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k-differentials

I Let R be a Riemann surface, and let L = (T ∗R)⊗k , then the
set of all sections of L is equal to the set of all k-differentials
on R.

I Equivalently, a k-differential on R is a collection of C-valued
functions {φα(zα)}α∈I where zα is a local complex coordinate
on an open set Uα (for an open cover {Uα}α∈I of R), and for
α, β ∈ I such that Uα ∩ Uβ 6= ∅, we have:

φα(zα) = φβ(zβ)(
dzβ
dzα

)k

I The case k = 2 is of special importance: the 2-differentials
(quadratic differentials) appear in Teichmüller Theory.
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k-differentials

I A k-differential locally can be seen as φ(z)dzk .
dzk is a more conventional notation for dz⊗k .

I Clearly it does not make sense to speak of the value of a
k-differential ϕ at a point ζ ∈ R (since it depends on the local
parameter near ζ), but it does make sense to speak of the
zeros and poles of ϕ.

I A k-differential is called holomorphic (meromorphic) if φα is
holomorphic (meromorphic) for all α ∈ I .
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k-differentials (Examples)

I Example

For a Riemann surface U ⊂ C a k-differential is globally φ(z)dzk ,
where z is the coordinate on U, and φ is a C-valued on U.

I Example

Let R be the Riemann sphere, with the conformal structure
U1 = C and U2 = C ∪ {∞} \ {0}. As parameters we introduce z
and w = 1

z . We can give an arbitrary function ϕ1(z) which is
defined in whole plane and compute ϕ2(w) by transformation rule
ϕ1(z)dzk = ϕ2(w)dwk , and get: ϕ2(w) = ϕ1( 1

w )(−1
w2 )k .
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Some spaces of holomorphic k−differentials

I π : ∆→ Σ is the covering map.

I Let Λ be a closed subset of Σ.

I Let V = Σ− Λ.

I Let U = π−1(V ).

I Assume U is connected.

I By Uniformization Theorem U itself is a hyperbolic Riemann
surface.

I Let U = Γ0\∆, where Γ0 is a discrete subgroup of SU(1, 1).

I Denote by π0 : ∆→ U the covering map.
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Some spaces of holomorphic k−differentials

I w is the weight...

I A(1)(V ) is the (normed) space of holomorphic k-differentials
Φ on V such that

∫
Γ\U |φ(z)|w(z)k−2dµ <∞.

where z ∈ U and φ(z)dzk = (π|U)∗Φ.

I A(1)(U) is the (normed) space of holomorphic k-differentials
φ(z)dzk on U such that

∫
U |φ(z)|w(z)k−2dµ <∞
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Some spaces of holomorphic k−differentials

I A(2)(V ) is the (normed) space of holomorphic k-differentials
Φ on V such that

∫
Γ\U |φ(z)|2w(z)2k−2dµ <∞.

where z ∈ U and φ(z)dzk = (π|U)∗Φ.

I A(2)(U) is the (normed) space of holomorphic k-differentials
φ(z)dzk on U such that

∫
U |φ(z)|2w(z)2k−2dµ <∞.
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Some spaces of holomorphic k−differentials

Proposition
(N.A., T. Foth) If Λ is a finite set, then:

I A(2)(V ) is isomorphic to A(2)(Σ).

I B(V ) is isomorphic to B(Σ).

I A(1)(V ) is isomorphic to the space of integrable meromorphic
k-differentials on Σ with at most simple poles in Λ.



Poincaré series

I The Poincaré series is θ(φ) = Σg∈Γφ(gz)(d(gz)
dz )k . It is

convergent absolutely and uniformly on compact subset of ∆
(k > 1 and φ ∈ A(1)).

Theorem
I The Poincaré series map is defined by:

Θ : A(1)(∆)→ A(1)(Σ)

φ(z)dzk 7→ Σg∈Γφ(gz)(
d(gz)

dz
)kdzk .

I It is linear, surjective and its norm is less than or equal to 1.
(Quaziconformal Teichmüller Theory, F. Gardiner, N. Lakic)



Poincaré series

Proposition
(N.A., T. Foth) Let P be the polynomials in z:

I The set Θ0({p(z)dzk | p ∈ P}) is dense in A(1)(U).

I The set Θ(Θ0({p(z)dzk | p ∈ P})) is dense in A(1)(V ).

I A(1)(V ) and A(1)(U) are separable.

I The proofs are application of the Poincaré series map.



Poincaré series
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Kernel of Poincaré series map

I F = D ∩ U, D is a Dirichlet fundamental domain, for the
action of Γ on ∆.

I (βφ)(z) =
∫
U K (z , ζ)φ(ζ)w(ζ)2k−2dµ.

I K is reproducing Bergman kernel.

I Theorem
(N.A., T. Foth) The set

W = {β(χgFφ− χγFφ)(z)dzk | g , γ ∈ Γ, φ ∈ L1
Γ(U,wk−2dµ)},

is dense in kerΘ.
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I Theorem
(N.A., T. Foth)
Suppose Γ is infinite. Let P be a subset of F that has a limit point
in F . Let P be the linear span of the set

{(K (z , p)− J(g , p)
k

K (z , gp))dzk | p ∈ P, g ∈ Γ}.

Then P is in kerΘ ∩ A(2)(U) and P is dense in A(2)(U).

I Corollary

If Γ is infinite then kerΘ ∩ A(2)(U) is dense in A(2)(U).
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Thank you !

Any question or comment?
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