Denjoy-Wolff points on the bidisc

Georgios Tsikalas

Washington University in St. Louis

SEAM 40, University of Florida

March 15, 2024

Joint work with Michael Jury

Denjoy-Wolff points on the bidisc

Let $f : \mathbb{D} \to \mathbb{D}$ be holomorphic, not conjugate to a rotation. Set $f^{[0]} = I$, $f^{[n+1]} = f \circ f^{[n]}$ and write $\mathbb{T} = \partial \mathbb{D}$.

Question

How does $f^{[n]}$ behave as $n \to \infty$?

Let $f : \mathbb{D} \to \mathbb{D}$ be holomorphic, not conjugate to a rotation. Set $f^{[0]} = I$, $f^{[n+1]} = f \circ f^{[n]}$ and write $\mathbb{T} = \partial \mathbb{D}$.

Question

How does $f^{[n]}$ behave as $n \to \infty$?

First, assume f has a fixed point $z_0 \in \mathbb{D}$.

Let $f : \mathbb{D} \to \mathbb{D}$ be holomorphic, not conjugate to a rotation. Set $f^{[0]} = I$, $f^{[n+1]} = f \circ f^{[n]}$ and write $\mathbb{T} = \partial \mathbb{D}$.

Question

How does $f^{[n]}$ behave as $n \to \infty$?

First, assume f has a fixed point $z_0 \in \mathbb{D}$. Then, z_0 is unique and

 $f^{[n]} \rightarrow z_0$ locally uniformly.

In this setting, z_0 will be called the Denjoy-Wolff point of f.

- ロ ト - (周 ト - (日 ト - (日 ト -)日

Let $f : \mathbb{D} \to \mathbb{D}$ be holomorphic, not conjugate to a rotation. Set $f^{[0]} = I$, $f^{[n+1]} = f \circ f^{[n]}$ and write $\mathbb{T} = \partial \mathbb{D}$.

Question

How does $f^{[n]}$ behave as $n \to \infty$?

Next, assume f has no fixed points in \mathbb{D} .

Let $f : \mathbb{D} \to \mathbb{D}$ be holomorphic, not conjugate to a rotation. Set $f^{[0]} = I$, $f^{[n+1]} = f \circ f^{[n]}$ and write $\mathbb{T} = \partial \mathbb{D}$.

Question

How does $f^{[n]}$ behave as $n \to \infty$?

Next, assume f has no fixed points in \mathbb{D} .

Then, there exists a unique $\tau \in \mathbb{T}$ (the Denjoy-Wolff point) s.t.

• f(z)
ightarrow au as z
ightarrow au nontangentially,

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Let $f : \mathbb{D} \to \mathbb{D}$ be holomorphic, not conjugate to a rotation. Set $f^{[0]} = I$, $f^{[n+1]} = f \circ f^{[n]}$ and write $\mathbb{T} = \partial \mathbb{D}$.

Question

How does $f^{[n]}$ behave as $n \to \infty$?

Next, assume f has no fixed points in \mathbb{D} .

Then, there exists a unique $au \in \mathbb{T}$ (the Denjoy-Wolff point) s.t.

- f(z)
 ightarrow au as z
 ightarrow au nontangentially,
- f has a nontangential derivative at au and

Let $f : \mathbb{D} \to \mathbb{D}$ be holomorphic, not conjugate to a rotation. Set $f^{[0]} = I$, $f^{[n+1]} = f \circ f^{[n]}$ and write $\mathbb{T} = \partial \mathbb{D}$.

Question

How does $f^{[n]}$ behave as $n \to \infty$?

Next, assume f has no fixed points in \mathbb{D} .

Then, there exists a unique $\tau \in \mathbb{T}$ (the Denjoy-Wolff point) s.t.

- f(z)
 ightarrow au as z
 ightarrow au nontangentially,
- f has a nontangential derivative at au and

•
$$\lim_{r \to 1^{-}} \frac{1 - |f(r\tau)|}{1 - r} \le 1.$$

Let $f : \mathbb{D} \to \mathbb{D}$ be holomorphic, not conjugate to a rotation. Set $f^{[0]} = I$, $f^{[n+1]} = f \circ f^{[n]}$ and write $\mathbb{T} = \partial \mathbb{D}$.

Question

How does $f^{[n]}$ behave as $n \to \infty$?

Next, assume f has no fixed points in \mathbb{D} .

Then, there exists a unique $\tau \in \mathbb{T}$ (the Denjoy-Wolff point) s.t.

- f(z)
 ightarrow au as z
 ightarrow au nontangentially,
- f has a nontangential derivative at au and

•
$$\lim_{r \to 1^{-}} \frac{1 - |f(r\tau)|}{1 - r} \le 1.$$

Theorem (Denjoy-Wolff, 1926)

In this setting,

$$f^{[n]}
ightarrow au$$
 locally uniformly.

Georgios Tsikalas

SEAM 2024

3/17

Definition

Let $f : \mathbb{D}^2 \to \mathbb{D}$ be holom. $\tau \in \partial \mathbb{D}^2$ will be called a carapoint for f if

$$\lim_{r\to 1^-}\frac{1-|f(r\tau)|}{1-|r|}<\infty.$$

イロト 不得 トイヨト イヨト

Definition

Let $f : \mathbb{D}^2 \to \mathbb{D}$ be holom. $\tau \in \partial \mathbb{D}^2$ will be called a carapoint for f if

$$\lim_{r\to 1^-}\frac{1-|f(r\tau)|}{1-|r|}<\infty.$$

Theorem (Agler-M^cCarthy-Young, 2012)

Let $f : \mathbb{D}^2 \to \mathbb{D}$ be holom. with $\tau \in \partial \mathbb{D}^2$ a carapoint. Then, (I) $\exists f(\tau) \in \mathbb{T}$ s.t. $f(z) \to f(\tau)$ as $z \to \tau$ nontangentially;

A □ ▶ A □ ▶ A □ ▶

Definition

Let $f : \mathbb{D}^2 \to \mathbb{D}$ be holom. $\tau \in \partial \mathbb{D}^2$ will be called a carapoint for f if

$$\lim_{r\to 1^-}\frac{1-|f(r\tau)|}{1-|r|}<\infty.$$

Theorem (Agler-M^cCarthy-Young, 2012)

Let $f : \mathbb{D}^2 \to \mathbb{D}$ be holom. with $\tau \in \partial \mathbb{D}^2$ a carapoint. Then, (I) $\exists f(\tau) \in \mathbb{T}$ s.t. $f(z) \to f(\tau)$ as $z \to \tau$ nontangentially; (II) The directional derivative $D_{\delta}f(\tau) := \lim_{t \to 0+} \frac{f(\tau + t\delta) - f(\tau)}{t}$ exists and is holomorphic in $\delta = (\delta_1, \delta_2)$.

A □ ▶ A □ ▶ A □ ▶

Definition

Let $f: \mathbb{D}^2 \to \mathbb{D}$ be holom. $\tau \in \partial \mathbb{D}^2$ will be called a carapoint for f if

$$\lim_{r\to 1^-}\frac{1-|f(r\tau)|}{1-|r|}<\infty.$$

Theorem (Agler-M^cCarthy-Young, 2012)

Let $f:\mathbb{D}^2\to\mathbb{D}$ be holom. with $au\in\partial\mathbb{D}^2$ a carapoint. Then,

- (1) $\exists f(\tau) \in \mathbb{T}$ s.t. $f(z) \to f(\tau)$ as $z \to \tau$ nontangentially;
- (II) The directional derivative $D_{\delta}f(\tau) := \lim_{t\to 0+} \frac{f(\tau+t\delta)-f(\tau)}{t}$ exists and is holomorphic in $\delta = (\delta_1, \delta_2)$.
- (III) The function $D_{(.)}f(\tau)$ can be described using certain one-variable *Pick class* functions (see also Agler–Tully-Doyle–Young, 2012).

イロト イヨト イヨト イヨト

However, unlike the case with the disc, *f* needn't have a "nontangential gradient" at every carapoint!

However, unlike the case with the disc, *f* needn't have a "nontangential gradient" at every carapoint!

Example

Let

$$f(z,w)=rac{z+w-2zw}{2-z-w}, \ z,w\in\mathbb{D}.$$

(1,1) is a carapoint:

SEAM 2024

A D N A B N A B N A B N

However, unlike the case with the disc, *f* needn't have a "nontangential gradient" at every carapoint!

Example

Let

$$f(z,w)=rac{z+w-2zw}{2-z-w}, \ z,w\in\mathbb{D}.$$

(1,1) is a carapoint:

• $\lim_{t \to 1} rac{1 - |f(t,t)|}{1 - |t|} = 1 < \infty;$

イロト イポト イヨト イヨト

However, unlike the case with the disc, *f* needn't have a "nontangential gradient" at every carapoint!

Example

Let

$$f(z,w)=rac{z+w-2zw}{2-z-w}, \ z,w\in\mathbb{D}.$$

(1,1) is a carapoint: • $\lim_{t \to 1} \frac{1-|f(t,t)|}{1-|t|} = 1 < \infty;$ • $f(z,w) \to 1$ as $(z,w) \to (1,1)$ nontangentially;

イロト イポト イヨト イヨト

However, unlike the case with the disc, *f* needn't have a "nontangential gradient" at every carapoint!

Example

Let

$$f(z,w)=rac{z+w-2zw}{2-z-w}, \ z,w\in\mathbb{D}.$$

 $\begin{array}{l} (1,1) \text{ is a carapoint:} \\ \bullet \ \lim_{t \to 1} \frac{1 - |f(t,t)|}{1 - |t|} = 1 < \infty; \\ \bullet \ f(z,w) \to 1 \text{ as } (z,w) \to (1,1) \text{ nontangentially;} \\ \bullet \ D_{\delta}f(1,1) = \lim_{t \to 0+} \frac{f((1,1) + t\delta) - 1}{t} = \frac{2\delta_1\delta_2}{\delta_1 + \delta_2}. \end{array}$

イロン イヨン イヨン

However, unlike the case with the disc, f needn't have a "nontangential gradient" at every carapoint!

Example

l et

$$f(z,w)=rac{z+w-2zw}{2-z-w}, \ z,w\in\mathbb{D}.$$

(1,1) is a carapoint: • $\lim_{t \to 1} \frac{1 - |f(t,t)|}{1 - |t|} = 1 < \infty;$ • $f(z, w) \rightarrow 1$ as $(z, w) \rightarrow (1, 1)$ nontangentially; • $D_{\delta}f(1,1) = \lim_{t \to 0+} \frac{f((1,1) + t\delta) - 1}{t} = \frac{2\delta_1\delta_2}{\delta_1 + \delta_2}.$ $D_{\delta}f(1,1)$ not linear in δ , hence no "nt gradient" at (1,1). イロト 不得 トイヨト イヨト

Type I functions

Let $f : \mathbb{D}^2 \to \mathbb{D}$ be holomorphic, $f(z, w) \neq z$. For $w \in \mathbb{D}$, define the (left) slice function $f_w : \mathbb{D} \to \mathbb{D}$ by

$$f_w(z) := f(z, w).$$

Type I functions

Let $f : \mathbb{D}^2 \to \mathbb{D}$ be holomorphic, $f(z, w) \not\equiv z$. For $w \in \mathbb{D}$, define the (left) slice function $f_w : \mathbb{D} \to \mathbb{D}$ by

$$f_w(z) := f(z, w).$$

Definition (Hervé, 1954)

f is said to be a (left) Type I function if every f_w has the same $\tau \in \mathbb{T}$ as its *boundary* Denjoy-Wolff point.

Type I functions

Let $f : \mathbb{D}^2 \to \mathbb{D}$ be holomorphic, $f(z, w) \not\equiv z$. For $w \in \mathbb{D}$, define the (left) slice function $f_w : \mathbb{D} \to \mathbb{D}$ by

$$f_w(z) := f(z, w).$$

Definition (Hervé, 1954)

f is said to be a (left) Type I function if every f_w has the same $\tau \in \mathbb{T}$ as its *boundary* Denjoy-Wolff point.

Example

Let

$$f(z,w)=\frac{1-zw}{2-z-w}.$$

Every f_w satisfies $f_w(1) = 1$ and has a (nt) derivative equal to 1 at 1. Thus, 1 is the common Denjoy-Wolff point of all slices f_w .

Denjoy-Wolff points on the bidisc

Definition (Hervé, 1954)

f is said to be a (left) Type II function if every f_w has an *interior* Denjoy-Wolff point $\xi(w)$ which depends holomorphically on w.

Definition (Hervé, 1954)

f is said to be a (left) Type II function if every f_w has an *interior* Denjoy-Wolff point $\xi(w)$ which depends holomorphically on w.

Example

Let

$$f(z,w)=\frac{z+w-2zw}{2-z-w}.$$

		・ロト ・四ト ・ヨト ・ヨト ・ヨ	୬୯୯
Georgios Tsikalas	Denjoy-Wolff points on the bidisc	SEAM 2024	7 / 17

Definition (Hervé, 1954)

f is said to be a (left) Type II function if every f_w has an *interior* Denjoy-Wolff point $\xi(w)$ which depends holomorphically on w.

Example

Let

$$f(z,w)=\frac{z+w-2zw}{2-z-w}.$$

Since $f_w(w) = w$, the Denjoy-Wolff point of f_w is the interior point $\xi(w) = w$, for all $w \in \mathbb{D}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A critical dichotomy

Definition (Hervé, 1954)

f is said to be a (left) Type I function if every f_w has the same $\tau \in \mathbb{T}$ as its *boundary* Denjoy-Wolff point.

Definition (Hervé, 1954)

f is said to be a (left) Type II function if every f_w has an *interior* Denjoy-Wolff point $\xi(w)$ which depends holomorphically on w.

< ロ > < 同 > < 回 > < 回 > < 回 > <

A critical dichotomy

Definition (Hervé, 1954)

f is said to be a (left) Type I function if every f_w has the same $\tau \in \mathbb{T}$ as its *boundary* Denjoy-Wolff point.

Definition (Hervé, 1954)

f is said to be a (left) Type II function if every f_w has an *interior* Denjoy-Wolff point $\xi(w)$ which depends holomorphically on w.

Theorem (Hervé, 1954)

If $f(z, w) \neq z$, then f is either (left) Type I or (left) Type II.

イロト 不得 トイラト イラト 一日

A critical dichotomy

Definition (Hervé, 1954)

f is said to be a (left) Type I function if every f_w has the same $\tau \in \mathbb{T}$ as its *boundary* Denjoy-Wolff point.

Definition (Hervé, 1954)

f is said to be a (left) Type II function if every f_w has an *interior* Denjoy-Wolff point $\xi(w)$ which depends holomorphically on w.

Theorem (Hervé, 1954)

If $f(z, w) \neq z$, then f is either (left) Type I or (left) Type II.

So, any "reasonable" definition of Denjoy-Wolff points for \mathbb{D}^2 should respect this dichotomy.

イロト 不得下 イヨト イヨト 二日

The componentwise radial derivative

Let $\tau = (\tau_1, \tau_2) \in \mathbb{T}^2$ be a carapoint for $f : \mathbb{D}^2 \to \mathbb{D}$. For M > 0, consider the "componentwise radial" directional derivative

$$D_{(\tau_1,M\tau_2)}f(\tau) = \lim_{t \to 0+} rac{f((1-t)\tau_1,(1-Mt)\tau_2) - f(\tau)}{-t}$$

The componentwise radial derivative

Let $\tau = (\tau_1, \tau_2) \in \mathbb{T}^2$ be a carapoint for $f : \mathbb{D}^2 \to \mathbb{D}$. For M > 0, consider the "componentwise radial" directional derivative

$$D_{(\tau_1,M\tau_2)}f(\tau) = \lim_{t\to 0+} \frac{f((1-t)\tau_1,(1-Mt)\tau_2)-f(\tau)}{-t}.$$

For M = 1, one can show

$$\frac{D_{(\tau_1,\tau_2)}f(\tau)}{f(\tau)} = \lim_{r \to 1^-} \frac{1 - |f(r\tau)|}{1 - |r|}.$$

Let $\tau = (\tau_1, \tau_2) \in \mathbb{T}^2$ be a carapoint for $f : \mathbb{D}^2 \to \mathbb{D}$. For M > 0, set $K_{\tau}(M) := D_{(\tau_1, M \tau_2)} f(\tau) / f(\tau) > 0$.

Let
$$au = (au_1, au_2) \in \mathbb{T}^2$$
 be a carapoint for $f : \mathbb{D}^2 o \mathbb{D}$.
For $M > 0$, set $K_{ au}(M) := D_{(au_1, M au_2)} f(au) / f(au) > 0$.

Definition (Jury-T., 2023)

Assume in addition that $f(\tau) = \tau^1$ and $f(z, w) \not\equiv z$. Then, τ is

イロト 不得 トイヨト イヨト

Let
$$au = (au_1, au_2) \in \mathbb{T}^2$$
 be a carapoint for $f : \mathbb{D}^2 o \mathbb{D}$.
For $M > 0$, set $K_{ au}(M) := D_{(au_1, M au_2)} f(au) / f(au) > 0$.

Definition (Jury-T., 2023)

Assume in addition that $f(\tau) = \tau^1$ and $f(z, w) \not\equiv z$. Then, τ is • a (left) Type I DW point if $K_{\tau}(M) < 1$ for all M > 0;

(日)

Let
$$au = (au_1, au_2) \in \mathbb{T}^2$$
 be a carapoint for $f : \mathbb{D}^2 o \mathbb{D}$.
For $M > 0$, set $K_{ au}(M) := D_{(au_1, M au_2)} f(au) / f(au) > 0$.

Definition (Jury-T., 2023)

Assume in addition that $f(\tau) = \tau^1$ and $f(z, w) \not\equiv z$. Then, τ is

- a (left) Type I DW point if $K_{\tau}(M) \leq 1$ for all M > 0;
- a (left) Type II DW point If there exist $0 < M_1 < M_2$ such that $K_{\tau}(M_1) < 1 < K_{\tau}(M_2)$;

Let
$$au = (au_1, au_2) \in \mathbb{T}^2$$
 be a carapoint for $f : \mathbb{D}^2 o \mathbb{D}$.
For $M > 0$, set $K_{ au}(M) := D_{(au_1, M au_2)} f(au) / f(au) > 0$.

Definition (Jury-T., 2023)

Assume in addition that $f(\tau) = \tau^1$ and $f(z, w) \not\equiv z$. Then, τ is

- a (left) Type I DW point if $K_{\tau}(M) < 1$ for all M > 0;
- a (left) Type II DW point If there exist $0 < M_1 < M_2$ such that $K_{\tau}(M_1) < 1 < K_{\tau}(M_2);$

Theorem (Jury-T., 2023)

Having a Type I DW point \Leftrightarrow being a Type I function, Having a Type II DW point \Rightarrow being a Type II function (no converse!)

Let $F = (f, g) : \mathbb{D}^2 \to \mathbb{D}^2$ holomorphic and fixed-point-free. Put $F^{[n]} = F \circ F \circ \cdots \circ F$. $\{F^{[n]}\}$ may not converge!

Let $F = (f, g) : \mathbb{D}^2 \to \mathbb{D}^2$ holomorphic and fixed-point-free. Put $F^{[n]} = F \circ F \circ \cdots \circ F$. $\{F^{[n]}\}$ may not converge! Hervé (1954) studied

 $L_F := \{ G : \mathbb{D}^2 \to \overline{\mathbb{D}}^2 \mid \exists \{n_k\} \text{ s.t. } F^{[n_k]} \to G \text{ locally uniformly} \}$

Let $F = (f,g) : \mathbb{D}^2 \to \mathbb{D}^2$ holomorphic and fixed-point-free. Put $F^{[n]} = F \circ F \circ \cdots \circ F$. $\{F^{[n]}\}$ may not converge! Hervé (1954) studied

$$L_{\mathcal{F}} := \left\{ G : \mathbb{D}^2 \to \overline{\mathbb{D}}^2 \mid \exists \{n_k\} \text{ s.t. } \mathcal{F}^{[n_k]} \to G \text{ locally uniformly} \right\}$$

by looking at three cases:

•
$$(f,g) = (\text{Type I}, \text{Type II});$$

• $(f,g) = (\text{Type I}, \text{Type I});$
• $(f,g) = (\text{Type II}, \text{Type II})$ (only this one gives $F^{[n]} \to \tau$).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let $F = (f, g) : \mathbb{D}^2 \to \mathbb{D}^2$ holomorphic and fixed-point-free. Put $F^{[n]} = F \circ F \circ \cdots \circ F$. $\{F^{[n]}\}$ may not converge! Hervé (1954) studied

$$L_{\mathcal{F}} := \left\{ G : \mathbb{D}^2 \to \overline{\mathbb{D}}^2 \mid \exists \{n_k\} \text{ s.t. } \mathcal{F}^{[n_k]} \to G \text{ locally uniformly} \right\}$$

by looking at three cases:

• (f,g) = (Type I, Type II);• (f,g) = (Type I, Type I);• (f,g) = (Type II, Type II) (only this one gives $F^{[n]} \to \tau$).

New Perspective

Having DW points where f or g are not "too regular" leads to stronger convergence results!

イロト 不得 トイヨト イヨト

11 / 17

Assume (f,g) = (Type I, Type I).

		(*ロト *部ト * ヨト * ヨト - ヨ
Georgios Tsikalas	Denjoy-Wolff points on the bidisc	SEAM 2024

12 / 17

Assume (f, g) = (Type I, Type I). Then, $\exists \tau_1, \tau_2 \in \mathbb{T}$ such that $\tau = (\tau_1, \tau_2)$ is a Type I DW point for both f and g.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Assume (f, g) = (Type I, Type I). Then, $\exists \tau_1, \tau_2 \in \mathbb{T}$ such that $\tau = (\tau_1, \tau_2)$ is a Type I DW point for both f and g.

In this setting:

Theorem (Hervé, 1954)

Either (P1): $L_F \subset \{(\tau_1, \psi) \mid \psi : \mathbb{D}^2 \to \overline{\mathbb{D}} \text{ analytic}\}$

Georgios Tsikalas

Assume (f,g) = (Type I, Type I). Then, $\exists \tau_1, \tau_2 \in \mathbb{T}$ such that $\tau = (\tau_1, \tau_2)$ is a Type I DW point for both f and g.

In this setting:

Theorem (Hervé, 1954) Either (P1): $L_F \subset \{(\tau_1, \psi) \mid \psi : \mathbb{D}^2 \to \overline{\mathbb{D}} \text{ analytic}\}$ or (P2): $L_F \subset \{(\phi, \tau_2) \mid \phi : \mathbb{D}^2 \to \overline{\mathbb{D}} \text{ analytic} \}.$

Assume (f,g) = (Type I, Type I). Then, $\exists \tau_1, \tau_2 \in \mathbb{T}$ such that $\tau = (\tau_1, \tau_2)$ is a Type I DW point for both f and g.

In this setting:

Theorem (Hervé, 1954) **Either (P1)** : $L_F \subset \{(\tau_1, \psi) \mid \psi : \mathbb{D}^2 \to \overline{\mathbb{D}} \text{ analytic}\}$ or (P2): $L_F \subset \{(\phi, \tau_2) \mid \phi : \mathbb{D}^2 \to \overline{\mathbb{D}} \text{ analytic} \}.$

<u>Theor</u>em (Jury-T., 2023)

If f doesn't have a nt gradient at τ , then (P1).

Assume (f,g) = (Type I, Type I). Then, $\exists \tau_1, \tau_2 \in \mathbb{T}$ such that $\tau = (\tau_1, \tau_2)$ is a Type I DW point for both f and g.

In this setting:

Theorem (Hervé, 1954) Either (P1) : $L_F \subset \{(\tau_1, \psi) \mid \psi : \mathbb{D}^2 \to \overline{\mathbb{D}} \text{ analytic}\}$ or (P2): $L_F \subset \{(\phi, \tau_2) \mid \phi : \mathbb{D}^2 \to \overline{\mathbb{D}} \text{ analytic} \}.$

<u>Theor</u>em (Jury-T., 2023)

If f doesn't have a nt gradient at τ , then **(P1)**. If g doesn't have a nt gradient at τ , then (P2).

Theorem (Hervé, 1954)

Either (P1):
$$L_F \subset \{(\tau_1, \psi) \mid \psi : \mathbb{D}^2 \to \overline{\mathbb{D}} \text{ analytic} \}$$

or (P2): $L_F \subset \{(\phi, \tau_2) \mid \phi : \mathbb{D}^2 \to \overline{\mathbb{D}} \text{ analytic} \}.$

Example

Let
$$F = (f, g) : \mathbb{D}^2 \to \mathbb{D}^2$$
, where

$$f(z,w) = \frac{3zw - z - w - 1}{zw + z + w - 3}, \qquad g(z,w) = \frac{1 - zw}{2 - z - w},$$

SEAM 2024

Theorem (Hervé, 1954)

Either (P1):
$$L_F \subset \{(\tau_1, \psi) \mid \psi : \mathbb{D}^2 \to \overline{\mathbb{D}} \text{ analytic} \}$$

or (P2): $L_F \subset \{(\phi, \tau_2) \mid \phi : \mathbb{D}^2 \to \overline{\mathbb{D}} \text{ analytic} \}.$

Example

Let
$$F = (f, g) : \mathbb{D}^2 \to \mathbb{D}^2$$
, where

$$f(z,w) = \frac{3zw - z - w - 1}{zw + z + w - 3}, \qquad g(z,w) = \frac{1 - zw}{2 - z - w},$$

Then, (1,1) is a Type I DW point for both f and g.

Theorem (Hervé, 1954)

Either (P1):
$$L_F \subset \{(\tau_1, \psi) \mid \psi : \mathbb{D}^2 \to \overline{\mathbb{D}} \text{ analytic} \}$$

or (P2): $L_F \subset \{(\phi, \tau_2) \mid \phi : \mathbb{D}^2 \to \overline{\mathbb{D}} \text{ analytic} \}.$

Example

Let
$$F = (f, g) : \mathbb{D}^2 \to \mathbb{D}^2$$
, where

$$f(z,w) = \frac{3zw - z - w - 1}{zw + z + w - 3}, \qquad g(z,w) = \frac{1 - zw}{2 - z - w}.$$

Then, (1,1) is a Type I DW point for both f and g. Refinement (Jury, T.): neither f nor g has a nt gradient at (1,1). Thus,

 $F^{[n]}
ightarrow (1,1)$ locally uniformly.

Assume (f,g) = (Type I, Type II). Then, $\exists \tau_1 \in \mathbb{T}$ such that $\{\tau_1\} \times \overline{\mathbb{D}}$ consists of Type I DW point for f.

Assume (f,g) = (Type I, Type II). Then, $\exists \tau_1 \in \mathbb{T}$ such that $\{\tau_1\} \times \overline{\mathbb{D}}$ consists of Type I DW point for f.

However, g needn't have any Type II DW points.

Assume (f,g) = (Type I, Type II). Then, $\exists \tau_1 \in \mathbb{T}$ such that $\{\tau_1\} \times \overline{\mathbb{D}}$ consists of Type I DW point for f.

However, g needn't have any Type II DW points. In this setting:

Theorem (Hervé, 1954)

$$\mathcal{L}_{\mathcal{F}} \subset \left\{ (au_1, \psi) \mid \psi : \mathbb{D}^2
ightarrow \overline{\mathbb{D}} ext{ analytic}
ight\}$$

Assume (f,g) = (Type I, Type II). Then, $\exists \tau_1 \in \mathbb{T}$ such that $\{\tau_1\} \times \overline{\mathbb{D}}$ consists of Type I DW point for f.

However, g needn't have any Type II DW points. In this setting:

Theorem (Hervé, 1954)

$$\mathcal{L}_{\mathcal{F}} \subset ig\{(au_1,\psi) \mid \psi: \mathbb{D}^2 o \overline{\mathbb{D}} ext{ analytic}ig\}$$

Theorem (Jury-T., 2023)

If, in addition, there exists $au_2 \in \mathbb{T}$ such that (au_1, au_2) is a Type II DW point for g

Assume (f,g) = (Type I, Type II). Then, $\exists \tau_1 \in \mathbb{T}$ such that $\{\tau_1\} \times \overline{\mathbb{D}}$ consists of Type I DW point for f.

However, g needn't have any Type II DW points. In this setting:

$$\mathcal{L}_{\mathcal{F}} \subset \left\{ (au_1, \psi) \mid \psi : \mathbb{D}^2
ightarrow \overline{\mathbb{D}} ext{ analytic}
ight\}$$

Theorem (Jury-T., 2023)

If, in addition, there exists $\tau_2 \in \mathbb{T}$ such that (τ_1, τ_2) is a Type II DW point for g and f does not have a nt gradient at (τ_1, τ_2) , then

 $F^{[n]}
ightarrow (au_1, au_2)$ locally uniformly.

Theorem (Hervé, 1954)

$$\mathcal{L}_{\mathcal{F}} \subset \left\{ (\tau_1, \psi) \mid \psi : \mathbb{D}^2 \to \overline{\mathbb{D}} \text{ analytic} \right\}$$

Example

Let $F = (f, g) : \mathbb{D}^2 \to \mathbb{D}^2$, where

$$f(z,w)=\frac{1-zw}{2-z-w}, \qquad g(z,w)=\frac{z+w-2zw}{2-z-w}.$$

Theorem (Hervé, 1954)

$$\mathcal{L}_{\mathcal{F}} \subset \left\{ (\tau_1, \psi) \mid \psi : \mathbb{D}^2 \to \overline{\mathbb{D}} \text{ analytic} \right\}$$

Example

Let $F = (f,g) : \mathbb{D}^2 \to \mathbb{D}^2$, where

$$f(z,w)=\frac{1-zw}{2-z-w}, \qquad g(z,w)=\frac{z+w-2zw}{2-z-w}.$$

Then,

 $\{1\} imes\overline{\mathbb{D}}$ consists of Type I DW points for f

Theorem (Hervé, 1954)

$$\mathcal{L}_{\mathcal{F}} \subset \left\{ (\tau_1, \psi) \mid \psi : \mathbb{D}^2 \to \overline{\mathbb{D}} \text{ analytic} \right\}$$

Example

Let $F = (f, g) : \mathbb{D}^2 \to \mathbb{D}^2$, where

$$f(z,w)=\frac{1-zw}{2-z-w}, \qquad g(z,w)=\frac{z+w-2zw}{2-z-w}.$$

Then,

 $\{1\} imes \overline{\mathbb{D}}$ consists of Type I DW points for fand g has a Type II DW point at (1,1).

Theorem (Hervé, 1954)

$$\mathcal{L}_{\mathcal{F}} \subset \left\{ (\tau_1, \psi) \mid \psi : \mathbb{D}^2 \to \overline{\mathbb{D}} \text{ analytic} \right\}$$

Example

Let $F = (f, g) : \mathbb{D}^2 \to \mathbb{D}^2$, where

$$f(z,w)=\frac{1-zw}{2-z-w}, \qquad g(z,w)=\frac{z+w-2zw}{2-z-w}.$$

Then,

 $\{1\} imes \overline{\mathbb{D}}$ consists of Type I DW points for f

and g has a Type II DW point at (1, 1). Refinement (Jury, T.): f does not have a nt gradient at (1, 1). Thus,

$$\mathcal{F}^{[n]} o (1,1)$$
 locally uniformly.

Assume (f, g) = (Type II, Type II). Then, $\exists \tau \in \mathbb{T}^2$ that is a Type II DW point for both f and g.

(日)

Assume (f,g) = (Type II, Type II). Then, $\exists \tau \in \mathbb{T}^2$ that is a Type II DW point for both f and g.

In this setting:

Theorem (Hervé, 1954)

 $F^{[n]} \rightarrow \tau$ locally uniformly.

イロト 不得 トイヨト イヨト 二日

Key tool: Agler's representation

Given $f : \mathbb{D}^2 \to \mathbb{D}$ holomorphic, there exists a Hilbert space $M = M^1 \oplus M^2$ and a (holomorphic) map

$$u_{(\cdot)} = (u_{(\cdot)}^1, u_{(\cdot)}^2) : \mathbb{D}^2 \to M^1 \oplus M^2$$

such that for all $z = (z_1, z_2), w = (w_1, w_2) \in \mathbb{D}^2$

$$1-f(z)\overline{f(w)}=(1-z_1\overline{w_1})\langle u_z^1, u_w^1\rangle+(1-z_2\overline{w_2})\langle u_z^2, u_w^2\rangle$$

Key tool: Agler's representation

Given $f : \mathbb{D}^2 \to \mathbb{D}$ holomorphic, there exists a Hilbert space $M = M^1 \oplus M^2$ and a (holomorphic) map

$$u_{(\cdot)} = (u_{(\cdot)}^1, u_{(\cdot)}^2) : \mathbb{D}^2 \to M^1 \oplus M^2$$

such that for all $z = (z_1, z_2), w = (w_1, w_2) \in \mathbb{D}^2$

$$1-f(z)\overline{f(w)}=(1-z_1\overline{w_1})\langle u_z^1, u_w^1\rangle+(1-z_2\overline{w_2})\langle u_z^2, u_w^2\rangle$$

Assume $\tau = (\tau_1, \tau_2) \in \mathbb{T}^2$ is a carapoint. Denote the weak limit of u_z as $z \to \tau$ along $\delta = (\delta_1, \delta_2)$ by $x_\tau(\delta)$. Then,

17/17

(人間) トイヨト イヨト ニヨ

Key tool: Agler's representation

Given $f : \mathbb{D}^2 \to \mathbb{D}$ holomorphic, there exists a Hilbert space $M = M^1 \oplus M^2$ and a (holomorphic) map

$$u_{(\cdot)} = (u^1_{(\cdot)}, u^2_{(\cdot)}) : \mathbb{D}^2 \to M^1 \oplus M^2$$

such that for all $z = (z_1, z_2), w = (w_1, w_2) \in \mathbb{D}^2$

$$1-f(z)\overline{f(w)}=(1-z_1\overline{w_1})\langle u_z^1, u_w^1\rangle+(1-z_2\overline{w_2})\langle u_z^2, u_w^2\rangle$$

Assume $\tau = (\tau_1, \tau_2) \in \mathbb{T}^2$ is a carapoint. Denote the weak limit of u_z as $z \to \tau$ along $\delta = (\delta_1, \delta_2)$ by $x_{\tau}(\delta)$. Then,

$$rac{D_\delta f(au)}{f(au)} = \overline{ au_1} \delta_1 || \mathbf{x}^1_{ au}(\delta) ||^2 + \overline{ au_2} \delta_2 || \mathbf{x}^2_{ au}(\delta) ||^2.$$