

Fejér–Riesz Factorization

Noncommutative and Multivariable Perspectives

Igor Klep U Ljubljana

Jacob Levenson U Florida

Narrator - Scott McCullough U Florida

Thanks to James and Hugo

JMM 2026 – ILAS Session on Matrix Analysis and Applications

Noncommutative Fejér–Riesz Factorization

NC multivariate perspectives

- ▶ Introduction.
 - ▶ Orientation: operator-valued Fejér–Riesz (\mathbb{Z}).
 - ▶ Dritschel's multivariate version ($\mathbb{Z} \times \mathbb{Z}^g$) – motivating template.
 - ▶ Mixed variable FR formulated.
- ▶ Fejér–Riesz for products $\mathcal{W} \times G$.
 - ▶ \mathcal{W} is the free semigroup or \mathbb{Z}_2^{*g} ;
 - ▶ A nearly perfect special case.
- ▶ Ingredients.
 - ▶ The Parrott Lemma for functions on G .
 - ▶ The \mathbb{Z}_2^{*g} completion problem.
- ▶ Concluding remarks: bonus content.

The Fejér–Riesz Theorem

Rosenblum's version

Given a positive integer d and operators

$$p_{-d}, \dots, p_{-1}, p_0, p_1, \dots, p_d \in B(\mathcal{H}),$$

on a Hilbert space \mathcal{H} , if the *trigonometric polynomial*

$$p(t) = \sum_{j=-d}^d p_j e^{ijt} \succeq 0$$

is psd for all real t , then there exists an *analytic polynomial*

$$q(t) = \sum_{j=0}^d q_j e^{ijt}, \quad q_j \in B(\mathcal{H}),$$

such that

$$p(t) = q(t)^* q(t), \quad p = q^* q.$$

The Fejér–Riesz Theorem

Rosenblum's version

If

$$p(t) = \sum_{j=-d}^d p_j e^{ijt} \succeq 0, \quad p_j \in B(\mathcal{H}),$$

then $p = q^*q$, for some

$$q(t) = \sum_{j=0}^d q_j e^{ijt}, \quad q_j \in B(\mathcal{H}).$$

- (i) Elementary in the scalar case of $\mathcal{H} = \mathbb{C}$.
- (ii) The factorization is *perfect* – nonnegative suffices, optimal degree, $B(\mathcal{H})$ -coefficients.
- (iii) The converse is obvious – an algebraic certificate of positivity.
- (iv) Can interpret as a sums of squares/posstatz result.
- (v) The underlying group is \mathbb{Z} with irr reps $e^{it} \in \mathbb{T}$.

The Fejér–Riesz Theorem

Dritschel's several variable version

For $t = (t_0, (t_1, \dots, t_g)) \in \mathbb{R} \times \mathbb{R}^g$ and $n = (n_0, (n_1, \dots, n_g)) \in \mathbb{Z} \times \mathbb{Z}^g$,

$$\langle n, t \rangle = t_0 n_0 + \sum_{j=1}^g t_j n_j.$$

Theorem. [Dritschel, 2004] If the *multivariate* trig poly

$$p(t) = \sum_{n=-d}^d p_n e^{i\langle n, t \rangle} \succeq \epsilon > 0, \quad p_n \in B(\mathcal{H})$$

is strictly positive, then

$$p(t) = q(t)^* q(t),$$

for some analytic polynomial,

$$q(t) = \sum_{n=0}^N q_n e^{i\langle n, t \rangle}, \quad q_n \in \mathcal{B}(\mathcal{H}, \mathcal{F}).$$

Dritschel's several variable FR theorem

Finer detail

For $d = (d_0, (d_1, \dots, d_g)) \in \mathbb{N} \times \mathbb{N}^g$, if

$$p(t) = \sum_{n=-d}^d p_n e^{i\langle n, t \rangle} \succeq \epsilon > 0, \quad p_n \in B(\mathcal{H})$$

is strictly positive, then for some $M \in \mathbb{N}^g$ and $\textcolor{red}{N} = (d_0, M)$,

$$p(t) = q(t)^* q(t), \quad q(t) = \sum_{n=0}^{\textcolor{red}{N}} q_n e^{i\langle n, t \rangle}, \quad q_n \in \mathcal{B}(\mathcal{H}, \mathcal{F}).$$

- (i) The group here is $\mathbb{Z} \times \mathbb{Z}^g$ its irr reps (parameterized by) $\mathbb{T} \times \mathbb{T}^g$.
- (ii) *Partially perfect*: q has degree d_0 in the t_0 variable.
- (iii) Relatively concrete degree bounds in terms of the data.
- (iv) The dimension of \mathcal{F} can exceed that of \mathcal{H} (a true SoS).

Mixed variable FR Factorization

Dritschel's multivariate FR factorization suggests the paradigm:

Magical Thinking Meta Theorem. Given a group \mathcal{W} that supports a perfect FR theorem and a group G , the group $\mathcal{W} \times G$ supports a partially perfect FR theorem.

- ▶ Reality check: For $\mathbb{Z} \times \mathbb{Z}$ something has to go degree, nonnegative, $B(\mathcal{H})$.
- ▶ Groups \mathcal{W} that support a perfect FR.
 - ⟨ x ⟩, the free (semi)group on variables $x = (x_1, \dots, x_g)$ - not a group but close enough.
 - $\mathbb{Z}_2^{*g} = \mathbb{Z}_2 * \mathbb{Z}_2 * \dots * \mathbb{Z}_2$.
- ▶ G a discrete group generated by a finite set $y = (y_1, \dots, y_h)$.
- ▶ Positivity (psd): An element $\omega \in \mathcal{W} \times G$ is *positive* if $\pi(\omega) \succeq 0$ for all representations of $\mathcal{W} \times G$ on Hilbert space.
- ▶ The case $\langle x \rangle \times \mathbb{Z}$ - several unitary NC variables with one commuting variable was our initial motivation.

Mixed variable NC FR

- ▶ Let $x = (x_1, \dots, x_g)$ denote g freely non-commuting variables and let $\langle x \rangle$ denote the free semigroup generated by x ;
- ▶ Give $\langle x \rangle$ the *shortlex* order - a notion of degree;
- ▶ Let x_1, \dots, x_g denote the generators of \mathbb{Z}_2^{*g} so that $x_j^2 = 1$.
- ▶ Give $\mathbb{Z}_2^{*g} = \langle x \rangle$ the *shortlex* order too.

- ▶ Let \mathcal{W} denote either $\langle x \rangle$ or \mathbb{Z}_2^{*g} .
- ▶ For $d \in \mathbb{N}$, let \mathcal{W}_d denote the words of length at most d ;
- ▶ Left fractions:

$$\ell\text{-Frac } \mathcal{W} = \{u^{-1}v : u, v \in \mathcal{W}\}, \quad \ell\text{-Frac } \mathcal{W}_d = \{u^{-1}v : u, v \in \mathcal{W}_d\}.$$

- ▶ In either case, the unitary reps of \mathcal{W} , and hence of $\mathcal{W} \times G$, are easily described: $x_j \mapsto U_j$ or $x_j \mapsto U_j$ with $U_j^2 = I$.

Mixed variable NC FR

- A *trig polynomial* of degree (at most) d takes the form,

$$p = \sum_{w \in \ell\text{-Frac } \mathcal{W}_d \times G}^{\text{finite}} p_w w, \quad p_w \in M_K(\mathbb{C}).$$

- An *analytic polynomial* of degree (at most) d has the form,

$$q = \sum_{u \in \mathcal{W}_d \times \langle y \rangle}^{\text{finite}} q_u u, \quad q_u \in M_{K', K}(\mathbb{C}).$$

Theorem. [KLM] If p has degree d and is strictly psd,

$$p(\pi) = \sum_{w \in \ell\text{-Frac } \mathcal{W}_d \times G}^{\text{finite}} p_w \otimes \pi(w) \succeq \epsilon > 0, \quad \text{for all } \pi,$$

then there exists an analytic q of degree d such that $p = q^* q$.

Mixed variable NC FR

Theorem. [KLM] If p has degree d and is strictly psd,

$$p(\pi) = \sum_{w \in \ell\text{-Frac } \mathcal{W}_d \times G}^{\text{finite}} p_w \otimes \pi(w) \succeq \epsilon > 0,$$

then there exists

$$q = \sum_{u \in \mathcal{W}_d \times \langle y \rangle}^{\text{finite}} q_u u, \quad q_u \in M_{K', K}(\mathbb{C}).$$

such that $p = q^* q$.

- ▶ $\langle y \rangle = \mathbb{N}^g$ when $G = \mathbb{Z}^g$. gives mat-valued case of Dritschel's result.

Proof outline:

- ▶ Parrott's lemma for matrices whose entries are functions on G ;
- ▶ Solving an op-sys matrix completion problem gives a cp map;
- ▶ Arveson/Stinspring and Choi matrix magic produces q .

Mixed variable NC FR for finite G is nearly perfect

Theorem. [KLM] For \mathcal{W} either $\langle x \rangle$ or \mathbb{Z}_2^{*g} , if G is finite, p has degree d and

$$p(\pi) = \sum_{w \in \ell\text{-Frac } \mathcal{W}_d \times G}^{\text{finite}} p_w \otimes \pi(w) \succeq 0, \quad p_w \in B(\mathcal{H}),$$

for all representations π , then there exists

$$q = \sum_{u \in \mathcal{W}_d \times G}^{\text{finite}} q_u u, \quad q_u \in M_{K', K}(\mathbb{C}).$$

such that $p = q^* q$.

- ▶ The case $\mathcal{W} = \langle x \rangle$ and G trivial is well known with many trills.

Parrott for functions on a group

A function $\tau : G \rightarrow M_K(\mathbb{C})$ determines a *Toeplitz* matrix,

$$\Upsilon_\tau = (\tau(g^{-1}h))_{g,h \in G}$$

and we view this matrix as a form on $G \times G$ defined by

$$\langle \Upsilon_\tau \psi, \phi \rangle = \sum_{g,h \in G} \langle \tau(g^{-1}h)\psi(h), \phi(g) \rangle,$$

for $\psi, \phi \in C_{0,0}(G, \mathbb{C}^K)$, the \mathbb{C}^K -valued functions of finite support.

- ▶ In the case $G = \mathbb{Z}$, where the group operation is addition,

$$\Upsilon_\tau = (\tau(j-i))_{i,j \in \mathbb{Z}}$$

is an actual Toeplitz matrix.

Parrott for functions on a group

Proposition. Given $\tau_{i,j} : G \rightarrow M_k(\mathbb{C})$, if

$$P = \begin{pmatrix} \tau_{0,0} & \tau_{0,1} & \cdots & \tau_{0,N-1} \\ \tau_{1,0} & \tau_{1,1} & \cdots & \tau_{1,N-1} \\ \vdots & \vdots & \cdots & \vdots \\ \tau_{N-1,0} & \tau_{N-1,1} & \cdots & \tau_{N-1,N-1} \end{pmatrix} \succeq 0$$

and

$$Q = \begin{pmatrix} \tau_{1,1} & \cdots & \tau_{1,N-1} & \tau_{1,N} \\ \vdots & \cdots & \vdots & \vdots \\ \tau_{N-1,1} & \cdots & \tau_{N-1,N-1} & \tau_{N-1,N} \\ \tau_{N,1} & \cdots & \tau_{N,N-1} & \tau_{N,N} \end{pmatrix} \succeq 0,$$

then there is a function $\tau_{0,N} : G \rightarrow M_k(\mathbb{C})$ such that

$$R = \begin{pmatrix} \tau_{0,0} & \tau_{0,1} & \cdots & \tau_{0,N-1} & \tau_{0,N} \\ \tau_{0,1} & \tau_{1,1} & \cdots & \tau_{1,N-1} & \tau_{1,N} \\ \vdots & \vdots & \cdots & \vdots & \vdots \\ \tau_{N-1,0} & \tau_{N-1,1} & \cdots & \tau_{N-1,N-1} & \tau_{N-1,N} \\ \tau_{0,N}^* & \tau_{1,N} & \cdots & \tau_{N-1,N} & \tau_{N,N} \end{pmatrix} \succeq 0.$$

Parrott for functions on a group as used

- ▶ Let $F(G)$ denote the functions $\tau : G \rightarrow M_K(\mathbb{C})$;
- ▶ Given A, B, C, D, E with entries from $F(G)$.

If

$$P = \begin{pmatrix} A & B \\ B^* & C \end{pmatrix} \succeq 0, \quad Q = \begin{pmatrix} C & D \\ D^* & E \end{pmatrix} \succeq 0,$$

then there exists X with entries from $F(G)$ such that

$$\begin{pmatrix} A & B & X \\ B^* & C & D \\ X^* & D^* & E \end{pmatrix} \succeq 0$$

- ▶ In interpolation/factorization: identify Q as, up to unitary equivalence (a permutation), a submatrix of P . So $P \succeq 0$ suffices.

Matrix completions for \mathbb{Z}_2^{*g}

- ▶ Let $F(G)$ denote the set of function from G to $M_K(\mathbb{C})$.
- ▶ Let $d \in \mathcal{W}$ be given and let s denote its immediate successor.
- ▶ $s = x_j z$.
- ▶ Suppose $\chi : \ell\text{-Frac } \mathcal{W}_d \rightarrow F(G)$ is a partially defined function.

Prop'n. [KJM] If the *partial toeplitz* matrix with toeplitz entries,

$$(\chi(u^{-1}v))_{u,v \in \mathcal{W}_d} \succeq 0,$$

is psd, then χ extend to a map $\bar{\chi} : \ell\text{-Frac } \mathcal{W}_s \rightarrow F(G)$ such that

$$(\bar{\chi}(u^{-1}v))_{u,v \in \mathcal{W}_s} \succeq 0.$$

Matrix completions for \mathbb{Z}_2^{*g}

Prop'n. If \mathcal{S} is the successor to \mathcal{A} and the *partial toeplitz* matrix with toeplitz entries,

$$(\chi(u^{-1}v))_{u,v \in \mathcal{W}_{\mathcal{A}}} \succeq 0,$$

is psd, then χ extend to a mapping $\bar{\chi} : \ell\text{-Frac } \mathcal{W}_{\mathcal{S}} \rightarrow F(G)$ such that

$$(\bar{\chi}(u^{-1}v))_{u,v \in \mathcal{W}_{\mathcal{S}}} \succeq 0.$$

- ▶ $\mathcal{S} = x_j \mathcal{A}$ successor to \mathcal{A} ;
- ▶ $L = \mathcal{W}_{\mathcal{A}} \cup x_j \mathcal{W}_{\mathcal{A}}$. Note $L \subseteq \mathcal{W}_{\mathcal{S}}$ and $L \setminus \{\mathcal{S}\} \subseteq \mathcal{W}_{\mathcal{A}}$.
- ▶ The map $m_{x_j} : L \rightarrow L$ defined by $m_{x_j}w = x_j w$ is a bijection that interchanges \mathcal{A} and \mathcal{S} : \mathbb{Z}_2 is special.
- ▶ Validates Parrott with one caveat: the $(\mathcal{A}, \mathcal{S})$ and $(\mathcal{S}, \mathcal{A})$ entries correspond to $\mathcal{A}x_j \mathcal{A}$ must agree.

Bonus content

Play the CHSH quantum game

- ▶ The strict generalization from \mathbb{Z}_2^{*g} to, say, $\mathbb{Z}_2 * \mathbb{Z}_3$ fails.
- ▶ A reason to care: Violation of a Bell inequality signals entanglement and implies that a physical interaction cannot be explained by any classical picture of physics:
- ▶ The Clauser-Horne-Shimony-Holt (CHSH) inequality, $(\mathbb{Z}_2 * \mathbb{Z}_2) \times (\mathbb{Z}_2 * \mathbb{Z}_2)$. Letting x_1, x_2 and y_1, y_2 denote the generators, $x_j \leftrightarrow y_k$,

$$\text{CHSH : } x_1 y_1 + x_1 y_2 + x_2 y_1 - x_2 y_2 \leq 2\sqrt{2}.$$

- ▶ The optimal value is 2 when $x_j, y_j \in \mathbb{R}$.
- ▶ The bound is attained with the 4×4 matrices,

$$x_1 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \otimes I_2, \quad x_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \otimes I_2, \quad Y_1 = I_2 \otimes \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \quad Y_2 = I_2 \otimes \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ -1 & -1 \end{pmatrix}$$

Bonus content

More proof - sorry

- ▶ Strict positivity, absence of degree bounds, and mat-valued: A nested sequence compactness argument shows there exists a $d \in \langle y \rangle$ such that, letting S denote the operator system

$$(X_{u^{-1}v, g^{-1}h})_{u, v \leq d, g, h \leq d},$$

the map $\Phi_p : S \rightarrow M_K(\mathbb{C})$ defined by

$$\Phi_p(X) = \sum_{(u, h) \in \ell\text{-Frac } \mathcal{W}_d \times \ell\text{-Frac } \langle y \rangle_d} X_{u, h} p_{u, h}$$

is completely positive.

- ▶ Assuming no such g exists leads to a partially defined psd function $\bar{X} \sim \psi : \ell\text{-Frac } \mathcal{W}_d \times G \rightarrow M_K(\mathbb{C})$ and then, by solving the matrix completion problem, a representation π giving the contradiction $p(\pi) \not\geq 0$.