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Noncommutative convexity – matrix convex sets

Definition: Let Kn ⊆ Mn(V ) for n ∈ N and denote K = (Kn)n∈N.
1. A matrix convex combination of A1, . . . ,Ak ∈ K with

Ai ∈ Kni is an expression of the form

k∑
i=1

γ∗i Aiγi ∈ Mn(V ),

where γi ∈Mni ,n satisfy
∑k

i=1 γ
∗
i γi = In.

2. The family K is a matrix convex set if it is closed under
formation of matrix convex combinations of its elements.



Morphisms – matrix affine maps

Definition: A matrix affine map Φ = (Φr )r between matrix
convex sets K and L in the spaces V and W , respectively, is a
sequence of linear maps Φr : Mr (V )→ Mr (W ) that satisfy
Φr (Kr ) ⊆ Lr for all r ∈ N and

Φr

( k∑
i=1

γ∗i Aiγi

)
=

k∑
i=1

(γ∗i ⊗ Ir ) Φri (Ai )(γi ⊗ Ir )

for all matrix convex combinations
∑k

i=1 γ
∗
i Aiγi .



Motivation
Matrix extreme points

Definition: Let K = (Kn)n∈N be a matrix convex set and A ∈ Kn.
1. A matrix convex combination

A =
k∑

i=1
γ∗i Aiγi (1)

is proper if all the γi are surjective. In particular, n ≥ ni for
all i .

2. The point A is matrix extreme if any expression of the form
(1) implies all the Ai are unitarily equivalent to A. Hence,
ni = n for all i .

I Notation: mext(K).



Well-known results
The Webster-Winkler matricial Krein-Milman theorem

Definition: Let S = (Sn)n∈N with Sn ⊆ Mn(V ). The smallest
closed matrix convex set containing S is called the closed matrix
convex hull of S and is denoted by mconvS.

Theorem (Webster-Winkler 99’)
Let K be a compact matrix convex set in a locally convex space V .
Then mextK 6= ∅ and

K = mconv(mextK).



Exposed points
The Straszewicz theorem

Theorem (Straszewicz 35’, Klee 58’)
For any compact convex set K in a normed space V , exp(K ) 6= ∅
and

K = conv(exp(K )).
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Matrix exposed points
Definition and basic properties

Definition: Let K = (Kn)n∈N be a matrix convex set in a dual
vector space V . An element A ∈ Kn is called a matrix exposed
point of K if there exist a continuous linear map Φ : V →Mn and a
self-adjoint matrix α ∈Mn such that the following conditions hold:

(a) for all positive integers r and B ∈ Kr we have Φr (B) � α⊗ Ir ;

(b) {B ∈ Kn | α⊗ In − Φn(B) � 0 singular} = {U∗AU | U ∈
Mn unitary}.

Properties:
I The matrix exposed points in K1 coincide with the ordinary

exposed points of K1.
I For r < n and B ∈ Kr the strict inequality Φr (B) ≺ α⊗ Ir

holds.



Matrix exposed points
Connection with matrix extreme points

Proposition (Kriel 19, Klep-Š)
Let K = (Kn)n∈N be a matrix convex set. Then:
(a) Every matrix exposed point in Kn is ordinary exposed in Kn.
(b) Any matrix exposed point is matrix extreme.
(c) A point which is both exposed and matrix extreme, is a

matrix exposed point.



Matrix exposed points
Connection with matrix extreme points (a)

(a) Every matrix exposed point in Kn is ordinary exposed in Kn.

Proof idea: form the compression functional

φ(X ) = v∗(α⊗ In − Φn(X ))v

for some v ∈ Cn ⊗ Cn. But which v?

Proposition (McCullough, Farenick)
Let A ∈ Kn be a matrix exposed point with an exposing pair
(Φ, α). Then the following statements hold.
(a) For any nonzero x =

∑n
j=1 xj ⊗ ej ∈ Cn ⊗ Cn in the kernel of

α⊗ In−Φn(A), the components x1, . . . , xn form a basis of Cn.

(b) The kernel of α⊗ In − Φn(A) is one-dimensional.



Matrix exposed points
Connection with matrix extreme points (c)

(c) A point which is both exposed and matrix extreme, is also matrix exposed.

Proof idea:
I A exposed =⇒ ∃ϕ : Mn(V )→ R and a ∈ R with ϕ(A) = a

and ϕ|Kn\{A} < a.
I Idea: use Effros-Winkler matricial separation techniques, but

the separation happens over a real closed field
(cf. Netzer-Thom separation theorem).

I A finiteness theorem gives domination of ϕ by a state
p : Mn → C.

I Proceed by a GNS-type construction as in the proof of the
matricial Hahn-Banach theorem.

I A matrix extreme =⇒ A /∈ mconv(Kn\{U∗AU | U ∈ Un}).
Used in the end to prove the separation properties of the
obtained map.



Matrix exposed points
The matricial Straszewicz theorem

Theorem (Matrix Straszewicz, Kriel, Klep-Š)
Let K be a compact matrix convex set in a normed vector space
V . Then mexpK 6= ∅ and

K = mconv (mexpK).

Proof uses the Hartz-Lupini method of introducing an associated
family of convex sets {Γn(K)}n∈N to a matrix convex set
K = (Kr )r∈N given by

Γn(K) = {(γ∗γ, γ∗Aγ) | γ ∈Mk,n, tr(γ∗γ) = 1, k ∈ N,A ∈ Kk}.



Matrix exposed points
The matricial Straszewicz theorem – idea of the proof

Proposition (Klep-Š)
Let K= (Km)m∈N be a matrix convex set and A ∈ Kr . Let
γ ∈Mr ,n be a surjective matrix with tr(γ∗γ) = 1 such that the
point (γ∗γ, γ∗Aγ) is exposed in Γn(K). Then A is a matrix exposed
point of K.

Proof idea – as in the WW proof of the matricial Krein-Milman
theorem:

use Hahn-Banch separation + the above Proposition to reduce to
the classical Straszewicz-Klee theorem.



More is true - a density result

Proposition (Klep-Š)
Let K be a compact matrix convex set in a normed vector space
V . Then the matrix exposed points of K are dense in the matrix
extreme points of K.

Proof is again reduction to the classical case using the sets Γn(K).



Examples
Spectrahedra and matrix state spaces of separable unital C∗-algebras

Corollary
If all the extreme points of a matrix convex set K are exposed,
then all the matrix extreme points of K are matrix exposed.

I This is, e.g., the case with free spetrahedra.

I But also with the matrix state space of any separable unital
C∗-algebra A. This is the family UCP(A) = (UCPn(A))n,
where

UCPn(A) = {Φ : A →Mn | Φ unital completely positive}.

It is a weak∗ compact matrix convex set in A∗.



Examples
Matrix state spaces of separable unital C∗-algebras continued

I There is a linear bijection between UCPn(A) and the state
space of Mn(A) sending any Φ : A →Mn to

Φ̃ : Mn(A)→ C,

Φ̃(X ) = 1
n 〈Φn(X )e, e〉,

where e = e1 ⊕ · · · ⊕ en and {ei}i is the standard basis of Cn.

I In the state space of a separable unital C∗-algebra, extreme
points are exposed (Alfsen).



Thank you!


