Non-commutative Ball Maps wip

MIchael Dritschel Michael Jury

Newcastle University University of Florida

Me - Scott McCullough

U Florida

AMS Eastern Fall 2024 Sectional - University at Albany

Thanks to Kehe and Zhijian

Ball maps

• A *ball map* is a proper map $\varphi : \mathbb{B}^{g} \to \mathbb{B}^{G}$.

• e.g.,
$$\varphi(z_1, z_2) = (z_1^2, \sqrt{2}z_1z_2, z_2^2).$$

Two ball maps φ, ψ are equivalent if there exists automorphisms f : B^g → B^g and g : B^G → B^G such that

$$\varphi \circ f = g \circ \psi.$$

- A ball map φ : B^g → B^G is *minimal* if its image lies in no proper affine linear subspace of C^G.
- Classify ball maps. D'Angelo, M. Xiao, X. Huang, J. Faran, many others.

Gap conditions.

• $G \ge g;$

- if g = G then φ is an autormorphism;
- First gap thm: If $G \le 2g 1$ (and φ is minimal), then G = g.
- Side questions; e.g., classify those equivalent to poly maps.

Commutative Fock space and inner sequences

Drury-Arveson space* in dimension g is the RKHS with kernel

$$k_{
m g}(z,w) = (1-\langle z,w
angle_{_{\mathbb C^{
m g}}})^{-1}$$
 .

A (nice enough) function

$$\varphi = \begin{pmatrix} \varphi_1 & \dots & \varphi_m \end{pmatrix} : \mathbb{B}^{\mathsf{g}} \to \mathbb{B}^n$$

induces a mapping $M_{\varphi}: \oplus^m \mathscr{H}^2 \to \mathscr{H}^2$

$$M_{\varphi} \oplus h_j = \sum_{j=1}^m \varphi_j h_j.$$

\$\varphi\$ is an *inner sequence* if M_{\varphi} M^{*}_{\varphi} : ℋ² → ℋ² is a projection.
 inner sequences are ball maps.

A Beurling Theorem and a minimal inner sequence

The *shifts* S_j on \mathcal{H}^2 are the operators of multiplication z_j .

Theorem. If $\mathcal{M} \subseteq \mathscr{H}^2$ is (shift) invariant and dim $\mathcal{M}^{\perp} < \infty$, then there is an inner sequence $\varphi : \mathbb{B}^{g} \to \mathbb{B}^{m}$ so that (i) $\varphi : \mathbb{B}^{g} \to \mathbb{B}^{m}$ is a rational ball map; (ii) *m* is the *ball codimension* of \mathcal{M} :

$$m = \dim \left[\operatorname{span}\{1, z_j u : u \in \mathcal{M}^{\perp}\} \ominus \mathcal{M}^{\perp} \right]$$

= dim span $\{1, z_j u : u \in \mathcal{M}^{\perp}\}$ - dim \mathcal{M}^{\perp}

(iii) $P_{\mathcal{M}} = M_{\varphi} M_{\varphi}^*$ is the projection onto \mathcal{M} ;

(iv) (minimality) if $\psi : \mathbb{B}^{g} \to \mathbb{B}^{N}$ and $P_{\mathcal{M}} = M_{\psi}M_{\psi}^{*}$, then $N \ge m$ and there is an isometry $V : \mathbb{C}^{m} \to \mathbb{C}^{N}$ such that $\psi = \varphi V^{*}$;

(v) characterized by a *realization like formula* (naturally nc in nature).

A Beurling Theorem and the Ball codimension

Theorem. If \mathcal{M} invariant and dim $\mathcal{M}^{\perp} < \infty$, then, with

$$m = \dim \operatorname{span}\{1, z_i u : u \in \mathcal{M}^{\perp}\} - \dim \mathcal{M}^{\perp}$$

(the ball codimension) there is an inner sequence $\varphi : \mathbb{B}^g \to \mathbb{B}^m$ such that (ii) $\mathcal{M} = M_{\varphi} \oplus^m \mathscr{H}^2$; (iv') *m* is minimal;

▶
$$m \leq 1 + g \dim \mathcal{M}^{\perp} - \dim \mathcal{M}^{\perp} = \dim \mathcal{M}^{\perp} (g - 1) + 1;$$

 (zero based invariant subspaces) If Λ ⊆ B^g is finite and *M* = {*f* ∈ *H*² : *f*(λ) = 0}, then

$$m =$$
ballcodim $\mathcal{M} = |\Lambda| (g - 1) + 1$:

▶ If dim $\mathcal{M}^{\perp} \geq 2,$ then $m \geq 2 ext{g} - 1$ (compare first gap theorem);

• A degenerate case:
$$\mathcal{M}^{\perp} = [1, z_1, z_2] \ (m = 3 < 3(2-1) + 1.)$$

A Beurling Theorem and the Ball codimension

Theorem. If \mathcal{M} invariant and dim $\mathcal{M}^{\perp} < \infty$, then, with

$$m = \dim \operatorname{span}\{1, z_j u : u \in \mathcal{M}^{\perp}\} - \dim \mathcal{M}^{\perp}$$

(the ball codimension) there is an inner sequence $\varphi : \mathbb{B}^{g} \to \mathbb{B}^{m}$ such that (ii) $\mathcal{M} = M_{\varphi} \oplus^{m} \mathscr{H}^{2}$; (iv') *m* is minimal;

▶
$$m \leq 1 + g \dim \mathcal{M}^{\perp} - \dim \mathcal{M}^{\perp} = \dim \mathcal{M}^{\perp} (g - 1) + 1$$

- A degenerate case: $\mathcal{M}^{\perp} = [1, z_1, z_2] \ (m = 3 < 3(2 1) + 1.)$
- A guess: with $n = \operatorname{codim} \mathcal{M}$ and $m = \operatorname{ballcodim} \mathcal{M}$, if

$$\binom{\ell+g}{g} < n \le \binom{\ell+g+1}{g}$$

then

$$\binom{\ell+g+1}{g} \leq m.$$

Free (nc) Fock space an introduction

- Let $\zeta = (\zeta_1, \ldots, \zeta_g)$ denote *freely nc variables*;
- Let $<\zeta>$ denote the *words* (free monoid) in ζ ;
- $\mathbb{C} < \zeta >$ is the *free algebra*; e.g., $1 + \zeta_1 \zeta_2 2\zeta_2 \zeta_1$;
- free Fock space $\mathscr{F}_{g}^{2} = \mathscr{F}^{2}$ is the Hilby space with basis $\langle \zeta \rangle$.
- ▶ An $h \in \mathscr{F}^2$ (can be viewed as) is a formal power series

$$h=\sum_{w\in <\zeta>}h_w w$$

with $\|h\|^2 = \sum_w |h_w|^2 < \infty;$

Two sets of shifts:

•
$$L = (L_1, ..., L_g)$$
 - the *left shifts* $L_j w = \zeta_j w$;
• $R = (R_1, ..., R_g)$ - the *right shifts* $R_j w = w \zeta_j$.

Shift invariant subspaces ... and multipliers of \mathcal{F}^2

► The maps on \mathscr{F}^2 by $L_j h = \zeta_j h = \sum_{w \in \langle \zeta \rangle} h_w \zeta_j w$ are the *left shifts* - isometries

A f ∈ ℱ² is a right multiplier of ℱ² if the densely defined map R_f on C <ζ> determined by R_f v = v f extends to a bounded operator.

• Given $F = (F_0, F_1, \dots, F_m)$ right multipliers, define $R_F : \oplus^m \mathscr{F}^2 \to \mathscr{F}^2$ by

$$R_F \oplus^m h_j = \sum_{j=1}^m R_{F_j} h_j.$$

• $\overline{\operatorname{ran}}R_F = \overline{\operatorname{ran}}R_F R_F^*$ is *left* (shift) invariant.

Beurling for left shift invariant subspaces ...

Theorem. [DP, P, AP, many others] If $\mathcal{M} \subseteq \mathscr{F}^2$ is left invariant and \mathcal{M}^{\perp} has dimension *n*, then, with m = n(g - 1) + 1, there exists $F = (F_0, F_1, \ldots, F_m)$ right multipliers such that

$$P_{\mathcal{M}} = R_F R_F^*.$$

Moreover, $\{F_0, F_1, \ldots, F_m\} \subseteq \mathscr{F}^2$ is an orthonormal basis for the (wandering) subspace

$$\mathcal{M} \ominus (\oplus L_j \mathcal{M}) = \operatorname{span}\{1, L_j \mathcal{M}^{\perp}\} \ominus \mathcal{M}^{\perp}.$$

m is minimal;

FF* has trace one on the boundary (needs an interpretation);

▶ There is realization inspired formula characterization for such *F*.

An nc Ball evaluations

• Given a tuple
$$X=(X_1,\ldots,X_{\mathsf{g}})\in M_n(\mathbb{C})^{\mathsf{g}}$$
 and $w=\zeta_{j_1}\,\zeta_{j_2}\,\cdots\,\zeta_{j_k}\in <\!\!\zeta\!\!>,$

let

$$X^w = X_{j_1} X_{j_2} \cdots X_{j_k} = w(X).$$

▶ Let $\mathbb{B}_{g}^{nc}[n]$ denote the set of $X \in M_{n}(\mathbb{C})^{g}$ such that

$$\sum_{n=0}^{\infty}\sum_{|w|=n}X^{w}X^{*w}=\sum_{w\in\langle\zeta\rangle}X^{w}X^{*w}$$

converges.

▶ An $h \in \mathscr{F}^2$ *evaluates* at an $X \in \mathbb{B}_{g}^{nc}$ as

$$E_X(h) = h(X) = \sum_{w \in \langle \zeta \rangle} h_w X^w.$$

An nc Ball and free points

- Given Y ∈ B^{nc}_g[n] and y ∈ Cⁿ, the pair Y = (Y, y) is a *free* point of size n if y is cyclic for Y.
- If Y is a free point of size n, then

$$\mathscr{F}^2[\mathbf{Y}] = \{h \in \mathscr{F}^2 : h(Y) \ y = 0\}$$

is left invariant (invariant for L) and has co-dimension n:

b the converse holds. Proof: Given M, let Y = L^{*}|_{M[⊥]} and choose y = P_{M[⊥]} 1. Show M = ℱ²[Y].

A free point Y determines a free rational function,

$$G(\zeta) = y^* \big(I - \sum \zeta_j Y_j^* \big)^{-1} \Delta^{-1}(\mathbf{Y}).$$

where $\Delta^2(\mathbf{Y}) = \sum_{w \in \langle \zeta \rangle} Y^w y y^* Y^{*w}$ and $\zeta_j \leftrightarrow Y_j^*$.

Realization and Beurling

Given
$$\mathbf{Y} = (Y, y)$$
 of size n , let $\mathscr{F}^2[\mathbf{Y}] = \{f \in \mathscr{F}^2 : f(Y) | y = 0\}$ and

$$G(\zeta) = y^* \big(I - \zeta_j Y_j^*\big)^{-1} \Delta^{-1}(\mathbf{Y}), \quad \Delta^2(\mathbf{Y}) = \sum_{w \in <\zeta>} Y^w y y^* Y^{*w}$$

Theorem. For a canonical isometry $\mathscr{V} \in M_{ng+1,n(g-1)+1}$ and $F(\zeta) = \begin{pmatrix} 1 & \zeta_1 G(\zeta) & \dots & \zeta_g G(\zeta) \end{pmatrix} \mathscr{V} = \begin{pmatrix} F_0 & F_1 & \dots & F_{n(g-1)} \end{pmatrix},$

we have

$$P_{\mathscr{F}^2[\mathbf{Y}]} = R_F R_F^*.$$

{F_j} is an orthonormal basis for M ⊖ ∨ L_jM.
dim M ⊖ ∨ L_jM = n(g − 1) + 1.

Realization and Beurling

Given
$$\mathbf{Y} = (Y, y)$$
 of size n , let $\mathscr{F}^2[\mathbf{Y}] = \{f \in \mathscr{F}^2 : f(Y) | y = 0\}$ and

$$G(\zeta) = y^* \left(I - \zeta_j Y_j^*\right)^{-1} \Delta^{-1}(\mathbf{Y}), \quad \Delta^2(\mathbf{Y}) = \sum_{w \in <\zeta>} Y^w y y^* Y^{*w}$$

Theorem. For a canonical isometry $\mathscr{V} \in M_{ng+1,n(g-1)+1}$ and $F(\zeta) = \begin{pmatrix} 1 & \zeta_1 G(\zeta) & \dots & \zeta_g G(\zeta) \end{pmatrix} \mathscr{V} = \begin{pmatrix} F_0 & F_1 & \dots & F_{n(g-1)} \end{pmatrix},$

we have

$$P_{\mathscr{F}^2[\mathbf{Y}]} = R_F R_F^*.$$

- An analogous construction with 𝒴 not necessarily an isometry in the commutative case gives a minimal inner function.
- Alternately, in the commutative case Y is a commutative tuple and the commutative collapse of F is the desired ball map.

Boundary values, the column Ball and evaluations

▶ The column ball $\mathscr{C} = (\mathscr{C}_g[k]))_k$ is the sequence of sets

$$\mathscr{C}_{\mathsf{g}}[k] = \{ X = (X_1, \ldots, X_{\mathsf{g}}) \in M_k(\mathbb{C})^{\mathsf{g}} : \sum X_j^* X_j \prec I \}.$$

• Given $X \in \mathscr{C}_{g}$,

$$G(X) = \sum_{w \in \langle \zeta \rangle} X^w \otimes y^* Y^{*w} \Delta^{-1}(\mathbf{Y}).$$

Likewise, set

$$F(X) = \begin{pmatrix} I & X_1 G(X) & \cdots & X_g G(X) \end{pmatrix} (I \otimes \mathscr{V}).$$

• *F* is a free analytic map $\mathscr{C}_{g} \to M(\mathbb{C})^{n(g-1)+1}$.

Boundary values, the column Ball and proper maps

- The (topological) boundary of C_g consists of those X such that ker(I − ∑X_i^{*}X_j) ≠ {0};
- ▶ If $\Psi : \mathscr{C}_g \to \mathscr{C}_G$ is a proper free analytic (e.g. rational) map, then Ψ is one-one (in fact essentially the restriction of an automorphism of \mathscr{C}_G).
- ▶ In particular, our *F* with $R_F R_F^* = P_{\mathscr{F}^2[\mathbf{Y}]}$ need not be proper.
- ▶ An $X \in M_k(\mathbb{C})^g$ is in the *hard boundary* of \mathscr{C}_g if $\sum X_j^*X_j = I$.
- For X of size k in the hard boudary,

$$trace(F(X)^*F(X)) = k.$$