Differentiating Matrix Functions

Kelly Bickel
Washington University
St. Louis, Missouri 63130

SEAM 27
March 18, 2011

The Functional Calculus

Case 1: $f: \mathbb{R} \rightarrow \mathbb{R}$

The Functional Calculus

Case 1: $f: \mathbb{R} \rightarrow \mathbb{R}$
Define $S_{n}:=\{n \times n$ self-adjoint matrices $\}$.

The Functional Calculus

Case 1: $f: \mathbb{R} \rightarrow \mathbb{R}$
Define $S_{n}:=\{n \times n$ self-adjoint matrices $\}$. Given $A \in S_{n}$ with spectral decomposition
$A=U\left(\begin{array}{lll}x_{1} & & \\ & \ddots & \\ & & x_{n}\end{array}\right) \quad U^{*}$,

The Functional Calculus

Case 1: $f: \mathbb{R} \rightarrow \mathbb{R}$
Define $S_{n}:=\{n \times n$ self-adjoint matrices $\}$. Given $A \in S_{n}$ with spectral decomposition
$A=U\left(\begin{array}{ccc}x_{1} & & \\ & \ddots & \\ & & x_{n}\end{array}\right) U^{*}, \quad$ define $F(A):=U\left(\begin{array}{ccc}f\left(x_{1}\right) & & \\ & \ddots & \\ & & f\left(x_{n}\right)\end{array}\right) U^{*}$.

The Functional Calculus

Case 1: $f: \mathbb{R} \rightarrow \mathbb{R}$
Define $S_{n}:=\{n \times n$ self-adjoint matrices $\}$. Given $A \in S_{n}$ with spectral decomposition
$A=U\left(\begin{array}{ccc}x_{1} & & \\ & \ddots & \\ & & x_{n}\end{array}\right) U^{*}, \quad$ define $F(A):=U\left(\begin{array}{ccc}f\left(x_{1}\right) & & \\ & \ddots & \\ & & f\left(x_{n}\right)\end{array}\right) U^{*}$.

Then, $F: S_{n} \rightarrow S_{n}$.

The Functional Calculus

Case 2: $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$

The Functional Calculus

Case 2: $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$
Define $C S_{n}:=\{$ pairs of commuting $n \times n$ self-adjoint matrices $\}$.

The Functional Calculus

Case 2: $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$
Define $C S_{n}:=\{$ pairs of commuting $n \times n$ self-adjoint matrices $\}$. Let $A=\left(A_{1}, A_{2}\right) \in C S_{n}$ with spectral decomposition

$$
A_{1}=U\left(\begin{array}{ccc}
x_{1} & & \\
& \ddots & \\
& & x_{n}
\end{array}\right) U^{*} \text { and } A_{2}=U\left(\begin{array}{ccc}
y_{1} & & \\
& \ddots & \\
& & y_{n}
\end{array}\right) U^{*} .
$$

The Functional Calculus

Case 2: $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$
Define $C S_{n}:=\{$ pairs of commuting $n \times n$ self-adjoint matrices $\}$. Let $A=\left(A_{1}, A_{2}\right) \in C S_{n}$ with spectral decomposition

$$
A_{1}=U\left(\begin{array}{ccc}
x_{1} & & \\
& \ddots & \\
& & x_{n}
\end{array}\right) U^{*} \text { and } A_{2}=U\left(\begin{array}{ccc}
y_{1} & & \\
& \ddots & \\
& & y_{n}
\end{array}\right) U^{*} .
$$

The pairs $\left(x_{i}, y_{i}\right)$ are the called the joint eigenvalues of A for $i=1, \ldots, n$.

The Functional Calculus

Case 2: $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$
Define $C S_{n}:=\{$ pairs of commuting $n \times n$ self-adjoint matrices $\}$. Let $A=\left(A_{1}, A_{2}\right) \in C S_{n}$ with spectral decomposition

$$
A_{1}=U\left(\begin{array}{ccc}
x_{1} & & \\
& \ddots & \\
& & x_{n}
\end{array}\right) \quad U^{*} \text { and } A_{2}=U\left(\begin{array}{ccc}
y_{1} & & \\
& \ddots & \\
& & y_{n}
\end{array}\right) \quad U^{*}
$$

The pairs $\left(x_{i}, y_{i}\right)$ are the called the joint eigenvalues of A for $i=1, \ldots, n$.
Define

$$
F(A):=U\left(\begin{array}{ccc}
f\left(x_{1}, y_{1}\right) & & \\
& \ddots & \\
& & f\left(x_{n}, y_{n}\right)
\end{array}\right) U^{*} .
$$

The Functional Calculus

Case 2: $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$
Define $C S_{n}:=\{$ pairs of commuting $n \times n$ self-adjoint matrices $\}$. Let $A=\left(A_{1}, A_{2}\right) \in C S_{n}$ with spectral decomposition

$$
A_{1}=U\left(\begin{array}{ccc}
x_{1} & & \\
& \ddots & \\
& & x_{n}
\end{array}\right) \quad U^{*} \text { and } A_{2}=U\left(\begin{array}{ccc}
y_{1} & & \\
& \ddots & \\
& & y_{n}
\end{array}\right) \quad U^{*}
$$

The pairs $\left(x_{i}, y_{i}\right)$ are the called the joint eigenvalues of A for $i=1, \ldots, n$.
Define

$$
F(A):=U\left(\begin{array}{ccc}
f\left(x_{1}, y_{1}\right) & & \\
& \ddots & \\
& & f\left(x_{n}, y_{n}\right)
\end{array}\right) U^{*} .
$$

Then, $F: C S_{n} \rightarrow S_{n}$.

Differentiability Questions

Question: If the original function f is continuously differentiable, is the induced matrix function F continuously differentiable?

Differentiability Questions

Question: If the original function f is continuously differentiable, is the induced matrix function F continuously differentiable?

Simpler question: If $f: \mathbb{R} \rightarrow \mathbb{R}$ and $S(t)$ is a C^{1} curve in S_{n}, does $\frac{d}{d t} F(S(t))$ exist?

Differentiability Questions

Question: If the original function f is continuously differentiable, is the induced matrix function F continuously differentiable?

Simpler question: If $f: \mathbb{R} \rightarrow \mathbb{R}$ and $S(t)$ is a C^{1} curve in S_{n}, does $\frac{d}{d t} F(S(t))$ exist?
First Approach: Write:

$$
S(t)=U(t)\left(\begin{array}{ccc}
x_{1}(t) & & \\
& \ddots & \\
& & x_{n}(t)
\end{array}\right) U^{*}(t)
$$

Differentiability Questions

Question: If the original function f is continuously differentiable, is the induced matrix function F continuously differentiable?

Simpler question: If $f: \mathbb{R} \rightarrow \mathbb{R}$ and $S(t)$ is a C^{1} curve in S_{n}, does $\frac{d}{d t} F(S(t))$ exist?
First Approach: Write:

$$
S(t)=U(t)\left(\begin{array}{ccc}
x_{1}(t) & & \\
& \ddots & \\
& & x_{n}(t)
\end{array}\right) U^{*}(t)
$$

so that:

$$
F(S(t))=U(t)\left(\begin{array}{ccc}
f\left(x_{1}(t)\right) & & \\
& \ddots & \\
& & f\left(x_{n}(t)\right)
\end{array}\right) U^{*}(t)
$$

Differentiability Questions

Question: If the original function f is continuously differentiable, is the induced matrix function F continuously differentiable?

Simpler question: If $f: \mathbb{R} \rightarrow \mathbb{R}$ and $S(t)$ is a C^{1} curve in S_{n}, does $\frac{d}{d t} F(S(t))$ exist?
First Approach: Write:

$$
S(t)=U(t)\left(\begin{array}{ccc}
x_{1}(t) & & \\
& \ddots & \\
& & x_{n}(t)
\end{array}\right) U^{*}(t)
$$

so that:

$$
F(S(t))=U(t)\left(\begin{array}{ccc}
f\left(x_{1}(t)\right) & & \\
& \ddots & \\
& & f\left(x_{n}(t)\right)
\end{array}\right) U^{*}(t)
$$

Then, we can differentiate using the product rule.

Example Curve

Consider the following example (Rellich, 1937) :

Example Curve

Consider the following example (Rellich, 1937) :

$$
S(t)=e^{-\frac{1}{t^{2}}}\left(\begin{array}{cc}
\cos \left(\frac{2}{t}\right) & \sin \left(\frac{2}{t}\right) \\
\sin \left(\frac{2}{t}\right) & -\cos \left(\frac{2}{t}\right)
\end{array}\right) \text { for } \mathrm{t} \neq 0, \quad \text { and } \quad S(0)=0 .
$$

Example Curve

Consider the following example (Rellich, 1937) :

$$
S(t)=e^{-\frac{1}{t^{2}}}\left(\begin{array}{cc}
\cos \left(\frac{2}{t}\right) & \sin \left(\frac{2}{t}\right) \\
\sin \left(\frac{2}{t}\right) & -\cos \left(\frac{2}{t}\right)
\end{array}\right) \text { for } \mathrm{t} \neq 0, \quad \text { and } \quad S(0)=0 .
$$

For $t \neq 0$, the eigenvalues of $S(t)$ are $\pm e^{-\frac{1}{t^{2}}}$ and their associated eigenvectors are:

$$
\pm\binom{\cos \left(\frac{1}{t}\right)}{\sin \left(\frac{1}{t}\right)} \text { and } \pm\binom{\sin \left(\frac{1}{t}\right)}{-\cos \left(\frac{1}{t}\right)} .
$$

Example Curve

Consider the following example (Rellich, 1937) :

$$
S(t)=e^{-\frac{1}{t^{2}}}\left(\begin{array}{cc}
\cos \left(\frac{2}{t}\right) & \sin \left(\frac{2}{t}\right) \\
\sin \left(\frac{2}{t}\right) & -\cos \left(\frac{2}{t}\right)
\end{array}\right) \text { for } \mathrm{t} \neq 0, \quad \text { and } \quad S(0)=0 .
$$

For $t \neq 0$, the eigenvalues of $S(t)$ are $\pm e^{-\frac{1}{t^{2}}}$ and their associated eigenvectors are:

$$
\pm\binom{\cos \left(\frac{1}{t}\right)}{\sin \left(\frac{1}{t}\right)} \text { and } \pm\binom{\sin \left(\frac{1}{t}\right)}{-\cos \left(\frac{1}{t}\right)} .
$$

Thus, even an infinitely differentiable curve can have discontinuous eigenvectors.

One-Variable Results

Define the spaces:
$C^{m}(\mathbb{R}, \mathbb{R})=\{f: \mathbb{R} \rightarrow \mathbb{R}: f$ is m-times continuously differentiable $\}$
$C^{m}\left(S_{n}, S_{n}\right)=\left\{F: S_{n} \rightarrow S_{n}: F\right.$ is m-times continuously Frechét differentiable $\}$

$$
S_{n}(K)=\{n \times n \text { self -adjoint matrices with spectrum in } K\} .
$$

One-Variable Results

Define the spaces:
$C^{m}(\mathbb{R}, \mathbb{R})=\{f: \mathbb{R} \rightarrow \mathbb{R}: f$ is m-times continuously differentiable $\}$
$C^{m}\left(S_{n}, S_{n}\right)=\left\{F: S_{n} \rightarrow S_{n}: F\right.$ is m-times continuously Frechét differentiable $\}$

$$
S_{n}(K)=\{n \times n \text { self -adjoint matrices with spectrum in } K\} .
$$

Theorem 1 (Brown and Vasudeva, 2000)

If f is in $C^{m}(\mathbb{R}, \mathbb{R})$, then the induced matrix function F is in $C^{m}\left(S_{n}, S_{n}\right)$.

One-Variable Results (cont.)

Proof Sketch:

One-Variable Results (cont.)

Proof Sketch:

- The result follows by direct calculation for polynomials.

One-Variable Results (cont.)

Proof Sketch:

- The result follows by direct calculation for polynomials.
- $C^{m}(\mathbb{R}, \mathbb{R})$ and $C^{m}\left(S_{n}, S_{n}\right)$ are Frechét spaces induced by the semi-norms

$$
\left\|f^{(I)}\right\|_{K}=\sup _{x \in K}\left|f^{(I)}(x)\right| \quad \text { and } \quad\left\|d^{\prime} F\right\|_{K}=\sup _{A \in S_{n}(K)}\left\|d^{\prime} F(A)\right\|,
$$

for $0 \leq I \leq m$ and $K \subset \mathbb{R}$ compact.

One-Variable Results (cont.)

Proof Sketch:

- The result follows by direct calculation for polynomials.
- $C^{m}(\mathbb{R}, \mathbb{R})$ and $C^{m}\left(S_{n}, S_{n}\right)$ are Frechét spaces induced by the semi-norms

$$
\left\|f^{(I)}\right\|_{K}=\sup _{x \in K}\left|f^{(I)}(x)\right| \quad \text { and } \quad\left\|d^{\prime} F\right\|_{K}=\sup _{A \in S_{n}(K)}\left\|d^{\prime} F(A)\right\|,
$$

for $0 \leq I \leq m$ and $K \subset \mathbb{R}$ compact.

- For each polynomial p, index I, and compact K :

$$
\left\|d^{\prime} P\right\|_{K} \leq n!!!\left\|p^{(I)}\right\|_{K}
$$

One-Variable Results (cont.)

Proof Sketch:

- The result follows by direct calculation for polynomials.
- $C^{m}(\mathbb{R}, \mathbb{R})$ and $C^{m}\left(S_{n}, S_{n}\right)$ are Frechét spaces induced by the semi-norms

$$
\left\|f^{(I)}\right\|_{K}=\sup _{x \in K}\left|f^{(l)}(x)\right| \quad \text { and } \quad\left\|d^{\prime} F\right\|_{K}=\sup _{A \in S_{n}(K)}\left\|d^{\prime} F(A)\right\|
$$

for $0 \leq I \leq m$ and $K \subset \mathbb{R}$ compact.

- For each polynomial p, index I, and compact K :

$$
\left\|d^{\prime} P\right\|_{K} \leq n!!!\left\|p^{(I)}\right\|_{K}
$$

- For $f \in C^{m}(\mathbb{R}, \mathbb{R})$, there exists a sequence of polynomials $\left\{p_{j}\right\}$ such that

$$
\left\{p_{j}\right\} \rightarrow f \text { in } C^{m}(\mathbb{R}, \mathbb{R})
$$

One-Variable Results (cont.)

Proof Sketch:

- The result follows by direct calculation for polynomials.
- $C^{m}(\mathbb{R}, \mathbb{R})$ and $C^{m}\left(S_{n}, S_{n}\right)$ are Frechét spaces induced by the semi-norms

$$
\left\|f^{(I)}\right\|_{K}=\sup _{x \in K}\left|f^{(I)}(x)\right| \quad \text { and } \quad\left\|d^{\prime} F\right\|_{K}=\sup _{A \in S_{n}(K)}\left\|d^{\prime} F(A)\right\|,
$$

for $0 \leq I \leq m$ and $K \subset \mathbb{R}$ compact.

- For each polynomial p, index I, and compact K :

$$
\left\|d^{\prime} P\right\|_{K} \leq n!!!\left\|p^{(I)}\right\|_{K}
$$

- For $f \in C^{m}(\mathbb{R}, \mathbb{R})$, there exists a sequence of polynomials $\left\{p_{j}\right\}$ such that

$$
\left\{p_{j}\right\} \rightarrow f \text { in } C^{m}(\mathbb{R}, \mathbb{R})
$$

- Then, $\left\{P_{j}\right\}$ is Cauchy and hence, converges to some $G \in C^{m}\left(S_{n}, S_{n}\right)$. It can be shown that $G=F$.

Two-Variable Considerations

If $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, then $F: C S_{n} \rightarrow S_{n}$.

Two-Variable Considerations

If $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, then $F: C S_{n} \rightarrow S_{n}$.

- The best notion of differentiation on $C S_{n}$ is differentiation along curves.

Two-Variable Considerations

If $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, then $F: C S_{n} \rightarrow S_{n}$.

- The best notion of differentiation on $C S_{n}$ is differentiation along curves.

Lemma 1

Let $S(t)=\left(S_{1}(t), S_{2}(t)\right)$ be a curve in $C S_{n}$. If $S(t)$ is Lipschitz, the joint eigenvalues of $S(t)$ can be represented by Lipschitz functions

$$
\left(x_{i}(t), y_{i}(t)\right) \quad \text { for } i=1, \ldots, n .
$$

Two-Variable Considerations

If $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, then $F: C S_{n} \rightarrow S_{n}$.

- The best notion of differentiation on $C S_{n}$ is differentiation along curves.

Lemma 1

Let $S(t)=\left(S_{1}(t), S_{2}(t)\right)$ be a curve in $C S_{n}$. If $S(t)$ is Lipschitz, the joint eigenvalues of $S(t)$ can be represented by Lipschitz functions

$$
\left(x_{i}(t), y_{i}(t)\right) \quad \text { for } i=1, \ldots, n .
$$

- Let $U(t)=$ the unitary matrix diagonalizing $S(t)$ for each t.

Two-Variable Considerations

If $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, then $F: C S_{n} \rightarrow S_{n}$.

- The best notion of differentiation on $C S_{n}$ is differentiation along curves.

Lemma 1

Let $S(t)=\left(S_{1}(t), S_{2}(t)\right)$ be a curve in $C S_{n}$. If $S(t)$ is Lipschitz, the joint eigenvalues of $S(t)$ can be represented by Lipschitz functions

$$
\left(x_{i}(t), y_{i}(t)\right) \quad \text { for } i=1, \ldots, n
$$

- Let $U(t)=$ the unitary matrix diagonalizing $S(t)$ for each t.
- For ease of notation, define:

$$
\begin{aligned}
U & :=U(t) & & \\
\left(x_{i}, y_{i}\right) & :=\left(x_{i}(t), y_{i}(t)\right) & & \text { for } i=1, \ldots, n . \\
S_{r}^{\prime} & :=S_{r}^{\prime}(t) & & \text { for } r=1,2 .
\end{aligned}
$$

Divided Differences

Let $f \in C^{1}(\mathbb{R}, \mathbb{R})$. The first divided difference of f is defined by

$$
\begin{array}{ll}
f^{[1]}(a, b)=\frac{f(a)-f(b)}{a-b} & \text { for } a \neq b \\
f^{[1]}(a, b)=f^{\prime}(a) & \text { for } a=b
\end{array}
$$

Divided Differences

Let $f \in C^{1}(\mathbb{R}, \mathbb{R})$. The first divided difference of f is defined by

$$
\begin{array}{ll}
f^{[1]}(a, b)=\frac{f(a)-f(b)}{a-b} & \text { for } a \neq b \\
f^{[1]}(a, b)=f^{\prime}(a) & \text { for } a=b
\end{array}
$$

Let $f \in C^{1}\left(\mathbb{R}^{2}, \mathbb{R}\right)$. The first divided difference of f taken in the first variable is defined by

$$
\begin{array}{ll}
f^{[1,0]}(a, b ; c)=\frac{f(a, c)-f(b, c)}{a-b} & \text { for } a \neq b \\
f^{[1,0]}(a, b ; c)=f^{(1,0)}(a, c) & \text { for } a=b .
\end{array}
$$

Divided Differences

Let $f \in C^{1}(\mathbb{R}, \mathbb{R})$. The first divided difference of f is defined by

$$
\begin{array}{ll}
f^{[1]}(a, b)=\frac{f(a)-f(b)}{a-b} & \text { for } a \neq b \\
f^{[1]}(a, b)=f^{\prime}(a) & \text { for } a=b
\end{array}
$$

Let $f \in C^{1}\left(\mathbb{R}^{2}, \mathbb{R}\right)$. The first divided difference of f taken in the first variable is defined by

$$
\begin{array}{ll}
f^{[1,0]}(a, b ; c)=\frac{f(a, c)-f(b, c)}{a-b} & \text { for } a \neq b \\
f^{[1,0]}(a, b ; c)=f^{(1,0)}(a, c) & \text { for } a=b .
\end{array}
$$

Theorem 2 (B., 2010)

If $f \in C^{1}\left(\mathbb{R}^{2}, \mathbb{R}\right)$ and $S(t)$ is a C^{1} curve in $C S_{n}$, then $\frac{d}{d t} F(S(t))$ exists and

$$
\begin{align*}
\frac{d}{d t} F(S(t))= & U\left(\left[f^{[1,0]}\left(x_{i}, x_{j} ; y_{j}\right)\right]_{i, j=1}^{n} \odot\left(U^{*} S_{1}^{\prime} U\right)\right. \\
& \left.+\left[f^{[0,1]}\left(x_{i} ; y_{i}, y_{j}\right)\right]_{i, j=1}^{n} \odot\left(U^{*} S_{2}^{\prime} U\right)\right) U^{*} \tag{1}
\end{align*}
$$

where $f^{[1,0]}$ and $f^{[0,1]}$ are divided differences taken in the first and second variables respectively and \odot denotes the Schur product.

Two-Variable Results: Analytic Functions

Lemma 2

If f is a real-valued analytic function on \mathbb{R}^{2} and $S(t)$ is a C^{1} curve in $C S_{n}$, then $\frac{d}{d t} F(S(t))$ exists, is of form (1), and is continuous.

Two-Variable Results: Analytic Functions

Lemma 2

If f is a real-valued analytic function on \mathbb{R}^{2} and $S(t)$ is a C^{1} curve in $C S_{n}$, then $\frac{d}{d t} F(S(t))$ exists, is of form (1), and is continuous.

Proof Sketch

Fix t^{*}. For all t sufficiently close to t^{*} :

Two-Variable Results: Analytic Functions

Lemma 2

If f is a real-valued analytic function on \mathbb{R}^{2} and $S(t)$ is a C^{1} curve in $C S_{n}$, then $\frac{d}{d t} F(S(t))$ exists, is of form (1), and is continuous.

Proof Sketch

Fix t^{*}. For all t sufficiently close to t^{*} :

$$
F(S(t))=\frac{1}{(2 \pi i)^{2}} \int_{C_{2}} \int_{C_{1}} f\left(\zeta_{1}, \zeta_{2}\right)\left(\zeta_{1} I-S_{1}(t)\right)^{-1}\left(\zeta_{2} I-S_{2}(t)\right)^{-1} d \zeta_{1} d \zeta_{2},
$$

where C_{1} and C_{2} are curves containing the eigenvalues of $S_{1}\left(t^{*}\right)$ and $S_{2}\left(t^{*}\right)$.

Two-Variable Results: Analytic Functions

Lemma 2

If f is a real-valued analytic function on \mathbb{R}^{2} and $S(t)$ is a C^{1} curve in $C S_{n}$, then $\frac{d}{d t} F(S(t))$ exists, is of form (1), and is continuous.

Proof Sketch

Fix t^{*}. For all t sufficiently close to t^{*} :

$$
F(S(t))=\frac{1}{(2 \pi i)^{2}} \int_{C_{2}} \int_{C_{1}} f\left(\zeta_{1}, \zeta_{2}\right)\left(\zeta_{1} I-S_{1}(t)\right)^{-1}\left(\zeta_{2} I-S_{2}(t)\right)^{-1} d \zeta_{1} d \zeta_{2}
$$

where C_{1} and C_{2} are curves containing the eigenvalues of $S_{1}\left(t^{*}\right)$ and $S_{2}\left(t^{*}\right)$.
Since the integrand is bounded near t^{*}, we can differentiate under the integral.
The result is a continuous function of t.

Two-Variable Results: Existence

Proof of Theorem 2:

Two-Variable Results: Existence

Proof of Theorem 2:

Fix t^{*}. Choose a polynomial p so that p and f agree to first order on the joint eigenvalues of $S\left(t^{*}\right)$.

Recall that the eigenvalue functions $\left(x_{i}, y_{i}\right)$, for $i=1, \ldots, n$, are Lipschitz.

Two-Variable Results: Existence

Proof of Theorem 2:

Fix t^{*}. Choose a polynomial p so that p and f agree to first order on the joint eigenvalues of $S\left(t^{*}\right)$.

Recall that the eigenvalue functions $\left(x_{i}, y_{i}\right)$, for $i=1, \ldots, n$, are Lipschitz. Then

$$
\begin{aligned}
\|F(S(t))-P(S(t))\| & =\max _{1 \leq i \leq n}\left|f\left(x_{i}, y_{i}\right)-p\left(x_{i}, y_{i}\right)\right| \\
& =\max _{1 \leq i \leq n}\left|(f-p)\left(x_{i}, y_{i}\right)-(f-p)\left(x_{i}\left(t^{*}\right), y_{i}\left(t^{*}\right)\right)\right| \\
& =o\left(\left|t-t^{*}\right|\right)
\end{aligned}
$$

Proof of Theorem 2:

Fix t^{*}. Choose a polynomial p so that p and f agree to first order on the joint eigenvalues of $S\left(t^{*}\right)$.

Recall that the eigenvalue functions $\left(x_{i}, y_{i}\right)$, for $i=1, \ldots, n$, are Lipschitz. Then

$$
\begin{aligned}
\|F(S(t))-P(S(t))\| & =\max _{1 \leq i \leq n}\left|f\left(x_{i}, y_{i}\right)-p\left(x_{i}, y_{i}\right)\right| \\
& =\max _{1 \leq i \leq n}\left|(f-p)\left(x_{i}, y_{i}\right)-(f-p)\left(x_{i}\left(t^{*}\right), y_{i}\left(t^{*}\right)\right)\right| \\
& =o\left(\left|t-t^{*}\right|\right)
\end{aligned}
$$

Thus, $F(S(t))$ is differentiable at t^{*} and

$$
\left.\frac{d}{d t} F(S(t))\right|_{t=t^{*}}=\left.\frac{d}{d t} P(S(t))\right|_{t=t^{*}}
$$

Two-Variable Results: Continuity

Two-Variable Results: Continuity

Theorem 3 (B., 2010)

If $f \in C^{1}\left(\mathbb{R}^{2}, \mathbb{R}\right)$ and $S(t)$ is a C^{1} curve in $C S_{n}$, then $\frac{d}{d t} F(S(t))$ is continuous.

Two-Variable Results: Continuity

Theorem 3 (B., 2010)

If $f \in C^{1}\left(\mathbb{R}^{2}, \mathbb{R}\right)$ and $S(t)$ is a C^{1} curve in $C S_{n}$, then $\frac{d}{d t} F(S(t))$ is continuous.

Proof

Two-Variable Results: Continuity

Theorem 3 (B., 2010)

If $f \in C^{1}\left(\mathbb{R}^{2}, \mathbb{R}\right)$ and $S(t)$ is a C^{1} curve in $C S_{n}$, then $\frac{d}{d t} F(S(t))$ is continuous.

Proof

Fix t_{0}. For every $g \in C^{1}\left(\mathbb{R}^{2}, \mathbb{R}\right)$ and t^{*} sufficiently close to t_{0},

$$
\left\|\left.\frac{d}{d t} G(S(t))\right|_{t=t^{*}}\right\| \leq C \sup _{(x, y) \in K}\left\{\left|g_{x}(x, y)\right|,\left|g_{y}(x, y)\right|\right\}
$$

for a fixed constant C and compact set K.

Two-Variable Results: Continuity

Theorem 3 (B., 2010)

If $f \in C^{1}\left(\mathbb{R}^{2}, \mathbb{R}\right)$ and $S(t)$ is a C^{1} curve in $C S_{n}$, then $\frac{d}{d t} F(S(t))$ is continuous.

Proof

Fix t_{0}. For every $g \in C^{1}\left(\mathbb{R}^{2}, \mathbb{R}\right)$ and t^{*} sufficiently close to t_{0},

$$
\left\|\left.\frac{d}{d t} G(S(t))\right|_{t=t^{*}}\right\| \leq C \sup _{(x, y) \in K}\left\{\left|g_{x}(x, y)\right|,\left|g_{y}(x, y)\right|\right\}
$$

for a fixed constant C and compact set K.
Let $f \in C^{1}\left(\mathbb{R}^{2}, \mathbb{R}\right)$.

Two-Variable Results: Continuity

Theorem 3 (B., 2010)

If $f \in C^{1}\left(\mathbb{R}^{2}, \mathbb{R}\right)$ and $S(t)$ is a C^{1} curve in $C S_{n}$, then $\frac{d}{d t} F(S(t))$ is continuous.

Proof

Fix t_{0}. For every $g \in C^{1}\left(\mathbb{R}^{2}, \mathbb{R}\right)$ and t^{*} sufficiently close to t_{0},

$$
\left\|\left.\frac{d}{d t} G(S(t))\right|_{t=t^{*}}\right\| \leq C \sup _{(x, y) \in K}\left\{\left|g_{x}(x, y)\right|,\left|g_{y}(x, y)\right|\right\}
$$

for a fixed constant C and compact set K.
Let $f \in C^{1}\left(\mathbb{R}^{2}, \mathbb{R}\right)$. There exists a sequence $\left\{\phi_{m}\right\}$ of analytic functions such that:

$$
\left\{\phi_{m}\right\} \rightarrow f \text { uniformly on } K
$$

and

$$
\sup _{(x, y) \in K}\left\{\left|\left(\phi_{m}-f\right)_{x}(x, y)\right|,\left|\left(\phi_{m}-f\right)_{y}(x, y)\right|\right\} \leq \frac{1}{m} .
$$

Two-Variable Results: Continuity (cont.)

Proof of Theorem 3 (cont.)

Two-Variable Results: Continuity (cont.)

Proof of Theorem 3 (cont.)

Then for all t^{*} sufficiently close to t_{0},

$$
\left\|\left.\frac{d}{d t} \Phi_{m}(S(t))\right|_{t=t^{*}}-\left.\frac{d}{d t} F(S(t))\right|_{t=t^{*}}\right\| \leq \frac{C}{m},
$$

Two-Variable Results: Continuity (cont.)

Proof of Theorem 3 (cont.)

Then for all t^{*} sufficiently close to t_{0},

$$
\left\|\left.\frac{d}{d t} \Phi_{m}(S(t))\right|_{t=t^{*}}-\left.\frac{d}{d t} F(S(t))\right|_{t=t^{*}}\right\| \leq \frac{C}{m},
$$

which implies

$$
\left\{\left.\frac{d}{d t} \boldsymbol{\Phi}_{m}(S(t))\right|_{t=t^{*}}\right\} \text { converges uniformly to }\left.\frac{d}{d t} F(S(t))\right|_{t=t^{*}}
$$

Two-Variable Results: Continuity (cont.)

Proof of Theorem 3 (cont.)

Then for all t^{*} sufficiently close to t_{0},

$$
\left\|\left.\frac{d}{d t} \Phi_{m}(S(t))\right|_{t=t^{*}}-\left.\frac{d}{d t} F(S(t))\right|_{t=t^{*}}\right\| \leq \frac{C}{m},
$$

which implies

$$
\left\{\left.\frac{d}{d t} \Phi_{m}(S(t))\right|_{t=t^{*}}\right\} \text { converges uniformly to }\left.\frac{d}{d t} F(S(t))\right|_{t=t^{*}} .
$$

By Lemma 1, each $\frac{d}{d t} \Phi_{m}(S(t))$ is continuous at each t^{*}.

Two-Variable Results: Continuity (cont.)

Proof of Theorem 3 (cont.)

Then for all t^{*} sufficiently close to t_{0},

$$
\left\|\left.\frac{d}{d t} \Phi_{m}(S(t))\right|_{t=t^{*}}-\left.\frac{d}{d t} F(S(t))\right|_{t=t^{*}}\right\| \leq \frac{C}{m},
$$

which implies

$$
\left\{\left.\frac{d}{d t} \Phi_{m}(S(t))\right|_{t=t^{*}}\right\} \text { converges uniformly to }\left.\frac{d}{d t} F(S(t))\right|_{t=t^{*}} \text {. }
$$

By Lemma 1, each $\frac{d}{d t} \Phi_{m}(S(t))$ is continuous at each t^{*}. Thus, $\frac{d}{d t} F(S(t))$ is continuous in a neighborhood of t_{0}.

Generalizations

- Let $f \in C^{1}\left(\mathbb{R}^{d}, \mathbb{R}\right)$ and define
$C S_{n}^{d}:=\{$ d-tuples of pairwise commuting $n \times n$ self-adjoint matrices $\}$. If $S(t)$ is a C^{1} curve in $C S_{n}^{d}$, then

$$
\frac{d}{d t} F(S(t)) \text { exists and is continuous. }
$$

Generalizations

- Let $f \in C^{1}\left(\mathbb{R}^{d}, \mathbb{R}\right)$ and define
$C S_{n}^{d}:=\{$ d-tuples of pairwise commuting $n \times n$ self-adjoint matrices $\}$. If $S(t)$ is a C^{1} curve in $C S_{n}^{d}$, then

$$
\frac{d}{d t} F(S(t)) \text { exists and is continuous. }
$$

- Let $f \in C^{m}\left(\mathbb{R}^{2}, \mathbb{R}\right)$ and $S(t)$ be a C^{m} curve in $C S_{n}$.

Then

$$
\frac{d^{m}}{d t^{m}} F(S(t)) \text { exists and is continuous. }
$$

References

K.A. Bickel, Differentiating matrix functions, to appear.
A.L. Brown and H.L. Vasudeva. The calculus of operator functions and operator convexity. Dissertationes Mathematicae, Polska Akademia Nauk, Instytut Matematyczny, 2000.
F. Rellich. Störungstheorie der Spektralzerlegung, I, Ann. of Math., 113: 600-619, 1937.

