The characteristic function as a unitary invariant for row contractions

Joseph A. Ball
Department of Mathematics, Virginia Tech, Blacksburg, VA, USA joint work with Vladimir Bolotnikov, College of William \& Mary Reference: arXiv:1103.1369

SEAM 27 March 19, 2011

de Branges-Rovnyak model for c.n.c. T

Completely noncoisometric T
$T \in \mathcal{L}(\mathcal{X})$ c.n.c. : there exists no nonzero $\mathcal{M} \subset \mathcal{X}$ invariant for T^{*} with $\left.T^{*}\right|_{\mathcal{M}}$ isometric
de Branges-Rovnyak kernel
Given $S: \mathbb{D} \underset{\text { holo }}{\rightarrow} \overline{\mathcal{B}} \mathcal{L}(\mathcal{U}, \mathcal{Y})(S \in \mathcal{S}(\mathcal{U}, \mathcal{Y}))$ define positive kernel K_{S}
on $\mathbb{D}: K_{S}(z, \zeta)=\left[I-S(z) S(\zeta)^{*}\right] /(1-z \bar{\zeta})$
de Branges-Rovnyak canonical model for c.n.c.
deBR model space $=$ the RKHS $\mathcal{H}\left(K_{S}\right)$
deBR model operator: $T(S)$ on $\mathcal{H}\left(K_{S}\right)$ with
$T(S)^{*}: f(z) \mapsto[f(z)-f(0)] / z$ (backward shift)

de Branges-Rovnyak canonical model for c.n.c.

The characteristic function of $T \in \overline{\mathcal{B}} \mathcal{L}(\mathcal{X})$
$\theta_{T}(z)=\left.\left[-T+z D_{T^{*}}(I-z T)^{-1} D_{T}\right]\right|_{\mathcal{D}_{T}}: \mathcal{D}_{T} \rightarrow \mathcal{D}_{T^{*}}$
where $D_{T}=\left(I-T^{*} T\right)^{1 / 2}, \mathcal{D}_{T}=\overline{\operatorname{Ran}} D_{T}$
The characteristic function as a complete unitary invariant: Theorem: Given T, T^{\prime} c.n.c., then $T \cong \underset{u}{\cong} T^{\prime} \Leftrightarrow \theta_{T} \underset{\text { coincide }}{\cong} \theta_{T^{\prime}}$ and then T and $T^{\prime} \underset{\underset{u}{c}}{\cong} T\left(\theta_{T}\right)$

Coincidence of Schur-class functions:
$S \underset{\text { coincide }}{\cong} S^{\prime}:$ there exist unitary $\alpha: \mathcal{Y} \rightarrow \mathcal{Y}^{\prime}$ and $\beta: \mathcal{U}^{\prime} \rightarrow \mathcal{U}$ coincide
so that $S^{\prime}(z)=\alpha S(z) \beta$ for all $z \in \mathbb{D}$

Multivariable generalizations

Row contractions
$\mathbf{T}=\left(T_{1}, \ldots, T_{d}\right)=$ row contraction: $\|T\| \leq 1$ where $T=\left[\begin{array}{lll}T_{1} & \cdots & T_{d}\end{array}\right]: \mathcal{X}^{d} \rightarrow \mathcal{X}$

Completely noncoisometric row contraction
\mathbf{T} c.n.c.: there is no nonzero $\mathcal{M} \subset \mathcal{X}$ invariant for each T_{j}^{*} such that $\left.\left[\begin{array}{lll}T_{1} & \cdots & T_{d}\end{array}\right]^{*}\right|_{\mathcal{M}}: \mathcal{M} \rightarrow \mathcal{M}^{d}$ is isometric

Characteristic function

Characteristic function: general noncommutative case
$\theta_{T, n c}(\mathbf{z})=\left.\left[-T+D_{T^{*}}\left(I-Z_{\mathcal{X}}(\mathbf{z}) T^{*}\right)^{-1} Z_{\mathcal{X}}(\mathbf{z}) D_{T}\right]\right|_{D_{T}}$
$=$ formal power series in $\mathcal{L}\left(\mathcal{D}_{T}, \mathcal{D}_{T^{*}}\right)\langle\langle\mathbf{z}\rangle\rangle$
($\mathbf{z}=\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{d}\right)=$ freely noncommuting indeterminates)
(or: $\theta_{T}=$ function of noncommuting operators)
$M_{\theta_{T}}=$ contractive on Fock space (noncommutative Schur class)
Notation:
$Z_{\mathcal{X}}(\mathbf{z})=\left[\begin{array}{lll}\mathbf{z}_{1} \mathcal{X}_{\mathcal{X}} & \cdots & \mathbf{z}_{d} / \mathcal{X}\end{array}\right]$
$D_{T}=\left(\mathcal{I}_{\mathcal{X}^{d}}-T^{*} T\right)^{1 / 2}$,
$\mathcal{D}_{T} \subset \operatorname{Ran} D_{T} \subset \mathcal{X}^{d}$,
$D_{T^{*}}=\left(\mathcal{I}_{\mathcal{X}}-T T^{*}\right)^{1 / 2}=\left(\mathcal{I}_{\mathcal{X}}-T_{1} T_{1}^{*}-\cdots-T_{d} T_{d}^{*}\right)^{1 / 2}$,
$\mathcal{D}_{T^{*}}=\overline{\operatorname{Ran}} D_{T^{*}} \subset \mathcal{X}$
Expanding out gives: $\theta_{T}(\mathbf{z})=\sum_{v \in \mathcal{F}_{d}}\left[\theta_{\mathbf{T}, n c}\right]_{v} \mathbf{z}^{v}$
where $\left[\theta_{\mathbf{T}, n c}\right]_{\emptyset}=-\left.T\right|_{\mathcal{D}_{T}},\left[\theta_{\mathbf{T}, n c}\right]_{v^{\prime} j}=D_{T^{*}} \mathbf{T}^{* \nu^{\prime}} \mathcal{I}_{j}^{*} D_{T}$
$\left(\mathbf{T}^{* v}=T_{i_{N}}^{*} \cdots T_{i_{1}}^{*}\right.$ if $\left.v=i_{N} \cdots i_{1}\right)$

The characteristic function as unitary invariant for c.n.c.

Theorem (Popescu): Given $\mathbf{T}, \mathbf{T}^{\prime}$ c.n.c., then $\mathbf{T} \cong \underset{u}{\cong} \mathbf{T}^{\prime} \Leftrightarrow$
$\theta_{T, n c} \underset{\text { coincide }}{\cong} \theta_{T^{\prime}, n c}$ and then $\mathbf{T}, \mathbf{T}^{\prime} \xlongequal[u]{\cong} \mathbf{T}\left(\theta_{T, n c}\right)$

Multivariable generalizations: The commutative case

Commutative row contractions
$\mathbf{T}=\left(T_{1}, \ldots, T_{d}\right)=$ row contraction with T_{j} 's commuting
\mathbf{T} c.n.c.: same as above: no nonzero \mathbf{T}^{*}-invariant subspace on which T^{*} is isometric

The commutative characteristic function
$\theta_{T}(z)=\left.\left[-T+D_{T^{*}}\left(I-Z_{\mathcal{X}}(z) T^{*}\right)^{-1} Z_{\mathcal{X}}(z) D_{T}\right]\right|_{\mathcal{D}_{T}}: \mathcal{D}_{T} \rightarrow \mathcal{D}_{T^{*}}$
where $z=\left(z_{1}, \ldots, z_{d}\right) \in \mathbb{B}^{d}$
$M_{\theta_{T}}=$ contractive multiplier on the Drury-Arveson space
The characteristic function as complete unitary invariant:
commutative case
Theorem (Bhattacharyya-Eschmeier-Sarkar) Given $\mathbf{T}, \mathbf{T}^{\prime}$ commutative c.n.c., then $\mathbf{T} \xlongequal[u]{\cong} \mathbf{T}^{\prime} \Leftrightarrow \theta_{T} \underset{\text { coincide }}{\cong} \theta_{T^{\prime}}$ and then \mathbf{T} and $\mathbf{T}^{\prime} \cong \underset{u}{\cong} \mathbf{T}\left(\theta_{T}\right)$

Beyond the c.n.c. case

The classical case: completely nonunitary contractions $T \in \mathcal{L}(\mathcal{X})$ c.n.u.: no T-reducing subspace \mathcal{M} so that $\left.T\right|_{\mathcal{M}}$ unitary

The Sz.-Nagy-Foias model
Given $S \in \mathcal{S}(\mathcal{U}, \mathcal{Y})$, set $\mathcal{K}(S)=\left[\begin{array}{c}H_{\mathcal{V}}^{2} \\ \Delta_{S} \cdot L_{\mathcal{U}}^{2}\end{array}\right] \ominus\left[\begin{array}{c}S \\ \Delta_{S}\end{array}\right] H_{\mathcal{U}}^{2}$
(where $\Delta_{S}(\zeta)=\left(I-S(\zeta)^{*} S(\zeta)\right)^{1 / 2}$ for $\zeta \in \mathbb{T}$) and set
$T_{N F}(S)=\left.P_{\mathcal{K}(S)}\left[\begin{array}{cc}M_{z} & 0 \\ 0 & M_{\zeta}\end{array}\right]\right|_{\mathcal{K}(S)}$
The characteristic function as a complete unitary invariant
Theorem (Sz.Nagy-Foias): Given c.n.u. $T, T^{\prime} \in \mathcal{L}(\mathcal{X})$, then $T \cong \underset{u}{\cong} T^{\prime}$ if and only if $\theta_{T} \underset{\text { coincide }}{\cong} \theta_{T^{\prime}}$ and then T and $T^{\prime} \cong T_{N F}\left(\theta_{T}\right)$

The de Branges-Rovnyak model

The de Branges-Rovnyak two-component kernel
Given $S \in \mathcal{S}(\mathcal{U}, \mathcal{Y})$, set $\widehat{K}_{S}(z, \zeta)=\left[\begin{array}{ll}\frac{1-S(z) S(\zeta)^{*}}{1-z \bar{\zeta}} & \frac{S(z)-S(\bar{\zeta})}{-z-\zeta} \\ \frac{S(\overline{)})^{*}-S(\zeta)^{*}}{z-\bar{\zeta}} & \frac{1-S(\bar{z}) * S(\bar{\zeta})}{1-z \bar{\zeta}}\end{array}\right]=$ positive kernel on \mathbb{D}

The de Branges-Rovnyak model operator
Define $\widehat{T}_{d B R}(S)$ on $\mathcal{H}\left(\widehat{K}_{S}\right)$ by
$\widehat{T}_{d B R}(S)^{*}:\left[\begin{array}{l}f(z) \\ g(z)\end{array}\right] \mapsto\left[\begin{array}{c}{[f(z)-f(0)] / z} \\ z g(z)-S(z) f(0)\end{array}\right]$
The characteristic function as complete unitary invariant
Theorem (de Branges-Rovnyak): Given c.n.u. $T, T^{\prime} \in \mathcal{L}(\mathcal{X})$, then $T \cong \underset{u}{\cong} T^{\prime}$ if and only if $\theta_{T} \underset{\text { coincide }}{\cong} \theta_{T^{\prime}}$ and then T and $T^{\prime} \cong \underset{u}{\cong}$ $\widehat{T}_{d B R}\left(\theta_{T}\right)$

Beyond c.n.c.: multivariable setting

Noncommutative c.n.u.
$\mathbf{T}=\left(T_{1}, \ldots, T_{d}\right) \mathbf{c . n} . \mathbf{u} .:$ there is no nonzero $\mathcal{M} \subset \mathcal{X}$ reducing for each T_{j} such that $\left.T\right|_{\mathcal{M}^{d}}: \mathcal{M}^{d} \rightarrow \mathcal{M}$ is unitary.

Amusing fact:
If $d>1$ and $\mathcal{X} \neq\{0\}$, then any commutative row contraction is c.n.u.

Unitary invariants for c.n.u. row contraction:
Theorem (B.-Vinnikov): Given \mathbf{T} c.n.u., besides $\theta_{T, n c}$ there is an additional invariant L_{T} (a noncommutative analogue of
$\Delta_{\theta_{T}}(\zeta)=I-\theta_{T}(\zeta)^{*} \theta_{T}(\zeta)$ but not uniquely determined by $\left.\theta_{T, n c}\right)$
so that, given c.n.u. T, T^{\prime}, then $T \cong T^{\prime} \Leftrightarrow\left(\theta_{T, n c}, L_{T}\right) \underset{\text { coincide }}{\cong}$
$\left(\theta_{T^{\prime}, n c}, L_{T^{\prime}}\right)$ and then T and $T^{\prime} \cong \underset{u}{\cong} T\left(\theta_{T}, L_{T}\right)$
$=$ noncommutative Sz.-Nagy-Foias model

Multivariable commutative two-component dBR model

Drury-Arveson asymmetry

For $S=$ Drury-Arveson-space contractive multiplier, $K_{S}(z, \zeta)=\frac{1-S(z) S(\zeta)^{*}}{1-\langle z, \zeta\rangle}$ is a positive kernel on \mathbb{B}^{d} but $\widetilde{K}_{S}(z, \zeta)=\frac{I-S(z)^{*} S(\zeta)}{1-\langle\zeta, z\rangle}$ may not be a positive kernel

Required analogue: Agler decomposition:
There exists a positive kernel $\Phi=\left[\Phi_{i j}\right]_{i, j=1, \ldots, d}$ so that $I-S(z)^{*} S(\zeta)=\sum_{j=1}^{d} \Phi_{j j}(z, \zeta)-\sum_{i, \ell=1}^{d} \bar{z}_{i} \zeta_{\ell} \Phi_{i \ell}(z, \zeta)$

Two-component Agler decomposition

Analogue of two-component deBR kernel
The kernel K_{S} extends to a positive kernel
$\mathbb{K}(z, \zeta)=\left[\begin{array}{cccc}K_{s}(z, \zeta) & \Psi_{1}(z, \zeta) & \cdots & \Psi_{d}(z, \zeta) \\ \Psi_{1}(\zeta, z)^{*} & \Phi_{11}(z, \zeta) & \cdots & \Phi_{1 d}(z, \zeta) \\ \vdots & \vdots & & \vdots \\ \Psi_{d}(\zeta, z)^{*} & \Phi_{d 1}(z, \zeta) & \cdots & \Phi_{d d}(z, \zeta)\end{array}\right]$ on \mathbb{B}^{d} such that
$\left[\begin{array}{c}\prime \\ S(z)^{*}\end{array}\right][1 S(\zeta)]-\left[\begin{array}{c}S(z) \\ I\end{array}\right]\left[S(\zeta)^{*}\right.$ I $]=$
$M(z)^{*} \mathbb{K}(z, \zeta) M(\zeta)-\sum_{j=1}^{d} N_{j}(z)^{*} \mathbb{K}(z, \zeta) N_{j}(\zeta)$
where $M(z)=\left[\begin{array}{cc}l_{y} & 0 \\ 0 & z_{\mathcal{U}}(\bar{z})^{*}\end{array}\right], N_{j}(z)=\left[\begin{array}{cc}z_{j} / y & 0 \\ 0 & \mathbf{e}_{j} \otimes h u\end{array}\right]$
Model Agler decomposition:

$$
\begin{aligned}
& S=\theta_{T} \text { and } \mathbb{K}_{T}(z, \zeta)=\mathbb{G}_{T}(z) \mathbb{G}_{T}(\zeta)^{*} \text { with } \\
& \mathbb{G}_{T}(z)=\left[\begin{array}{c}
D_{T^{*}}\left(I-Z_{\mathcal{X}}(z)^{*}\right)^{-1} \\
D_{T}\left(I-Z_{\mathcal{X}}(z)^{*} T\right)^{-1} \mathcal{I}_{1} \\
\vdots \\
D_{T}\left(I-Z_{\mathcal{X}}(z)^{*} T\right)^{-1} \mathcal{I}_{d}
\end{array}\right]
\end{aligned}
$$

Two-component canonical functional model

$\mathbf{U}=\left[\begin{array}{cc}A & B \\ C & D\end{array}\right]:\left[\begin{array}{c}\mathcal{H}(\mathbb{K}) \\ \mathcal{U}\end{array}\right] \rightarrow\left[\begin{array}{c}\mathcal{H}(\mathbb{K})^{d} \\ \mathcal{Y}\end{array}\right]=\mathbf{t} . \mathbf{c} . \mathbf{f . m}$. colligation associated with Agler decomposition \mathbb{K} for $S \in \mathcal{S}_{d}(\mathcal{U}, \mathcal{Y})$:

- $A=\operatorname{col}_{1 \leq k \leq d} A_{k}$ solves structured Gleason problem

$$
(\mathbf{s} f)(z)-(\mathbf{s} f)(0)=\sum_{k=1}^{d} z_{k}\left(A_{k} f\right)_{+}(z) \text { for all } f \in \mathcal{H}(\mathbb{K})
$$

- A^{*} solves the dual structured Gleason problem $(\widetilde{\mathbf{s}} g)(z)-(\widetilde{\mathbf{s}} g)(0)=\sum_{k=1}^{d} \bar{z}_{k}\left(A^{*} g\right)_{-, k}(z)$ for all $g \in \mathcal{H}(\mathbb{K})^{d}$
- $C: f \mapsto(\mathbf{s} f)(0), B^{*}: g \mapsto(\widetilde{\mathbf{s}} g)(0), D: u \mapsto S(0) u$
$A, A^{*}=$ multivariable analogues of backward shift operators Here
- $f \in \mathcal{H}(\mathbb{K})$ has the form $f=\left[\begin{array}{c}f_{+} \\ f_{-, 1} \\ \vdots \\ f_{-, d}\end{array}\right]$ with $\mathbf{s} f=f_{+}$,
- $g \in \mathcal{H}(\mathbb{K})^{d}$ has the form $g=\left[\begin{array}{c}g_{1} \\ \vdots \\ g_{d}\end{array}\right]$ with each $g_{i}=\left[\begin{array}{c}g_{i,+} \\ g_{i,-, 1} \\ \vdots \\ g_{i,-, d}\end{array}\right]$

$$
\text { and } \widetilde{\mathbf{s}} g=\sum_{j=1}^{d} g_{i,-, i}
$$

Classes of row contractions

- commutative closely connected (com c.c.):

$$
\begin{aligned}
& \mathcal{M}_{T}^{(1)}:=\left\{x \in \mathcal{X}: D_{T^{*}}\left(I-Z_{\mathcal{X}}(z) T^{*}\right)^{-1} x \equiv 0\right. \\
& \text { and } \left.D_{T}\left(I-Z_{\mathcal{X}}(z)^{*} T\right)^{-1} \mathcal{I}_{i} x \equiv 0 \text { for } i=1, \ldots, d\right\}=\{0\}
\end{aligned}
$$

- strongly closely connected (strongly c.c.):

$$
\begin{aligned}
& \mathcal{M}_{T}^{(2)}:=\left\{x \in \mathcal{X}: D_{T^{*}}\left(I-Z_{\mathcal{X}}(z) T^{*}\right)^{-1} x \equiv 0\right. \\
& \text { and } \left.D_{T}\left(I-Z_{\mathcal{X}}(z)^{*} T\right)^{-1} Z_{\mathcal{X}}(z)^{*} x \equiv 0\right\}=\{0\}
\end{aligned}
$$

Summary:

$\left[\begin{array}{c|c}\hline \text { operator } d \text {-tuple class } & \text { complete unitary invariant } \\ \hline \mathbf{T}=\text { commutative c.n.c. } & \theta_{T} \\ \mathbf{T}=\text { commutative strongly c.c. } & \left(\theta_{T}, \mathbb{K}_{T}\right) \\ \mathbf{T}=\text { commutative c.c. } & \left(\theta_{T}, \mathbb{K}_{T}, X_{T}\right) \\ \mathbf{T}=\text { c.n.u. } & \left(\theta_{T, n c}, \mathbb{K}_{T, n c}\right) \\ \hline\end{array}\right.$
$\mathbb{K}_{T, n c}=$ noncommutative Agler decomposition: de Branges-Rovnyak noncommutative model = reinterpretation of

Example: Spherical isometries

$T=\left[\lambda_{1} \lambda_{2}\right],\left(\lambda_{1}, \lambda_{2}\right) \in \mathbb{S}^{2}=\partial \mathbb{B}^{2}=$ strongly cc case
$D_{T^{*}}=0: \mathbb{C}^{2} \rightarrow\{0\} \Rightarrow \theta_{T}(z) \equiv 0: \mathcal{D}_{T} \cong \mathbb{C} \rightarrow\{0\}$ for all such λ
$\mathbb{K}_{\lambda}(z, \zeta)=\mathbb{G}_{\lambda}(z) \mathbb{G}_{\lambda}(\zeta)^{*}$ where $G_{\lambda}(z)=\frac{1}{1-\bar{z}_{1} \lambda_{1}-\bar{z}_{2} \lambda_{2}}\left[\begin{array}{c}\bar{z}_{2}-\bar{\lambda}_{2} \\ -\bar{z}_{1}+\bar{\lambda}_{1}\end{array}\right]$
$=$ the extra invariant!
Agler decomposition (after clearing out denominator):
$\left(1-\bar{z}_{1} \lambda_{1}-\bar{z}_{2} \lambda_{2}\right)\left(1-\zeta_{1} \bar{\lambda}_{1}-\zeta_{2} \bar{\lambda}_{2}\right)=$

$$
\begin{aligned}
& \left(\bar{z}_{2}-\bar{\lambda}_{2}\right)\left(\zeta_{2}-\lambda_{2}\right)+\left(\bar{z}_{1}-\bar{\lambda}_{1}\right)\left(\zeta_{1}-\lambda_{1}\right) \\
& -\bar{z}_{1} \zeta_{1}\left(\bar{z}_{2}-\bar{\lambda}_{2}\right)\left(\zeta_{2}-\lambda_{2}\right)+\bar{z}_{1} \zeta_{2}\left(\bar{z}_{2}-\bar{\lambda}_{2}\right)\left(\zeta_{1}-\lambda_{1}\right) \\
& +\bar{z}_{2} \zeta_{1}\left(\bar{z}_{1}-\bar{\lambda}_{1}\right)\left(\zeta_{2}-\lambda_{2}\right)-\bar{z}_{2} \zeta_{2}\left(\bar{z}_{1}-\bar{\lambda}_{1}\right)\left(\zeta_{1}-\lambda_{1}\right)
\end{aligned}
$$

Amusing exercise: Check directly

