On compactness of products of Toeplitz operators

Tomas Miguel Rodriguez This is a joint work with Trieu Le and Sönmez Şahutoğlu.

> University of Toledo Southeastern Analysis Meeting 40

Set-up

- $\Omega \subset \mathbb{C}^n$ is a **domain**.
 - Polydisc $\mathbb{D}^n = \mathbb{D} \times \cdots \times \mathbb{D}$
 - Ball $\mathbb{B}_n = \{z \in \mathbb{C}^n : \|z\| < 1\}$
- $b\Omega$ is the **boundary** of Ω .

For $\Omega = \mathbb{D}^n$,

- Topological Boundary $b\mathbb{D}^n$
- Distinguished Boundary $\mathbb{T}\times \cdots \times \mathbb{T}$

Figure: Boundary of a Bidisc

Bergman Space

•
$$L^2(\Omega) = \left\{ f : \Omega \to \mathbb{C} : \|f\|^2 = \int |f|^2 dV < \infty \right\},$$

• Bergman Space

$$A^{2}(\Omega) = \{ f \in L^{2}(\Omega) : f \text{ is holomorphic} \}.$$

Bergman Space

•
$$L^2(\Omega) = \left\{ f : \Omega \to \mathbb{C} : \|f\|^2 = \int |f|^2 dV < \infty \right\},$$

• Bergman Space

$$A^{2}(\Omega) = \{ f \in L^{2}(\Omega) : f \text{ is holomorphic} \}.$$

 $A^2(\Omega)$ is a closed subspace of $L^2(\Omega)$, a Hilbert space. Thus, there exists an orthogonal projection, called **Bergman projection**

$$P: L^2(\Omega) \to A^2(\Omega).$$

Operators

For symbol $\phi \in L^{\infty}(\Omega)$,

Multiplication operator: $M_{\phi} : A^2(\Omega) \to L^2(\Omega)$

 $M_{\phi}f = \phi f.$

Operators

For symbol $\phi \in L^{\infty}(\Omega)$,

Multiplication operator: $M_{\phi} : A^2(\Omega) \rightarrow L^2(\Omega)$

$$M_{\phi}f=\phi f.$$

Toeplitz operator: $T_{\phi} : A^2(\Omega) \to A^2(\Omega) \subset L^2(\Omega)$

 $T_{\phi} = PM_{\phi}.$

Definition 1

Let H_1, H_2 be Hilbert spaces and $T : H_1 \to H_2$ be a linear map. Then T is **compact** if it maps bounded sets of H_1 to relatively compact subsets of H_2 .

Definition 1

Let H_1, H_2 be Hilbert spaces and $T : H_1 \to H_2$ be a linear map. Then T is **compact** if it maps bounded sets of H_1 to relatively compact subsets of H_2 .

We say that $f_n \to f$ weakly if $\langle f_n, g \rangle \to \langle f, g \rangle$ for all g.

Definition 1

Let H_1, H_2 be Hilbert spaces and $T : H_1 \to H_2$ be a linear map. Then T is **compact** if it maps bounded sets of H_1 to relatively compact subsets of H_2 .

We say that $f_n \to f$ weakly if $\langle f_n, g \rangle \to \langle f, g \rangle$ for all g.

Fact 1

Let H_1, H_2 be Hilbert spaces and $T : H_1 \to H_2$ be a linear map. Then T is **compact** if and only if $Tf_n \to 0$ whenever $f_n \to 0$ weakly.

Problem 1

Characterize compactness of Toeplitz operators.

Axler-Zheng Theorem

- $A^2(\Omega)$ is a Reproducing Kernel Hilbert Space.
- The Bergman kernel K_z = K(·, z) ∈ A²(Ω) for z ∈ Ω is defined by

$$f(z) = \langle f, K_z \rangle$$
 for all $f \in A^2(\Omega)$.

Axler-Zheng Theorem

- $A^2(\Omega)$ is a Reproducing Kernel Hilbert Space.
- The Bergman kernel K_z = K(·, z) ∈ A²(Ω) for z ∈ Ω is defined by

$$f(z) = \langle f, K_z \rangle$$
 for all $f \in A^2(\Omega)$.

• The normalized Bergman kernel

$$k_z(w) = \frac{K(w,z)}{\sqrt{K(z,z)}}$$

Note that $||k_z|| = 1$.

The **Berezin transform** \widetilde{T} of $T : A^2(\Omega) \to A^2(\Omega)$ at z is defined as $\widetilde{T}(z) = \langle T(z,t) \rangle$

$$\widetilde{T}(z) = \langle Tk_z, k_z \rangle.$$

Theorem (Axler-Zheng 1998)

Let T be a finite sum of finite products of Toeplitz operators (with symbols in $L^{\infty}(\mathbb{D})$) on $A^{2}(\mathbb{D})$. Then

T is compact $\iff \widetilde{T} = 0$ on $b\mathbb{D}$.

Theorem (Axler-Zheng 1998)

Let T be a finite sum of finite products of Toeplitz operators (with symbols in $L^{\infty}(\mathbb{D})$) on $A^{2}(\mathbb{D})$. Then

T is compact
$$\iff \widetilde{T}=0$$
 on $b\mathbb{D}.$

Question 1

Can we characterize compactness of T in terms of the boundary behavior of the symbols on the boundary?

Theorem (Coburn 1973)

There is a *-isomorphism $\sigma: \tau(\mathbb{B}_n)/\mathscr{K} \to C(b\mathbb{B}_n)$ satisfying

$$\sigma(T_f + \mathscr{K}) = f|_{b\mathbb{B}_n},$$

where

- $\tau(\mathbb{B}_n)$ is the Toeplitz algebra generated by $\{T_{\varphi} : \varphi \in C(\overline{\mathbb{B}_n})\}$,
- \mathcal{K} is the ideal of compact operators on $A^2(\mathbb{B}_n)$.

Theorem (Coburn 1973)

There is a *-isomorphism $\sigma: \tau(\mathbb{B}_n)/\mathscr{K} \to C(b\mathbb{B}_n)$ satisfying

$$\sigma(T_f + \mathscr{K}) = f|_{b\mathbb{B}_n},$$

where

- $\tau(\mathbb{B}_n)$ is the Toeplitz algebra generated by $\{T_{\varphi} : \varphi \in C(\overline{\mathbb{B}_n})\},\$
- \mathcal{K} is the ideal of compact operators on $A^2(\mathbb{B}_n)$.

As a consequence, we see that for $f, g \in C(\overline{\mathbb{B}_n})$,

$$T_f T_g$$
 is compact $\Leftrightarrow fg = 0$ on $b\mathbb{B}_n$.

Polydisc

Motivated by Coburn's result, one may expect that the necessary and sufficient condition for $T_f T_g$ to be compact on $A^2(\mathbb{D}^n)$ is that fg vanishes on $b\mathbb{D}^n$.

Main Result

Theorem 1 (Le-R.-Şahutoğlu)

Let $f,g \in C(\overline{\mathbb{D}^2})$. Then $T_f T_g$ is compact on $A^2(\mathbb{D}^2)$ if and only if

$$T_{f(\xi,\cdot)}T_{g(\xi,\cdot)}=T_{f(\cdot,\xi)}T_{g(\cdot,\xi)}=0.$$

on $A^2(\mathbb{D})$ for all $\xi \in \mathbb{T}$.

Main Ingredients of the Proof

Lemma 1

Let
$$q = (\xi, q_2) \in \mathbb{T} \times \overline{\mathbb{D}}$$
. Then,
$$\lim_{p \to q} \left\| T_{f-f(\xi,\cdot)} T_{g(\xi,\cdot)} k_p \right\| = \lim_{p \to q} \left\| T_f T_{g-g(\xi,\cdot)} k_p \right\| = 0.$$

Main Ingredients of the Proof

Lemma 1

Let
$$q = (\xi, q_2) \in \mathbb{T} \times \overline{\mathbb{D}}$$
. Then,

$$\lim_{p\to q} \left\| T_{f-f(\xi,\cdot)} T_{g(\xi,\cdot)} k_p \right\| = \lim_{p\to q} \left\| T_f T_{g-g(\xi,\cdot)} k_p \right\| = 0.$$

Theorem (Axler-Zheng Theorem for a Polydisc)

Let T be a finite sum of finite products of Toeplitz operators (with symbols in $L^{\infty}(\mathbb{D}^n)$) on $A^2(\mathbb{D}^n)$. Then

$$T$$
 is compact $\iff \widetilde{T} = 0$ on $b\mathbb{D}^n$.

 (\Rightarrow) Let $\xi \in \mathbb{T}$.

• Write $f = f - f(\xi, \cdot) + f(\xi, \cdot)$ and $g = g - g(\xi, \cdot) + g(\xi, \cdot)$. Then,

$$T_f T_g = T_{f(\xi,\cdot)} T_{g(\xi,\cdot)} + T_{f-f(\xi,\cdot)} T_{g(\xi,\cdot)} + T_f T_{g-g(\xi,\cdot)}.$$

 (\Rightarrow) Let $\xi \in \mathbb{T}$.

• Write $f = f - f(\xi, \cdot) + f(\xi, \cdot)$ and $g = g - g(\xi, \cdot) + g(\xi, \cdot)$. Then,

$$T_f T_g = T_{f(\xi,\cdot)} T_{g(\xi,\cdot)} + T_{f-f(\xi,\cdot)} T_{g(\xi,\cdot)} + T_f T_{g-g(\xi,\cdot)}.$$

• By Lemma 1, for any $q = (\xi, q_2) \in \mathbb{T} imes \overline{\mathbb{D}}$,

$$\lim_{\rho \to q} \|T_f T_g k_\rho - T_{f(\xi,\cdot)} T_{g(\xi,\cdot)} k_\rho\| = 0,$$

 (\Rightarrow) Let $\xi \in \mathbb{T}$.

• Write $f = f - f(\xi, \cdot) + f(\xi, \cdot)$ and $g = g - g(\xi, \cdot) + g(\xi, \cdot)$. Then,

$$T_f T_g = T_{f(\xi,\cdot)} T_{g(\xi,\cdot)} + T_{f-f(\xi,\cdot)} T_{g(\xi,\cdot)} + T_f T_{g-g(\xi,\cdot)}.$$

• By Lemma 1, for any $q = (\xi, q_2) \in \mathbb{T} imes \overline{\mathbb{D}}$,

$$\lim_{p\to q} \|T_f T_g k_p - T_{f(\xi,\cdot)} T_{g(\xi,\cdot)} k_p\| = 0,$$

• Fix $p_2 \in \mathbb{D}$, then by the fact that $k_z^{\mathbb{D}^2}(w) = k_{z_1}^{\mathbb{D}}(w_1) \cdot k_{z_2}^{\mathbb{D}}(w_2)$,

$$\lim_{p_1 \to \xi} \|T_{f(\xi,\cdot)} T_{g(\xi,\cdot)} k_p\| = \lim_{p_1 \to \xi} \|k_{p_1}^{\mathbb{D}} T_{f(\xi,\cdot)} T_{g(\xi,\cdot)} k_{p_2}^{\mathbb{D}}\| = 0$$

۲

$$T_{f(\xi,\cdot)}T_{g(\xi,\cdot)}k_{p_2}^{\mathbb{D}}=0$$

• Since p_2 was arbitrary,

$$T_{f(\xi,\cdot)}T_{g(\xi,\cdot)}=0,$$

on $A^2(\mathbb{D})$.

۲

$$T_{f(\xi,\cdot)}T_{g(\xi,\cdot)}k_{p_2}^{\mathbb{D}}=0$$

• Since p_2 was arbitrary,

$$T_{f(\xi,\cdot)}T_{g(\xi,\cdot)}=0,$$

on $A^2(\mathbb{D})$.

۲

(\Leftarrow) One can use Axler-Zheng Theorem for bidisc.

Corollary 1

Let $f,g \in C(\overline{\mathbb{D}^2})$. If $T_f T_g$ is compact on $A^2(\mathbb{D}^2)$, then fg = 0 on $\mathbb{T} \times \mathbb{T}$.

Corollary 1

Let $f,g \in C(\overline{\mathbb{D}^2})$. If $T_f T_g$ is compact on $A^2(\mathbb{D}^2)$, then fg = 0 on $\mathbb{T} \times \mathbb{T}$.

• By Theorem 1,

$$T_{f(\xi,\cdot)}T_{g(\xi,\cdot)}=0,$$

on $A^2(\mathbb{D})$ for all $\xi \in \mathbb{T}$.

• By Coburn's result,

$$f(\xi,\cdot)g(\xi,\cdot)=0$$
 on \mathbb{T} .

Corollary 1

Let $f,g \in C(\overline{\mathbb{D}^2})$. If $T_f T_g$ is compact on $A^2(\mathbb{D}^2)$, then fg = 0 on $\mathbb{T} \times \mathbb{T}$.

• By Theorem 1,

$$T_{f(\xi,\cdot)}T_{g(\xi,\cdot)}=0,$$

on $A^2(\mathbb{D})$ for all $\xi \in \mathbb{T}$.

• By Coburn's result,

$$f(\xi,\cdot)g(\xi,\cdot)=0$$
 on \mathbb{T} .

• Thus,
$$fg = 0$$
 on $\mathbb{T} \times \mathbb{T}$.

Let φ and ψ be two functions in $C(\overline{\mathbb{D}})$. We define $f(z, w) = \varphi(w)$ and $g(z, w) = \psi(w)$ for $z, w \in \overline{\mathbb{D}}$.

Let φ and ψ be two functions in $C(\overline{\mathbb{D}})$. We define $f(z, w) = \varphi(w)$ and $g(z, w) = \psi(w)$ for $z, w \in \overline{\mathbb{D}}$. Then for any $\xi \in \mathbb{T}$,

$$f(\xi,w) = \varphi(w), \quad g(\xi,w) = \psi(w) \quad \text{ for } w \in \mathbb{D}$$

and

$$f(z,\xi) = \varphi(\xi), \quad g(z,\xi) = \psi(\xi) \quad \text{ for } z \in \mathbb{D}.$$

Let φ and ψ be two functions in $C(\overline{\mathbb{D}})$. We define $f(z, w) = \varphi(w)$ and $g(z, w) = \psi(w)$ for $z, w \in \overline{\mathbb{D}}$. Then for any $\xi \in \mathbb{T}$,

$$f(\xi, w) = \varphi(w), \quad g(\xi, w) = \psi(w) \quad \text{ for } w \in \mathbb{D}$$

and

$$f(z,\xi) = \varphi(\xi), \quad g(z,\xi) = \psi(\xi) \quad \text{ for } z \in \mathbb{D}.$$

By Theorem 1,

$$T_f T_g$$
 is compact on $A^2(\mathbb{D}^2) \Leftrightarrow T_{arphi} T_{\psi} = 0$, and
 $arphi(\xi)\psi(\xi) = 0$ for all $\xi \in \mathbb{T}$.

Example 1

Let

$$arphi(w) = egin{cases} 1-2|w| & ext{ for } 0 \leq |w| \leq rac{1}{2} \ 0 & ext{ for } |w| > rac{1}{2}, \end{cases}$$

 and

$$\psi(w) = egin{cases} 0 & ext{ for } 0 \leq |w| \leq rac{1}{2} \ 2|w| - 1 & ext{ for } |w| > rac{1}{2}. \end{cases}$$

Example 1

Let

$$arphi(w) = egin{cases} 1-2|w| & ext{ for } 0 \leq |w| \leq rac{1}{2} \ 0 & ext{ for } |w| > rac{1}{2}, \end{cases}$$

and

$$\psi(w) = egin{cases} 0 & ext{ for } 0 \leq |w| \leq rac{1}{2} \ 2|w| - 1 & ext{ for } |w| > rac{1}{2}. \end{cases}$$

• $T_{\varphi}T_{\psi} \neq 0$ on $A^2(\mathbb{D})$, thus $T_f T_g$ is **NOT** compact on $A^2(\mathbb{D}^2)$.

Example 1

Let

$$arphi(w) = egin{cases} 1-2|w| & ext{ for } 0 \leq |w| \leq rac{1}{2} \ 0 & ext{ for } |w| > rac{1}{2}, \end{cases}$$

$$\psi(w) = egin{cases} 0 & ext{ for } 0 \leq |w| \leq rac{1}{2} \ 2|w| - 1 & ext{ for } |w| > rac{1}{2}. \end{cases}$$

- $T_{\varphi}T_{\psi} \neq 0$ on $A^2(\mathbb{D})$, thus T_fT_g is **NOT** compact on $A^2(\mathbb{D}^2)$.
- $\varphi \psi = 0$ on $\overline{\mathbb{D}}$. Then for $f(z, w) = \varphi(w)$ and $g(z, w) = \psi(w)$, we have fg = 0 on $\overline{\mathbb{D}^2}$

This example shows that the vanishing of fg on $b\mathbb{D}^2$ (or even on $\overline{\mathbb{D}^2}$) does not imply the compactness of $T_f T_g$.

This example shows that the vanishing of fg on $b\mathbb{D}^2$ (or even on $\overline{\mathbb{D}^2}$) does not imply the compactness of $T_f T_g$.

Question 2

We see that fg = 0 on $b\mathbb{D}^2$ is not a sufficient condition for the compactness of $T_f T_g$. Is it a necessary condition?

This example shows that the vanishing of fg on $b\mathbb{D}^2$ (or even on $\overline{\mathbb{D}^2}$) does not imply the compactness of $T_f T_g$.

Question 2

We see that fg = 0 on $b\mathbb{D}^2$ is not a sufficient condition for the compactness of $T_f T_g$. Is it a necessary condition?

It turns out this question is related to the *zero-product problem* for Toeplitz operators on the disc.

For $\xi \in \mathbb{T}$ and $z, w \in \mathbb{D}$, we have

$$f(\xi, w)g(\xi, w) = \varphi(w)\psi(w)$$

$$f(z,\xi)g(z,\xi) = \varphi(\xi)\psi(\xi).$$

For $\xi \in \mathbb{T}$ and $z, w \in \mathbb{D}$, we have

$$f(\xi, w)g(\xi, w) = \varphi(w)\psi(w)$$

and

$$f(z,\xi)g(z,\xi) = \varphi(\xi)\psi(\xi).$$

 $T_f T_g$ is compact on $A^2(\mathbb{D}^2) \Leftrightarrow T_{\varphi} T_{\psi} = 0 (\Rightarrow \varphi \psi = 0 \text{ on } \mathbb{T})$

For $\xi \in \mathbb{T}$ and $z, w \in \mathbb{D}$, we have

$$f(\xi, w)g(\xi, w) = \varphi(w)\psi(w)$$

$$f(z,\xi)g(z,\xi) = \varphi(\xi)\psi(\xi).$$

$$T_f T_g \text{ is compact on } A^2(\mathbb{D}^2) \Leftrightarrow T_{\varphi} T_{\psi} = 0 (\Rightarrow \varphi \psi = 0 \text{ on } \mathbb{T})$$

 $\stackrel{?}{\Rightarrow} \qquad \varphi \psi = 0 \text{ on } \mathbb{D}$

For $\xi \in \mathbb{T}$ and $z, w \in \mathbb{D}$, we have

$$f(\xi, w)g(\xi, w) = \varphi(w)\psi(w)$$

$$f(z,\xi)g(z,\xi) = \varphi(\xi)\psi(\xi).$$

$$T_f T_g \text{ is compact on } A^2(\mathbb{D}^2) \Leftrightarrow T_{\varphi} T_{\psi} = 0 (\Rightarrow \varphi \psi = 0 \text{ on } \mathbb{T})$$

 $\stackrel{?}{\Rightarrow} \qquad \varphi \psi = 0 \text{ on } \mathbb{D}$
 $\Leftrightarrow \qquad fg = 0 \text{ on } b\mathbb{D}^2.$

Proposition 1

Consider $T_f T_g$ on $A^2(\mathbb{D}^2)$ such that $f(z, w) = f_1(z)f_2(w)$ and $g(z, w) = g_1(z)g_2(w)$. Then the following statements hold.

Proposition 1

Consider $T_f T_g$ on $A^2(\mathbb{D}^2)$ such that $f(z, w) = f_1(z)f_2(w)$ and $g(z, w) = g_1(z)g_2(w)$. Then the following statements hold.

• If $T_f T_g$ is a **nonzero** compact operator, then fg = 0 on $b\mathbb{D}^2$.

Proposition 1

Consider $T_f T_g$ on $A^2(\mathbb{D}^2)$ such that $f(z, w) = f_1(z)f_2(w)$ and $g(z, w) = g_1(z)g_2(w)$. Then the following statements hold.

If T_fT_g is a nonzero compact operator, then fg = 0 on bD².
If fg = 0 on bD² and fg is not identically zero on D², then T_fT_g is compact.

Q&A

Thank you! arXiv : 2401.04869