On compactness of products of Toeplitz operators

Tomas Miguel Rodriguez
This is a joint work with Trieu Le and Sönmez Sahutoğlu.

University of Toledo
Southeastern Analysis Meeting 40

Set-up

- $\Omega \subset \mathbb{C}^{n}$ is a domain.
- Polydisc $\mathbb{D}^{n}=\mathbb{D} \times \cdots \times \mathbb{D}$
- Ball $\mathbb{B}_{n}=\left\{z \in \mathbb{C}^{n}:\|z\|<1\right\}$
- $b \Omega$ is the boundary of Ω.

For $\Omega=\mathbb{D}^{n}$,

- Topological Boundary $b \mathbb{D}^{n}$
- Distinguished Boundary $\mathbb{T} \times \cdots \times \mathbb{T}$

Figure: Boundary of a Bidisc

Bergman Space

- $L^{2}(\Omega)=\left\{f: \Omega \rightarrow \mathbb{C}:\|f\|^{2}=\int|f|^{2} d V<\infty\right\}$,
- Bergman Space

$$
A^{2}(\Omega)=\left\{f \in L^{2}(\Omega): f \text { is holomorphic }\right\}
$$

Bergman Space

- $L^{2}(\Omega)=\left\{f: \Omega \rightarrow \mathbb{C}:\|f\|^{2}=\int|f|^{2} d V<\infty\right\}$,
- Bergman Space

$$
A^{2}(\Omega)=\left\{f \in L^{2}(\Omega): f \text { is holomorphic }\right\} .
$$

$A^{2}(\Omega)$ is a closed subspace of $L^{2}(\Omega)$, a Hilbert space. Thus, there exists an orthogonal projection, called Bergman projection

$$
P: L^{2}(\Omega) \rightarrow A^{2}(\Omega) \text {. }
$$

Operators

For symbol $\phi \in L^{\infty}(\Omega)$,
Multiplication operator: $M_{\phi}: A^{2}(\Omega) \rightarrow L^{2}(\Omega)$

$$
M_{\phi} f=\phi f
$$

Operators

For symbol $\phi \in L^{\infty}(\Omega)$,
Multiplication operator: $M_{\phi}: A^{2}(\Omega) \rightarrow L^{2}(\Omega)$

$$
M_{\phi} f=\phi f .
$$

Toeplitz operator: $T_{\phi}: A^{2}(\Omega) \rightarrow A^{2}(\Omega) \subset L^{2}(\Omega)$

$$
T_{\phi}=P M_{\phi}
$$

Compactness

Definition 1

Let H_{1}, H_{2} be Hilbert spaces and $T: H_{1} \rightarrow H_{2}$ be a linear map. Then T is compact if it maps bounded sets of H_{1} to relatively compact subsets of H_{2}.

Compactness

Definition 1

Let H_{1}, H_{2} be Hilbert spaces and $T: H_{1} \rightarrow H_{2}$ be a linear map. Then T is compact if it maps bounded sets of H_{1} to relatively compact subsets of H_{2}.

We say that $f_{n} \rightarrow f$ weakly if $\left\langle f_{n}, g\right\rangle \rightarrow\langle f, g\rangle$ for all g.

Compactness

Definition 1

Let H_{1}, H_{2} be Hilbert spaces and $T: H_{1} \rightarrow H_{2}$ be a linear map. Then T is compact if it maps bounded sets of H_{1} to relatively compact subsets of H_{2}.

We say that $f_{n} \rightarrow f$ weakly if $\left\langle f_{n}, g\right\rangle \rightarrow\langle f, g\rangle$ for all g.

Fact 1

Let H_{1}, H_{2} be Hilbert spaces and $T: H_{1} \rightarrow H_{2}$ be a linear map. Then T is compact if and only if $T f_{n} \rightarrow 0$ whenever $f_{n} \rightarrow 0$ weakly.

Compactness

Problem 1

Characterize compactness of Toeplitz operators.

Axler-Zheng Theorem

- $A^{2}(\Omega)$ is a Reproducing Kernel Hilbert Space.
- The Bergman kernel $K_{z}=K(\cdot, z) \in A^{2}(\Omega)$ for $z \in \Omega$ is defined by

$$
f(z)=\left\langle f, K_{z}\right\rangle \text { for all } f \in A^{2}(\Omega) .
$$

Axler-Zheng Theorem

- $A^{2}(\Omega)$ is a Reproducing Kernel Hilbert Space.
- The Bergman kernel $K_{z}=K(\cdot, z) \in A^{2}(\Omega)$ for $z \in \Omega$ is defined by

$$
f(z)=\left\langle f, K_{z}\right\rangle \text { for all } f \in A^{2}(\Omega) .
$$

- The normalized Bergman kernel

$$
k_{z}(w)=\frac{K(w, z)}{\sqrt{K(z, z)}} .
$$

Note that $\left\|k_{z}\right\|=1$.

The Berezin transform \tilde{T} of $T: A^{2}(\Omega) \rightarrow A^{2}(\Omega)$ at z is defined as

$$
\tilde{T}(z)=\left\langle T k_{z}, k_{z}\right\rangle .
$$

Theorem (Axler-Zheng 1998)

Let T be a finite sum of finite products of Toeplitz operators (with symbols in $L^{\infty}(\mathbb{D})$) on $A^{2}(\mathbb{D})$. Then

$$
T \text { is compact } \Longleftrightarrow \tilde{T}=0 \text { on } b \mathbb{D} .
$$

Theorem (Axler-Zheng 1998)

Let T be a finite sum of finite products of Toeplitz operators (with symbols in $L^{\infty}(\mathbb{D})$) on $A^{2}(\mathbb{D})$. Then

$$
T \text { is compact } \Longleftrightarrow \tilde{T}=0 \text { on } b \mathbb{D} .
$$

Question 1

Can we characterize compactness of T in terms of the boundary behavior of the symbols on the boundary?

Ball

Theorem (Coburn 1973)

There is a *-isomorphism $\sigma: \tau\left(\mathbb{B}_{n}\right) / \mathscr{K} \rightarrow C\left(b \mathbb{B}_{n}\right)$ satisfying

$$
\sigma\left(T_{f}+\mathscr{K}\right)=\left.f\right|_{b \mathbb{B}_{n}},
$$

where

- $\tau\left(\mathbb{B}_{n}\right)$ is the Toeplitz algebra generated by $\left\{T_{\varphi}: \varphi \in C\left(\overline{\mathbb{B}_{n}}\right)\right\}$,
- \mathscr{K} is the ideal of compact operators on $A^{2}\left(\mathbb{B}_{n}\right)$.

Ball

Theorem (Coburn 1973)

There is a *-isomorphism $\sigma: \tau\left(\mathbb{B}_{n}\right) / \mathscr{K} \rightarrow C\left(b \mathbb{B}_{n}\right)$ satisfying

$$
\sigma\left(T_{f}+\mathscr{K}\right)=\left.f\right|_{b \mathbb{B}_{n}},
$$

where

- $\tau\left(\mathbb{B}_{n}\right)$ is the Toeplitz algebra generated by $\left\{T_{\varphi}: \varphi \in C\left(\overline{\mathbb{B}_{n}}\right)\right\}$,
- \mathscr{K} is the ideal of compact operators on $A^{2}\left(\mathbb{B}_{n}\right)$.

As a consequence, we see that for $f, g \in C\left(\overline{\mathbb{B}_{n}}\right)$,

$$
T_{f} T_{g} \text { is compact } \Leftrightarrow f g=0 \text { on } b \mathbb{B}_{n} .
$$

Polydisc

Motivated by Coburn's result, one may expect that the necessary and sufficient condition for $T_{f} T_{g}$ to be compact on $A^{2}\left(\mathbb{D}^{n}\right)$ is that $f g$ vanishes on $b \mathbb{D}^{n}$.

Main Result

Theorem 1 (Le-R.-Şahutoğlu)

Let $f, g \in C\left(\overline{\mathbb{D}^{2}}\right)$. Then $T_{f} T_{g}$ is compact on $A^{2}\left(\mathbb{D}^{2}\right)$ if and only if

$$
T_{f(\xi, \cdot)} T_{g(\xi, \cdot)}=T_{f(\cdot, \xi)} T_{g(\cdot, \xi)}=0
$$

on $A^{2}(\mathbb{D})$ for all $\xi \in \mathbb{T}$.

Main Ingredients of the Proof

Lemma 1

Let $q=\left(\xi, q_{2}\right) \in \mathbb{T} \times \overline{\mathbb{D}}$. Then,

$$
\lim _{p \rightarrow q}\left\|T_{f-f(\xi, \cdot)} T_{g(\xi, \cdot)} k_{p}\right\|=\lim _{p \rightarrow q}\left\|T_{f} T_{g-g(\xi, \cdot)} k_{p}\right\|=0
$$

Main Ingredients of the Proof

Lemma 1

Let $q=\left(\xi, q_{2}\right) \in \mathbb{T} \times \overline{\mathbb{D}}$. Then,

$$
\lim _{p \rightarrow q}\left\|T_{f-f(\xi, \cdot)} T_{g(\xi,)} k_{p}\right\|=\lim _{p \rightarrow q}\left\|T_{f} T_{g-g(\xi,)} k_{p}\right\|=0
$$

Theorem (Axler-Zheng Theorem for a Polydisc)

Let T be a finite sum of finite products of Toeplitz operators (with symbols in $L^{\infty}\left(\mathbb{D}^{n}\right)$) on $A^{2}\left(\mathbb{D}^{n}\right)$. Then

$$
T \text { is compact } \Longleftrightarrow \tilde{T}=0 \text { on } b \mathbb{D}^{n} .
$$

Sketch of the Proof
(\Rightarrow) Let $\xi \in \mathbb{T}$.

- Write $f=f-f(\xi, \cdot)+f(\xi, \cdot)$ and $g=g-g(\xi, \cdot)+g(\xi, \cdot)$. Then,

$$
T_{f} T_{g}=T_{f(\xi, \cdot)} T_{g(\xi, \cdot)}+T_{f-f(\xi, \cdot)} T_{g(\xi, \cdot)}+T_{f} T_{g-g(\xi, \cdot)}
$$

Sketch of the Proof

(\Rightarrow) Let $\xi \in \mathbb{T}$.

- Write $f=f-f(\xi, \cdot)+f(\xi, \cdot)$ and $g=g-g(\xi, \cdot)+g(\xi, \cdot)$. Then,

$$
T_{f} T_{g}=T_{f(\xi, \cdot)} T_{g(\xi, \cdot)}+T_{f-f(\xi, \cdot)} T_{g(\xi, \cdot)}+T_{f} T_{g-g(\xi, \cdot)}
$$

- By Lemma 1, for any $q=\left(\xi, q_{2}\right) \in \mathbb{T} \times \overline{\mathbb{D}}$,

$$
\lim _{p \rightarrow q}\left\|T_{f} T_{g} k_{p}-T_{f(\xi, \cdot)} T_{g(\xi, \cdot)} k_{p}\right\|=0
$$

Sketch of the Proof

(\Rightarrow) Let $\xi \in \mathbb{T}$.

- Write $f=f-f(\xi, \cdot)+f(\xi, \cdot)$ and $g=g-g(\xi, \cdot)+g(\xi, \cdot)$. Then,

$$
T_{f} T_{g}=T_{f(\xi, \cdot)} T_{g(\xi, \cdot)}+T_{f-f(\xi, \cdot)} T_{g(\xi, \cdot)}+T_{f} T_{g-g(\xi, \cdot)}
$$

- By Lemma 1, for any $q=\left(\xi, q_{2}\right) \in \mathbb{T} \times \overline{\mathbb{D}}$,

$$
\lim _{p \rightarrow q}\left\|T_{f} T_{g} k_{p}-T_{f(\xi, \cdot)} T_{g(\xi, \cdot)} k_{p}\right\|=0
$$

- Fix $p_{2} \in \mathbb{D}$, then by the fact that $k_{z}^{\mathbb{D}^{2}}(w)=k_{z_{1}}^{\mathbb{D}}\left(w_{1}\right) \cdot k_{z_{2}}^{\mathbb{D}}\left(w_{2}\right)$,

$$
\lim _{p_{1} \rightarrow \xi}\left\|T_{f(\xi, \cdot)} T_{g(\xi, \cdot)} k_{p}\right\|=\lim _{p_{1} \rightarrow \xi}\left\|k_{p_{1}}^{\mathbb{D}} T_{f(\xi, \cdot)} T_{g(\xi, \cdot)} k_{p_{2}}^{\mathbb{D}}\right\|=0
$$

Sketch of the Proof
$-$

$$
T_{f(\xi, \cdot)} T_{g(\xi, \cdot)} k_{p_{2}}^{\mathbb{D}}=0
$$

Sketch of the Proof
\bullet

$$
T_{f(\xi, \cdot)} T_{g(\xi, \cdot)} k_{p_{2}}^{\mathbb{D}}=0
$$

- Since p_{2} was arbitrary,

$$
T_{f(\xi, \cdot)} T_{g(\xi, \cdot)}=0
$$

on $A^{2}(\mathbb{D})$.

Sketch of the Proof
-

$$
T_{f(\xi, \cdot)} T_{g(\xi, \cdot)} k_{p_{2}}^{\mathbb{D}}=0
$$

- Since p_{2} was arbitrary,

$$
T_{f(\xi, \cdot)} T_{g(\xi, \cdot)}=0
$$

on $A^{2}(\mathbb{D})$.
(\Leftarrow) One can use Axler-Zheng Theorem for bidisc.

Applications

Corollary 1

Let $f, g \in C\left(\overline{\mathbb{D}^{2}}\right)$. If $T_{f} T_{g}$ is compact on $A^{2}\left(\mathbb{D}^{2}\right)$, then $f g=0$ on $\mathbb{T} \times \mathbb{T}$.

Applications

Corollary 1

Let $f, g \in C\left(\overline{\mathbb{D}^{2}}\right)$. If $T_{f} T_{g}$ is compact on $A^{2}\left(\mathbb{D}^{2}\right)$, then $f g=0$ on $\mathbb{T} \times \mathbb{T}$.

- By Theorem 1,

$$
T_{f(\xi, \cdot)} T_{g(\xi, \cdot)}=0
$$

on $A^{2}(\mathbb{D})$ for all $\xi \in \mathbb{T}$.

- By Coburn's result,

$$
f(\xi, \cdot) g(\xi, \cdot)=0 \text { on } \mathbb{T}
$$

Applications

Corollary 1

Let $f, g \in C\left(\overline{\mathbb{D}^{2}}\right)$. If $T_{f} T_{g}$ is compact on $A^{2}\left(\mathbb{D}^{2}\right)$, then $f g=0$ on $\mathbb{T} \times \mathbb{T}$.

- By Theorem 1,

$$
T_{f(\xi, \cdot)} T_{g(\xi, \cdot)}=0
$$

on $A^{2}(\mathbb{D})$ for all $\xi \in \mathbb{T}$.

- By Coburn's result,

$$
f(\xi, \cdot) g(\xi, \cdot)=0 \text { on } \mathbb{T}
$$

- Thus, $f g=0$ on $\mathbb{T} \times \mathbb{T}$.

Applications

Let φ and ψ be two functions in $C(\overline{\mathbb{D}})$. We define $f(z, w)=\varphi(w)$ and $g(z, w)=\psi(w)$ for $z, w \in \overline{\mathbb{D}}$.

Applications

Let φ and ψ be two functions in $C(\overline{\mathbb{D}})$. We define $f(z, w)=\varphi(w)$ and $g(z, w)=\psi(w)$ for $z, w \in \overline{\mathbb{D}}$. Then for any $\xi \in \mathbb{T}$,

$$
f(\xi, w)=\varphi(w), \quad g(\xi, w)=\psi(w) \quad \text { for } w \in \mathbb{D}
$$

and

$$
f(z, \xi)=\varphi(\xi), \quad g(z, \xi)=\psi(\xi) \quad \text { for } z \in \mathbb{D}
$$

Applications

Let φ and ψ be two functions in $C(\overline{\mathbb{D}})$. We define $f(z, w)=\varphi(w)$ and $g(z, w)=\psi(w)$ for $z, w \in \overline{\mathbb{D}}$. Then for any $\xi \in \mathbb{T}$,

$$
f(\xi, w)=\varphi(w), \quad g(\xi, w)=\psi(w) \quad \text { for } w \in \mathbb{D}
$$

and

$$
f(z, \xi)=\varphi(\xi), \quad g(z, \xi)=\psi(\xi) \quad \text { for } z \in \mathbb{D}
$$

By Theorem 1,
$T_{f} T_{g}$ is compact on $A^{2}\left(\mathbb{D}^{2}\right) \Leftrightarrow T_{\varphi} T_{\psi}=0$, and

$$
\varphi(\xi) \psi(\xi)=0 \text { for all } \xi \in \mathbb{T}
$$

Applications

Example 1

Let

$$
\varphi(w)= \begin{cases}1-2|w| & \text { for } 0 \leq|w| \leq \frac{1}{2} \\ 0 & \text { for }|w|>\frac{1}{2}\end{cases}
$$

and

$$
\psi(w)= \begin{cases}0 & \text { for } 0 \leq|w| \leq \frac{1}{2} \\ 2|w|-1 & \text { for }|w|>\frac{1}{2}\end{cases}
$$

Applications

Example 1

Let

$$
\varphi(w)= \begin{cases}1-2|w| & \text { for } 0 \leq|w| \leq \frac{1}{2} \\ 0 & \text { for }|w|>\frac{1}{2}\end{cases}
$$

and

$$
\psi(w)= \begin{cases}0 & \text { for } 0 \leq|w| \leq \frac{1}{2} \\ 2|w|-1 & \text { for }|w|>\frac{1}{2}\end{cases}
$$

- $T_{\varphi} T_{\psi} \not \equiv 0$ on $A^{2}(\mathbb{D})$, thus $T_{f} T_{g}$ is NOT compact on $A^{2}\left(\mathbb{D}^{2}\right)$.

Applications

Example 1

Let

$$
\varphi(w)= \begin{cases}1-2|w| & \text { for } 0 \leq|w| \leq \frac{1}{2} \\ 0 & \text { for }|w|>\frac{1}{2}\end{cases}
$$

and

$$
\psi(w)= \begin{cases}0 & \text { for } 0 \leq|w| \leq \frac{1}{2} \\ 2|w|-1 & \text { for }|w|>\frac{1}{2}\end{cases}
$$

- $T_{\varphi} T_{\psi} \not \equiv 0$ on $A^{2}(\mathbb{D})$, thus $T_{f} T_{g}$ is NOT compact on $A^{2}\left(\mathbb{D}^{2}\right)$.
- $\varphi \psi=0$ on $\overline{\mathbb{D}}$. Then for $f(z, w)=\varphi(w)$ and $g(z, w)=\psi(w)$, we have $f g=0$ on $\overline{\mathbb{D}^{2}}$

Applications

This example shows that the vanishing of $f g$ on $b \mathbb{D}^{2}$ (or even on $\overline{\mathbb{D}^{2}}$) does not imply the compactness of $T_{f} T_{g}$.

Applications

This example shows that the vanishing of $f g$ on $b \mathbb{D}^{2}$ (or even on $\overline{\mathbb{D}^{2}}$) does not imply the compactness of $T_{f} T_{g}$.

Question 2

We see that $f g=0$ on $b D^{2}$ is not a sufficient condition for the compactness of $T_{f} T_{g}$. Is it a necessary condition?

Applications

This example shows that the vanishing of $f g$ on $b \mathbb{D}^{2}$ (or even on $\overline{\mathbb{D}^{2}}$) does not imply the compactness of $T_{f} T_{g}$.

Question 2

We see that $f g=0$ on $b \mathbb{D}^{2}$ is not a sufficient condition for the compactness of $T_{f} T_{g}$. Is it a necessary condition?

It turns out this question is related to the zero-product problem for Toeplitz operators on the disc.

Applications

For $\xi \in \mathbb{T}$ and $z, w \in \mathbb{D}$, we have

$$
f(\xi, w) g(\xi, w)=\varphi(w) \psi(w)
$$

and

$$
f(z, \xi) g(z, \xi)=\varphi(\xi) \psi(\xi)
$$

Applications

For $\xi \in \mathbb{T}$ and $z, w \in \mathbb{D}$, we have

$$
f(\xi, w) g(\xi, w)=\varphi(w) \psi(w)
$$

and

$$
f(z, \xi) g(z, \xi)=\varphi(\xi) \psi(\xi)
$$

$T_{f} T_{g}$ is compact on $A^{2}\left(\mathbb{D}^{2}\right) \Leftrightarrow \quad T_{\varphi} T_{\psi}=0(\Rightarrow \varphi \psi=0$ on $\mathbb{T})$

Applications

For $\xi \in \mathbb{T}$ and $z, w \in \mathbb{D}$, we have

$$
f(\xi, w) g(\xi, w)=\varphi(w) \psi(w)
$$

and

$$
f(z, \xi) g(z, \xi)=\varphi(\xi) \psi(\xi)
$$

$T_{f} T_{g}$ is compact on $A^{2}\left(\mathbb{D}^{2}\right) \Leftrightarrow \quad T_{\varphi} T_{\psi}=0(\Rightarrow \varphi \psi=0$ on $\mathbb{T})$

$$
\stackrel{?}{\Rightarrow} \quad \varphi \psi=0 \text { on } \mathbb{D}
$$

Applications

For $\xi \in \mathbb{T}$ and $z, w \in \mathbb{D}$, we have

$$
f(\xi, w) g(\xi, w)=\varphi(w) \psi(w)
$$

and

$$
f(z, \xi) g(z, \xi)=\varphi(\xi) \psi(\xi)
$$

$T_{f} T_{g}$ is compact on $A^{2}\left(\mathbb{D}^{2}\right) \Leftrightarrow \quad T_{\varphi} T_{\psi}=0(\Rightarrow \varphi \psi=0$ on $\mathbb{T})$

$$
\begin{array}{lr}
\stackrel{?}{\Rightarrow} & \varphi \psi=0 \text { on } \mathbb{D} \\
\Leftrightarrow & f g=0 \text { on } b \mathbb{D}^{2} .
\end{array}
$$

Applications

Proposition 1

Consider $T_{f} T_{g}$ on $A^{2}\left(\mathbb{D}^{2}\right)$ such that $f(z, w)=f_{1}(z) f_{2}(w)$ and $g(z, w)=g_{1}(z) g_{2}(w)$. Then the following statements hold.

Applications

Proposition 1

Consider $T_{f} T_{g}$ on $A^{2}\left(\mathbb{D}^{2}\right)$ such that $f(z, w)=f_{1}(z) f_{2}(w)$ and $g(z, w)=g_{1}(z) g_{2}(w)$. Then the following statements hold.

- If $T_{f} T_{g}$ is a nonzero compact operator, then $f g=0$ on $b \mathbb{D}^{2}$.

Applications

Proposition 1

Consider $T_{f} T_{g}$ on $A^{2}\left(\mathbb{D}^{2}\right)$ such that $f(z, w)=f_{1}(z) f_{2}(w)$ and $g(z, w)=g_{1}(z) g_{2}(w)$. Then the following statements hold.

- If $T_{f} T_{g}$ is a nonzero compact operator, then $f g=0$ on $b \mathbb{D}^{2}$.
- If $f g=0$ on $b \mathbb{D}^{2}$ and $f g$ is not identically zero on \mathbb{D}^{2}, then $T_{f} T_{g}$ is compact.

Q\&A

Thank you!
arXiv : 2401.04869

