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Noncommutative Fejer—Riesz Factorization
NC multivariate perspectives

> Introduction
» Orientation: operator-valued Ce_)‘ér‘—&iesz VA)

» Dritschel's muktivariate version (Z x 78) -
Mmotivating template.

> Mixed variagle FR. formulated.
> Fejer-Riesz for products 7 x G.
> W is the $free semiaroup or Z.;
> A nearly perfect special case.
> Inaredients.
» The Parrott Lemma for functions on G.

> The Z3% completion proslem.

> Conaduding remarks: BoNnus content.



The Fejer—Riesz Theorem
R.osenelum’s version

Given a positive integer d and operators

P—ds--->P—1,P0,P1,---,Pd € B(W)7

on a Hilbert space #, if the trigonmetric polynomial

d
p(t)= > pe’ =0
j—d

is psd for all real t, then there exists an analytic polynomial

d
q(t) = > qoe, qj € B(#),
=0

such that
p(t) =q(t)"q(t), p=q"q.



The Fejer—Riesz Theorem
R.osenelum’s version

If

d
p(t)= > pie =0, p,e B(#),
j=—d

then p = g*q, for some

d
q(t) = Z e’t, q; € B(#).
j=0

Elementary in the scalar case of # = C.

(i

(|| The factorization is perfect — nonnegative suffices, optimal degree, B(#)-coefficients.

)
(iii) The converse is obvious - an algebraic certificate of positivity.
(iv) Can interpret as a sums of squares/posstatz result.

)

\Y e underlyin roup IS Z with irr re se'e .
(v) The underlying group is Z with irr reps et € T



The Fejer—Riesz Theorem
Dritschel’s several variarkle version

For t = (to, (t1,...,tg)) € Rx R& and n = (ng, (n1,...,ng)) € Z x 78,

g
<n, t> = tohg + Zj:l tin;.
Theorem. [Dritschel, 2004] If the multivariate trig poly

d
p(t) = > pae™ = e>0, p,e B()
n=—d
is strictly positive, then

p(t) = q(t)*q(t),

for some analytic polynomial,

N
q(t) = Z g™t q, € B(H, F).
n=0



Dritschel’s several variarle FR. theorem
Finer detail

For d = (do, (d1,. .., dg)) € N x N&, if

d

p(t) = Y pae™= e >0, p, € B(%)
n=—d

is strictly positive, then for for some M € N& and N = (dy, M),

p(t) = q(t)*q(t), q(t) =) ane'™", g, € B(H,F).
n=0

(i) The group here is Z x Z& its irr reps (parameterized by) T X T&.
(ii) Partially perfect: q has degree dj in the ty variable.

(i) Relatively concrete degree bounds in terms of the data.
(iv) The dimension of F can exceed that of # (a true SoS).



Mixed variarle FR. Factorization

Dritschel's multivariate FR factorization suggests the paradigm:

Magical Thinking Meta Theorem. Given a group % that
supports a perfect FR theorem and a group G, the group # x G
supports a partially perfect FR theorem.

> Reahty CheCk For Z X Z Somethlng haS to go degree, nonnegative, B(7().

» Groups # that support a perfect FR.
(i) (x), the free (semi)group on variables x = (x1,...,xg) - not a
group but close enough.

(II) Z;g:Z2*Z2*-~'*Z2.
» G a discrete group generated by a finite set y = (y1,- .., n)-

» Positivity (psd): An element w € %" x G is positive if
m(w) > 0 for all representations of 7" x G on Hilbert space.

» The case (x) X Z - several unitary NC variables with one
commuting variable was our initial motivation.



Mixed variagle NC FR_

» Let x = (x1,...,xg) denote g freely non-commuting variables
and let (x) denote the free semigroup generated by x;
» Give (x) the shortlex order - a notion of degree;

» Let 21,..., 25 denote the generators of Z;g so that sz =1.

> Give Z,% = () the shortlex order too.

> Let 7 denote either (x) or Z-E.

For « € W', let W4 denote the words of length at most «;
> Left fractions:

v

(-FracW = {u o u,0 €W}, (-FracWy={u"tv:u,vc W}

» In either case, the unitary reps of 7", and hence of # x G,
are easily described: x; — U; or z; — U; with Uj2 = [



Mixed variagle NC FR_

» A trig polynomial of degree (at most) « takes the form,

finite
p= Z PoW,  Pw € MK((C)
wel-FracW 4 x G

» An analytic polynomial of degree (at most) « has the form,

finite
q= Z Qutt, Qqu € MK’,K(C)-
wEWy X(y)

Theorem. [KLM] If p has degree « and is strictly psd,
finite
p(r) = Z po @ m(w) = €>0, forall ,
wel-FracW 4 x G

then there exists an analytic g of of degree «/ such that p = g*q.



Mixed variaele NC FR
Theorem. [KLM] If p has degree « and is strictly psd,
finite

pm= > pe®(e)ze>0,
wel-FracW 4 x G

then there exists
finite

q= Z Gutt, Gu € Mk k(C).
w€Wy X (y)

such that p = g*q.

> <y> = N& when G = Z8. gives mat-valued case of Dritschel’s result.
Proof outline:

» Parrott's lemma for matrices whose entries are functions on G;

» Solving an op-sys matrix completion problem gives a cp map;

» Arveson/Stinspring and Choi matrix magic produces q.



Mixed variagle NC FR. for finite G
Is Nnearly perfect

Theorem. [KLM] For 7" either (x) or Z>E, if G is finite, p has
degree « and

finite
p(m)= > pe®m(w)=0, py € B(H),
wel-Frac Wy x G

for all representations 7, then there exists

finite

q= Z quu, . € MK’,K((C)‘
UEW,y X G

such that p = ¢*q.

» The case 7' = (x) and G trivial is well known with many itis.



Parrott for functions on a aroup
A function 7 : G — Mk(C) determines a Toeplitz matrix,
TT = (T(gilh))g,hEG

and we view this matrix as a form on G x G defined by

(T, 0) = > (r(g " h)b(h), ¢(8)),

g,heG

for 1, ¢ € Coo(G,CK), the CKX-valued functions of finite support.

» In the case G = Z, where the group operation is addition,
Tr=(r(j- i))iJEZ

is an actual Teoplitz matrix.



Parrott for functions on a aroup
Proposition. Given 7;;: G — M,(C), if

TN—-1,1 -+ TN—1,N—1
and
71,1 T1,N—1

Q= : : =0,
TN—-1,1 “°° TN—1,N—1

then there is a function 79y : G — M (C) such that

T0,N
T1,1 T1,N—1

T™N—-1,1 --- TN—1,N—1



Parrott for functions on a8 Group ..
. 8s used

» Let F(G) denote the functions 7 : G — My(C);
» Given A, B, C, D, E with entries from F(G).

A B C D
"= (5 &) =0 o= (o ¢) =

then there exists X with entries from F(G) such that

A B X
B C D| =0
X* D* E

» In interpolation /factorization: identify Q as, up to unitary
equivalence (a permutation), @ submatrix of P. So P > 0 suffices.



Matrix completions for 7Z.°

> Let F(G) denote the set of function from G to Mk(C).

> Let & € W be given and let 4 denote its immediate successor.

> 5= Zi%.

» Suppose x : ¢-Frac %, — F(G) is a partially defined function.
Prop’n. [KJM] If the partial toeplitz matrix with toeplitz entries,

(@ ™0),, eny, = 0.

is psd, then x extend to a map X : ¢-Frac %, — F(G) such that

(Y(u_lv))u,ve% > 0.



Matrix completions for Z,°

Prop’n. If 4 is the successor to < and the partial toeplitz matrix with toeplitz entries,
—il
(X(u’ v))u,UEW,/ =0,
is psd, then x extend to a mapping X : ¢-Frac %, — F(G) such that

(Y(“’IU))“,UEWJ > 0.

» J = @xjx successor to «;

> L=W.UzjW.. Note LC W, and L\ {5} C W.

» The map my, : L — L defined by m,;«+ = xju is a bijection
that interchanges x and 4 : Z is special.

» Validates Parrott with one caveat: the (x,4) and (3, %)
entries correspond to x2;jx must agree.



Bonus content
Play the CHSH quantum came

>

>

The strict generalization from Zzg to, say, Zy x Z3 fails.

A reason to care: Violation of a Bell inequality signals
entanglement and implies that a physical interaction cannot
be explained by any classical picture of physics:

The Clauser-Horne-Shimony-Holt (CHSH) inequality,
(Za x Z) % (Zy * Zy). Letting x1, x2 and y1, y» denote the
generators, Xj <> yk,

CHSH :  xuy1 + xay2 + xey1 — xey2 < 2V2.
The optimal value is 2 when x;, y; € R.

The bound is attained with the 4 x 4 matrices,

1 0 0o 1 1 /1 1 1 1 —1
X1:(0 71)®/2’ Xz=(1 0)®’21 Y1=/2®$(1 71),Y2:’2®ﬁ(71 1



Bonus content
More proot - sorry

> Strict positivity, absence of degree bounds, and mat-valued: A
nested sequence compactness argument shows there exists a
d € (y) such that, letting S denote the operator system

(Xuflv,gflh)u,vgd,g,hgd )

the map ¢, : S — Mk(C) defined by

q)P(X) = Z Xu,h Pu,h
(u,h)€l-Frac Wy x£-Frac(y)q4

is completely positive.

» Assuming no such g exists leads to a partially defined psd
function X ~ ¢ : l-Frac W, x G — Mk(C) and then, by
solving the matrix completion problem, a representation 7
giving the contradiction p(m) # 0.
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