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Quantum Max Cut

Pauli matrices

The Pauli matrices are the following three self-adjoint 2 x 2 matrices

01 0 —¢ 1 0 .
O'X:|:1 O:|7 O’y:|:Z. 0:|, UZ:|:O _1:|. (Pauh)



Quantum Max Cut

Pauli matrices

The Pauli matrices are the following three self-adjoint 2 x 2 matrices
0 1 0 —i 1 0 .
ox = |:1 O:| s Oy = [Z 0:| s Oz = |:O _1:| . (Pauh)

Their multiplication table is as follows:

| ox oy 0z
ox Ig iGZ —iUY
gy 72‘02 IQ iUX

Oz iO‘y —’iO’X IQ



Quantum Max Cut

Pauli matrices

The Pauli matrices are the following three self-adjoint 2 x 2 matrices
0 1 0 —i 1 0 .
ox = |:1 O:| s Oy = [Z 0:| s Oz = |:0 _1:| . (Pauh)

For W € {X,Y, Z} and k,n € N we shall also use

oh =L - QLRowWw L @I, My(C)®" = Myn (C).
N————’ N————’
k—1 n—k



Quantum Max Cut

Pauli matrices

The Pauli matrices are the following three self-adjoint 2 x 2 matrices
0 1 0 —i 1 0 .
ox = |:1 O:| s Oy = [Z 0:| s Oz = |:0 _1:| . (Pauh)

For W € {X,Y, Z} and k,n € N we shall also use
oh =L - QLRowWw L @I, My(C)®" = Myn (C).
— —
k—1 n—k
Letting o := I5, observe that
{oWw, o0, oty | W; €{I,X,Y,Z}}

is a basis of My(C)®".



Quantum Max Cut

Pauli matrices

The Pauli matrices are the following three self-adjoint 2 x 2 matrices
0 1 0 —i 1 0 .
ox = |:1 O:| s Oy = [Z 0:| s Oz = |:0 _1:| . (Pauh)

For W € {X,Y, Z} and k,n € N we shall also use

b =L® - QLRIw LR - ® I My(C)®" = My (C).

k—1 n—k
Letting o := I5, observe that
{ow, o0, ol | W; €{I,X,Y,Z}}
is a basis of My(C)®".

Given i # j, then o}y, o, commute:

i J 0
ow Oy = Oy Oyy-



Quantum Max Cut (QMC)

QMC Hamiltonian (Pauli Form)
The QMC Hamiltonian of a graph G = (V| E) is given by

HG = Z Wi (I — O'AiXUAj).( — U%,JJY _ O'iZUj) c M2n ((C)sa
(1,5)€E(G)

where the oy are Pauli matrices and

0'5[/:IQ®"'®12®UW®IQ®"'®IZ-
—— ——
k—1 n—k



Quantum Max Cut (QMC)

QMC Hamiltonian (Pauli Form)
The QMC Hamiltonian of a graph G = (V| E) is given by

Ho= Y wy(I-okoy —oyoy —0%0,) € Man(Csa
(1,5)€E(G)

where the oy are Pauli matrices and

0'{3[/:IQ®"'®12®UW®IQ®"'®I2-
—— ——
k—1 n—k

Quantum Max Cut
QMC asks for the biggest eigenvalue of Hg

(and, if possible, the associated eigenvector /state).
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Physics motivation
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Quantum Max Cut (QMC)

Physics motivation

e exists; QMC is a natural maximization variant of the
anti-ferromagnetic Heisenberg XYZ model;

e QMC (= a special local Hamiltonian problem) was named by
Gharibian & Parekh?°'?;

e Max Cut (MC) is NP-hard,
QMC is a prototype of a QMA-hard problem.
Piddock & Montanaro?°'”, Cubitt & Montanaro?°'6



Quantum Max Cut

SWAP operators

Hg= [—c ol —ol ol —ob ol
G () B ( XY%x Y 9y z Z)
The matrix 1

Swap,; = 5([ + aé{aﬁ( + nga{/ + aiZU]Z)
is called a SWAP operator.



Quantum Max Cut

SWAP operators

Hg= > (Ifoi\,a;(foi,(r{»fo’;n”z)
(4,7)EE(G)
The matrix 1
Swap,; = 5([ + aé{aﬁ{ + U%;U{/ + aiZUJZ)
is called a SWAP operator.

For instance,

Swap, =

OO O
o= O O
S O =
—_ o O O



Quantum Max Cut

SWAP operators
Hag= > (170")\,0"/‘(7(7;,0'4.70{4(7%)

The matrix

1 o S o
Swap,; = 5( + ook +oyoy +oz0y)

is called a SWAP operator.

Thus, we can rewrite the QMC Hamiltonian as

QMC Hamiltonian (SWAP Form)

Hg = Z 2w;;(I — Swap;;)
(5,4)€E(G)



Quantum Max Cut

SWAP operators
The SWAP operator

1 o S .~
Swap,; = 5(1‘1“7%0& +oyoy +oy0y)

sends the rank one tensor

VR QU RV @ RUy, € ((c2)®n
to the rank one tensor

VR RV R QU@ @V, € (@2)®n

where v, € C2.



Quantum Max Cut

SWAP operators
The SWAP operator

Swap,; = %(I + o&a& + O’§/O'{/ + O'iZO']é)
sends the rank one tensor

VR QU RV @ RUy, € (C2)®n
to the rank one tensor

VR RV R QU@ @V, € (@2)®n7

where v, € C2.

Let MJ¥*P be the SWAP algebra generated by the Swap,;



SWAP operators

Swap;; (11 @ QUi ® - QU@ Qup) =V1Q QU ® QU Q@ vn.

Some relations satisfied by the SWAP operators



SWAP operators

Swap;;(11 @V ® RV R QUn) =V1® QU@ DV @ ® Un.

Some relations satisfied by the SWAP operators

Swapfj =1,
Swap,; Swap,, = Swap;;, Swap,, symmetric group

Swap,; Swapy; = Swapy,; Swap,;.



SWAP operators

Swap;j(v1 ® - QUi ® QU Q- Qun) =V1Q QU Q- RV @ @ Un.

Some relations satisfied by the SWAP operators

Swapfj = I,
Swap,; Swap,;, = Swap,;, Swap,,

Swap,; Swapy,; = Swapy,; Swap,;.

Swap, ;Swap ;. + Swap;,Swap,; = Swap,; + Swap,, + Swap;;, — I>



SWAP algebra

Symmetric group
Swap;; (11 ® QU R VR QUp) =V R QU RV ® & Vn.

Since the transpositions (i, j) generate the symmetric group Sy, the map
(4,5) = Swap,;

gives a representation of the symmetric group S, on (C?)®".



SWAP algebra

Symmetric group
S\\';\I)]’J(L‘l@...X,Uiy...‘zv:j X""‘XTU;): v1 N'"@Uj R RV R @ Uy

Since the transpositions (i, j) generate the symmetric group Sy, the map
(4,5) = Swap,;
gives a representation of the symmetric group S, on (C?)®".

By Maschke’s Theorem , this
representation decomposes into a direct sum of irreps (=irreducible
representations).



SWAP algebra

Symmetric group
S\\';\I)]’J(L‘l@...X,Uiy...‘zv:j X""‘XTU;): v1 N'"@Uj R RV R @ Uy

Since the transpositions (i, j) generate the symmetric group Sy, the map
(4,5) = Swap,;
gives a representation of the symmetric group S, on (C?)®".

By Maschke’s Theorem , this
representation decomposes into a direct sum of irreps (=irreducible
representations).

It is well known that the irreps of the symmetric group S,, are indexed by
partitions A of n, or equivalently, Young diagrams: SN

LTI [ 1] | [ ] |

: :




SWAP algebra

Schur-Weyl duality

Swap;; (11 ® VR VR QUp) =V ® QU@ RV ® & VUn.

GL2(C) also acts on (C?)®™:

g'(’l)1®"'®vn):gq}1®"'®g’l)n.



SWAP algebra

Schur-Weyl duality
S\\'apl;‘j('m @ﬁ""?}rvi%“"‘xl’j &-..%‘z}”): V1 >§--~>§v]- R RV R @ Uy
GL5(C) also acts on (C2)®":
g.(v1®...®vn):gv1®...®gfun.

@ This action commutes with the action of the SWAP operators:

Swap,; 0 g = g o Swap,;.



SWAP algebra

Schur-Weyl duality
S\\’ap,;j(’l’l XXU»LX}@U] x‘...%‘@”) = %XU] R RV Q- R Up.

GL2(C) also acts on (C?)®™:
g (@ - Qu,) =gv @ R guy,.
@ This action commutes with the action of the SWAP operators:
Swap,; 0 g = g o Swap, ;.

o Irreps of GLy(C) are indexed by two row Young diagrams with an
arbitrary number of boxes. o Ln—k,k



SWAP algebra

Schur-Weyl duality

S\\'al),;j('l’l %""ZUi‘X""XUjX‘""X"Un):Ul 59""«2@17]’S‘""Xvig{"'x‘l‘n-

GL2(C) also acts on (C?)®™:
g.(v1®...®yn):gq}1®...®gvn.

Theorem (Schur-Weyl duality)
The space (C*)®™ decomposes under the action of GL2(C) x S, as
L5

(CE" 2D L] @ S b
k=0

[

In particular, as Sp-module (or SWAP algebra-module),

—

3]

2

(€)% = (S ps) " Do,
=0

x>



SWAP algebra

Schur-Weyl duality (cont’d)

Swapu('l,'l R RUR QU - Qup) =V1Q RV R - RV Q- ® vn.
Corollary

The Swap Matriz Algebra MSW2P is the direct sum of simple algebras
generated by the two row irreps of the symmetric group Sy :

—

7]
Swap ~~v
M = Mdim'jﬂ[n—k,k]((c)
k=0

2
. AgSwap L%J n—2k+1 m\\~ _ 1 2ny . - atal. e Y
dim M, =2 k20 \hid (kz) = i1 ( W ) is the n-th Catalan number C,,.



SWAP algebra

Schur-Weyl duality (cont’d)

S“'HI’U(I’I @ QU® QU ® - ”‘7;”) =1Q QU@ - QU® - Qun.

Corollary

The Swap Matriz Algebra MSW2P is the direct sum of simple algebras
generated by the two row irreps of the symmetric group Sy :

M3 % @] Mo ©

Theorem
The Swap Matriz Algebra MS¥?P is given by the following presentation:

MBwap =~ C(swap;;)/ Tswap, where Jswap is the ideal generated by

2

swap;; = I,
swap, ; Swap;, = swap;;, swap,;,
swap,; SwWapy; = swapy; swap,;,

swap; ;swap + swap ;swap;; = swap;; —+ swap + swap;, — 1.

.2 Swap L5 —2k41 ()2 1 /20y . T )
dim MVP = o ’;7k+1 (;l) = o ( n”) is the n-th Catalan number C,,.



Efficient Approximations to QMC

Helton-McCullough Positivstellensatz made effective aka nc Lasserre hierarchy

To h € C(swap) let

vg(h) :=min{v | v — h € SOS2q + Jswap}

where SOS,,; denotes the set of all sums of squares of polynomials in the
free nc variables swap, ;, each having degree < d.



Efficient Approximations to QMC

Helton-McCullough Positivstellensatz made effective aka nc Lasserre hierarchy

To h € C(swap) let

vg(h) :=min{v | v — h € SOS2q + Jswap}

where SOS,,; denotes the set of all sums of squares of polynomials in the
free nc variables swap, ;, each having degree < d.

° Vd(h) Z eigmaxh(swap)



Efficient Approximations to QMC

Helton-McCullough Positivstellensatz made effective aka nc Lasserre hierarchy

To h € C(swap) let

vg(h) :=min{v | v — h € SOS2q + Jswap}

where SOS,,; denotes the set of all sums of squares of polynomials in the
free nc variables swap, ;, each having degree < d.

° Vd(h) Z eigmaxh(swap)

i) vrpy21(h) = eigah(Swap)



Efficient Approximations to QMC

Helton-McCullough Positivstellensatz made effective aka nc Lasserre hierarchy

To h € C(swap) let
vg(h) :=min{v | v — h € SOS2q + Jswap}

where SOS,,; denotes the set of all sums of squares of polynomials in the
free nc variables swap, ;, each having degree < d.

Veroneses are column vectors Vy(n), which consist of degree d monomials
in the n(n — 1)/2 variables swap,;, i < j, ordered w.r.t. grlex.



Efficient Approximations to QMC

Helton-McCullough Positivstellensatz made effective aka nc Lasserre hierarchy

To h € C(swap) let
vg(h) :=min{v | v — h € SOS2q + Jswap}

where SOS,,; denotes the set of all sums of squares of polynomials in the
free nc variables swap, ;, each having degree < d.

Veroneses are column vectors Vy(n), which consist of degree d monomials
in the n(n — 1)/2 variables swap,;, i < j, ordered w.r.t. grlex.

Lemma

Let h € C(swap). Then h € SOS2q +Jswap iff there is a PsD matrix I’
such that

h — Vd(n)*FVd(n) S ijap.
Finding such a I can be done with a semidefinite program (SDP).



QMC

nc Lasserre relaxations (cont’d)

vg(h) =min {v | v — h € SOS2q + Jswap } »

a4(h) = max L(h)
s.t. L € (SOS2q + Tswap)”
L(1) = 1.

Here (SOS2q + Jswap)” denotes the dual cone to the cone SOS2q + Jswaps
(SOS24 + Tswap)¥ = {L . C{swap)aq — C | L linear with L(SOSzq) C Rso,

L(Jswap N Clswap)aa) = {0} }-



QMC

nc Lasserre relaxations (cont’d)

vq(h) = min {1/ | v —h € S0Syy + QTQWHI,} ,

a4(h) = max L(h)
s.t. L € (SOS2q + Tswap)”
L(1) = 1.

Here (SOS2q + Jswap)" denotes the dual cone to the cone SOS2q + Jswap-

This is another SDP.

o (strong duality) a4(h) = va(h).

o (pseudomoments) Implement /14(h) with the help of moment matrices.



QMC

nc Lasserre relaxations — example

vg(h) = min {r/ |v—h € S0Syy + jgw;.l)} ,
a4(h) = max {L(h,) | L € (SOSyy + \75\\vnp)v, L(1) = 1} .

Take n =3, d = 1. Then V1(3) = (1, s12, S13, S23) ™.

For brevity we use s;; for swap,; here.

The symbolic Hankel matrix is

1 S12 513 523
2
* S12 S12 512513  S12823
Mi(3) =Vi(3)Vi(3)" = 5
S13  S13S512 S13 513523
2
S$23 823812 S23S513 523

and the pseudomoments of L € (SOSz2q + Jswap)’ are

ML) = L(Siz) L(8131§12) L(lésl)3 L(Siiszz)
L(823) L(823312) L(323813) L(S%g)



nc Lasserre relaxations — example (cont’d)
n = d d= ], ‘1(3) = (] ,S812, 813, ,5’2;;)*

The space of quadratics in the SWAPs is spanned by the entries of V7 (3)
together with one element, e.g., s12513.



nc Lasserre relaxations — example (cont’d)
n=3,d=1, Vi(3) = (1, s12, 513, 523)"

The space of quadratics in the SWAPs is spanned by the entries of V7 (3)
together with one element, e.g., s12513. Namely,

2 _ _
si; =1 5125823 = —1 + 812 + 813 + S23 — S12513
513523 = 512513 513512 = —1 + 812 + 813 + 523 — $12513

$23512 = S12513 593513 = —1 + 812 + 813 + 523 — $12513



nc Lasserre relaxations — example (cont’d)
n=3,d=1, Vi(3) = (1, s12, 513, 523)"

The space of quadratics in the SWAPs is spanned by the entries of V7 (3)
together with one element, e.g., s12513. Namely,

2 _ _
sy =1 512523 = —1 + 812 + 813 + 523 — $12513
j
513523 = S12513 513512 = —1 + 819 + 813 + 523 — 512513
$23512 = S12513 523513 = —1 + 812 + 513 + S23 — S12513

With this the pseudomoments of L € (SOSz2q + Jswap)” simplify

L(1) L(Séz) L(s13) L(s23)

L(s12) L(s72) L(s12513) L(s12523)

ML) L(s13) L(8131;12) L(s33) L(s13523)
L(s23) L(s23s12) L(s23s13) L(s23)

1 412 le fg

3

£12 1 q —1+2lio+ 413+ 423 —¢q
L13 q 1 q ’
Loz —14Llio+ L3+ Loz —q° q* 1

where (;; = L(s;;) and ¢ = L(s12513).



QMC

nc Lasserre relaxations (cont’d)

vg(h) = min {U | v —h € SOS2q + Jswap | »
aq(h) = max {L(h) | L € (SOS2q4 + Tswap) s L(1) = 1} .

We can now rewrite n4(h) as an SDP as follows:

aq(h) = max (My(L),T's)
s.t. Mq(L) = 0
My(L)11 =1
L(Jswap N C(swap)aa) = {0},

where T', is a (not necessarily positive semidefinite) Gram matrix for h,

h = Vd(n)*I‘th(n)



QMC

Numerical results

Takahashi, Rayudu, Zhou, King, Thompson, Parekh2°?3 give many
examples of the 1st nc Lasserre hierarchy.

o It is exact for

\ /
/ \ 6 4 5 G 3
4 3 S5 4
star graphs even cliques certain crown graphs

o It is non-exact for odd cliques, and many small (n < 6) graphs.



QMC

Numerical examples

The second nc Moment-SOS SDP relaxation for QMC has size
n n n)y 1 4 3 9
1+(2>+<3>+3(4>_24 (3n* — 14n® + 33n? — 22n + 24)

n_|

12 3 4 5 6 7 8 9 10 12 15 20
1 2 5

size‘ 14 36 81 162 295 499 796 1772 4656 15866



QMC

Numerical examples

The second nc Moment-SOS SDP relaxation for QMC has size

n n ny 1 4 3 2
1+(2>+<3>+3(4)—24(3n 14n® + 33n” — 22n + 24)

Proposition
For n < 8 the second nc Moment-SOS SDP relaxation for QMC of an n

vertex QMC with uniform edge weights is up to the tolerance of 10~7
exact, i.e., equal to the true max.



QMC

Numerical examples

The second nc Moment-SOS SDP relaxation for QMC has size

n n ny 1 4 3 2
1+(2>+<3>+3(4>—24(3n 14n® + 33n” — 22n + 24)

Proposition

For n < 8 the second nc Moment-SOS SDP relaxation for QMC of an n
vertex QMC with uniform edge weights is up to the tolerance of 1077
exact, i.e., equal to the true max.

? It would be interesting to find the smallest graph on which the second
relaxation is not exact.

(il It appears that the first classical relaxation is worse than the
quantum one for swaps.



QMC

Rounding aka solving a moment problem
eig o (H) = (Hv,v) = tr(H "), pis a state
€igmax (H) = ( ) = tr( ), pisas
P

e Round SDP solutions to product states p=p1 ® -+ ® py,
Brandao & Harrow??'®, Bravyi & Gosset & Kénig & Temme??'?, Gharibian
& Parekh?°*®| Parekh & Thompson2°?!;

e Parekh & Thompson?°??: “optimal” rounding to product state =
1/2—approximation;

e Anshu & Gosset & Morenz2%2?: 0.531—approximation;

o Parekh & Thompson?°?!: 0.533—approximation;

e King?23: (0.582—approximation;

o Hwang & Neeman & Parekh & Thompson & Wright2023: Unique
Games hardness of (0.956 4 ¢)—approximation for QMC, assuming a

conjecture in Gaussian geometry;



QMC

Rounding ala Parekh & Thompson292!: 0.533—approximation

Algorithm 1 PT2021 Approximation Algorithm for QMC

1.

(=2

Input graph G = (V, E) with weights w = {w, > 0}.cg, solve 1st
nc Lasserre. Let the matrix M be an optimal solution.

For each (i,j) € E calculate z;; := [1 — 2M(Swap,;, 1)]/3.

Pick d € N, and define L :={e € E | z. > a(d) := dd++31 }. Find
a maximum-weight matching F' in the graph Gy, := (V, L)

w.r.t weights {w,}eer. Let U be the vertices unmatched by F'.

Define a quantum state:

o I — Swap,; I,
PF = H (2> i 9 (1)

ijEF

Find the optimal product state ppgs.

6. Output the better of pr and ppg.




QMC

Exact solutions — clique

) L5]
Hg = > 2(I — Swap,,), MEWP = (43} “‘”‘““"’(/T w11 (©)
(i,))EE(G) ’ k=0 e
Example
Let G = K, be the clique on n vertices. Then

o Under each irrep \, H I/\<w is a scalar matrix.



QMC

Exact solutions — clique

. L5]
He= Y  2(I—Swap;), My~ Maim #,_ 1 (C)
(i,J)EE(G) k=0
Example
Let G = K, be the clique on n vertices. Then

o Under each irrep \, H }‘(w is a scalar matrix.

—k,k
1) H}?ﬂ ] = (g’) + k2 — k)(TL + 1) (hook length & Murnaghan-Nakayama rule).



QMC

Exact solutions — clique

LY
Hg = > 2(I — Swap,;), MEWP = (43} J”‘““"'(/M w11 (©)
(1,5)EB(G) k=0
Example
Let G = K, be the clique on n vertices. Then

e Under each irrep A\, H I/\q is a scalar matrix.
—k,k
o H[n ] = (n) + k2 — k;(n + 1) (hook length & Murnaghan-Nakayama rule).
K"'L 2

e QMC value of K, is the max of H%;k’k] for k=0,...,]%],

and is attained at k = [ 5 ]. or




QMC

Exact solutions — clique

LY
Hg = > 2(I — Swap,;), MEWP = (43} J”‘““"'(/M w11 (©)
(1,5)EB(G) k=0
Example
Let G = K, be the clique on n vertices. Then

o Under each irrep \, H I/\q is a scalar matrix.

—k,k
Y H[n ] = (n) + k2 — k;(n + 1) (hook length & Murnaghan-Nakayama rule).
K, 2

(il This allows us to write an nc Moment-SOS SDP relaxation scheme
for optimizing H} inside a two row irrep .



QMC

Exact solutions — star graph

L5

Heg= Y 2(I-Swap;), M;"*"= & Maim 1,y 1 (C)
(3,5)EE(G) ’ k=0
Example
Let G = %, be the star graph on n vertices. Then
1
5\6‘5/2 Hy, :2Z(I—Swapjn).
/7 N\ j<n
4 3

° kanfk’k] has two eigenvalues, namely 2(n — k + 1) > 2k.



QMC

Exact solutions — star graph

Ho= 5 2(—Swap,), M"™ = M 5,y 5 (©)
(i,7)EE(G) ’ k=0
Example
Let G = %, be the star graph on n vertices. Then
1
5\6‘5/2 Hy, :2Z(I—Swapjn).
/7 N\ j<n
4 3
Y H[’I’L*’C,k‘]

g has two eigenvalues, namely 2(n — k + 1) > 2k.

1

‘ /1\ /1\
= 52 =0 2 - 5 2
N \ﬁ%/ \Q/
4 3 4—3 4—3



QMC

Exact solutions — star graph (cont’d)

*n = Kn - anl

[n—k,kl _ rrln—k,k] [n—k,k]
Hy, " =Hg, " —Hg, [



QMC

Exact solutions — star graph (cont’d)

*n = Kn - anl

[n—k,kl _ rrln—k,k] [n—k,k]
Hy, " =Hg, " —Hg, [

Branching rule:

L] = o [ [ 1]
Ss L




QMC

Exact solutions — star graph (cont’d)

*n = Kn - anl

[n—k,k] _ r7[n—k,kK] [n—F,k]
H*n - HKn - Hanl :

Branching rule:

L] = o [ [ 1]

S5 L

n—k,k n—k,k n—k,k
Hy = gt g

= HE T (T e ),



QMC

Tree-clique decomposition

For any connected graph G, the tree clique decomposition of G, denoted
T(G), consists of a rooted tree T' = {v1,..., v}, and connected graphs
{G(v1) =G, ...,G(vy)} such that:

e For any vertex v; of T which is not a leaf vertex, let ¢y, ..., cg be its
children. Then

Gu)'= |J Gle),
je{1,2,...,k}

e For any leaf vertex v; of T' we have that G(v;)¢ is connected or
G(v;)° is totally disconnected.



QMC

Tree-clique decomposition — example




QMC

Tree-clique decomposition — example

G(vr) G(v2) G(vs) G(vs)

Glus) Glve) Glvr) ) Gluo)



QMC

Tree-clique decomposition

Theorem

Let G be a graph and T(G) = {T,{G(v1),...,G(vm)}} be its tree-clique
decomposition. Then

@ For any vertex v € T with children c1,...,ck,

How) = Heeowy —  »_  Hoe)

je{1,...,k}

@ Let L denote the set of leaf vertices in T, and R be all non-leaf vertices. Let
d(v) denote the depth of vertex v in the the tree, with root d(vi) = 0. Then

He =Y ()" Hiey + (1) Haq

reR leL



QMC

Tree-clique decomposition and QMC

Theorem

Let G be a graph and T(G) = {T,{G(v1),...,G(vm)}} be its tree-clique
decomposition. Then

@ For any vertex v € T with children c1,...,ck,

How) = Heeowy —  »_  Hoe)

je{1,...,k}

@ Let L denote the set of leaf vertices in T, and R be all non-leaf vertices. Let
d(v) denote the depth of vertex v in the the tree, with root d(vi) = 0. Then

He =Y ()" Hiey + (1) Haq

reR leL

I Given min and max eigenvalues under all two row irreps of G(I) for
every leaf vertex [ of T, one can inductively compute min and max
eigenvalues under all two row irreps of G.



Outro
Quantum Max Cut (QMC) is fun T2

v QMC Hamiltonian expressed in terms of SWAP operators
Identify the SWAP algebra via Schur-Weyl duality

v Nc Lasserre’s relaxation (= Helton-McCullough Positivstellensatz)
produces a Moment-SOS SDP hierarchy for QMC

v' Exact solutions for various simple graphs

v' Tree-clique decomposition algorithm for writing a graph as a sum of £cliques

Yields a recursive algorithm for solving QMC exactly

v C? ~» C%: qudits instead of qubits

. Any ideas/thoughts for a better rounding algorithm ?
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