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Set-up

e Q C C"is a domain.

o Polydisc D" =D x --- xD

e BallB,={zecC":|z] <1}
@ bQ is the boundary of Q.

For Q = D",
o Topological Boundary bD"

e Distinguished Boundary T x ---

x T



T x T
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Figure: Boundary of a Bidisc



Bergman Space

o 2(Q)={f:QC:|fI2=[|fPdV < oo},

@ Bergman Space

A%(Q) = {f € [3(Q) : f is holomorphic}.



Bergman Space

o 2(Q)={f:QC:|fI2=[|fPdV < oo},

@ Bergman Space

A%(Q) = {f € [2(Q) : f is holomorphic}.

A%(Q) is a closed subspace of L?(f2), a Hilbert space. Thus, there
exists an orthogonal projection, called Bergman projection

P [2(Q) — A%(Q).



Operators

For symbol ¢ € L*>°(Q),
Multiplication operator: M, : A%(Q) — L3(Q)

Myf = of.



Operators

For symbol ¢ € L*>°(Q),

Multiplication operator: M, : A%(Q) — L3(Q)
Myf = of .

Toeplitz operator: T, : A%(Q) — A%(Q) C L3(Q)

Ty = PMy.
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Compactness

Definition 1

Let Hy, H, be Hilbert spaces and T : H; — H, be a linear map.
Then T is compact if it maps bounded sets of H; to relatively
compact subsets of Ho.

We say that f, — f weakly if (f,,g) — (f,g) for all g.

Let Hy, Hy be Hilbert spaces and T : Hi — H» be a linear map.
Then T is compact if and only if Tf, — 0 whenever f, — 0
weakly.




Compactness

Problem 1
Characterize compactness of Toeplitz operators.




Axler-Zheng Theorem

@ A%(Q) is a Reproducing Kernel Hilbert Space.

e The Bergman kernel K, = K(-,z) € A%(Q) for z € Q is
defined by

f(z) = (f, K,) for all f € A%(Q).



Axler-Zheng Theorem

@ A%(Q) is a Reproducing Kernel Hilbert Space.

e The Bergman kernel K, = K(-,z) € A%(Q) for z € Q is
defined by

f(z) = (f, K,) for all f € A%(Q).

@ The normalized Bergman kernel

Note that | k.|| = 1.



The Berezin transform T of T : A2(Q) — A%(Q) at z is defined
as
T(z) = (Tks, kz).



Theorem (Axler-Zheng 1998)

Let T be a finite sum of finite products of Toeplitz operators (with
symbols in L°°(D)) on A%(D). Then

T is compact <— T =0 on bD.




Theorem (Axler-Zheng 1998)

Let T be a finite sum of finite products of Toeplitz operators (with
symbols in L°°(D)) on A%(D). Then

T is compact <— T =0 on bD.

.

Can we characterize compactness of T in terms of the boundary
behavior of the symbols on the boundary?

.




Ball

Theorem (Coburn 1973)
There is a x-isomorphism o : 7(B,)/# — C(bB,) satisfying

O’(Tf—f—%) = f|b153n,

where

o 7(B,) is the Toeplitz algebra generated by {T, : v € C(B,)},
e ¥ is the ideal of compact operators on A%(B,).

V



Ball

Theorem (Coburn 1973)
There is a x-isomorphism o : 7(B,)/# — C(bB,) satisfying

U(Tf‘f—%) = f|bIB§,7>

where
o 7(B,) is the Toeplitz algebra generated by {T, : v € C(B,)},
e ¥ is the ideal of compact operators on A%(B,).

V

As a consequence, we see that for f, g € C(B,),

T¢Tg is compact < fg = 0 on bB,.



Polydisc

Motivated by Coburn’s result, one may expect that the necessary
and sufficient condition for T¢ T, to be compact on A?(D") is that
fg vanishes on bD".



Main Result

Theorem 1 (Le-R.-Sahutoglu)

Let f,g € C(D2). Then T¢T, is compact on A%(D?) if and only if

Tre) Tee,) = Tre6) Te(e) = 0
on A%(D) for all ¢ € T.
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Main Ingredients of the Proof

Let g = (£,q2) € T x D. Then,

Sim | Te-rie) Taterkoll = Jim [| T Te—gie s kol = 0.

Theorem (Axler-Zheng Theorem for a Polydisc)

Let T be a finite sum of finite products of Toeplitz operators (with
symbols in L>°(D")) on A%(D"). Then

T is compact <— T =0 on bD".




Sketch of the Proof

(=) Letg e T.

@ Write f = f — f(&v) + f(§7) and =8 —g(f,') +g(§7)
Then,

TeTg = Trey Tge) T Tr—r(e) Tater) T Tr Tg—g(e.)-
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Sketch of the Proof

(=) Let £ €T,

@ Write f = f — f(f,) + f(§7) and =8 —g(f,') +g(§a)
Then,

TeTg = Trey Tge) T Tr—r(e) Tater) T Tr Tg—g(e.)-

@ By Lemma 1, for any g = (£,q2) € T x D,

Jim [ Tr Teko = Tr(e) Te(e koll = 0,

o Fix pp € D, then by the fact that k2 (w) = k2 (w1) - k2 (w»),

||m HTff)T kol = ||m ko, Tr(e.y Tater kol =0
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@ Since p» was arbitrary,

Tf(é") Tg(&") = 07
on A%(D).



Sketch of the Proof

D

@ Since p» was arbitrary,

Tf(é") Tg(&-v) = 07
on A%2(D).

(<) One can use Axler-Zheng Theorem for bidisc.
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Applications

Let f,g € C(D2). If T¢ T, is compact on A%(D?), then fg = 0 on
T x T.

@ By Theorem 1,
on A?(D) for all £ € T.

@ By Coburn's result,

f(g? ')g(§> ) =0onT.

@ Thus, fg=0o0on T x T.



Applications

Let ¢ and v be two functions in C(D). We define f(z,w) = ¢(w)
and g(z,w) = (w) for z,w € D.



Applications

Let ¢ and v be two functions in C(D). We define f(z,w) = ¢(w)
and g(z,w) = 9(w) for z,w € D. Then for any £ € T,

f(é? W) = SO(W)a g(ga W) = ¢(W) forweD

and

f(Z,f) = 90(6)7 g(Z,f) = 1/’(5) for z € D.



Applications

Let ¢ and ¢ be two functions in C(D). We define f(z, w) = ¢(w)
and g(z,w) = 9(w) for z,w € D. Then for any £ € T,

f(é? W) = SO(W)a g(ga W) = ¢(W) forweD

and
f(Z,f) = 90(6)7 g(Z,f) = 1/](5) for z € D.
By Theorem 1,

T¢ Tg is compact on A%(D?) <T,Ty =0, and
e(&)Y(€) =0 for all £ € T.



Applications

Let
1-2lw| for0<|w|<i
p(w) = ;7
0 for |w| > 3,
and
0 for 0 < |w| <1
P(w) = 2
2lw| =1 for [w| > 3.




Applications

Let
1-2lw| for0<|w|<i
0 for |w| > 3,
and
0 for 0 < |w| < 1
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2lw| =1 for [w| > 3.
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Applications

Let
1-2lw| for0<|w|<i
0 for |w| > 3,
and
0 for 0 < |w| < 1
b(w) = 13
2lw| =1 for [w| > 3.

V

e T,T, %0 on A’(D), thus T¢ T, is NOT compact on A%(D?).

@ oy =0o0n D. Therior f(z,w) = o(w) and g(z,w) = ¥(w),
we have fg = 0 on D?
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Applications

This example shows that the vanishing of fg on bD? (or even on
D?) does not imply the compactness of T¢ T.

We see that fg = 0 on bDD? is not a sufficient condition for the
compactness of T¢Tg. Is it a necessary condition?

It turns out this question is related to the zero-product problem for
Toeplitz operators on the disc.
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Applications

For £ € T and z,w € D, we have

(& w)g(§, w) = p(w)p(w)

and

f(z,£)&(z,€) = p(E)¥ ()

T¢ T4 is compact on A2(D?) & T,T, =0(= ¢y =0on T)
?

= ey =00nD
& fg = 0 on bD?.
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g(z,w) = g1(2)g2(w). Then the following statements hold.
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Applications

Proposition 1

Consider T¢ T, on A%(D?) such that f(z,w) = f(z)f(w) and
g(z,w) = g1(2)g2(w). Then the following statements hold.

@ If T T4 is a nonzero compact operator, then fg = 0 on bD?.
e If fg =0 on bD? and fg is not identically zero on D?, then
T¢ Tg is compact.




Q&A

Thank you!
arXiv : 2401.04869



