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Torsional Rigidity

• Elasticity is a physical property describing a body’s ability to
resist distortion, typically applied from some outside force.

• There are varying types of mechanical stress in elasticity theory,
from compressibility, to tensile strength, shear strain, and torsional
rigidity.

• The torsional rigidity of an object is its resistance to the twisting
force known as torque.
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• Consider a 3-dimensional beam, of homogeneous material and
infinite length, whose two-dimensional cross-section is uniform
throughout.
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two-dimensional cross-section.
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Torsional Rigidity

• In 1948 George Pólya conjectured that for any n ∈ N, among all
n-sided polygonal cross-sections with fixed area, the n-gon with
maximal torsional rigidity is the regular n-gon.



Calculating Torsional Rigidity

• For a simply connected Jordan domain Ω ⊆ C, the torsional
rigidity ρ(Ω) of an infinite beam with cross-section Ω is given by

ρ(Ω) := sup
u∈C1

0 (Ω)

4
( ∫

Ω u(z)dA(z)
)2∫

Ω |∇u(z)|2dA(z)

• The function ν(z) which attains such a maximum is known as
the stress function of the region Ω.



Calculating Torsional Rigidity

• For a simply connected Jordan domain Ω ⊆ C, the torsional
rigidity ρ(Ω) of an infinite beam with cross-section Ω is given by

ρ(Ω) := sup
u∈C1

0 (Ω)

4
( ∫

Ω u(z)dA(z)
)2∫

Ω |∇u(z)|2dA(z)

• The function ν(z) which attains such a maximum is known as
the stress function of the region Ω.



Calculating Torsional Rigidity
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Calculating Torsional Rigidity

Theorem (Fleeman & Lundberg, 2017)

The torsional rigidity of a bounded and simply connected domain is
equal to the square of the L2(Ω)-distance from z̄ to the Bergman
space.

• We define this L2(Ω)-distance from z̄ to the Bergman space as
the Bergman analytic content of Ω, denoted σ(Ω).

ρ(Ω) = σ2(Ω).
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Calculating Torsional Rigidity

There are only closed forms for the torsional rigidity of several well
known regions

Region Ω ρ(Ω) variables

Disk
1

2
πr4 r radius

Ellipse
πa3b3

a2 + b2
a, b radii, a > b

Square
9

4

(a
2

)4
a side length

Equilateral Triangle
a4
√
3

80
a side length

Rectangle
ab3

8

[
16

3
− 3.36

b

a

(
1− b4

12a4

)]
a, b side lengths, a ≥ b
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The Bergman Projection of z̄

In 2015 M. Fleeman and D. Khavinson proved the following
theorem:

Theorem (Fleeman & Khavinson, 2015)

Let Ω be a bounded finitely connected domain. Then f (z) is the
projection of z̄ onto A2(Ω) if and only if |z |2 = F (z) + F (z) on
Γ = δΩ, where F ′(z) = f (z).

In other words, the Bergman projection of z̄ on Ω is the derivative
of a function whose real part is |z |2/2 on the boundary of that
domain.
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The Bergman Projection of z̄

• Having lots of examples at your disposal allows you the ability to
approximate many other regions.

• The Bergman analytic content method implies several continuity
properties.

• Regions which are sufficiently ‘similar’ to one another must have
nearly equal torsional rigidities.
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The Road Map

• To find a region Ω on which you can calculate ρ(Ω) exactly,
choose a function F and examine the lemniscate where

F (z) + F (z) = |z |2.

• Calculate the following integral,∫
Ω
|F ′(z)− z̄ |2dA = ρ(Ω)

• The difficulty in applying this method lies in verifying that the
lemniscate is indeed a simply connected Jordan region.
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The Road Map

• One can find examples of regions where one can calculate σ(Ω)
exactly by considering regions whose boundary is a bounded
connected component of the set

Γ̃F := {z : Re[F (z)] = |z |2/2},

as long as F is holomorphic on the region bounded by Γ̃F .

• Since σ(Ω) is calculated using F ′(z), not F (z), without loss of
generality we may consider

ΓF := {z : Re[F (z) + k] = |z |2}
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First Results (details)

• The single monomial case with k = 1, that is, on domains
defined by

CRe[zn]− |z |2 + 1 > 0

• The best approximation to z̄ is the function

f (z) =
1

2
Cnzn−1.

• There are values of C such that the set includes no bounded
components. Fleeman and Lundberg showed that a bounded
connected component exists whenever

C ≤ 2(n − 2)
n−2
2

n
n
2
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First Results

• We improve this result as follows:

Theorem (K. & Simanek, arXiv preprint)

For n ≥ 3, k > 0 the set {z : CRe[zn]− |z |2 + k = 0} has exactly
one bounded component whenever

|C | ≤ C ∗

where

C ∗ :=
2k

n − 2

(
n − 2

nk

)n/2

.

Further, if |C | > C ∗, then the set does not include a bounded
component.



First Results

• Consider functions of the form F (z) = Czn + z .

Theorem (K. & Simanek, arXiv preprint)

If C , k > 0 and n ≥ 3, the set

{z : Re [Czn + z ]− |z |2 + k = 0}

has exactly one bounded connected component if and only if
C ≤ C ∗ where

C ∗ :=
(2n−4)n

(
4k(n−2)+

(
(n−1)+

√
(n−1)2+4nk(n−2)

))
2(n−2)2

(
(n−1)+

√
(n−1)2+4nk(n−2)

)n
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First Results

• We may define more general binomial functions,

fn,j ,C ,k(r , θ) := Crncos(nθ) + r jcos(jθ)− r2 + k .

• We would like to determine what conditions on n, j ,C , k ensure

the existence of a bounded connected component for the set,

Γn,j(C , k) := {re iθ : fn,j ,C ,k(r , θ) = 0}
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First Results

Theorem (K. & Simanek, arXiv preprint)

If C , k > 0 and n > j > 2 are natural numbers, then the set
Γn,j(C , k) has at least one bounded connected component if and
only if C < C ∗ and k < k∗ where

C ∗ := max
r∈(0,∞)

r2 − r j − k

rn

and

k∗ :=

(
1− 2

j

)(
2

j

)2/(j−2)

.



Key Lemma

Lemma (K. & Simanek, arXiv preprint)

Consider C , k > 0 and n, j ∈ N with j < n. If the set

Γn,j(C , k) = {z : Re
[
Czn + z j

]
− |z |2 + k = 0}

contains a bounded connected component, then it must contain a
bounded connected component that surrounds the origin.

Corollary (K. & Simanek, arXiv preprint)

Under the hypotheses of the key lemma, the set Γn,j(C , k) contains
at most one bounded connected component surrounding the origin.
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Key Lemma (aspects of proof)

• A key observation in proving this lemma comes from supposing a
contradictory statement.

• Notice fn,j ,C ,k(0, θ) > 0.

• If Γn,j(C , k) contained a bounded connected component, but it
did not surround the origin, it would require the bounded
connected component to surround a region where fn,j ,C ,k(0, θ) < 0.

• ∆fn,j ,C ,k(r , θ) = −4 ⇒⇐
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An Example

Example

Calculate the torsional rigidity for the unique bounded connected
component determined by the set

Γ4,4(C , k) = {z : Re[Cz4 + z4]− |z |2 + k = 0}

• We may let Ĉ = C + 1 so that

Γ4,4(C , k) = {z : Re[Ĉ z4]− |z |2 + k = 0}

and we satisfy the conditions of the monomial theorem.
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An Example

• Thus, Γ4,4(C , k) has a bounded connected component if and
only if Ĉ ≤ 1

4k .

• A parameterization of this component is given in polar
coordinates by

{(α, θ), 0 ≤ θ ≤ 2π}

where

α :=

1−
√
1− 4Ĉk cos(4θ)

2Ĉ cos(4θ)

1/2

.
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An Example

• Recall,

ρ(Ω) =

∫
Ω
|z̄ − f (z)|2dA(z)

where Ω is the bounded connected component described by the
above parameterization.

f (z) =
d

dz
[F (z)] ,

and

F (z) =
Ĉ z4 + k

2
.



An Example

• We have,

Ĉ ρ(Ω)

1
4k 1.63988k2

1
5k 1.60815k2

1
10k 1.57894k2

1
100k 1.57087k2

...
...

0 π
2 k

2



An Example
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Figure: A plot of the set {(α, θ), 0 ≤ θ ≤ 2π} with k = 1 for four
different values of Ĉ , ranging from Ĉ = 1

4k at the outermost connected

component in orange, Ĉ = 1
5k in blue, Ĉ = 1

10k in green, and Ĉ = 1
100k

as the nearly circular connected component in red.
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