Non-commutative Ball Maps wip

MIchael Dritschel Newcastle University Michael Jury University of Florida Me - Scott McCullough U Florida

AMS Eastern Fall 2024 Sectional - University at Albany

Thanks to Kehe and Zhijian

Ball maps

A ball map is a proper map $\varphi : \mathbb{B}^g \to \mathbb{B}^g$.

• e.g.,
$$
\varphi(z_1, z_2) = (z_1^2, \sqrt{2}z_1z_2, z_2^2)
$$
.

 \blacktriangleright Two ball maps φ, ψ are equivalent if there exists automorphisms $f:\mathbb{B}^{\mathsf{g}}\to\mathbb{B}^{\mathsf{g}}$ and $g:\mathbb{B}^{\mathsf{G}}\to\mathbb{B}^{\mathsf{G}}$ such that

$$
\varphi\circ f=g\circ\psi.
$$

- A ball map $\varphi : \mathbb{B}^g \to \mathbb{B}^G$ is *minimal* if its image lies in no proper affine linear subspace of \mathbb{C}^G .
- ▶ Classify ball maps. D'Angelo, M. Xiao, X. Huang, J. Faran, many others.

Gap conditions.

▶ $G \geq g$;

- \triangleright if $g = G$ then φ is an autormorphism;
- ► First gap thm: If $G \leq 2g 1$ (and φ is minimal), then $G = g$.

 \triangleright Side questions; e.g., classify those equivalent to poly maps.

Commutative Fock space and inner sequences

▶ Drury-Arveson space^{*} in dimension g is the RKHS with kernel

$$
k_{\rm g}(z,w)=(1-\langle z,w\rangle_{\rm CE})^{-1}.
$$

▶ A (nice enough) function

$$
\varphi = (\varphi_1 \quad \dots \quad \varphi_m) : \mathbb{B}^{\mathsf{g}} \to \mathbb{B}^m
$$

induces a mapping M_{φ} : $\oplus^{m} \mathcal{H}^2 \rightarrow \mathcal{H}^2$

$$
M_{\varphi} \oplus h_j = \sum_{j=1}^m \varphi_j h_j.
$$

▶ φ is an *inner sequence* if $M_{\varphi} M_{\varphi}^* : \mathcal{H}^2 \to \mathcal{H}^2$ is a projection. ▶ inner sequences are ball maps.

A Beurling Theorem and a minimal inner sequence

The *shifts* S_j on \mathscr{H}^2 are the operators of multiplication z_j .

Theorem. If $\mathcal{M} \subseteq \mathscr{H}^2$ is (shift) invariant and dim $\mathcal{M}^\perp < \infty,$ then there is an inner sequence $\varphi:\mathbb{B}^{\mathsf{g}}\to\mathbb{B}^m$ so that (i) $\varphi : \mathbb{B}^g \to \mathbb{B}^m$ is a rational ball map; (ii) m is the ball codimension of M :

$$
m = \dim \left[\text{span}\{1, z_j u : u \in \mathcal{M}^\perp\} \ominus \mathcal{M}^\perp\right]
$$

= \dim \text{span}\{1, z_j u : u \in \mathcal{M}^\perp\} - \dim \mathcal{M}^\perp

(iii) $P_{\mathcal{M}} = M_{\varphi} M_{\varphi}^*$ is the projection onto $\mathcal{M};$ $({\sf iv})$ (minimality) if $\psi:\mathbb B^{\mathsf g}\to\mathbb B^{\textsf N}$ and $P_{\mathcal M}=M_\psi M_\psi^*,$ then ${\mathcal N}\geq m$ and there is an isometry $V:\mathbb{C}^{m}\to\mathbb{C}^{N}$ such that $\psi=\varphi V^{*};$ (v) characterized by a realization like formula (naturally nc in nature).

A Beurling Theorem ... and the Ball codimension

Theorem. If M invariant and dim $\mathcal{M}^{\perp} < \infty$, then, with

$$
m=\dim\text{span}\{1,z_ju:u\in\mathcal{M}^\perp\}\ -\ \dim\mathcal{M}^\perp
$$

(the ball codimension) there is an inner sequence $\varphi : \mathbb{B}^{\mathsf{g}} \to \mathbb{B}^m$ such that (ii) $\mathcal{M} = M_{\varphi} \oplus^m \mathcal{H}^2$; (iv') m is minimal;

$$
\quad \blacktriangleright \ \ m \leq 1+g \ \mathsf{dim}\, \mathcal{M}^{\perp} \ -\ \mathsf{dim}\, \mathcal{M}^{\perp} = \mathsf{dim}\, \mathcal{M}^{\perp}\, (g-1) + 1;
$$

▶ (zero based invariant subspaces) If $\Lambda \subseteq \mathbb{B}^g$ is finite and $\mathcal{M} = \{f \in \mathscr{H}^2 : f(\lambda) = 0\},$ then

$$
m = \text{ballcodim } \mathcal{M} = |\Lambda| (g - 1) + 1:
$$

▶ If dim $\mathcal{M}^{\perp} \geq 2$, then $m \geq 2g-1$ (compare first gap theorem);

A degenerate case:
$$
\mathcal{M}^{\perp} = [1, z_1, z_2] \, (m = 3 < 3(2 - 1) + 1)
$$

A Beurling Theorem ... and the Ball codimension

Theorem. If M invariant and dim $\mathcal{M}^{\perp} < \infty$, then, with

$$
m=\dim\text{span}\{1,z_ju:u\in\mathcal{M}^\perp\}\,-\,\dim\mathcal{M}^\perp
$$

(the ball codimension) there is an inner sequence $\varphi : \mathbb{B}^{\mathsf{g}} \to \mathbb{B}^m$ such that (ii) $M = M_{\varphi} \oplus^m \mathcal{H}^2$; (iv') m is minimal;

$$
\quad \blacktriangleright \ \ m \leq 1+g \ \mathsf{dim}\, \mathcal{M}^{\perp} \ -\ \mathsf{dim}\, \mathcal{M}^{\perp} = \mathsf{dim}\, \mathcal{M}^{\perp}\, (g-1) + 1;
$$

- A degenerate case: $\mathcal{M}^{\perp} = [1, z_1, z_2]$ ($m = 3 < 3(2 1) + 1$.)
- A guess: with $n = \text{codim }M$ and $m = \text{ballcodim }M$, if

$$
{\ell+g \choose g} < n \leq {\ell+g+1 \choose g},
$$

then

$$
{\ell+g+1 \choose g} \leq m.
$$

Free (nc) Fock space an introduction

- \blacktriangleright Let $\zeta = (\zeta_1, \ldots, \zeta_g)$ denote freely nc variables;
- **►** Let $\langle \zeta \rangle$ denote the *words* (free monoid) in ζ ;
- \triangleright \mathbb{C} < ζ is the free algebra; e.g., 1 + $\zeta_1 \zeta_2$ 2 $\zeta_2 \zeta_1$;
- ▶ free Fock space $\mathscr{F}_{\mathrm{g}}^2 = \mathscr{F}^2$ is the Hilby space with basis $<\!\zeta\!\!>$.
- An $h \in \mathscr{F}^2$ (can be viewed as) is a formal power series

$$
h=\sum_{w\in\langle\zeta\rangle}h_w\ w
$$

with $\|h\|^2 = \sum_{w} |h_w|^2 < \infty$; \blacktriangleright Two sets of shifts: \blacktriangleright $L = (L_1, \ldots, L_g)$ - the *left shifts* $L_i w = \zeta_i w;$ $R = (R_1, \ldots, R_g)$ - the right shifts $R_j w = w \zeta_j$.

Shift invariant subspaces and multipliers of \mathscr{F}^2

▶ The maps on \mathscr{F}^2 by $L_j h = \zeta_j h = \sum_{w \in \langle \zeta \rangle} h_w \, \zeta_j w$ are the left shifts - isometries

A $f \in \mathcal{F}^2$ is a right multiplier of \mathcal{F}^2 if the densely defined map R_f on $\mathbb{C} \lt \zeta$ determined by $R_f v = v f$ extends to a bounded operator.

Given $F = (F_0, F_1, \ldots, F_m)$ right multipliers, define $R_F: \oplus^m \mathscr{F}^2 \to \mathscr{F}^2$ by

$$
R_F \oplus^m h_j = \sum_{j=1}^m R_{F_j} h_j.
$$

▶ $\overline{\text{ran}} R_F = \overline{\text{ran}} R_F R_F^*$ is *left* (shift) invariant.

Beurling for left shift invariant subspaces set free

Theorem. [DP, P, AP, many others] If $\mathcal{M}\subseteq \mathscr{F}^2$ is left invariant and \mathcal{M}^{\perp} has dimension *n*, then, with $m = n(g - 1) + 1$, there exists $F = (F_0, F_1, \ldots, F_m)$ right multipliers such that

$$
P_{\mathcal{M}} = R_F R_F^*.
$$

Moreover, $\{F_0,F_1,\ldots,F_m\}\subseteq {\mathscr{F}}^2$ is an orthonormal basis for the (wandering) subspace

$$
\mathcal{M} \ominus (\oplus L_j \mathcal{M}) = \text{span}\{1, L_j \mathcal{M}^{\perp}\} \ominus \mathcal{M}^{\perp}.
$$

\blacktriangleright *m* is minimal:

▶ FF^{*} has trace one on the *boundary* (needs an interpretation);

 \blacktriangleright There is realization inspired formula characterization for such F .

An nc ball evaluations

\n- Given a tuple
$$
X = (X_1, \ldots, X_g) \in M_n(\mathbb{C})^g
$$
 and
\n- $w = \zeta_{j_1} \zeta_{j_2} \cdots \zeta_{j_k} \in \langle \zeta \rangle$,
\n

let

$$
X^w=X_{j_1}X_{j_2}\cdots X_{j_k}=w(X).
$$

▶ Let $\mathbb{B}_{g}^{\text{nc}}[n]$ denote the set of $X \in M_{n}(\mathbb{C})^{\text{g}}$ such that

$$
\sum_{n=0}^{\infty}\sum_{|w|=n}X^wX^{*w}=\sum_{w\in\langle\zeta\rangle}X^wX^{*w}
$$

converges.

▶ An $h \in \mathscr{F}^2$ evaluates at an $X \in \mathbb{B}^{\mathsf{nc}}_{\mathsf{g}}$ as

$$
E_X(h)=h(X)=\sum_{w\in\langle\zeta\rangle}h_wX^w.
$$

An ne Ball and free points

- ▶ Given $Y \in \mathbb{B}_{g}^{\text{nc}}[n]$ and $y \in \mathbb{C}^{n}$, the pair $\mathbf{Y} = (Y, y)$ is a free point of size n if y is cyclic for Y .
- If Y is a free point of size n , then

$$
\mathscr{F}^2[\mathbf{Y}] = \{h \in \mathscr{F}^2 : h(Y) \, y = 0\}
$$

is left invariant (invariant for L) and has co-dimension n :

- ▶ the converse holds. Proof: Given M, let $Y = L^*|_{\mathcal{M}^\perp}$ and choose $y = P_{\mathcal{M}^{\perp}} 1$. Show $\mathcal{M} = \mathscr{F}^2[\mathbf{Y}]$.
- \triangleright A free point **Y** determines a free rational function,

$$
G(\zeta) = y^* \big(I - \sum \zeta_j Y_j^* \big)^{-1} \Delta^{-1}(\mathbf{Y}).
$$

where $\Delta^2(\mathsf{Y})=\sum_{w\in\langle\zeta\mathclose{>}}Y^wyy^*Y^{*w}$ and $\zeta_j\leftrightarrow\mathsf{Y}^*_j.$

Realization and Beurling

Given
$$
\mathbf{Y} = (Y, y)
$$
 of size *n*, let $\mathscr{F}^2[\mathbf{Y}] = \{f \in \mathscr{F}^2 : f(Y)y = 0\}$ and

$$
G(\zeta) = y^* (I - \zeta_j Y_j^*)^{-1} \Delta^{-1}(\mathbf{Y}), \quad \Delta^2(\mathbf{Y}) = \sum_{w \in \langle \zeta \rangle} Y^w y y^* Y^{*w}
$$

Theorem. For a canonical isometry $\mathscr{V} \in M_{ng+1,n(g-1)+1}$ and $\mathcal{F}(\zeta)=\begin{pmatrix}1&\zeta_1\,G(\zeta)&\dots&\zeta_{\mathcal{B}}\,G(\zeta)\end{pmatrix}\mathscr{V}\ =\begin{pmatrix}\begin{matrix} \begin{matrix}\mathsf{F_0}}&\mathsf{F_1}&\dots&\mathsf{F_{n_{(\mathcal{B}-1)}}}\end{matrix}\end{pmatrix},$

we have

$$
P_{\mathscr{F}^2[\mathbf{Y}]} = R_F R_F^*.
$$

▶ ${F_j}$ is an orthonormal basis for $M \ominus \bigvee L_j M$. \triangleright dim $M \ominus \bigvee L_j M = n(g-1) + 1$.

Realization and Beurling

Given
$$
\mathbf{Y} = (Y, y)
$$
 of size *n*, let $\mathscr{F}^2[\mathbf{Y}] = \{f \in \mathscr{F}^2 : f(Y)y = 0\}$ and

$$
G(\zeta) = y^* (I - \zeta_j Y_j^*)^{-1} \Delta^{-1}(\mathbf{Y}), \quad \Delta^2(\mathbf{Y}) = \sum_{w \in \langle \zeta \rangle} Y^w y y^* Y^{*w}
$$

Theorem. For a canonical isometry $\mathscr{V} \in M_{n\mathbf{g}+1,n(\mathbf{g}-1)+1}$ and $\mathcal{F}(\zeta)=\begin{pmatrix}1&\zeta_1\,G(\zeta)&\dots&\zeta_{\mathcal{B}}\,G(\zeta)\end{pmatrix}\mathscr{V}\ =\begin{pmatrix}\begin{matrix} \begin{matrix}\mathsf{F_0}}&\mathsf{F_1}&\dots&\mathsf{F_{n_{(\mathcal{B}-1)}}}\end{matrix}\end{pmatrix},$

we have

$$
P_{\mathscr{F}^2[\mathbf{Y}]} = R_F R_F^*.
$$

- An analogous construction with $\mathscr V$ not necessarily an isometry in the commutative case gives a minimal inner function.
- \triangleright Alternately, in the commutative case Y is a commutative tuple and the commutative collapse of F is the desired ball map.

Boundary values, the column ball and evaluations

 \blacktriangleright The column ball $\mathscr{C} = (\mathscr{C}_{\mathbf{g}}[k]))_k$ is the sequence of sets

$$
\mathscr{C}_{\mathsf{g}}[k] = \{X = (X_1,\ldots,X_{\mathsf{g}}) \in M_k(\mathbb{C})^{\mathsf{g}} : \sum X_j^* X_j \prec I\}.
$$

▶ Given $X \in \mathscr{C}_{\mathbf{g}},$

$$
G(X) = \sum_{w \in \langle \zeta \rangle} X^w \otimes y^* Y^{*w} \Delta^{-1}(\mathbf{Y}).
$$

▶ Likewise, set

$$
F(X) = (I \quad X_1 G(X) \quad \cdots \quad X_g G(X)) \ (I \otimes \mathscr{V}).
$$

▶ F is a free analytic map $\mathcal{C}_g \to M(\mathbb{C})^{n(g-1)+1}$.

Boundary values, the column ball and proper maps

- \blacktriangleright The (topological) boundary of \mathscr{C}_{g} consists of those X such that ker $(I-\sum X_j^*X_j)\neq \{0\};$
- ▶ If Ψ : $\mathscr{C}_{g} \to \mathscr{C}_{G}$ is a proper free analytic (e.g. rational) map, then Ψ is one-one (in fact essentially the restriction of an automorphism of \mathscr{C}_G).
- ▶ In particular, our F with $R_F R_F^* = P_{\mathscr{F}^2[Y]}$ need not be proper.
- An $X \in M_k(\mathbb{C})^g$ is in the *hard boundary* of \mathcal{C}_g if $\sum X_j^* X_j = I$.
- \blacktriangleright For X of size k in the hard boudary,

$$
trace(F(X)^*F(X))=k.
$$