Symbolic Manipulation of Harmonic Functions

Sheldon Axler

John Conway Day and SEAM
17 March 2011

If u is defined on an open subset of \mathbf{R}^{n}, then

$$
\Delta u=\frac{\partial^{2} u}{\partial x_{1}^{2}}+\cdots+\frac{\partial^{2} u}{\partial x_{n}^{2}} .
$$

If u is defined on an open subset of \mathbf{R}^{n}, then

$$
\Delta u=\frac{\partial^{2} u}{\partial x_{1}^{2}}+\cdots+\frac{\partial^{2} u}{\partial x_{n}^{2}}
$$

u is called harmonic if

$$
\Delta u \equiv 0 .
$$

If u is defined on an open subset of \mathbf{R}^{n}, then

$$
\Delta u=\frac{\partial^{2} u}{\partial x_{1}^{2}}+\cdots+\frac{\partial^{2} u}{\partial x_{n}^{2}}
$$

u is called harmonic if

$$
\Delta u \equiv 0 .
$$

Example: $\|x\|^{2-n}$ is harmonic on $\mathbf{R}^{n} \backslash 0$.

If u is defined on an open subset of \mathbf{R}^{n}, then

$$
\Delta u=\frac{\partial^{2} u}{\partial x_{1}^{2}}+\cdots+\frac{\partial^{2} u}{\partial x_{n}^{2}}
$$

u is called harmonic if

$$
\Delta u \equiv 0 .
$$

Example: $\|x\|^{2-n}$ is harmonic on $\mathbf{R}^{n} \backslash 0$.
Example: If $\zeta \in \mathbf{R}^{n}$ and $\|\zeta\|=1$ then

$$
\frac{1-\|x\|^{2}}{\|x-\zeta\|^{n}}
$$

is harmonic on $\mathbf{R}^{n} \backslash \zeta$.

REPUBLIQUE FRANCAISE

Dirichlet Problem: Suppose Ω is an open subset of \mathbf{R}^{n}. Given $f \in C(\partial \Omega)$, find $u \in C(\bar{\Omega})$ such that
u is harmonic on Ω and $\left.u\right|_{\partial \Omega}=f$.

Dirichlet Problem: Suppose Ω is an open subset of \mathbf{R}^{n}. Given $f \in C(\partial \Omega)$, find $u \in C(\bar{\Omega})$ such that
u is harmonic on Ω and $\left.u\right|_{\partial \Omega}=f$.

Johann Dirichlet (1805-1859)

Let B be the open unit ball in \mathbf{R}^{n}.

Let B be the open unit ball in \mathbf{R}^{n}.
Let σ be surface area measure on the unit sphere ∂B, normalized so that $\sigma(\partial B)=1$.

Let B be the open unit ball in \mathbf{R}^{n}.
Let σ be surface area measure on the unit sphere ∂B, normalized so that $\sigma(\partial B)=1$.

Theorem: Suppose $f \in C(\partial B)$. Define u on \bar{B} by

$$
u(x)= \begin{cases}\int_{\partial B} \frac{1-\|x\|^{2}}{\|x-\zeta\|^{n}} f(\zeta) d \sigma(\zeta) & \text { if } x \in B \\ f(x) & \text { if } x \in \partial B\end{cases}
$$

Then u in harmonic on B and $u \in C(\bar{B})$.

Let B be the open unit ball in \mathbf{R}^{n}.
Let σ be surface area measure on the unit sphere ∂B, normalized so that $\sigma(\partial B)=1$.

Theorem: Suppose $f \in C(\partial B)$. Define u on \bar{B} by

$$
u(x)= \begin{cases}\int_{\partial B} \frac{1-\|x\|^{2}}{\|x-\zeta\|^{n}} f(\zeta) d \sigma(\zeta) & \text { if } x \in B \\ f(x) & \text { if } x \in \partial B\end{cases}
$$

Then u in harmonic on B and $u \in C(\bar{B})$.
Surprising result: If f is a polynomial, then so is u.

Siméon Poisson (1781-1840)
\mathcal{P}_{m} is the set of polynomials on \mathbf{R}^{n} with degree at most m.
\mathcal{P}_{m} is the set of polynomials on \mathbf{R}^{n} with degree at most m. Fix $b=\left(b_{1}, \ldots, b_{n}\right) \in \mathbf{R}^{n}$, with each $b_{j}>0$. For $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{R}^{n}$, let

$$
\|b x\|^{2}=b_{1}^{2} x_{1}^{2}+\cdots+b_{n}^{2} x_{n}^{2}
$$

\mathcal{P}_{m} is the set of polynomials on \mathbf{R}^{n} with degree at most m. Fix $b=\left(b_{1}, \ldots, b_{n}\right) \in \mathbf{R}^{n}$, with each $b_{j}>0$. For $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{R}^{n}$, let

$$
\|b x\|^{2}=b_{1}^{2} x_{1}^{2}+\cdots+b_{n}^{2} x_{n}^{2}
$$

Let E be the ellipsoid defined by

$$
E=\left\{x \in \mathbf{R}^{n}:\|b x\|^{2}<1\right\} .
$$

\mathcal{P}_{m} is the set of polynomials on \mathbf{R}^{n} with degree at most m. Fix $b=\left(b_{1}, \ldots, b_{n}\right) \in \mathbf{R}^{n}$, with each $b_{j}>0$. For $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{R}^{n}$, let

$$
\|b x\|^{2}=b_{1}^{2} x_{1}^{2}+\cdots+b_{n}^{2} x_{n}^{2}
$$

Let E be the ellipsoid defined by

$$
E=\left\{x \in \mathbf{R}^{n}:\|b x\|^{2}<1\right\} .
$$

Theorem: If $f \in \mathcal{P}_{m}$, then there exists $g \in \mathcal{P}_{m-2}$ such that

$$
f+\left(1-\|b x\|^{2}\right) g
$$

is harmonic.
\mathcal{P}_{m} is the set of polynomials on \mathbf{R}^{n} with degree at most m. Fix $b=\left(b_{1}, \ldots, b_{n}\right) \in \mathbf{R}^{n}$, with each $b_{j}>0$. For $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{R}^{n}$, let

$$
\|b x\|^{2}=b_{1}^{2} x_{1}^{2}+\cdots+b_{n}^{2} x_{n}^{2}
$$

Let E be the ellipsoid defined by

$$
E=\left\{x \in \mathbf{R}^{n}:\|b x\|^{2}<1\right\} .
$$

Theorem: If $f \in \mathcal{P}_{m}$, then there exists $g \in \mathcal{P}_{m-2}$ such that

$$
f+\left(1-\|b x\|^{2}\right) g
$$

is harmonic.

Note that

$$
\left.\left(f+\left(1-\|b x\|^{2}\right) g\right)\right|_{\partial E}=\left.f\right|_{\partial E}
$$

\mathcal{P}_{m} is the set of polynomials on \mathbf{R}^{n} with degree at most m. Fix $b=\left(b_{1}, \ldots, b_{n}\right) \in \mathbf{R}^{n}$, with each $b_{j}>0$. For $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{R}^{n}$, let

$$
\|b x\|^{2}=b_{1}^{2} x_{1}^{2}+\cdots+b_{n}^{2} x_{n}^{2}
$$

Let E be the ellipsoid defined by

$$
E=\left\{x \in \mathbf{R}^{n}:\|b x\|^{2}<1\right\} .
$$

Theorem: If $f \in \mathcal{P}_{m}$, then there exists $g \in \mathcal{P}_{m-2}$ such that

$$
f+\left(1-\|b x\|^{2}\right) g
$$

is harmonic.

Note that

$$
\left.\left(f+\left(1-\|b x\|^{2}\right) g\right)\right|_{\partial E}=\left.f\right|_{\partial E}
$$

Thus $f+\left(1-\|b x\|^{2}\right) g$ solves the Dirichlet problem on E with boundary function $\left.f\right|_{\partial E}$.

Theorem: If $f \in \mathcal{P}_{m}$, then there exists $g \in \mathcal{P}_{m-2}$ such that

$$
f+\left(1-\|b x\|^{2}\right) g
$$

is harmonic.

Theorem: If $f \in \mathcal{P}_{m}$, then there exists $g \in \mathcal{P}_{m-2}$ such that

$$
f+\left(1-\|b x\|^{2}\right) g
$$

is harmonic.
Proof: We need to show that there exists $g \in \mathcal{P}_{m-2}$ such that

$$
\Delta\left(\left(1-\|b x\|^{2}\right) g\right)=-\Delta f
$$

Theorem: If $f \in \mathcal{P}_{m}$, then there exists $g \in \mathcal{P}_{m-2}$ such that

$$
f+\left(1-\|b x\|^{2}\right) g
$$

is harmonic.
Proof: We need to show that there exists $g \in \mathcal{P}_{m-2}$ such that

$$
\Delta\left(\left(1-\|b x\|^{2}\right) g\right)=-\Delta f
$$

Define a linear map $L: \mathcal{P}_{m-2} \rightarrow \mathcal{P}_{m-2}$ by

$$
L g=\Delta\left(\left(1-\|b x\|^{2}\right) g\right)
$$

Theorem: If $f \in \mathcal{P}_{m}$, then there exists $g \in \mathcal{P}_{m-2}$ such that

$$
f+\left(1-\|b x\|^{2}\right) g
$$

is harmonic.
Proof: We need to show that there exists $g \in \mathcal{P}_{m-2}$ such that

$$
\Delta\left(\left(1-\|b x\|^{2}\right) g\right)=-\Delta f
$$

Define a linear map $L: \mathcal{P}_{m-2} \rightarrow \mathcal{P}_{m-2}$ by

$$
L g=\Delta\left(\left(1-\|b x\|^{2}\right) g\right)
$$

If $L \mathcal{g}=0$, then $\left(1-\|b x\|^{2}\right) g$ is a harmonic function on E that equals 0 on ∂E. Thus $\left(1-\|b x\|^{2}\right) g=0$ and hence $g=0$.

Theorem: If $f \in \mathcal{P}_{m}$, then there exists $g \in \mathcal{P}_{m-2}$ such that

$$
f+\left(1-\|b x\|^{2}\right) g
$$

is harmonic.
Proof: We need to show that there exists $g \in \mathcal{P}_{m-2}$ such that

$$
\Delta\left(\left(1-\|b x\|^{2}\right) g\right)=-\Delta f
$$

Define a linear map $L: \mathcal{P}_{m-2} \rightarrow \mathcal{P}_{m-2}$ by

$$
L g=\Delta\left(\left(1-\|b x\|^{2}\right) g\right)
$$

If $L \mathcal{g}=0$, then $\left(1-\|b x\|^{2}\right) g$ is a harmonic function on E that equals 0 on ∂E. Thus $\left(1-\|b x\|^{2}\right) g=0$ and hence $g=0$.

Thus L is injective.

Theorem: If $f \in \mathcal{P}_{m}$, then there exists $g \in \mathcal{P}_{m-2}$ such that

$$
f+\left(1-\|b x\|^{2}\right) g
$$

is harmonic.
Proof: We need to show that there exists $g \in \mathcal{P}_{m-2}$ such that

$$
\Delta\left(\left(1-\|b x\|^{2}\right) g\right)=-\Delta f
$$

Define a linear map $L: \mathcal{P}_{m-2} \rightarrow \mathcal{P}_{m-2}$ by

$$
L g=\Delta\left(\left(1-\|b x\|^{2}\right) g\right)
$$

If $L \mathcal{g}=0$, then $\left(1-\|b x\|^{2}\right) g$ is a harmonic function on E that equals 0 on ∂E. Thus $\left(1-\|b x\|^{2}\right) g=0$ and hence $g=0$.

Thus L is injective.
Thus L is surjective.

Iterated slice integration of $\int_{\partial B} \frac{1-\|x\|^{2}}{\|x-\zeta\|^{n}} f(\zeta) d \sigma(\zeta)$:

Iterated slice integration of $\int_{\partial B} \frac{1-\|x\|^{2}}{\|x-\zeta\|^{n}} f(\zeta) d \sigma(\zeta)$:
Let B_{n} denote the open unit ball in \mathbf{R}^{n}.

Iterated slice integration of $\int_{\partial B} \frac{1-\|x\|^{2}}{\|x-\zeta\|^{n}} f(\zeta) d \sigma(\zeta)$:
Let B_{n} denote the open unit ball in \mathbf{R}^{n}.
Let σ_{n} denote normalized surface area measure on ∂B_{n}.

Iterated slice integration of $\int_{\partial B} \frac{1-\|x\|^{2}}{\|x-\zeta\|^{n}} f(\zeta) d \sigma(\zeta)$:
Let B_{n} denote the open unit ball in \mathbf{R}^{n}.
Let σ_{n} denote normalized surface area measure on ∂B_{n}.
Let V_{n} denote volume measure on B_{n}.

Iterated slice integration of $\int_{\partial B} \frac{1-\|x\|^{2}}{\|x-\zeta\|^{n}} f(\zeta) d \sigma(\zeta)$:
Let B_{n} denote the open unit ball in \mathbf{R}^{n}.
Let σ_{n} denote normalized surface area measure on ∂B_{n}.
Let V_{n} denote volume measure on B_{n}.
Theorem Let f be a Borel measurable, integrable function on ∂B_{n}. If $1 \leq k<n$, then
$\int_{\partial B_{n}} f d \sigma_{n}=$
$\frac{k}{n} \frac{V\left(B_{k}\right)}{V\left(B_{n}\right)} \int_{B_{n-k}}\left(1-|x|^{2}\right)^{\frac{k-2}{2}} \int_{\partial B_{k}} f\left(x, \sqrt{1-|x|^{2}} \zeta\right) d \sigma_{k}(\zeta) d V_{n-k}(x)$.

Power series expansion of the Poisson kernel:

$$
\int_{\partial B} \frac{1-\|x\|^{2}}{\|x-\zeta\|^{n}} f(\zeta) d \sigma(\zeta)
$$

For u defined on some subset of \mathbf{R}^{n}, the Kelvin transform of u is the function $\mathcal{K}[u]$ defined by

$$
\mathcal{K}[u](x)=\|x\|^{2-n} u\left(\frac{x}{\|x\|^{2}}\right) .
$$

For u defined on some subset of \mathbf{R}^{n}, the Kelvin transform of u is the function $\mathcal{K}[u]$ defined by

$$
\mathcal{K}[u](x)=\|x\|^{2-n} u\left(\frac{x}{\|x\|^{2}}\right) .
$$

Theorem (Kelvin): u is harmonic if and only if $\mathcal{K}[u]$ is harmonic.

For u defined on some subset of \mathbf{R}^{n}, the Kelvin transform of u is the function $\mathcal{K}[u]$ defined by

$$
\mathcal{K}[u](x)=\|x\|^{2-n} u\left(\frac{x}{\|x\|^{2}}\right) .
$$

Theorem (Kelvin): u is harmonic if and only if $\mathcal{K}[u]$ is harmonic.

Theorem (Axler and Ramey, 1995): The Poisson integral of a polynomial f can be computed rapidly from

$$
\mathcal{K}\left[D_{f}\|x\|^{2-n}\right] .
$$

Lord Kelvin (1824-1907)

How can we compute the solution to the Dirichlet problem for the unit ball?
(1) Iterated slice integration.
(2) Power series expansion of the Poisson kernel.
(3) Kelvin transform.

How can we compute the solution to the Dirichlet problem for the unit ball?
(1) Iterated slice integration.
(2) Power series expansion of the Poisson kernel.
(3) Kelvin transform.

None of these methods work for ellipsoids!

How can we compute the solution to the Dirichlet problem for the unit ball?
(1) Iterated slice integration.
(2) Power series expansion of the Poisson kernel.
(3) Kelvin transform.

None of these methods work for ellipsoids!
Theorem (Axler, Gorkin, and Voss, 2004): The solution to the Dirichlet problem for ellipsoids can be computed reasonably fast by repeated differentiation.

Link for software

The Mathematica package that implements these algorithms is available (without charge) at the following link:

http://ax1er.net/HFT_Math.htm1

Best wishes to John Conway!!!

