z
.
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▶ Let U(H) be the set of n× n unitary matrices, and Dn the set of density
matrices. For ρ ∈ Dn, its unitary orbit is defined as

Uρ = {UρU∗ : U ∈ U(H)}.

▶ The study of “distance” between two quantum states under general local
unitary dynamics was initiated by Zhang et. al. (2014). In particular, they
found the maximum and minimum fidelity and relative entropy between two
unitary orbits.

▶ Bhatia and Congedo (2019) investigated the optimization of several functions
between unitary orbits including the Bures-Wasserstein distance, the
Kullback-Leibler divergence, the Bhattacharyya divergence and the
log-determinant divergence.

▶ Yan et. al. (2020) studied this problem for the quantum α-fidelity function.
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▶ Let ρ and σ ∈ Dn, the α-z-fidelity fα,z(ρ, σ) = Tr
(
σ

1−α
2z ρ

α
z σ

1−α
2z

)z
between the

unitary orbits Uρ and Uσ satisfies

max
U∈U(H)

fα,z(ρ, UσU∗) =

n∑
i=1

λ↓
i (ρ)

αλ↓
i (σ)

1−α,

and

min
U∈U(H)

fα,z(ρ, UσU∗) =

n∑
i=1

λ↓
i (ρ)

αλ↑
i (σ)

1−α,

where λ(ρ) = (λ1, . . . , λn) are the eigenvalues of ρ and λ↓(ρ) (resp. λ↑(ρ)
)
is a

rearrangement of λ(ρ) in decreasing order (resp. increasing order).
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▶ D., Le, Vuong (Int. J. Quantum Info, 2023): For 0 ≤ α ≤ z ≤ 1,

{fα,z(ρ, UσU∗) : U ∈ U(H)} =
[ n∑

i=1

λ↓
i (ρ)

αλ↑
i (σ)

1−α,

n∑
i=1

λ↓
i (ρ)

αλ↓
i (σ)

1−α
]
.
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