Polynomial Lemniscates and Torsional Rigidity (Bergman Space Approximations)

Adam Kraus - BU

Joint work with Brian Simanek

Southeastern Analysis Meeting - 40

March 16, 2024

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

• *Elasticity* is a physical property describing a body's ability to resist distortion, typically applied from some outside force.

*ロ * * @ * * ミ * ミ * ・ ミ * の < @

• *Elasticity* is a physical property describing a body's ability to resist distortion, typically applied from some outside force.

• There are varying types of mechanical stress in *elasticity theory*, from compressibility, to tensile strength, shear strain, and torsional rigidity.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

• *Elasticity* is a physical property describing a body's ability to resist distortion, typically applied from some outside force.

• There are varying types of mechanical stress in *elasticity theory*, from compressibility, to tensile strength, shear strain, and torsional rigidity.

• The *torsional rigidity* of an object is its resistance to the twisting force known as torque.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

• Consider a 3-dimensional beam, of homogeneous material and infinite length, whose two-dimensional cross-section is uniform throughout.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

• Consider a 3-dimensional beam, of homogeneous material and infinite length, whose two-dimensional cross-section is uniform throughout.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

• The property of torsional rigidity is dependent on this two-dimensional cross-section.

• Consider a 3-dimensional beam, of homogeneous material and infinite length, whose two-dimensional cross-section is uniform throughout.

- The property of torsional rigidity is dependent on this two-dimensional cross-section.
- We will be interested in how geometry influences torsional rigidity.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

• In 1948 George Pólya conjectured that for any $n \in \mathbb{N}$, among all *n*-sided polygonal cross-sections with fixed area, the *n*-gon with maximal torsional rigidity is the regular *n*-gon.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

• For a simply connected Jordan domain $\Omega \subseteq \mathbb{C}$, the torsional rigidity $\rho(\Omega)$ of an infinite beam with cross-section Ω is given by

$$\rho(\Omega) := \sup_{u \in C_0^1(\overline{\Omega})} \frac{4(\int_{\Omega} u(z) dA(z))^2}{\int_{\Omega} |\nabla u(z)|^2 dA(z)}$$

*ロ * * @ * * ミ * ミ * ・ ミ * の < @

• For a simply connected Jordan domain $\Omega \subseteq \mathbb{C}$, the torsional rigidity $\rho(\Omega)$ of an infinite beam with cross-section Ω is given by

$$\rho(\Omega) := \sup_{u \in C_0^1(\overline{\Omega})} \frac{4 \left(\int_{\Omega} u(z) dA(z)\right)^2}{\int_{\Omega} |\nabla u(z)|^2 dA(z)}$$

• The function $\nu(z)$ which attains such a maximum is known as the *stress function* of the region Ω .

The stress function for Ω , $\nu(z)$, is a solution to the boundary value problem:

$$\begin{cases} \Delta \nu &= -2 \\ \nu \big|_{\delta \Omega} &= 0 \end{cases}$$

▲□▶▲□▶▲□▶▲□▶ □ のへの

The stress function for Ω , $\nu(z)$, is a solution to the boundary value problem:

$$egin{array}{rcl} \Delta
u &=& -2 \ \left|
u
ight|_{\delta \Omega} &=& 0 \end{array}$$

and

$$\rho(\Omega) = 2 \int_{\Omega} \nu(z) dA(z)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Calculating Torsional Rigidity

Theorem (Fleeman & Lundberg, 2017)

The torsional rigidity of a bounded and simply connected domain is equal to the square of the $L^2(\Omega)$ -distance from \overline{z} to the Bergman space.

Calculating Torsional Rigidity

Theorem (Fleeman & Lundberg, 2017)

The torsional rigidity of a bounded and simply connected domain is equal to the square of the $L^2(\Omega)$ -distance from \bar{z} to the Bergman space.

• We define this $L^2(\Omega)$ -distance from \overline{z} to the Bergman space as the Bergman analytic content of Ω , denoted $\sigma(\Omega)$.

Theorem (Fleeman & Lundberg, 2017)

The torsional rigidity of a bounded and simply connected domain is equal to the square of the $L^2(\Omega)$ -distance from \overline{z} to the Bergman space.

• We define this $L^2(\Omega)$ -distance from \bar{z} to the Bergman space as the Bergman analytic content of Ω , denoted $\sigma(\Omega)$.

$$\rho(\Omega) = \sigma^2(\Omega).$$

Calculating Torsional Rigidity

There are only closed forms for the torsional rigidity of several well known regions

Calculating Torsional Rigidity

There are only closed forms for the torsional rigidity of several well known regions

Region Ω	$ ho(\Omega)$	variables
Disk	$\frac{1}{2}\pi r^4$	r radius
Ellipse	$\frac{\pi a^3 b^3}{a^2 + b^2}$	a, b radii, a > b
Square	$\frac{9}{4}\left(\frac{a}{2}\right)^4$	a side length
Equilateral Triangle	$\frac{a^4\sqrt{3}}{80}$	a side length
Rectangle	$\frac{ab^3}{8} \left[\frac{16}{3} - 3.36 \frac{b}{a} \left(1 - \frac{b^4}{12a^4} \right) \right]$	a,b side lengths, $a \ge b$

The Bergman Projection of \bar{z}

In 2015 M. Fleeman and D. Khavinson proved the following theorem:

In 2015 M. Fleeman and D. Khavinson proved the following theorem:

Theorem (Fleeman & Khavinson, 2015)

Let Ω be a bounded finitely connected domain. Then $f(\underline{z})$ is the projection of \overline{z} onto $A^2(\Omega)$ if and only if $|z|^2 = F(z) + \overline{F(z)}$ on $\Gamma = \delta \Omega$, where F'(z) = f(z).

In 2015 M. Fleeman and D. Khavinson proved the following theorem:

Theorem (Fleeman & Khavinson, 2015)

Let Ω be a bounded finitely connected domain. Then $f(\underline{z})$ is the projection of \overline{z} onto $A^2(\Omega)$ if and only if $|z|^2 = F(z) + \overline{F(z)}$ on $\Gamma = \delta \Omega$, where F'(z) = f(z).

In other words, the Bergman projection of \bar{z} on Ω is the derivative of a function whose real part is $|z|^2/2$ on the boundary of that domain.

The Bergman Projection of \bar{z}

• Having lots of examples at your disposal allows you the ability to approximate many other regions.

- Having lots of examples at your disposal allows you the ability to approximate many other regions.
- The Bergman analytic content method implies several continuity properties.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

- Having lots of examples at your disposal allows you the ability to approximate many other regions.
- The Bergman analytic content method implies several continuity properties.
- Regions which are sufficiently 'similar' to one another must have nearly equal torsional rigidities.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

• To find a region Ω on which you can calculate $\rho(\Omega)$ exactly, choose a function F and examine the lemniscate where

$$F(z) + \overline{F(z)} = |z|^2.$$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

• To find a region Ω on which you can calculate $\rho(\Omega)$ exactly, choose a function F and examine the lemniscate where

$$F(z) + \overline{F(z)} = |z|^2.$$

• Calculate the following integral,

$$\int_{\Omega} |F'(z) - \bar{z}|^2 dA = \rho(\Omega)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つへ⊙

• To find a region Ω on which you can calculate $\rho(\Omega)$ exactly, choose a function F and examine the lemniscate where

$$F(z) + \overline{F(z)} = |z|^2.$$

• Calculate the following integral,

$$\int_{\Omega} |F'(z) - \bar{z}|^2 dA = \rho(\Omega)$$

• The difficulty in applying this method lies in verifying that the lemniscate is indeed a simply connected Jordan region.

• One can find examples of regions where one can calculate $\sigma(\Omega)$ exactly by considering regions whose boundary is a bounded connected component of the set

$$\widetilde{\Gamma}_F := \{z : \operatorname{Re}[F(z)] = |z|^2/2\},\$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

as long as F is holomorphic on the region bounded by $\tilde{\Gamma}_{F}$.

• One can find examples of regions where one can calculate $\sigma(\Omega)$ exactly by considering regions whose boundary is a bounded connected component of the set

$$\widetilde{\Gamma}_{\mathsf{F}} := \{ z : \operatorname{Re}[\mathsf{F}(z)] = |z|^2/2 \},\$$

as long as F is holomorphic on the region bounded by Γ_F .

• Since $\sigma(\Omega)$ is calculated using F'(z), not F(z), without loss of generality we may consider

$$\Gamma_F := \{ z : \operatorname{Re}[F(z) + k] = |z|^2 \}$$

First Results (details)

• The single monomial case with k = 1, that is, on domains defined by

$$C \operatorname{Re}[z^n] - |z|^2 + 1 > 0$$

First Results (details)

• The single monomial case with k = 1, that is, on domains defined by

$$C \operatorname{Re}[z^n] - |z|^2 + 1 > 0$$

• The best approximation to \bar{z} is the function

$$f(z) = \frac{1}{2}Cnz^{n-1}$$

٠

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

First Results (details)

• The single monomial case with k = 1, that is, on domains defined by

$$C \operatorname{Re}[z^n] - |z|^2 + 1 > 0$$

• The best approximation to \bar{z} is the function

$$f(z)=\frac{1}{2}Cnz^{n-1}$$

• There are values of *C* such that the set includes no bounded components. Fleeman and Lundberg showed that a bounded connected component exists whenever

$$C \leq \frac{2(n-2)^{\frac{n-2}{2}}}{n^{\frac{n}{2}}}$$

• We improve this result as follows:

Theorem (K. & Simanek, arXiv preprint) For $n \ge 3$, k > 0 the set $\{z : CRe[z^n] - |z|^2 + k = 0\}$ has exactly one bounded component whenever

$$|C| \leq C^*$$

where

$$C^* := \frac{2k}{n-2} \left(\frac{n-2}{nk}\right)^{n/2}$$

Further, if $|C| > C^*$, then the set does not include a bounded component.

• Consider functions of the form $F(z) = Cz^n + z$.

<□▶ < □▶ < 三▶ < 三▶ = 三 のへぐ

• Consider functions of the form $F(z) = Cz^n + z$.

Theorem (K. & Simanek, arXiv preprint)

If C, k > 0 and $n \ge 3$, the set

$$\{z: Re[Cz^{n} + z] - |z|^{2} + k = 0\}$$

has exactly one bounded connected component if and only if $C \leq C^*$ where

$$C^* := \frac{(2n-4)^n \left(4k(n-2) + \left((n-1) + \sqrt{(n-1)^2 + 4nk(n-2)}\right)\right)}{2(n-2)^2 \left((n-1) + \sqrt{(n-1)^2 + 4nk(n-2)}\right)^n}$$

• We may define more general binomial functions,

$$f_{n,j,C,k}(r,\theta) := Cr^n cos(n\theta) + r^j cos(j\theta) - r^2 + k.$$

(ロト (個) (E) (E) (E) (E) のへの

• We may define more general binomial functions,

$$f_{n,j,C,k}(r,\theta) := Cr^n cos(n\theta) + r^j cos(j\theta) - r^2 + k.$$

• We would like to determine what conditions on n, j, C, k ensure the existence of a bounded connected component for the set,

$$\Gamma_{n,j}(C,k) := \{ re^{i\theta} : f_{n,j,C,k}(r,\theta) = 0 \}$$

*ロ * * @ * * ミ * ミ * ・ ミ * の < @

Theorem (K. & Simanek, arXiv preprint)

If C, k > 0 and n > j > 2 are natural numbers, then the set $\Gamma_{n,j}(C,k)$ has at least one bounded connected component if and only if $C < C^*$ and $k < k^*$ where

$$C^* := \max_{r \in (0,\infty)} \frac{r^2 - r^j - k}{r^n}$$

and

$$k^* := \left(1 - \frac{2}{j}\right) \left(\frac{2}{j}\right)^{2/(j-2)}$$

イロト 不得 トイヨト イヨト ニヨー

Sac

Lemma (K. & Simanek, arXiv preprint)

Consider C, k > 0 and $n, j \in \mathbb{N}$ with j < n. If the set

$$\Gamma_{n,j}(C,k) = \{ z : Re \left[Cz^n + z^j \right] - |z|^2 + k = 0 \}$$

contains a bounded connected component, then it must contain a bounded connected component that surrounds the origin.

Sac

Lemma (K. & Simanek, arXiv preprint)

Consider C, k > 0 and $n, j \in \mathbb{N}$ with j < n. If the set

$$\Gamma_{n,j}(C,k) = \{ z : Re \left[Cz^n + z^j \right] - |z|^2 + k = 0 \}$$

contains a bounded connected component, then it must contain a bounded connected component that surrounds the origin.

Corollary (K. & Simanek, arXiv preprint)

Under the hypotheses of the key lemma, the set $\Gamma_{n,j}(C,k)$ contains at most one bounded connected component surrounding the origin.

*ロ * * @ * * ミ * ミ * ・ ミ * の < @

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

• Notice $f_{n,j,C,k}(0,\theta) > 0$.

• Notice $f_{n,j,C,k}(0,\theta) > 0$.

• If $\Gamma_{n,j}(C, k)$ contained a bounded connected component, but it did not surround the origin, it would require the bounded connected component to surround a region where $f_{n,j,C,k}(0,\theta) < 0$.

• Notice
$$f_{n,j,C,k}(0,\theta) > 0$$
.

• If $\Gamma_{n,j}(C, k)$ contained a bounded connected component, but it did not surround the origin, it would require the bounded connected component to surround a region where $f_{n,j,C,k}(0,\theta) < 0$.

•
$$\Delta f_{n,j,C,k}(r,\theta) = -4 \quad \Longrightarrow \quad$$

Example

Calculate the torsional rigidity for the unique bounded connected component determined by the set

$$f_{4,4}(C,k) = \{z : \operatorname{Re}[Cz^4 + z^4] - |z|^2 + k = 0\}$$

Example

Calculate the torsional rigidity for the unique bounded connected component determined by the set

$$\Gamma_{4,4}(C,k) = \{z : \operatorname{Re}[Cz^4 + z^4] - |z|^2 + k = 0\}$$

• We may let $\hat{C} = C + 1$ so that

$$\Gamma_{4,4}(C,k) = \{z : \operatorname{Re}[\hat{C}z^4] - |z|^2 + k = 0\}$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

and we satisfy the conditions of the monomial theorem.

• Thus, $\Gamma_{4,4}(C, k)$ has a bounded connected component if and only if $\hat{C} \leq \frac{1}{4k}$.

- Thus, $\Gamma_{4,4}(C, k)$ has a bounded connected component if and only if $\hat{C} \leq \frac{1}{4k}$.
- A parameterization of this component is given in polar coordinates by

$$\{(\alpha, \theta), 0 \le \theta \le 2\pi\}$$

where

$$\alpha := \left(\frac{1 - \sqrt{1 - 4\hat{C}k\cos(4\theta)}}{2\hat{C}\cos(4\theta)}\right)^{1/2}$$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

• Recall,

$$ho(\Omega) = \int_{\Omega} |\bar{z} - f(z)|^2 dA(z)$$

where $\boldsymbol{\Omega}$ is the bounded connected component described by the above parameterization.

$$f(z) = \frac{d}{dz} \left[F(z) \right],$$

and

$$F(z)=\frac{\hat{C}z^4+k}{2}.$$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

• We have,

-

Ĉ	$ ho(\Omega)$	
$\frac{1}{4k}$	$1.63988k^2$	
$\frac{1}{5k}$	$1.60815k^2$	
$\frac{1}{10k}$	$1.57894k^2$	
$\frac{1}{100k}$	$1.57087k^2$	
÷	÷	
0	$\frac{\pi}{2}k^2$	

▲口 > ▲ □ > ▲ □ > ▲ □ > ▲ □ >

590

Figure: A plot of the set $\{(\alpha, \theta), 0 \le \theta \le 2\pi\}$ with k = 1 for four different values of \hat{C} , ranging from $\hat{C} = \frac{1}{4k}$ at the outermost connected component in orange, $\hat{C} = \frac{1}{5k}$ in blue, $\hat{C} = \frac{1}{10k}$ in green, and $\hat{C} = \frac{1}{100k}$ as the nearly circular connected component in red.

References

- Fleeman, M., & Khavinson, D. (2016). Approximating z̄ in the Bergman Space. Contemp. Math., 679, 79–90. https://doi.org/10.1090/conm/679/13671
- Fleeman, M., & Simanek, B. (2019). Torsional Rigidity and Bergman Analytic Content of Simply Connected Regions. *Comput. Methods Funct. Theory*, 17(1), 37–63.
- Fleeman, M., & Lundberg, E. (2017). The bergman analytic content of planar domains. Computational Methods and Function Theory, 17. https://doi.org/10. 1007/s40315-016-0189-4
- Kraus, A., & Simanek, B. (2023). New Perspectives on Torsional Rigidity and Polynomial Approximations of z-bar. arXiv preprint, 1–13.
- Kraus, A., & Simanek, B. (2024). Bounded Connected Components of Polynomial Lemniscates. arXiv preprint, 1–10.

*ロ * * @ * * ミ * ミ * ・ ミ * の < @