Spaces of holomorphic, integrable k-differentials and Poincaré series map

Nadya Askaripour

27th SEAM, Gainesville March 2011

Some spaces of k-differentials

Poincaré series

Kernel of Poincaré series map

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let R be a Riemann surface, and let L = (T*R)^{⊗k}, then the set of all sections of L is equal to the set of all k-differentials on R.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Let R be a Riemann surface, and let L = (T*R)^{⊗k}, then the set of all sections of L is equal to the set of all k-differentials on R.
- Equivalently, a *k*-differential on *R* is a collection of \mathbb{C} -valued functions $\{\phi_{\alpha}(z_{\alpha})\}_{\alpha \in I}$ where z_{α} is a local complex coordinate on an open set U_{α} (for an open cover $\{U_{\alpha}\}_{\alpha \in I}$ of *R*), and for $\alpha, \beta \in I$ such that $U_{\alpha} \cap U_{\beta} \neq \emptyset$, we have:

$$\phi_{\alpha}(z_{\alpha}) = \phi_{\beta}(z_{\beta})(\frac{dz_{\beta}}{dz_{\alpha}})^{k}$$

- Let R be a Riemann surface, and let L = (T*R)^{⊗k}, then the set of all sections of L is equal to the set of all k-differentials on R.
- Equivalently, a *k*-differential on *R* is a collection of \mathbb{C} -valued functions $\{\phi_{\alpha}(z_{\alpha})\}_{\alpha \in I}$ where z_{α} is a local complex coordinate on an open set U_{α} (for an open cover $\{U_{\alpha}\}_{\alpha \in I}$ of *R*), and for $\alpha, \beta \in I$ such that $U_{\alpha} \cap U_{\beta} \neq \emptyset$, we have:

$$\phi_{\alpha}(z_{\alpha}) = \phi_{\beta}(z_{\beta})(\frac{dz_{\beta}}{dz_{\alpha}})^{k}$$

The case k = 2 is of special importance: the 2-differentials (quadratic differentials) appear in Teichmüller Theory.

A k-differential locally can be seen as φ(z)dz^k. dz^k is a more conventional notation for dz^{⊗k}.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

- A k-differential locally can be seen as φ(z)dz^k. dz^k is a more conventional notation for dz^{⊗k}.
- Clearly it does not make sense to speak of the value of a k-differential φ at a point ζ ∈ R (since it depends on the local parameter near ζ), but it does make sense to speak of the zeros and poles of φ.

- A k-differential locally can be seen as φ(z)dz^k. dz^k is a more conventional notation for dz^{⊗k}.
- Clearly it does not make sense to speak of the value of a k-differential φ at a point ζ ∈ R (since it depends on the local parameter near ζ), but it does make sense to speak of the zeros and poles of φ.
- A k-differential is called holomorphic (meromorphic) if φ_α is holomorphic (meromorphic) for all α ∈ I.

k-differentials (Examples)

Example

For a Riemann surface $U \subset \mathbb{C}$ a k-differential is globally $\phi(z)dz^k$, where z is the coordinate on U, and ϕ is a \mathbb{C} -valued on U.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

k-differentials (Examples)

Example

For a Riemann surface $U \subset \mathbb{C}$ a k-differential is globally $\phi(z)dz^k$, where z is the coordinate on U, and ϕ is a \mathbb{C} -valued on U.

Example

Let *R* be the Riemann sphere, with the conformal structure $U_1 = \mathbb{C}$ and $U_2 = \mathbb{C} \cup \{\infty\} \setminus \{0\}$. As parameters we introduce *z* and $w = \frac{1}{z}$. We can give an arbitrary function $\varphi_1(z)$ which is defined in whole plane and compute $\varphi_2(w)$ by transformation rule $\varphi_1(z)dz^k = \varphi_2(w)dw^k$, and get: $\varphi_2(w) = \varphi_1(\frac{1}{w})(\frac{-1}{w^2})^k$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• $\pi: \Delta \to \Sigma$ is the covering map.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- $\pi: \Delta \to \Sigma$ is the covering map.
- Let Λ be a closed subset of Σ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- $\pi: \Delta \to \Sigma$ is the covering map.
- Let Λ be a closed subset of Σ .
- Let $V = \Sigma \Lambda$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- $\pi: \Delta \to \Sigma$ is the covering map.
- Let Λ be a closed subset of Σ.
- Let $V = \Sigma \Lambda$.
- Let $U = \pi^{-1}(V)$.

- $\pi: \Delta \to \Sigma$ is the covering map.
- Let Λ be a closed subset of Σ.
- Let $V = \Sigma \Lambda$.
- Let $U = \pi^{-1}(V)$.
- Assume U is connected.

- $\pi: \Delta \to \Sigma$ is the covering map.
- Let Λ be a closed subset of Σ.
- Let $V = \Sigma \Lambda$.
- Let $U = \pi^{-1}(V)$.
- Assume *U* is connected.
- ► By Uniformization Theorem *U* itself is a hyperbolic Riemann surface.

- $\pi: \Delta \to \Sigma$ is the covering map.
- Let Λ be a closed subset of Σ .
- Let $V = \Sigma \Lambda$.
- Let $U = \pi^{-1}(V)$.
- Assume U is connected.
- ► By Uniformization Theorem *U* itself is a hyperbolic Riemann surface.
- Let $U = \Gamma_0 \setminus \Delta$, where Γ_0 is a discrete subgroup of SU(1,1).

- $\pi: \Delta \to \Sigma$ is the covering map.
- Let Λ be a closed subset of Σ .
- Let $V = \Sigma \Lambda$.
- Let $U = \pi^{-1}(V)$.
- Assume U is connected.
- ► By Uniformization Theorem *U* itself is a hyperbolic Riemann surface.
- Let $U = \Gamma_0 \setminus \Delta$, where Γ_0 is a discrete subgroup of SU(1,1).

• Denote by $\pi_0 : \Delta \to U$ the covering map.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

▶ w is the weight...

- w is the weight...
- $A^{(1)}(V)$ is the (normed) space of holomorphic k-differentials Φ on V such that $\int_{\Gamma \setminus U} |\phi(z)| w(z)^{k-2} d\mu < \infty$. where $z \in U$ and $\phi(z) dz^k = (\pi|_U)^* \Phi$.

- w is the weight...
- $A^{(1)}(V)$ is the (normed) space of holomorphic k-differentials Φ on V such that $\int_{\Gamma \setminus U} |\phi(z)| w(z)^{k-2} d\mu < \infty$. where $z \in U$ and $\phi(z) dz^k = (\pi|_U)^* \Phi$.
- ► $A^{(1)}(U)$ is the (normed) space of holomorphic k-differentials $\phi(z)dz^k$ on U such that $\int_U |\phi(z)|w(z)^{k-2}d\mu < \infty$

• $A^{(2)}(V)$ is the (normed) space of holomorphic k-differentials Φ on V such that $\int_{\Gamma \setminus U} |\phi(z)|^2 w(z)^{2k-2} d\mu < \infty$. where $z \in U$ and $\phi(z) dz^k = (\pi|_U)^* \Phi$.

• $A^{(2)}(V)$ is the (normed) space of holomorphic k-differentials Φ on V such that $\int_{\Gamma \setminus U} |\phi(z)|^2 w(z)^{2k-2} d\mu < \infty$. where $z \in U$ and $\phi(z) dz^k = (\pi|_U)^* \Phi$.

► $A^{(2)}(U)$ is the (normed) space of holomorphic k-differentials $\phi(z)dz^k$ on U such that $\int_U |\phi(z)|^2 w(z)^{2k-2} d\mu < \infty$.

• $A^{(2)}(V)$ is the (normed) space of holomorphic k-differentials Φ on V such that $\int_{\Gamma \setminus U} |\phi(z)|^2 w(z)^{2k-2} d\mu < \infty$. where $z \in U$ and $\phi(z) dz^k = (\pi|_U)^* \Phi$.

• $A^{(2)}(V)$ is the (normed) space of holomorphic k-differentials Φ on V such that $\int_{\Gamma \setminus U} |\phi(z)|^2 w(z)^{2k-2} d\mu < \infty$. where $z \in U$ and $\phi(z) dz^k = (\pi|_U)^* \Phi$.

► $A^{(2)}(U)$ is the (normed) space of holomorphic k-differentials $\phi(z)dz^k$ on U such that $\int_U |\phi(z)|^2 w(z)^{2k-2} d\mu < \infty$.

Proposition

(N.A., T. Foth) If Λ is a finite set, then:

- $A^{(2)}(V)$ is isomorphic to $A^{(2)}(\Sigma)$.
- B(V) is isomorphic to $B(\Sigma)$.
- A⁽¹⁾(V) is isomorphic to the space of integrable meromorphic k-differentials on Σ with at most simple poles in Λ.

The Poincaré series is θ(φ) = Σ_{g∈Γ}φ(gz)(^{d(gz)}/_{dz})^k. It is convergent absolutely and uniformly on compact subset of Δ (k > 1 and φ ∈ A⁽¹⁾).

Theorem

• The Poincaré series map is defined by:

$$\Theta: A^{(1)}(\Delta) \to A^{(1)}(\Sigma)$$

 $\phi(z)dz^k \mapsto \Sigma_{g \in \Gamma} \phi(gz)(\frac{d(gz)}{dz})^k dz^k.$

 It is linear, surjective and its norm is less than or equal to 1. (Quaziconformal Teichmüller Theory, F. Gardiner, N. Lakic)

Proposition

(N.A., T. Foth) Let \mathbf{P} be the polynomials in z:

• The set $\Theta_0(\{p(z)dz^k \mid p \in \mathbf{P}\})$ is dense in $A^{(1)}(U)$.

Proposition

(N.A., T. Foth) Let ${\boldsymbol{\mathsf{P}}}$ be the polynomials in z:

- The set $\Theta_0(\{p(z)dz^k \mid p \in \mathbf{P}\})$ is dense in $A^{(1)}(U)$.
- The set $\Theta(\Theta_0(\{p(z)dz^k \mid p \in \mathbf{P}\}))$ is dense in $A^{(1)}(V)$.

Proposition

(N.A., T. Foth) Let ${\boldsymbol{\mathsf{P}}}$ be the polynomials in z:

- The set $\Theta_0(\{p(z)dz^k \mid p \in \mathbf{P}\})$ is dense in $A^{(1)}(U)$.
- The set $\Theta(\Theta_0(\{p(z)dz^k \mid p \in \mathbf{P}\}))$ is dense in $A^{(1)}(V)$.

• $A^{(1)}(V)$ and $A^{(1)}(U)$ are separable.

Proposition

(N.A., T. Foth) Let \mathbf{P} be the polynomials in z:

- The set $\Theta_0(\{p(z)dz^k \mid p \in \mathbf{P}\})$ is dense in $A^{(1)}(U)$.
- The set $\Theta(\Theta_0(\{p(z)dz^k \mid p \in \mathbf{P}\}))$ is dense in $A^{(1)}(V)$.
- $A^{(1)}(V)$ and $A^{(1)}(U)$ are separable.

The proofs are application of the Poincaré series map.

• $\mathcal{F} = \mathcal{D} \cap U$, \mathcal{D} is a Dirichlet fundamental domain, for the action of Γ on Δ .

• $\mathcal{F} = \mathcal{D} \cap U$, \mathcal{D} is a Dirichlet fundamental domain, for the action of Γ on Δ .

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• $(\beta\phi)(z) = \int_U K(z,\zeta)\phi(\zeta)w(\zeta)^{2k-2}d\mu.$

• $\mathcal{F} = \mathcal{D} \cap U$, \mathcal{D} is a Dirichlet fundamental domain, for the action of Γ on Δ .

- $(\beta\phi)(z) = \int_U K(z,\zeta)\phi(\zeta)w(\zeta)^{2k-2}d\mu.$
- *K* is reproducing Bergman kernel.

- $\mathcal{F} = \mathcal{D} \cap U$, \mathcal{D} is a Dirichlet fundamental domain, for the action of Γ on Δ .
- $(\beta\phi)(z) = \int_U K(z,\zeta)\phi(\zeta)w(\zeta)^{2k-2}d\mu.$
- *K* is reproducing Bergman kernel.

► Theorem (N.A., T. Foth) The set

$$W = \{\beta(\chi_{g\mathcal{F}}\phi - \chi_{\gamma\mathcal{F}}\phi)(z)dz^{k} \mid g, \gamma \in \Gamma, \phi \in L^{1}_{\Gamma}(U, w^{k-2}d\mu)\},\$$

is dense in ker Θ .

Theorem

(N.A., T. Foth) Suppose Γ is infinite. Let P be a subset of \mathcal{F} that has a limit point in \mathcal{F} . Let \mathcal{P} be the linear span of the set

$$\{(K(z,p)-\overline{J(g,p)}^kK(z,gp))dz^k\mid p\in P,g\in\Gamma\}$$

Then \mathcal{P} is in ker $\Theta \cap A^{(2)}(U)$ and \mathcal{P} is dense in $A^{(2)}(U)$.

Theorem

(N.A., T. Foth) Suppose Γ is infinite. Let P be a subset of \mathcal{F} that has a limit point in \mathcal{F} . Let \mathcal{P} be the linear span of the set

$$\{(K(z,p)-\overline{J(g,p)}^kK(z,gp))dz^k\mid p\in P,g\in\Gamma\}.$$

Then \mathcal{P} is in ker $\Theta \cap A^{(2)}(U)$ and \mathcal{P} is dense in $A^{(2)}(U)$.

Corollary

If Γ is infinite then ker $\Theta \cap A^{(2)}(U)$ is dense in $A^{(2)}(U)$.

Thank you !

Any question or comment?