Symbolic Manipulation of Harmonic Functions

Sheldon Axler

John Conway Day and SEAM

17 March 2011

Sheldon Axler Symbolic Manipulation of Harmonic Functions

If u is defined on an open subset of \mathbb{R}^n , then

$$\Delta u = \frac{\partial^2 u}{\partial x_1^2} + \cdots + \frac{\partial^2 u}{\partial x_n^2}.$$

If u is defined on an open subset of \mathbf{R}^n , then

$$\Delta u = \frac{\partial^2 u}{\partial x_1^2} + \cdots + \frac{\partial^2 u}{\partial x_n^2}.$$

u is called *harmonic* if

$$\Delta u \equiv 0.$$

If u is defined on an open subset of \mathbf{R}^n , then

$$\Delta u = \frac{\partial^2 u}{\partial x_1^2} + \cdots + \frac{\partial^2 u}{\partial x_n^2}.$$

u is called *harmonic* if

$$\Delta u \equiv 0.$$

Example: $||x||^{2-n}$ is harmonic on $\mathbb{R}^n \setminus \mathbb{O}$.

If u is defined on an open subset of \mathbf{R}^n , then

$$\Delta u = \frac{\partial^2 u}{\partial x_1^2} + \cdots + \frac{\partial^2 u}{\partial x_n^2}.$$

u is called *harmonic* if

$$\Delta u \equiv 0.$$

Example: $||x||^{2-n}$ is harmonic on $\mathbb{R}^n \setminus 0$.

Example: If $\zeta \in \mathbf{R}^n$ and $\|\zeta\| = 1$ then

$$\frac{1 - \|x\|^2}{\|x - \zeta\|^n}$$

is harmonic on $\mathbb{R}^n \setminus \mathcal{J}$.

Dirichlet Problem: Suppose Ω is an open subset of \mathbb{R}^n . Given $f \in C(\partial \Omega)$, find $u \in C(\overline{\Omega})$ such that

u is harmonic on Ω and $u|_{\partial\Omega} = f$.

Dirichlet Problem: Suppose Ω is an open subset of \mathbb{R}^n . Given $f \in C(\partial \Omega)$, find $u \in C(\overline{\Omega})$ such that

u is harmonic on Ω and $u|_{\partial\Omega} = f$.

Johann Dirichlet (1805-1859)

Let σ be surface area measure on the unit sphere ∂B , normalized so that $\sigma(\partial B) = 1$.

Let σ be surface area measure on the unit sphere ∂B , normalized so that $\sigma(\partial B) = 1$.

Theorem: Suppose $f \in C(\partial B)$. Define u on \overline{B} by

$$u(x) = \begin{cases} \int_{\partial B} \frac{1 - \|x\|^2}{\|x - \zeta\|^n} f(\zeta) \, d\sigma(\zeta) & \text{if } x \in B \\ f(x) & \text{if } x \in \partial B. \end{cases}$$

Then u in harmonic on B and $u \in C(\overline{B})$.

Let σ be surface area measure on the unit sphere ∂B , normalized so that $\sigma(\partial B) = 1$.

Theorem: Suppose $f \in C(\partial B)$. Define u on \overline{B} by

$$u(x) = \begin{cases} \int_{\partial B} \frac{1 - \|x\|^2}{\|x - \zeta\|^n} f(\zeta) \, d\sigma(\zeta) & \text{if } x \in B \\ f(x) & \text{if } x \in \partial B \end{cases}$$

Then u in harmonic on B and $u \in C(\overline{B})$.

Surprising result: If f is a polynomial, then so is u.

Siméon Poisson (1781-1840)

 \mathcal{P}_m is the set of polynomials on \mathbb{R}^n with degree at most m.

$$||bx||^2 = b_1^2 x_1^2 + \cdots + b_n^2 x_n^2.$$

$$||bx||^2 = b_1^2 x_1^2 + \cdots + b_n^2 x_n^2.$$

Let *E* be the ellipsoid defined by

$$E = \{ x \in \mathbf{R}^n : \|bx\|^2 < 1 \}.$$

$$||bx||^2 = b_1^2 x_1^2 + \cdots + b_n^2 x_n^2.$$

Let *E* be the ellipsoid defined by

$$E = \{ x \in \mathbf{R}^n : \|bx\|^2 < 1 \}.$$

Theorem: If $f\in \mathcal{P}_m$, then there exists $g\in \mathcal{P}_{m-2}$ such that $f+(1-\|bx\|^2)g$

is harmonic.

$$||bx||^2 = b_1^2 x_1^2 + \cdots + b_n^2 x_n^2.$$

Let *E* be the ellipsoid defined by

$$E = \{ x \in \mathbf{R}^n : \|bx\|^2 < 1 \}.$$

Theorem: If $f\in \mathcal{P}_m$, then there exists $g\in \mathcal{P}_{m-2}$ such that $f+(1-\|bx\|^2)g$

is harmonic.

Note that

$$(f + (1 - ||bx||^2)g)|_{\partial E} = f|_{\partial E}.$$

$$\|bx\|^2 = b_1^2 x_1^2 + \cdots + b_n^2 x_n^2.$$

Let *E* be the ellipsoid defined by

$$E = \{ x \in \mathbf{R}^n : \|bx\|^2 < 1 \}.$$

Theorem: If $f\in \mathcal{P}_m$, then there exists $g\in \mathcal{P}_{m-2}$ such that $f+(1-\|bx\|^2)g$

is harmonic.

Note that

$$(f+(1-\|bx\|^2)g)|_{\partial E}=f|_{\partial E}.$$

Thus $f + (1 - ||bx||^2)g$ solves the Dirichlet problem on E with boundary function $f|_{\partial E}$.

$$f + (1 - \|bx\|^2)g$$

is harmonic.

$$f + (1 - \|bx\|^2)g$$

is harmonic.

Proof: We need to show that there exists $g \in \mathcal{P}_{m-2}$ such that

$$\Delta((1-\|bx\|^2)g)=-\Delta f.$$

$$f + (1 - \|bx\|^2)g$$

is harmonic.

Proof: We need to show that there exists $g \in \mathcal{P}_{m-2}$ such that

$$\Delta\big((1-\|bx\|^2)g\big)=-\Delta f.$$

Define a linear map $L: \mathcal{P}_{m-2} \rightarrow \mathcal{P}_{m-2}$ by

$$Lg = \Delta((1 - \|bx\|^2)g).$$

$$f + (1 - \|bx\|^2)g$$

is harmonic.

Proof: We need to show that there exists $g \in \mathcal{P}_{m-2}$ such that

$$\Delta((1-\|bx\|^2)g)=-\Delta f.$$

Define a linear map $L: \mathcal{P}_{m-2} \rightarrow \mathcal{P}_{m-2}$ by

$$Lg = \Delta((1 - \|bx\|^2)g).$$

If Lg = 0, then $(1 - ||bx||^2)g$ is a harmonic function on E that equals 0 on ∂E . Thus $(1 - ||bx||^2)g = 0$ and hence g = 0.

$$f + (1 - \|bx\|^2)g$$

is harmonic.

Proof: We need to show that there exists $g \in \mathcal{P}_{m-2}$ such that

$$\Delta\big((1-\|bx\|^2)g\big)=-\Delta f.$$

Define a linear map $L: \mathcal{P}_{m-2} \rightarrow \mathcal{P}_{m-2}$ by

$$Lg = \Delta((1 - \|bx\|^2)g).$$

If Lg = 0, then $(1 - ||bx||^2)g$ is a harmonic function on E that equals 0 on ∂E . Thus $(1 - ||bx||^2)g = 0$ and hence g = 0.

Thus L is injective.

$$f + (1 - \|bx\|^2)g$$

is harmonic.

Proof: We need to show that there exists $g \in \mathcal{P}_{m-2}$ such that

$$\Delta\big((1-\|bx\|^2)g\big)=-\Delta f.$$

Define a linear map $L: \mathcal{P}_{m-2} \rightarrow \mathcal{P}_{m-2}$ by

$$Lg = \Delta((1 - \|bx\|^2)g).$$

If Lg = 0, then $(1 - ||bx||^2)g$ is a harmonic function on E that equals 0 on ∂E . Thus $(1 - ||bx||^2)g = 0$ and hence g = 0.

Thus L is injective.

Thus L is surjective.

Iterated slice integration of
$$\int_{\partial B} \frac{1 - \|x\|^2}{\|x - \zeta\|^n} f(\zeta) \, d\sigma(\zeta):$$

Let B_n denote the open unit ball in \mathbb{R}^n .

Let B_n denote the open unit ball in \mathbb{R}^n .

Let σ_n denote normalized surface area measure on ∂B_n .

Let B_n denote the open unit ball in \mathbb{R}^n .

Let σ_n denote normalized surface area measure on ∂B_n .

Let V_n denote volume measure on B_n .

Let B_n denote the open unit ball in \mathbb{R}^n .

Let σ_n denote normalized surface area measure on ∂B_n .

Let V_n denote volume measure on B_n .

Theorem Let f be a Borel measurable, integrable function on ∂B_n . If $1 \le k < n$, then

$$\int_{\partial B_n} f \, d\sigma_n =$$

$$\frac{k}{n} \frac{V(B_k)}{V(B_n)} \int_{B_{n-k}} (1-|x|^2)^{\frac{k-2}{2}} \int_{\partial B_k} f(x, \sqrt{1-|x|^2} \zeta) \, d\sigma_k(\zeta) \, dV_{n-k}(x).$$

Power series expansion of the Poisson kernel:

$$\int_{\partial B} \frac{1 - \|x\|^2}{\|x - \zeta\|^n} f(\zeta) \, d\sigma(\zeta)$$

For u defined on some subset of \mathbb{R}^n , the *Kelvin transform* of u is the function $\mathcal{K}[u]$ defined by

$$\mathcal{K}[u](x) = \|x\|^{2-n} u\Big(\frac{x}{\|x\|^2}\Big).$$

For u defined on some subset of \mathbb{R}^n , the *Kelvin transform* of u is the function $\mathcal{K}[u]$ defined by

$$\mathcal{K}[u](x) = \|x\|^{2-n} u\Big(\frac{x}{\|x\|^2}\Big).$$

Theorem (Kelvin): u is harmonic if and only if $\mathcal{K}[u]$ is harmonic.

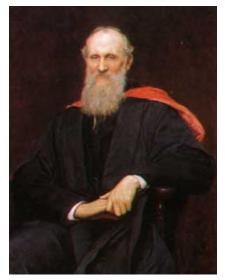
For u defined on some subset of \mathbb{R}^n , the *Kelvin transform* of u is the function $\mathcal{K}[u]$ defined by

$$\mathcal{K}[u](x) = ||x||^{2-n} u\Big(\frac{x}{||x||^2}\Big).$$

Theorem (Kelvin): u is harmonic if and only if $\mathcal{K}[u]$ is harmonic.

Theorem (Axler and Ramey, 1995): The Poisson integral of a polynomial f can be computed rapidly from

 $\mathcal{K}[D_f \| x \|^{2-n}].$



Lord Kelvin (1824-1907)

Sheldon Axler Symbolic Manipulation of Harmonic Functions

How can we compute the solution to the Dirichlet problem for the unit ball?

- Iterated slice integration.
- **2** Power series expansion of the Poisson kernel.
- 8 Kelvin transform.

How can we compute the solution to the Dirichlet problem for the unit ball?

- Iterated slice integration.
- Power series expansion of the Poisson kernel.
- 8 Kelvin transform.

None of these methods work for ellipsoids!

How can we compute the solution to the Dirichlet problem for the unit ball?

- Iterated slice integration.
- Power series expansion of the Poisson kernel.
- 8 Kelvin transform.

None of these methods work for ellipsoids!

Theorem (Axler, Gorkin, and Voss, 2004): The solution to the Dirichlet problem for ellipsoids can be computed reasonably fast by repeated differentiation.

Link for software

The *Mathematica* package that implements these algorithms is available (without charge) at the following link:

http://axler.net/HFT_Math.html

Best wishes to John Conway!!!

Sheldon Axler Symbolic Manipulation of Harmonic Functions