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The Functional Calculus

Case 1: f : R→ R

Define Sn := {n × n self-adjoint matrices}. Given A ∈ Sn with spectral
decomposition

A = U

 x1
. . .

xn

 U∗, define F (A) := U

 f (x1)
. . .

f (xn)

U∗.

Then, F : Sn → Sn.
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The Functional Calculus

Case 2: f : R2 → R

Define CSn := { pairs of commuting n × n self-adjoint matrices}. Let
A = (A1,A2) ∈ CSn with spectral decomposition

A1 = U

 x1
. . .

xn

 U∗ and A2 = U

 y1
. . .

yn

 U∗.

The pairs (xi , yi ) are the called the joint eigenvalues of A for i = 1, . . . , n.
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Differentiability Questions

Question: If the original function f is continuously differentiable, is the induced
matrix function F continuously differentiable?

Simpler question: If f : R→ R and S(t) is a C 1 curve in Sn, does d
dtF (S(t))

exist?
First Approach: Write:

S(t) = U(t)

 x1(t)
. . .

xn(t)

U∗(t),

so that:

F (S(t)) = U(t)

 f (x1(t))
. . .

f (xn(t))

U∗(t).

Then, we can differentiate using the product rule.
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Example Curve

Consider the following example (Rellich, 1937) :

S(t) = e−
1
t2

 cos( 2
t ) sin( 2

t )

sin( 2
t ) − cos( 2

t )

 for t 6= 0, and S(0) = 0.

For t 6= 0, the eigenvalues of S(t) are ± e−
1
t2 and their associated eigenvectors

are:

±

 cos( 1
t )

sin( 1
t )

 and ±

 sin( 1
t )

− cos( 1
t )

 .

Thus, even an infinitely differentiable curve can have discontinuous eigenvectors.
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One-Variable Results

Define the spaces:

Cm(R,R) = {f : R→ R : f is m-times continuously differentiable}
Cm(Sn,Sn) = {F : Sn → Sn : F is m-times continuously Frechét differentiable}

Sn(K ) = {n × n self -adjoint matrices with spectrum in K}.

Theorem 1 (Brown and Vasudeva, 2000)

If f is in Cm(R,R), then the induced matrix function F is in Cm(Sn,Sn).
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One-Variable Results (cont.)

Proof Sketch:

The result follows by direct calculation for polynomials.

Cm(R,R) and Cm(Sn,Sn) are Frechét spaces induced by the semi-norms

‖f (l)‖K = sup
x∈K
|f (l)(x)| and ‖d lF‖K = sup

A∈Sn(K)

‖d lF (A)‖,

for 0 ≤ l ≤ m and K ⊂ R compact.

For each polynomial p, index l , and compact K :

‖d lP‖K ≤ n!l!‖p(l)‖K

For f ∈ Cm(R,R), there exists a sequence of polynomials {pj} such that

{pj} → f in Cm(R,R).

Then, {Pj} is Cauchy and hence, converges to some G ∈ Cm(Sn,Sn). It can
be shown that G = F .

�
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Two-Variable Considerations

If f : R2 → R, then F : CSn → Sn.

The best notion of differentiation on CSn is differentiation along curves.

Lemma 1

Let S(t) = (S1(t),S2(t)) be a curve in CSn. If S(t) is Lipschitz, the joint
eigenvalues of S(t) can be represented by Lipschitz functions

(xi (t), yi (t)) for i = 1, . . . , n.

Let U(t) = the unitary matrix diagonalizing S(t) for each t.

For ease of notation, define:

U := U(t)

(xi , yi ) := (xi (t), yi (t)) for i = 1, . . . , n.

S ′r := S ′r (t) for r = 1, 2.

Kelly Bickel Washington University St. Louis, Missouri 63130 Differentiating Matrix Functions



Two-Variable Considerations

If f : R2 → R, then F : CSn → Sn.

The best notion of differentiation on CSn is differentiation along curves.

Lemma 1

Let S(t) = (S1(t),S2(t)) be a curve in CSn. If S(t) is Lipschitz, the joint
eigenvalues of S(t) can be represented by Lipschitz functions

(xi (t), yi (t)) for i = 1, . . . , n.

Let U(t) = the unitary matrix diagonalizing S(t) for each t.

For ease of notation, define:

U := U(t)

(xi , yi ) := (xi (t), yi (t)) for i = 1, . . . , n.

S ′r := S ′r (t) for r = 1, 2.

Kelly Bickel Washington University St. Louis, Missouri 63130 Differentiating Matrix Functions



Two-Variable Considerations

If f : R2 → R, then F : CSn → Sn.

The best notion of differentiation on CSn is differentiation along curves.

Lemma 1

Let S(t) = (S1(t),S2(t)) be a curve in CSn. If S(t) is Lipschitz, the joint
eigenvalues of S(t) can be represented by Lipschitz functions

(xi (t), yi (t)) for i = 1, . . . , n.

Let U(t) = the unitary matrix diagonalizing S(t) for each t.

For ease of notation, define:

U := U(t)

(xi , yi ) := (xi (t), yi (t)) for i = 1, . . . , n.

S ′r := S ′r (t) for r = 1, 2.

Kelly Bickel Washington University St. Louis, Missouri 63130 Differentiating Matrix Functions



Two-Variable Considerations

If f : R2 → R, then F : CSn → Sn.

The best notion of differentiation on CSn is differentiation along curves.

Lemma 1

Let S(t) = (S1(t),S2(t)) be a curve in CSn. If S(t) is Lipschitz, the joint
eigenvalues of S(t) can be represented by Lipschitz functions

(xi (t), yi (t)) for i = 1, . . . , n.

Let U(t) = the unitary matrix diagonalizing S(t) for each t.

For ease of notation, define:

U := U(t)

(xi , yi ) := (xi (t), yi (t)) for i = 1, . . . , n.

S ′r := S ′r (t) for r = 1, 2.

Kelly Bickel Washington University St. Louis, Missouri 63130 Differentiating Matrix Functions



Two-Variable Considerations

If f : R2 → R, then F : CSn → Sn.

The best notion of differentiation on CSn is differentiation along curves.

Lemma 1

Let S(t) = (S1(t),S2(t)) be a curve in CSn. If S(t) is Lipschitz, the joint
eigenvalues of S(t) can be represented by Lipschitz functions

(xi (t), yi (t)) for i = 1, . . . , n.

Let U(t) = the unitary matrix diagonalizing S(t) for each t.

For ease of notation, define:

U := U(t)

(xi , yi ) := (xi (t), yi (t)) for i = 1, . . . , n.

S ′r := S ′r (t) for r = 1, 2.

Kelly Bickel Washington University St. Louis, Missouri 63130 Differentiating Matrix Functions



Divided Differences

Let f ∈ C 1(R,R). The first divided difference of f is defined by

f [1](a, b) =
f (a)− f (b)

a− b
for a 6= b

f [1](a, b) = f ′(a) for a = b.

Let f ∈ C 1(R2,R). The first divided difference of f taken in the first variable is
defined by

f [1,0](a, b; c) =
f (a, c)− f (b, c)

a− b
for a 6= b

f [1,0](a, b; c) = f (1,0)(a, c) for a = b.
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Two-variable Results: Existence

Theorem 2 (B., 2010)

If f ∈ C 1(R2,R) and S(t) is a C 1 curve in CSn, then d
dtF (S(t)) exists and

d

dt
F (S(t)) = U

([
f [1,0](xi , xj ; yj)

]n
i,j=1
�
(
U∗ S ′1 U

)
+
[
f [0,1](xi ; yi , yj)

]n
i,j=1
�
(
U∗ S ′2 U

))
U∗, (1)

where f [1,0] and f [0,1] are divided differences taken in the first and second variables
respectively and � denotes the Schur product.
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Two-Variable Results: Analytic Functions

Lemma 2

If f is a real-valued analytic function on R2 and S(t) is a C 1 curve in CSn, then
d
dtF (S(t)) exists, is of form (1), and is continuous.

Proof Sketch

Fix t∗. For all t sufficiently close to t∗:

F (S(t)) =
1

(2πi)2

∫
C2

∫
C1

f (ζ1, ζ2) (ζ1I − S1(t))−1 (ζ2I − S2(t))−1 dζ1dζ2,

where C1 and C2 are curves containing the eigenvalues of S1(t∗) and S2(t∗).

Since the integrand is bounded near t∗, we can differentiate under the integral.

The result is a continuous function of t.
�
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d
dtF (S(t)) exists, is of form (1), and is continuous.

Proof Sketch

Fix t∗. For all t sufficiently close to t∗:

F (S(t)) =
1

(2πi)2

∫
C2

∫
C1

f (ζ1, ζ2) (ζ1I − S1(t))−1 (ζ2I − S2(t))−1 dζ1dζ2,

where C1 and C2 are curves containing the eigenvalues of S1(t∗) and S2(t∗).

Since the integrand is bounded near t∗, we can differentiate under the integral.

The result is a continuous function of t.
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Two-Variable Results: Existence

Proof of Theorem 2:

Fix t∗. Choose a polynomial p so that p and f agree to first order on the joint
eigenvalues of S(t∗).

Recall that the eigenvalue functions (xi , yi ), for i = 1, . . . , n, are Lipschitz.Then

‖F (S(t))− P(S(t))‖ = max
1≤i≤n

|f (xi , yi )− p(xi , yi )|

= max
1≤i≤n

∣∣(f − p)(xi , yi )− (f − p)
(
xi (t
∗), yi (t

∗)
)∣∣

= o
(
|t − t∗|

)
,

Thus, F (S(t)) is differentiable at t∗ and

d

dt
F (S(t))

∣∣
t=t∗

=
d

dt
P(S(t))

∣∣
t=t∗

. �
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Two-Variable Results: Continuity

Theorem 3 (B., 2010)

If f ∈ C 1(R2,R) and S(t) is a C 1 curve in CSn, then d
dtF (S(t)) is continuous.

Proof

Fix t0. For every g ∈ C 1(R2,R) and t∗ sufficiently close to t0,

‖ d
dt

G (S(t))|t=t∗‖ ≤ C sup
(x,y)∈K

{|gx(x , y)|, |gy (x , y)|} ,

for a fixed constant C and compact set K .

Let f ∈ C 1(R2,R). There exists a sequence {φm} of analytic functions such that:

{φm} → f uniformly on K

and
sup

(x,y)∈K

{∣∣(φm − f )x(x , y)
∣∣, ∣∣(φm − f )y (x , y)

∣∣} ≤ 1
m .
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Two-Variable Results: Continuity (cont.)

Proof of Theorem 3 (cont.)

Then for all t∗ sufficiently close to t0,∥∥ d

dt
Φm(S(t))

∣∣
t=t∗
− d

dt
F (S(t))

∣∣
t=t∗

∥∥ ≤ C

m
,

which implies{
d

dt
Φm(S(t))|t=t∗

}
converges uniformly to

d

dt
F (S(t))|t=t∗ .

By Lemma 1, each d
dt Φm(S(t)) is continuous at each t∗. Thus, d

dtF (S(t)) is
continuous in a neighborhood of t0.
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Two-Variable Results: Continuity (cont.)

Proof of Theorem 3 (cont.)
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Generalizations

Let f ∈ C 1(Rd ,R) and define

CSd
n := { d-tuples of pairwise commuting n × n self-adjoint matrices}.

If S(t) is a C 1 curve in CSd
n , then

d

dt
F (S(t)) exists and is continuous.

Let f ∈ Cm(R2,R) and S(t) be a Cm curve in CSn.

Then
dm

dtm
F (S(t)) exists and is continuous.
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