1. Suppose \(a \in \mathbb{Z} \). Prove, if \(5 \mid 2a \), then \(5 \mid a \).

2. Suppose \(x \in \mathbb{R} \). Prove, if \(x^5 + 7x^3 + 5x \geq x^4 + x^2 + 8 \), then \(x \geq 0 \).

3. Prove \(\sqrt{5} \) is not rational.

4. Prove: If \(k \in \mathbb{Z} \), then \(\{ n \in \mathbb{Z} : n \mid k \} \subset \{ n \in \mathbb{Z} : n \mid k^2 \} \).

Part B. Do one.

For these questions you may, or not, want to use the following Theorem.

Theorem. If \(a, b \in \mathbb{N} \), then there exists \(k, \ell \in \mathbb{Z} \) such that \(ak + b\ell = \gcd(a, b) \).

Moreover,

\[
\gcd(a, b) = \min\{ m \in \mathbb{N} : \exists s, t \in \mathbb{Z} \text{ such that } m = as + bt \}.
\]

(a) Suppose \(a, b, c \in \mathbb{Z} \). Show, if \(a \mid bc \) and \(\gcd(a, b) = 1 \), then \(a \mid c \).

(b) Prove, if \(n \in \mathbb{Z} \), then \(\gcd(2n + 1, 4n^2 + 1) = 1 \). (Suggestion: First use \(4n^2 + 1 = (2n - 1)(2n + 1) \) to show the gcd is either 1 or 2.)