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e Elasticity is a physical property describing a body’s ability to
resist distortion, typically applied from some outside force.
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e Elasticity is a physical property describing a body's ability to
resist distortion, typically applied from some outside force.
e There are varying types of mechanical stress in elasticity theory,

from compressibility, to tensile strength, shear strain, and torsional
rigidity.



Torsional Rigidity

e Elasticity is a physical property describing a body's ability to
resist distortion, typically applied from some outside force.

e There are varying types of mechanical stress in elasticity theory,
from compressibility, to tensile strength, shear strain, and torsional
rigidity.

e The torsional rigidity of an object is its resistance to the twisting
force known as torque.



e Consider a 3-dimensional beam, of homogeneous material and
infinite length, whose two-dimensional cross-section is uniform
throughout.
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Torsional Rigidity

e Consider a 3-dimensional beam, of homogeneous material and
infinite length, whose two-dimensional cross-section is uniform
throughout.

e The property of torsional rigidity is dependent on this
two-dimensional cross-section.

e We will be interested in how geometry influences torsional
rigidity.



e In 1948 George Pdlya conjectured that for any n € N, among all

n-sided polygonal cross-sections with fixed area, the n-gon with
maximal torsional rigidity is the regular n-gon.
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Calculating Torsional Rigidity

e For a simply connected Jordan domain Q C C, the torsional
rigidity p(Q2) of an infinite beam with cross-section Q is given by

o AUpu(2)dA(2)"
p(8) = u:c&‘zﬁ) I IVu(z)[2dA(z)




Calculating Torsional Rigidity

e For a simply connected Jordan domain Q C C, the torsional
rigidity p(Q2) of an infinite beam with cross-section Q is given by

o AUpu(2)dA(2)"
p(8) = u:c&‘zﬁ) I IVu(z)[2dA(z)

e The function v(z) which attains such a maximum is known as
the stress function of the region 2.



problem:

-2
0
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The stress function for €2, v(z), is a solution to the boundary value
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problem:

The stress function for €2, v(z), is a solution to the boundary value

{Az/ = -2
’/|5Q

=0

and

o(Q) = 2 /Q V(2)dA(z)
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The torsional rigidity of a bounded and simply connected domain is
equal to the square of the L?(Q)-distance from z to the Bergman
space.
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Calculating Torsional Rigidity

Theorem (Fleeman & Lundberg, 2017) |

The torsional rigidity of a bounded and simply connected domain is
equal to the square of the L?(Q)-distance from z to the Bergman
space.

e We define this L2()-distance from Z to the Bergman space as
the Bergman analytic content of Q, denoted ().



Calculating Torsional Rigidity

Theorem (Fleeman & Lundberg, 2017) |

The torsional rigidity of a bounded and simply connected domain is
equal to the square of the L?(Q)-distance from z to the Bergman
space.

e We define this L2()-distance from Z to the Bergman space as
the Bergman analytic content of Q, denoted ().



known regions

There are only closed forms for the torsional rigidity of several well

«Or «Fr o«

DA



Calculating Torsional Rigidity

There are only closed forms for the torsional rigidity of several well
known regions

Region Q () ‘ variables
Disk %ﬂr4 r radius
3b3
Ellipse % a,b radii, a > b
S 9 (5)4 ide length
quare 2 5 a side leng
4
3
Equilateral Triangle 38( a side length
ab® [16 b b* .
= |22 _-336= - >
Rectangle A { 3 3 363 (1 1234)} a, b side lengths, a > b




theorem:

In 2015 M. Fleeman and D. Khavinson proved the following
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The Bergman Projection of Z

In 2015 M. Fleeman and D. Khavinson proved the following
theorem:

Theorem (Fleeman & Khavinson, 2015)

Let Q be a bounded finitely connected domain. Then f(z) is the
projection of z onto A?(QQ) if and only if |z|> = F(z) + F(z) on
I = 6Q, where F'(z) = f(z).




The Bergman Projection of Z

In 2015 M. Fleeman and D. Khavinson proved the following
theorem:

Theorem (Fleeman & Khavinson, 2015) |
Let Q be a bounded finitely connected domain. Then f(z) is the
projection of z onto A?(QQ) if and only if |z|> = F(z) + F(z) on

I = 6Q, where F'(z) = f(z).

In other words, the Bergman projection of z on Q is the derivative
of a function whose real part is |z|?/2 on the boundary of that
domain.



e Having lots of examples at your disposal allows you the ability to
approximate many other regions.
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approximate many other regions.

e The Bergman analytic content method implies several continuity
properties.



The Bergman Projection of Z

e Having lots of examples at your disposal allows you the ability to
approximate many other regions.

e The Bergman analytic content method implies several continuity
properties.

e Regions which are sufficiently ‘similar’ to one another must have
nearly equal torsional rigidities.



e To find a region Q on which you can calculate p(Q2) exactly,
choose a function F and examine the lemniscate where

F(2) +F(2) = |2
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e To find a region Q on which you can calculate p(Q2) exactly,
choose a function F and examine the lemniscate where

F(2) +F(2) = |2

e Calculate the following integral,

/ IF'(2) - 2[2dA = p(Q)
Q
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The Road Map

e To find a region Q on which you can calculate p(Q2) exactly,
choose a function F and examine the lemniscate where

F(z)+F(z) = |2/
e Calculate the following integral,

/ IF'(2) - 212dA = p(Q)
Q

e The difficulty in applying this method lies in verifying that the
lemniscate is indeed a simply connected Jordan region.



The Road Map

e One can find examples of regions where one can calculate ()
exactly by considering regions whose boundary is a bounded
connected component of the set

M= {z : Re[F(2)] = |Z|2/2}a

as long as F is holomorphic on the region bounded by T ¢.



The Road Map

e One can find examples of regions where one can calculate ()
exactly by considering regions whose boundary is a bounded
connected component of the set

M= {z : Re[F(2)] = |Z|2/2}a

as long as F is holomorphic on the region bounded by T ¢.

e Since o(Q) is calculated using F'(z), not F(z), without loss of
generality we may consider

Fr:={z:Re[F(z) + k] = |z|*}



defined by

e The single monomial case with kK = 1, that is, on domains

CRe[z"] = |z2+1>0
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defined by

e The single monomial case with kK = 1, that is, on domains

CRe[z"] - |z]?+1>0
e The best approximation to Z is the function

f(z) = %an"_l
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First Results (details)

e The single monomial case with k = 1, that is, on domains
defined by
CRe[z"] — |z +1>0

e The best approximation to Z is the function
1 n—1
f(z) = Ean :

e There are values of C such that the set includes no bounded
components. Fleeman and Lundberg showed that a bounded
connected component exists whenever

n—2

2(n—2)>2

n
n2

Cc<



First Results

e We improve this result as follows:

Theorem (K. & Simanek, arXiv preprint) |

Forn >3, k > 0 the set {z : CRe[z"] — |z|?> + k = 0} has exactly
one bounded component whenever

Ic| < ¢

oo 2k (n=2 /2
" n—2\ nk '
Further, if |C| > C*, then the set does not include a bounded
component.

where




e Consider functions of the form F(z) = Cz" + z.

«Or «Fr o«

DA



First Results

e Consider functions of the form F(z) = Cz" + z.

Theorem (K. & Simanek, arXiv preprint)
If C,k >0 and n > 3, the set

{z:Re[Cz"+ 2] — |z]2 + k =0}

has exactly one bounded connected component if and only if
C < C* where

(2n—4)" (4k(n—2)+((n—1)++/(n—12+4nk(n—2) )

C* = e
2(n—2)2((n—1)+,/(n—1)2+4nk(n—2))




e We may define more general binomial functions,

foj.ck(r,0) := Cr'cos(nf) + rjcos(je) —r?+ k.
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First Results

e We may define more general binomial functions,
foj.c.k(r,0) ;= Crcos(nf) + rfcos(j6) — r* + k.

e We would like to determine what conditions on n, j, C, k ensure

the existence of a bounded connected component for the set,

FnJ(C, /() = {reia . f,,L,-7C7k(r, 9) = 0}



First Results

Theorem (K. & Simanek, arXiv preprint)

If C,k >0 and n > j > 2 are natural numbers, then the set
Mnj(C, k) has at least one bounded connected component if and
only if C < C* and k < k* where

2 J

r<—r —k

C*:= max ——
re(0,00) rn

2/(j-2)
e
J J

and



Consider C, k > 0 and n,j € N with j < n. If the set

Mhj(C,k)={z:Re [Cz"—l—zj] — |z + k=0}

contains a bounded connected component, then it must contain a
bounded connected component that surrounds the origin.
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Key Lemma

Lemma (K. & Simanek, arXiv preprint)
Consider C, k > 0 and n,j € N with j < n. If the set

[nj(C.k)={z: Re[Cz"+ 2] — |z]* + k = 0}

contains a bounded connected component, then it must contain a
bounded connected component that surrounds the origin.

Corollary (K. & Simanek, arXiv preprint)

Under the hypotheses of the key lemma, the set ', j(C, k) contains
at most one bounded connected component surrounding the origin.



contradictory statement.

e A key observation in proving this lemma comes from supposing a
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e Notice £, ¢ £(0,6) > 0.

e A key observation in proving this lemma comes from supposing a
contradictory statement.
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Key Lemma (aspects of proof)

e A key observation in proving this lemma comes from supposing a
contradictory statement.

e Notice fnJ,C,k(Oa 0) > 0.

o If ', j(C, k) contained a bounded connected component, but it
did not surround the origin, it would require the bounded
connected component to surround a region where f, ; ¢ «(0,6) < 0.



Key Lemma (aspects of proof)

e A key observation in proving this lemma comes from supposing a
contradictory statement.

e Notice fnJ,C,k(Oa 0) > 0.

o If ', j(C, k) contained a bounded connected component, but it
did not surround the origin, it would require the bounded
connected component to surround a region where f, ; ¢ «(0,6) < 0.

° Afn,j,C,k(rv 9) =—4 ==



An Example

Calculate the torsional rigidity for the unique bounded connected
component determined by the set

F44(C k) ={z:Re[C* + 2% — |z* + k =0}




An Example

Calculate the torsional rigidity for the unique bounded connected
component determined by the set

F44(C k) ={z:Re[C* + 2% — |z* + k =0}
o We may let ¢ = C+1so that

F24(C, k) = {z:Re[Cz*] — |z]> + k = 0}

and we satisfy the conditions of the monomial theorem.



1
only if €< K

e Thus, F4 4(C, k) has a bounded connected component if and
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An Example

e Thus, I'44(C, k) has a bounded connected component if and
only if C < ﬁ.
e A parameterization of this component is given in polar

coordinates by
{(a,0),0 <6 <27}

where

- 1/2
1-— \/1 — 4Ck cos(40)

2C cos(40)




e Recall,

o(Q) = /Q 17— F(2)PdA(2)

where Q is the bounded connected component described by the
above parameterization.

and

2) = S IF(2)],

C*+k
F(z)= 5 .
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o We have,

¢ p(Q)
1

2 | 1.63988k>
1

= | 1.60815k?
1

Tor | 1.57894k>
1

To5% 1.57087k2
0 Tk

DA
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Figure: A plot of the set {(,0),0 <6 < 27r} with k =1 for four
different values of C, rangmg from € = —k at the outermost connected
component in orange, ¢ = g in blue, ¢ = W in green, and ¢ =

OOk
as the nearly circular connected component in red.
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