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If u is defined on an open subset of Rn, then

∆u = ∂2u
∂x1

2
+ · · · + ∂2u

∂xn2
.

u is called harmonic if ∆u ≡ 0.

Example: ‖x‖2−n is harmonic on Rn \ 0.

Example: If ζ ∈ Rn and ‖ζ‖ = 1 then

1− ‖x‖2

‖x − ζ‖n

is harmonic on Rn \ ζ.
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Dirichlet Problem: Suppose Ω is an open subset of Rn.
Given f ∈ C(∂Ω), find u ∈ C(Ω) such that

u is harmonic on Ω and u|∂Ω = f .

Johann Dirichlet (1805-1859)
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Let B be the open unit ball in Rn.

Let σ be surface area measure on the unit sphere ∂B,
normalized so that σ(∂B) = 1.

Theorem: Suppose f ∈ C(∂B). Define u on B by

u(x) =


∫
∂B

1− ‖x‖2

‖x − ζ‖nf(ζ)dσ(ζ) if x ∈ B

f(x) if x ∈ ∂B.

Then u in harmonic on B and u ∈ C(B).

Surprising result: If f is a polynomial, then so is u.
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Siméon Poisson (1781-1840)
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Pm is the set of polynomials on Rn with degree at most m.

Fix b = (b1, . . . , bn) ∈ Rn, with each bj > 0. For
x = (x1, . . . , xn) ∈ Rn, let

‖bx‖2 = b2
1x

2
1 + · · · + b2

nx2
n.

Let E be the ellipsoid defined by

E = {x ∈ Rn : ‖bx‖2 < 1}.

Theorem: If f ∈ Pm, then there exists g ∈ Pm−2 such that

f + (1− ‖bx‖2)g

is harmonic.

Note that (
f + (1− ‖bx‖2)g

)
|∂E = f |∂E.

Thus f + (1− ‖bx‖2)g solves the Dirichlet problem on E
with boundary function f |∂E.
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Theorem: If f ∈ Pm, then there exists g ∈ Pm−2 such that

f + (1− ‖bx‖2)g

is harmonic.

Proof: We need to show that there exists g ∈ Pm−2 such that

∆((1− ‖bx‖2)g
)
= −∆f .

Define a linear map L : Pm−2 → Pm−2 by

Lg = ∆((1− ‖bx‖2)g
)
.

If Lg = 0, then (1− ‖bx‖2)g is a harmonic function on E that
equals 0 on ∂E. Thus (1− ‖bx‖2)g = 0 and hence g = 0.

Thus L is injective.

Thus L is surjective.
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Iterated slice integration of
∫
∂B

1− ‖x‖2

‖x − ζ‖nf(ζ)dσ(ζ):

Let Bn denote the open unit ball in Rn.

Let σn denote normalized surface area measure on ∂Bn.

Let Vn denote volume measure on Bn.

Theorem Let f be a Borel measurable, integrable function
on ∂Bn. If 1 ≤ k < n, then∫
∂Bn
f dσn =

k
n
V(Bk)
V(Bn)

∫
Bn−k

(1− |x|2)
k−2

2

∫
∂Bk
f
(
x,
√

1− |x|2 ζ
)
dσk(ζ)dVn−k(x).
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Power series expansion of the Poisson kernel:

∫
∂B

1− ‖x‖2

‖x − ζ‖nf(ζ)dσ(ζ)
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For u defined on some subset of Rn, the Kelvin transform of
u is the function K[u] defined by

K[u](x) = ‖x‖2−nu
( x
‖x‖2

)
.

Theorem (Kelvin): u is harmonic if and only if K[u] is
harmonic.

Theorem (Axler and Ramey, 1995): The Poisson integral of
a polynomial f can be computed rapidly from

K[Df‖x‖2−n].
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Lord Kelvin (1824-1907)
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How can we compute the solution to the Dirichlet problem
for the unit ball?

1 Iterated slice integration.

2 Power series expansion of the Poisson kernel.

3 Kelvin transform.

None of these methods work for ellipsoids!

Theorem (Axler, Gorkin, and Voss, 2004): The solution to
the Dirichlet problem for ellipsoids can be computed
reasonably fast by repeated differentiation.
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Link for software

The Mathematica package that implements these algorithms
is available (without charge) at the following link:

http://axler.net/HFT_Math.html
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Best wishes to John Conway!!!
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