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Ball maps

▶ A ball map is a proper map φ : Bg → BG.

▶ e.g., φ(z1, z2) = (z21 ,
√
2z1z2, z

2
2 ).

▶ Two ball maps φ,ψ are equivalent if there exists
automorphisms f : Bg → Bg and g : BG → BG such that

φ ◦ f = g ◦ ψ.

▶ A ball map φ : Bg → BG is minimal if its image lies in no
proper affine linear subspace of CG.

▶ Classify ball maps. D’Angelo, M. Xiao, X. Huang, J. Faran, many others.

▶ Gap conditions.
▶ G ≥ g;
▶ if g = G then φ is an autormorphism;
▶ First gap thm: If G ≤ 2g− 1 (and φ is minimal), then G = g.

▶ Side questions; e.g., classify those equivalent to poly maps.



Commutative Fock space ...

... and inner sequences

▶ Drury-Arveson space∗ in dimension g is the RKHS with kernel

kg(z ,w) = (1− ⟨z ,w⟩Cg )
−1.

▶ A (nice enough) function

φ =
(
φ1 . . . φm

)
: Bg → Bm

induces a mapping Mφ : ⊕mH 2 → H 2

Mφ ⊕ hj =
m∑
j=1

φjhj .

▶ φ is an inner sequence if MφM
∗
φ : H 2 → H 2 is a projection.

▶ inner sequences are ball maps.



A Beurling Theorem

... and a minimal inner sequence

The shifts Sj on H 2 are the operators of multiplication zj .

Theorem. If M ⊆ H 2 is (shift) invariant and dimM⊥ <∞, then
there is an inner sequence φ : Bg → Bm so that

(i) φ : Bg → Bm is a rational ball map;

(ii) m is the ball codimension of M :

m = dim
[
span{1, zju : u ∈ M⊥} ⊖M⊥

]
= dim span{1, zju : u ∈ M⊥} − dimM⊥

(iii) PM = MφM
∗
φ is the projection onto M;

(iv) (minimality) if ψ : Bg → BN and PM = MψM
∗
ψ, then N ≥ m

and there is an isometry V : Cm → CN such that ψ = φV ∗;

(v) characterized by a realization like formula (naturally nc in nature).



A Beurling Theorem ...

... and the ball codimension

Theorem. If M invariant and dimM⊥ <∞, then, with

m = dim span{1, zju : u ∈ M⊥} − dimM⊥

(the ball codimension) there is an inner sequence φ : Bg → Bm such that

(ii) M = Mφ ⊕m H 2; (iv′) m is minimal;

▶ m ≤ 1 + g dimM⊥ − dimM⊥ = dimM⊥ (g− 1) + 1;

▶ (zero based invariant subspaces) If Λ ⊆ Bg is finite and
M = {f ∈ H 2 : f (λ) = 0}, then

m = ballcodimM = |Λ| (g− 1) + 1 :

▶ If dimM⊥ ≥ 2, then m ≥ 2g− 1 (compare first gap theorem);

▶ A degenerate case: M⊥ = [1, z1, z2] (m = 3 < 3(2− 1) + 1.)



A Beurling Theorem ...

... and the ball codimension

Theorem. If M invariant and dimM⊥ <∞, then, with

m = dim span{1, zju : u ∈ M⊥} − dimM⊥

(the ball codimension) there is an inner sequence φ : Bg → Bm such that

(ii) M = Mφ ⊕m H 2; (iv′) m is minimal;

▶ m ≤ 1 + g dimM⊥ − dimM⊥ = dimM⊥ (g− 1) + 1;

▶ A degenerate case: M⊥ = [1, z1, z2] (m = 3 < 3(2− 1) + 1.)

▶ A guess: with n = codimM and m = ballcodimM, if

(ℓ+ g

g

)
< n ≤

(ℓ+ g + 1

g

)
,

then (ℓ+ g + 1

g

)
≤ m.



Free (nc) Fock space ...

... an introduction

▶ Let ζ = (ζ1, . . . , ζg) denote freely nc variables;

▶ Let <ζ> denote the words (free monoid) in ζ;

▶ C<ζ> is the free algebra; e.g., 1 + ζ1ζ2 − 2ζ2ζ1;

▶ free Fock space F 2
g = F 2 is the Hilby space with basis <ζ> .

▶ An h ∈ F 2 (can be viewed as) is a formal power series

h =
∑

w∈<ζ>
hw w

with ∥h∥2 =
∑

w |hw |2 <∞;

▶ Two sets of shifts:
▶ L = (L1, . . . , Lg) - the left shifts Ljw = ζj w ;

▶ R = (R1, . . . ,Rg) - the right shifts Rjw = w ζj .



Shift invariant subspaces ...

... and multipliers of F 2

▶ The maps on F 2 by Ljh = ζj h =
∑

w∈<ζ> hw ζj w are the
left shifts - isometries

▶ A f ∈ F 2 is a right multiplier of F 2 if the densely defined
map Rf on C<ζ> determined by Rf v = v f extends to a
bounded operator.

▶ Given F = (F0,F1, . . . ,Fm) right multipliers, define
RF : ⊕mF 2 → F 2 by

RF ⊕m hj =
m∑
j=1

RFj
hj .

▶ ranRF = ranRF R∗
F is left (shift) invariant.



Beurling for left shift invariant subspaces ...

... set free

Theorem. [DP, P, AP, many others] If M ⊆ F 2 is left invariant
and M⊥ has dimension n, then, with m = n(g− 1) + 1, there
exists F = (F0,F1, . . . ,Fm) right multipliers such that

PM = RFR
∗
F .

Moreover, {F0,F1, . . . ,Fm} ⊆ F 2 is an orthonormal basis for the
(wandering) subspace

M⊖ (⊕LjM) = span{1, LjM⊥} ⊖M⊥.

▶ m is minimal;

▶ FF ∗ has trace one on the boundary (needs an interpretation);

▶ There is realization inspired formula characterization for such F .



An nc ball

evaluations

▶ Given a tuple X = (X1, . . . ,Xg) ∈ Mn(C)g and

w = ζj1 ζj2 · · · ζjk ∈ <ζ>,

let
Xw = Xj1 Xj2 · · · Xjk = w(X ).

▶ Let Bnc
g [n] denote the set of X ∈ Mn(C)g such that

∞∑
n=0

∑
|w |=n

XwX ∗w =
∑

w∈<ζ>
XwX ∗w

converges.

▶ An h ∈ F 2 evaluates at an X ∈ Bnc
g as

EX (h) = h(X ) =
∑

w∈<ζ>
hw Xw .



An nc ball

and free points

▶ Given Y ∈ Bnc
g [n] and y ∈ Cn, the pair Y = (Y , y) is a free

point of size n if y is cyclic for Y .

▶ If Y is a free point of size n, then

F 2[Y] = {h ∈ F 2 : h(Y ) y = 0}

is left invariant (invariant for L) and has co-dimension n :

▶ the converse holds. Proof: Given M, let Y = L∗|M⊥ and
choose y = PM⊥ 1. Show M = F 2[Y].

▶ A free point Y determines a free rational function,

G (ζ) = y∗
(
I −

∑
ζjY

∗
j

)−1
∆−1(Y).

where ∆2(Y) =
∑

w∈<ζ> Y wyy∗Y ∗w and ζj ↔ Y ∗
j .



Realization and Beurling

Given Y = (Y , y) of size n, let F 2[Y] = {f ∈ F 2 : f (Y ) y = 0} and

G(ζ) = y∗(I − ζjY
∗
j

)−1
∆−1(Y), ∆2(Y) =

∑
w∈<ζ>

Y wyy∗Y ∗w

Theorem. For a canonical isometry V ∈ Mng+1,n(g−1)+1 and

F (ζ) =
(
1 ζ1G (ζ) . . . ζgG (ζ)

)
V = (F0 F1 . . . Fn(g−1)) ,

we have
PF 2[Y] = RFR

∗
F .

▶ {Fj} is an orthonormal basis for M⊖
∨
LjM.

▶ dimM⊖
∨

LjM = n(g− 1) + 1.



Realization and Beurling

Given Y = (Y , y) of size n, let F 2[Y] = {f ∈ F 2 : f (Y ) y = 0} and

G(ζ) = y∗(I − ζjY
∗
j

)−1
∆−1(Y), ∆2(Y) =

∑
w∈<ζ>

Y wyy∗Y ∗w

Theorem. For a canonical isometry V ∈ Mng+1,n(g−1)+1 and

F (ζ) =
(
1 ζ1G (ζ) . . . ζgG (ζ)

)
V = (F0 F1 . . . Fn(g−1)) ,

we have
PF 2[Y] = RFR

∗
F .

▶ An analogous construction - with V not necessarily an isometry - in
the commutative case gives a minimal inner function.

▶ Alternately, in the commutative case Y is a commutative tuple
and the commutative collapse of F is the desired ball map.



Boundary values, the column ball ...

... and evaluations

▶ The column ball C = (Cg[k]))k is the sequence of sets

Cg[k] = {X = (X1, . . . ,Xg) ∈ Mk(C)g :
∑

X ∗
j Xj ≺ I}.

▶ Given X ∈ Cg,

G (X ) =
∑

w∈<ζ>
Xw ⊗ y∗Y ∗w∆−1(Y).

▶ Likewise, set

F (X ) =
(
I X1G (X ) · · · XgG (X )

)
(I ⊗ V ).

▶ F is a free analytic map Cg → M(C)n(g−1)+1.



Boundary values, the column ball ...

... and proper maps

▶ The (topological) boundary of Cg consists of those X such
that ker(I −

∑
X ∗
j Xj) ̸= {0};

▶ If Ψ : Cg → CG is a proper free analytic (e.g. rational) map,
then Ψ is one-one (in fact essentially the restriction of an
automorphism of CG).

▶ In particular, our F with RFR
∗
F = PF 2[Y] need not be proper.

▶ An X ∈ Mk(C)g is in the hard boundary of Cg if
∑

X ∗
j Xj = I .

▶ For X of size k in the hard boudary,

trace(F (X )∗F (X )) = k.
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