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Noncommutative Fejér–Riesz Factorization

NC multivariate perspectives

▶ Introduction.

▶ Orientation: operator-valued Fejér–Riesz (Z).

▶ Dritschel’s multivariate version (Z× Zg) -

motivating template.

▶ Mixed variable FR formulated.

▶ Fejér-Riesz for products W × G .
▶ W is the free semigroup or Z∗g

2 ;

▶ A nearly perfect special case.

▶ Ingredients.

▶ The Parrott Lemma for functions on G .

▶ The Z∗g
2 completion problem.

▶ Concluding remarks: bonus content.



The Fejér–Riesz Theorem

Rosenblum’s version

Given a positive integer d and operators

p−d , . . . , p−1, p0, p1, . . . , pd ∈ B(H),

on a Hilbert space H, if the trigonmetric polynomial

p(t) =
d∑

j=−d

pje
ijt ⪰ 0

is psd for all real t, then there exists an analytic polynomial

q(t) =
d∑

j=0

q0e
ijt , qj ∈ B(H),

such that
p(t) = q(t)∗q(t), p = q∗q.



The Fejér–Riesz Theorem

Rosenblum’s version

If

p(t) =
d∑

j=−d

pje
ijt ⪰ 0, pn ∈ B(H),

then p = q∗q, for some

q(t) =
d∑

j=0

e ijt , qj ∈ B(H).

(i) Elementary in the scalar case of H = C.
(ii) The factorization is perfect - nonnegative suffices, optimal degree, B(H)-coefficients.

(iii) The converse is obvious - an algebraic certificate of positivity.

(iv) Can interpret as a sums of squares/posstatz result.

(v) The underlying group is Z with irr reps e it ∈ T.



The Fejér–Riesz Theorem

Dritschel’s several variable version

For t = (t0, (t1, . . . , tg)) ∈ R× Rg and n = (n0, (n1, . . . , ng)) ∈ Z× Zg,

⟨n, t⟩ = t0n0 +
∑g

j=1
tjnj .

Theorem. [Dritschel, 2004] If the multivariate trig poly

p(t) =
d∑

n=−d

pne
i⟨n,t⟩ ⪰ ϵ > 0, pn ∈ B(H)

is strictly positive, then

p(t) = q(t)∗q(t),

for some analytic polynomial,

q(t) =
N∑

n=0

qne
i⟨n,t⟩, qn ∈ B(H,F).



Dritschel’s several variable FR theorem

Finer detail

For d = (d0, (d1, . . . , dg)) ∈ N× Ng, if

p(t) =
d∑

n=−d

pne
i⟨n,t⟩⪰ ϵ > 0, pn ∈ B(H)

is strictly positive, then for for some M ∈ Ng and N = (d0,M),

p(t) = q(t)∗q(t), q(t) =
N∑

n=0

qne
i⟨n,t⟩, qn ∈ B(H,F).

(i) The group here is Z× Zg its irr reps (parameterized by) T× Tg.

(ii) Partially perfect: q has degree d0 in the t0 variable.

(iii) Relatively concrete degree bounds in terms of the data.

(iv) The dimension of F can exceed that of H (a true SoS).



Mixed variable FR Factorization

Dritschel’s multivariate FR factorization suggests the paradigm:

Magical Thinking Meta Theorem. Given a group W that
supports a perfect FR theorem and a group G , the group W × G
supports a partially perfect FR theorem.

▶ Reality check: For Z×Z something has to go degree, nonnegative, B(H).

▶ Groups W that support a perfect FR.
(i) ⟨x⟩, the free (semi)group on variables x = (x1, . . . , xg) - not a

group but close enough.

(ii) Z∗g
2 = Z2 ∗ Z2 ∗ · · · ∗ Z2.

▶ G a discrete group generated by a finite set y = (y1, . . . , yh).

▶ Positivity (psd): An element w ∈ W × G is positive if
π(w) ⪰ 0 for all representations of W × G on Hilbert space.

▶ The case ⟨x⟩ × Z - several unitary NC variables with one
commuting variable was our initial motivation.



Mixed variable NC FR

▶ Let x = (x1, . . . , xg) denote g freely non-commuting variables
and let ⟨x⟩ denote the free semigroup generated by x ;

▶ Give ⟨x⟩ the shortlex order - a notion of degree;

▶ Let x1, . . . ,xg denote the generators of Z∗g
2 so that x2

j = 1.

▶ Give Z∗g
2 = ⟨x⟩ the shortlex order too.

▶ Let W denote either ⟨x⟩ or Z∗g
2 .

▶ For d ∈ W, let Wd denote the words of length at most d;

▶ Left fractions:

ℓ-FracW = {u−1v : u,v ∈ W}, ℓ-FracWd = {u−1v : u,v ∈ Wd}.

▶ In either case, the unitary reps of W, and hence of W × G ,
are easily described: xj 7→ Uj or xj 7→ Uj with U2

j = I .



Mixed variable NC FR

▶ A trig polynomial of degree (at most) d takes the form,

p =
finite∑

w∈ℓ-FracWd×G

pww, pw ∈ MK (C).

▶ An analytic polynomial of degree (at most) d has the form,

q =
finite∑

u∈Wd ×⟨y⟩

quu, qu ∈ MK ′,K (C).

Theorem. [KLM] If p has degree d and is strictly psd,

p(π) =
finite∑

w∈ℓ-FracWd×G

pw ⊗ π(w) ⪰ ϵ > 0, for all π,

then there exists an analytic q of of degree d such that p = q∗q.



Mixed variable NC FR

Theorem. [KLM] If p has degree d and is strictly psd,

p(π) =
finite∑

w∈ℓ-FracWd×G

pw ⊗ π(w) ⪰ ϵ > 0,

then there exists

q =
finite∑

u∈Wd ×⟨y⟩
quu, qu ∈ MK ′,K (C).

such that p = q∗q.

▶ ⟨y⟩ = Ng when G = Zg. gives mat-valued case of Dritschel’s result.

Proof outline:

▶ Parrott’s lemma for matrices whose entries are functions on G ;

▶ Solving an op-sys matrix completion problem gives a cp map;

▶ Arveson/Stinspring and Choi matrix magic produces q.



Mixed variable NC FR for finite G
is nearly perfect

Theorem. [KLM] For W either ⟨x⟩ or Z∗g
2 , if G is finite, p has

degree d and

p(π) =
finite∑

w∈ℓ-FracWd×G

pw ⊗ π(w)⪰ 0, pw ∈ B(H),

for all representations π, then there exists

q =
finite∑

u∈Wd ×G

quu, qu ∈ MK ′,K (C).

such that p = q∗q.

▶ The case W = ⟨x⟩ and G trivial is well known with many trills.



Parrott for functions on a group

A function τ : G → MK (C) determines a Toeplitz matrix,

Υτ =
(
τ(g−1h)

)
g ,h∈G

and we view this matrix as a form on G × G defined by

⟨Υτψ, ϕ⟩ =
∑

g ,h∈G
⟨τ(g−1h)ψ(h), ϕ(g)⟩,

for ψ, ϕ ∈ C0,0(G ,CK ), the CK -valued functions of finite support.

▶ In the case G = Z, where the group operation is addition,

Υτ =
(
τ(j − i)

)
i ,j∈Z

is an actual Teoplitz matrix.



Parrott for functions on a group

Proposition. Given τi ,j : G → Mk(C), if

P =


τ0,0 τ0,1 · · · τ0,N−1

τ1,0 τ1,1 · · · τ1,N−1

...
... · · ·

...
τN−1,0 τN−1,1 . . . τN−1,N−1

 ⪰ 0

and

Q =


τ1,1 · · · τ1,N−1 τ1,N
... · · ·

...
...

τN−1,1 · · · τN−1,N−1 τN−1,N

τN,1 . . . τN,N−1 τN,N

 ⪰ 0,

then there is a function τ0,N : G → Mk(C) such that

R =


τ0,0 τ0,1 . . . τ0,N−1 τ0,N
τ0,1 τ1,1 . . . τ1,N−1 τ1,N
...

... · · ·
...

...
τN−1,0 τN−1,1 . . . τN−1,N−1 τN−1,N

τ∗0,N τ1,N . . . τN−1,N τN,N

 ⪰ 0.



Parrott for functions on a group ...

... as used

▶ Let F (G ) denote the functions τ : G → MK (C);
▶ Given A,B,C ,D,E with entries from F (G ).

If

P =

(
A B
B∗ C

)
⪰ 0, Q =

(
C D
D∗ E

)
⪰ 0,

then there exists X with entries from F (G ) such that A B X
B∗ C D
X ∗ D∗ E

 ⪰ 0

▶ In interpolation/factorization: identify Q as, up to unitary
equivalence (a permutation), a submatrix of P. So P ⪰ 0 suffices.



Matrix completions for Z∗g
2

▶ Let F (G ) denote the set of function from G to MK (C).
▶ Let d ∈ W be given and let s denote its immediate successor.

▶ s = xjz.

▶ Suppose χ : ℓ-FracWd → F (G ) is a partially defined function.

Prop’n. [KJM] If the partial toeplitz matrix with toeplitz entries,(
χ(u−1v)

)
u,v∈Wd

⪰ 0,

is psd, then χ extend to a map χ : ℓ-FracWs → F (G ) such that(
χ(u−1v)

)
u,v∈Ws

⪰ 0.



Matrix completions for Z∗g
2

Prop’n. If s is the successor to d and the partial toeplitz matrix with toeplitz entries,(
χ(u−1v)

)
u,v∈Wd

⪰ 0,

is psd, then χ extend to a mapping χ : ℓ-FracWs → F (G) such that(
χ(u−1v)

)
u,v∈Ws

⪰ 0.

▶ s = xjz successor to d;

▶ L = Wz ∪xjWz. Note L ⊆ Ws and L \ {s} ⊆ Wd.

▶ The map mxj : L → L defined by mxjw = xjw is a bijection
that interchanges z and s : Z2 is special.

▶ Validates Parrott with one caveat: the (z, s) and (s,z)
entries correspond to zxjz must agree.



Bonus content

Play the CHSH quantum game

▶ The strict generalization from Z∗g
2 to, say, Z2 ∗ Z3 fails.

▶ A reason to care: Violation of a Bell inequality signals
entanglement and implies that a physical interaction cannot
be explained by any classical picture of physics:

▶ The Clauser-Horne-Shimony-Holt (CHSH) inequality,
(Z2 ∗ Z2)× (Z2 ∗ Z2). Letting x1, x2 and y1, y2 denote the
generators, xj ↔ yk ,

CHSH : x1y1 + x1y2 + x2y1 − x2y2 ≤ 2
√
2.

▶ The optimal value is 2 when xj , yj ∈ R.

▶ The bound is attained with the 4× 4 matrices,

X1 =

(
1 0
0 −1

)
⊗I2, X2 =

(
0 1
1 0

)
⊗I2, Y1 = I2⊗

1
√
2

(
1 1
1 −1

)
, Y2 = I2⊗

1
√
2

(
1 −1
−1 −1

)



Bonus content

More proof - sorry

▶ Strict positivity, absence of degree bounds, and mat-valued: A
nested sequence compactness argument shows there exists a
d ∈ ⟨y⟩ such that, letting S denote the operator system(

Xu−1v,g−1h

)
u,v≤d, g ,h≤d

,

the map Φp : S → MK (C) defined by

Φp(X ) =
∑

(u,h)∈ℓ-FracWd×ℓ-Frac⟨y⟩d

Xu,h pu,h

is completely positive.

▶ Assuming no such g exists leads to a partially defined psd
function X ∼ ψ : ℓ-FracWd × G → MK (C) and then, by
solving the matrix completion problem, a representation π
giving the contradiction p(π) ̸⪰ 0.
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