Polynomial Lemniscates and Torsional Rigidity (Bergman Space Approximations)

Adam Kraus - BU
Joint work with Brian Simanek
Southeastern Analysis Meeting - 40

March 16, 2024

Torsional Rigidity

- Elasticity is a physical property describing a body's ability to resist distortion, typically applied from some outside force.

Torsional Rigidity

- Elasticity is a physical property describing a body's ability to resist distortion, typically applied from some outside force.
- There are varying types of mechanical stress in elasticity theory, from compressibility, to tensile strength, shear strain, and torsional rigidity.

Torsional Rigidity

- Elasticity is a physical property describing a body's ability to resist distortion, typically applied from some outside force.
- There are varying types of mechanical stress in elasticity theory, from compressibility, to tensile strength, shear strain, and torsional rigidity.
- The torsional rigidity of an object is its resistance to the twisting force known as torque.

Torsional Rigidity

- Consider a 3-dimensional beam, of homogeneous material and infinite length, whose two-dimensional cross-section is uniform throughout.

Torsional Rigidity

- Consider a 3-dimensional beam, of homogeneous material and infinite length, whose two-dimensional cross-section is uniform throughout.
- The property of torsional rigidity is dependent on this two-dimensional cross-section.

Torsional Rigidity

- Consider a 3-dimensional beam, of homogeneous material and infinite length, whose two-dimensional cross-section is uniform throughout.
- The property of torsional rigidity is dependent on this two-dimensional cross-section.
- We will be interested in how geometry influences torsional rigidity.

Torsional Rigidity

- In 1948 George Pólya conjectured that for any $n \in \mathbb{N}$, among all n-sided polygonal cross-sections with fixed area, the n-gon with maximal torsional rigidity is the regular n-gon.

Calculating Torsional Rigidity

- For a simply connected Jordan domain $\Omega \subseteq \mathbb{C}$, the torsional rigidity $\rho(\Omega)$ of an infinite beam with cross-section Ω is given by

$$
\rho(\Omega):=\sup _{u \in C_{0}^{1}(\bar{\Omega})} \frac{4\left(\int_{\Omega} u(z) d A(z)\right)^{2}}{\int_{\Omega}|\nabla u(z)|^{2} d A(z)}
$$

Calculating Torsional Rigidity

- For a simply connected Jordan domain $\Omega \subseteq \mathbb{C}$, the torsional rigidity $\rho(\Omega)$ of an infinite beam with cross-section Ω is given by

$$
\rho(\Omega):=\sup _{u \in C_{0}^{1}(\bar{\Omega})} \frac{4\left(\int_{\Omega} u(z) d A(z)\right)^{2}}{\int_{\Omega}|\nabla u(z)|^{2} d A(z)}
$$

- The function $\nu(z)$ which attains such a maximum is known as the stress function of the region Ω.

Calculating Torsional Rigidity

The stress function for $\Omega, \nu(z)$, is a solution to the boundary value problem:

$$
\begin{cases}\Delta \nu & =-2 \\ \left.\nu\right|_{\delta \Omega} & =0\end{cases}
$$

Calculating Torsional Rigidity

The stress function for $\Omega, \nu(z)$, is a solution to the boundary value problem:

$$
\begin{cases}\Delta \nu & =-2 \\ \left.\nu\right|_{\delta \Omega} & =0\end{cases}
$$

and

$$
\rho(\Omega)=2 \int_{\Omega} \nu(z) d A(z)
$$

Calculating Torsional Rigidity

Theorem (Fleeman \& Lundberg, 2017)
The torsional rigidity of a bounded and simply connected domain is equal to the square of the $L^{2}(\Omega)$-distance from \bar{z} to the Bergman space.

Calculating Torsional Rigidity

Theorem (Fleeman \& Lundberg, 2017)

The torsional rigidity of a bounded and simply connected domain is equal to the square of the $L^{2}(\Omega)$-distance from \bar{z} to the Bergman space.

- We define this $L^{2}(\Omega)$-distance from \bar{z} to the Bergman space as the Bergman analytic content of Ω, denoted $\sigma(\Omega)$.

Calculating Torsional Rigidity

Theorem (Fleeman \& Lundberg, 2017)

The torsional rigidity of a bounded and simply connected domain is equal to the square of the $L^{2}(\Omega)$-distance from \bar{z} to the Bergman space.

- We define this $L^{2}(\Omega)$-distance from \bar{z} to the Bergman space as the Bergman analytic content of Ω, denoted $\sigma(\Omega)$.

$$
\rho(\Omega)=\sigma^{2}(\Omega)
$$

Calculating Torsional Rigidity

There are only closed forms for the torsional rigidity of several well known regions

Calculating Torsional Rigidity

There are only closed forms for the torsional rigidity of several well known regions

Region Ω	$\rho(\Omega)$	variables
Disk	$\frac{1}{2} \pi r^{4}$	r radius
Ellipse	$\frac{\pi a^{3} b^{3}}{a^{2}+b^{2}}$	a, b radii, $a>b$
Square	$\frac{9}{4}\left(\frac{a}{2}\right)^{4}$	a side length
Equilateral Triangle	$\frac{a^{4} \sqrt{3}}{80}$	a side length
Rectangle	$\frac{a b^{3}}{8}\left[\frac{16}{3}-3.36 \frac{b}{a}\left(1-\frac{b^{4}}{12 a^{4}}\right)\right]$	a, b side lengths, $a \geq b$

The Bergman Projection of \bar{z}

In 2015 M. Fleeman and D. Khavinson proved the following theorem:

The Bergman Projection of \bar{z}

In 2015 M. Fleeman and D. Khavinson proved the following theorem:

Theorem (Fleeman \& Khavinson, 2015)
Let Ω be a bounded finitely connected domain. Then $f(z)$ is the projection of \bar{z} onto $A^{2}(\Omega)$ if and only if $|z|^{2}=F(z)+\overline{F(z)}$ on $\Gamma=\delta \Omega$, where $F^{\prime}(z)=f(z)$.

The Bergman Projection of \bar{z}

In 2015 M. Fleeman and D. Khavinson proved the following theorem:

Theorem (Fleeman \& Khavinson, 2015)
Let Ω be a bounded finitely connected domain. Then $f(z)$ is the projection of \bar{z} onto $A^{2}(\Omega)$ if and only if $|z|^{2}=F(z)+\overline{F(z)}$ on $\Gamma=\delta \Omega$, where $F^{\prime}(z)=f(z)$.

In other words, the Bergman projection of \bar{z} on Ω is the derivative of a function whose real part is $|z|^{2} / 2$ on the boundary of that domain.

The Bergman Projection of \bar{z}

- Having lots of examples at your disposal allows you the ability to approximate many other regions.

The Bergman Projection of \bar{z}

- Having lots of examples at your disposal allows you the ability to approximate many other regions.
- The Bergman analytic content method implies several continuity properties.

The Bergman Projection of \bar{z}

- Having lots of examples at your disposal allows you the ability to approximate many other regions.
- The Bergman analytic content method implies several continuity properties.
- Regions which are sufficiently 'similar' to one another must have nearly equal torsional rigidities.

The Road Map

- To find a region Ω on which you can calculate $\rho(\Omega)$ exactly, choose a function F and examine the lemniscate where

$$
F(z)+\overline{F(z)}=|z|^{2} .
$$

The Road Map

- To find a region Ω on which you can calculate $\rho(\Omega)$ exactly, choose a function F and examine the lemniscate where

$$
F(z)+\overline{F(z)}=|z|^{2} .
$$

- Calculate the following integral,

$$
\int_{\Omega}\left|F^{\prime}(z)-\bar{z}\right|^{2} d A=\rho(\Omega)
$$

The Road Map

- To find a region Ω on which you can calculate $\rho(\Omega)$ exactly, choose a function F and examine the lemniscate where

$$
F(z)+\overline{F(z)}=|z|^{2} .
$$

- Calculate the following integral,

$$
\int_{\Omega}\left|F^{\prime}(z)-\bar{z}\right|^{2} d A=\rho(\Omega)
$$

- The difficulty in applying this method lies in verifying that the lemniscate is indeed a simply connected Jordan region.

The Road Map

- One can find examples of regions where one can calculate $\sigma(\Omega)$ exactly by considering regions whose boundary is a bounded connected component of the set

$$
\tilde{\Gamma}_{F}:=\left\{z: \operatorname{Re}[F(z)]=|z|^{2} / 2\right\},
$$

as long as F is holomorphic on the region bounded by $\tilde{\Gamma}_{F}$.

The Road Map

- One can find examples of regions where one can calculate $\sigma(\Omega)$ exactly by considering regions whose boundary is a bounded connected component of the set

$$
\tilde{\Gamma}_{F}:=\left\{z: \operatorname{Re}[F(z)]=|z|^{2} / 2\right\},
$$

as long as F is holomorphic on the region bounded by $\tilde{\Gamma}_{F}$.

- Since $\sigma(\Omega)$ is calculated using $F^{\prime}(z)$, not $F(z)$, without loss of generality we may consider

$$
\Gamma_{F}:=\left\{z: \operatorname{Re}[F(z)+k]=|z|^{2}\right\}
$$

First Results (details)

- The single monomial case with $k=1$, that is, on domains defined by

$$
C \operatorname{Re}\left[z^{n}\right]-|z|^{2}+1>0
$$

First Results (details)

- The single monomial case with $k=1$, that is, on domains defined by

$$
C \operatorname{Re}\left[z^{n}\right]-|z|^{2}+1>0
$$

- The best approximation to \bar{z} is the function

$$
f(z)=\frac{1}{2} C n z^{n-1} .
$$

First Results (details)

- The single monomial case with $k=1$, that is, on domains defined by

$$
C \operatorname{Re}\left[z^{n}\right]-|z|^{2}+1>0
$$

- The best approximation to \bar{z} is the function

$$
f(z)=\frac{1}{2} C n z^{n-1} .
$$

- There are values of C such that the set includes no bounded components. Fleeman and Lundberg showed that a bounded connected component exists whenever

$$
C \leq \frac{2(n-2)^{\frac{n-2}{2}}}{n^{\frac{n}{2}}}
$$

First Results

- We improve this result as follows:

Theorem (K. \& Simanek, arXiv preprint)
For $n \geq 3, k>0$ the set $\left\{z: C \operatorname{Re}\left[z^{n}\right]-|z|^{2}+k=0\right\}$ has exactly one bounded component whenever

$$
|C| \leq C^{*}
$$

where

$$
C^{*}:=\frac{2 k}{n-2}\left(\frac{n-2}{n k}\right)^{n / 2} .
$$

Further, if $|C|>C^{*}$, then the set does not include a bounded component.

First Results

- Consider functions of the form $F(z)=C z^{n}+z$.

First Results

- Consider functions of the form $F(z)=C z^{n}+z$.

Theorem (K. \& Simanek, arXiv preprint) If $C, k>0$ and $n \geq 3$, the set

$$
\left\{z: \operatorname{Re}\left[C z^{n}+z\right]-|z|^{2}+k=0\right\}
$$

has exactly one bounded connected component if and only if $C \leq C^{*}$ where

$$
C^{*}:=\frac{(2 n-4)^{n}\left(4 k(n-2)+\left((n-1)+\sqrt{(n-1)^{2}+4 n k(n-2)}\right)\right)}{2(n-2)^{2}\left((n-1)+\sqrt{(n-1)^{2}+4 n k(n-2)}\right)^{n}}
$$

First Results

- We may define more general binomial functions,

$$
f_{n, j, C, k}(r, \theta):=C r^{n} \cos (n \theta)+r^{j} \cos (j \theta)-r^{2}+k .
$$

First Results

- We may define more general binomial functions,

$$
f_{n, j, C, k}(r, \theta):=C r^{n} \cos (n \theta)+r^{j} \cos (j \theta)-r^{2}+k .
$$

- We would like to determine what conditions on n, j, C, k ensure the existence of a bounded connected component for the set,

$$
\Gamma_{n, j}(C, k):=\left\{r e^{i \theta}: f_{n, j, C, k}(r, \theta)=0\right\}
$$

First Results

Theorem (K. \& Simanek, arXiv preprint)
If $C, k>0$ and $n>j>2$ are natural numbers, then the set $\Gamma_{n, j}(C, k)$ has at least one bounded connected component if and only if $C<C^{*}$ and $k<k^{*}$ where

$$
C^{*}:=\max _{r \in(0, \infty)} \frac{r^{2}-r^{j}-k}{r^{n}}
$$

and

$$
k^{*}:=\left(1-\frac{2}{j}\right)\left(\frac{2}{j}\right)^{2 /(j-2)} .
$$

Key Lemma

Lemma (K. \& Simanek, arXiv preprint)
Consider $C, k>0$ and $n, j \in \mathbb{N}$ with $j<n$. If the set

$$
\Gamma_{n, j}(C, k)=\left\{z: \operatorname{Re}\left[C z^{n}+z^{j}\right]-|z|^{2}+k=0\right\}
$$

contains a bounded connected component, then it must contain a bounded connected component that surrounds the origin.

Key Lemma

Lemma (K. \& Simanek, arXiv preprint)
Consider $C, k>0$ and $n, j \in \mathbb{N}$ with $j<n$. If the set

$$
\Gamma_{n, j}(C, k)=\left\{z: \operatorname{Re}\left[C z^{n}+z^{j}\right]-|z|^{2}+k=0\right\}
$$

contains a bounded connected component, then it must contain a bounded connected component that surrounds the origin.

Corollary (K. \& Simanek, arXiv preprint)
Under the hypotheses of the key lemma, the set $\Gamma_{n, j}(C, k)$ contains at most one bounded connected component surrounding the origin.

Key Lemma (aspects of proof)

- A key observation in proving this lemma comes from supposing a contradictory statement.

Key Lemma (aspects of proof)

- A key observation in proving this lemma comes from supposing a contradictory statement.
- Notice $f_{n, j, c, k}(0, \theta)>0$.

Key Lemma (aspects of proof)

- A key observation in proving this lemma comes from supposing a contradictory statement.
- Notice $f_{n, j, c, k}(0, \theta)>0$.
- If $\Gamma_{n, j}(C, k)$ contained a bounded connected component, but it did not surround the origin, it would require the bounded connected component to surround a region where $f_{n, j, c, k}(0, \theta)<0$.

Key Lemma (aspects of proof)

- A key observation in proving this lemma comes from supposing a contradictory statement.
- Notice $f_{n, j, c, k}(0, \theta)>0$.
- If $\Gamma_{n, j}(C, k)$ contained a bounded connected component, but it did not surround the origin, it would require the bounded connected component to surround a region where $f_{n, j, c, k}(0, \theta)<0$.
- $\Delta f_{n, j, C, k}(r, \theta)=-4$

An Example

Example

Calculate the torsional rigidity for the unique bounded connected component determined by the set

$$
\Gamma_{4,4}(C, k)=\left\{z: \operatorname{Re}\left[C z^{4}+z^{4}\right]-|z|^{2}+k=0\right\}
$$

An Example

Example

Calculate the torsional rigidity for the unique bounded connected component determined by the set

$$
\Gamma_{4,4}(C, k)=\left\{z: \operatorname{Re}\left[C z^{4}+z^{4}\right]-|z|^{2}+k=0\right\}
$$

- We may let $\hat{C}=C+1$ so that

$$
\Gamma_{4,4}(C, k)=\left\{z: \operatorname{Re}\left[\hat{C} z^{4}\right]-|z|^{2}+k=0\right\}
$$

and we satisfy the conditions of the monomial theorem.

An Example

- Thus, $\Gamma_{4,4}(C, k)$ has a bounded connected component if and only if $\hat{C} \leq \frac{1}{4 k}$.

An Example

- Thus, $\Gamma_{4,4}(C, k)$ has a bounded connected component if and only if $\hat{C} \leq \frac{1}{4 k}$.
- A parameterization of this component is given in polar coordinates by

$$
\{(\alpha, \theta), 0 \leq \theta \leq 2 \pi\}
$$

where

$$
\alpha:=\left(\frac{1-\sqrt{1-4 \hat{C} k \cos (4 \theta)}}{2 \hat{C} \cos (4 \theta)}\right)^{1 / 2} .
$$

An Example

- Recall,

$$
\rho(\Omega)=\int_{\Omega}|\bar{z}-f(z)|^{2} d A(z)
$$

where Ω is the bounded connected component described by the above parameterization.

$$
f(z)=\frac{d}{d z}[F(z)]
$$

and

$$
F(z)=\frac{\hat{C} z^{4}+k}{2}
$$

An Example

- We have,

\hat{C}	$\rho(\Omega)$
$\frac{1}{4 k}$	$1.63988 k^{2}$
$\frac{1}{5 k}$	$1.60815 k^{2}$
$\frac{1}{10 k}$	$1.57894 k^{2}$
$\frac{1}{100 k}$	$1.57087 k^{2}$
\vdots	\vdots
0	$\frac{\pi}{2} k^{2}$

An Example

Figure: A plot of the set $\{(\alpha, \theta), 0 \leq \theta \leq 2 \pi\}$ with $k=1$ for four different values of \hat{C}, ranging from $\hat{C}=\frac{1}{4 k}$ at the outermost connected component in orange, $\hat{C}=\frac{1}{5 k}$ in blue, $\hat{C}=\frac{1}{10 k}$ in green, and $\hat{C}=\frac{1}{100 k}$ as the nearly circular connected component in red.

References

- Fleeman, M., \& Khavinson, D. (2016). Approximating \bar{z} in the Bergman Space. Contemp. Math., 679, 79-90. https://doi.org/10.1090/conm/679/13671
- Fleeman, M., \& Simanek, B. (2019). Torsional Rigidity and Bergman Analytic Content of Simply Connected Regions. Comput. Methods Funct. Theory, 17(1), 37-63.
- Fleeman, M., \& Lundberg, E. (2017). The bergman analytic content of planar domains. Computational Methods and Function Theory, 17. https://doi.org/10. 1007/s40315-016-0189-4
- Kraus, A., \& Simanek, B. (2023). New Perspectives on Torsional Rigidity and Polynomial Approximations of z-bar. arXiv preprint, 1-13.
- Kraus, A., \& Simanek, B. (2024). Bounded Connected Components of Polynomial Lemniscates. arXiv preprint, 1-10.

