Differentiating Matrix Functions

Kelly Bickel Washington University St. Louis, Missouri 63130

> SEAM 27 March 18, 2011

Kelly Bickel Washington University St. Louis, Missouri 63130 Differentiating Matrix Functions

Case 1: $f : \mathbb{R} \to \mathbb{R}$

< ∃⇒

-

æ

Case 1: $f : \mathbb{R} \to \mathbb{R}$

Define $S_n := \{n \times n \text{ self-adjoint matrices}\}.$

ヨト イヨト

Case 1: $f : \mathbb{R} \to \mathbb{R}$

Define $S_n := \{n \times n \text{ self-adjoint matrices}\}$. Given $A \in S_n$ with spectral decomposition

$$A = U \left(\begin{array}{cc} x_1 & & \\ & \ddots & \\ & & x_n \end{array} \right) U^*,$$

< ≣⇒

Case 1: $f : \mathbb{R} \to \mathbb{R}$

Define $S_n := \{n \times n \text{ self-adjoint matrices}\}$. Given $A \in S_n$ with spectral decomposition

$$A = U \begin{pmatrix} x_1 & & \\ & \ddots & \\ & & x_n \end{pmatrix} U^*, \quad \text{define } F(A) := U \begin{pmatrix} f(x_1) & & \\ & \ddots & \\ & & f(x_n) \end{pmatrix} U^*$$

< ∃ →

Case 1: $f : \mathbb{R} \to \mathbb{R}$

Define $S_n := \{n \times n \text{ self-adjoint matrices}\}$. Given $A \in S_n$ with spectral decomposition

$$A = U \begin{pmatrix} x_1 & & \\ & \ddots & \\ & & x_n \end{pmatrix} U^*, \quad \text{define } F(A) := U \begin{pmatrix} f(x_1) & & \\ & \ddots & \\ & & f(x_n) \end{pmatrix} U^*$$

< ≣⇒

Then, $F: S_n \rightarrow S_n$.

Case 2: $f : \mathbb{R}^2 \to \mathbb{R}$

- ∢ ≣ ▶

< ∃ >

æ

Case 2: $f : \mathbb{R}^2 \to \mathbb{R}$

Define $CS_n := \{ \text{ pairs of commuting } n \times n \text{ self-adjoint matrices} \}.$

ヨト イヨト

Case 2: $f : \mathbb{R}^2 \to \mathbb{R}$

Define $CS_n := \{ \text{ pairs of commuting } n \times n \text{ self-adjoint matrices} \}$. Let $A = (A_1, A_2) \in CS_n$ with spectral decomposition

$$A_1 = U \left(egin{array}{ccc} x_1 & & \ & \ddots & \ & & x_n \end{array}
ight) \ U^* ext{ and } A_2 = U \left(egin{array}{ccc} y_1 & & \ & \ddots & \ & & y_n \end{array}
ight) \ U^*.$$

< ∃ →

Case 2: $f : \mathbb{R}^2 \to \mathbb{R}$

Define $CS_n := \{ \text{ pairs of commuting } n \times n \text{ self-adjoint matrices} \}$. Let $A = (A_1, A_2) \in CS_n$ with spectral decomposition

$$A_1 = U \begin{pmatrix} x_1 & & \\ & \ddots & \\ & & x_n \end{pmatrix} U^* \text{ and } A_2 = U \begin{pmatrix} y_1 & & \\ & \ddots & \\ & & y_n \end{pmatrix} U^*.$$

< 臣 > (臣 >)

The pairs (x_i, y_i) are the called the **joint eigenvalues** of A for i = 1, ..., n.

Case 2: $f : \mathbb{R}^2 \to \mathbb{R}$

Define $CS_n := \{ \text{ pairs of commuting } n \times n \text{ self-adjoint matrices} \}$. Let $A = (A_1, A_2) \in CS_n$ with spectral decomposition

$$A_1 = U \begin{pmatrix} x_1 & & \\ & \ddots & \\ & & x_n \end{pmatrix} U^* \text{ and } A_2 = U \begin{pmatrix} y_1 & & \\ & \ddots & \\ & & y_n \end{pmatrix} U^*.$$

The pairs (x_i, y_i) are the called the **joint eigenvalues** of A for i = 1, ..., n. Define

$$F(A) := U \begin{pmatrix} f(x_1, y_1) & & \\ & \ddots & \\ & & f(x_n, y_n) \end{pmatrix} U^*$$

.

▲■▶ ▲臣▶ ▲臣▶ 三臣 - のへの

Case 2: $f : \mathbb{R}^2 \to \mathbb{R}$

Define $CS_n := \{ \text{ pairs of commuting } n \times n \text{ self-adjoint matrices} \}$. Let $A = (A_1, A_2) \in CS_n$ with spectral decomposition

$$A_1 = U \begin{pmatrix} x_1 & & \\ & \ddots & \\ & & x_n \end{pmatrix} U^* \text{ and } A_2 = U \begin{pmatrix} y_1 & & \\ & \ddots & \\ & & y_n \end{pmatrix} U^*.$$

The pairs (x_i, y_i) are the called the **joint eigenvalues** of A for i = 1, ..., n. Define

$$F(A) := U \begin{pmatrix} f(x_1, y_1) & & \\ & \ddots & \\ & & f(x_n, y_n) \end{pmatrix} U^*.$$

★週 → ★ 注 → ★ 注 → 一注

Then, $F : CS_n \rightarrow S_n$.

Question: If the original function f is continuously differentiable, is the induced matrix function F continuously differentiable?

글 🖌 🖌 글 🕨

Question: If the original function f is continuously differentiable, is the induced matrix function F continuously differentiable?

Simpler question: If $f : \mathbb{R} \to \mathbb{R}$ and S(t) is a C^1 curve in S_n , does $\frac{d}{dt}F(S(t))$ exist?

▲글▶ ▲글▶

Question: If the original function f is continuously differentiable, is the induced matrix function F continuously differentiable?

Simpler question: If $f : \mathbb{R} \to \mathbb{R}$ and S(t) is a C^1 curve in S_n , does $\frac{d}{dt}F(S(t))$ exist?

First Approach: Write:

$$S(t) = U(t) \left(egin{array}{cc} x_1(t) & & \ & \ddots & \ & & x_n(t) \end{array}
ight) U^*(t),$$

Question: If the original function f is continuously differentiable, is the induced matrix function F continuously differentiable?

Simpler question: If $f : \mathbb{R} \to \mathbb{R}$ and S(t) is a C^1 curve in S_n , does $\frac{d}{dt}F(S(t))$ exist?

First Approach: Write:

$$S(t) = U(t) \begin{pmatrix} x_1(t) & & \\ & \ddots & \\ & & x_n(t) \end{pmatrix} U^*(t),$$

so that:

$$F(S(t)) = U(t) \begin{pmatrix} f(x_1(t)) & & \\ & \ddots & \\ & & f(x_n(t)) \end{pmatrix} U^*(t).$$

Question: If the original function f is continuously differentiable, is the induced matrix function F continuously differentiable?

Simpler question: If $f : \mathbb{R} \to \mathbb{R}$ and S(t) is a C^1 curve in S_n , does $\frac{d}{dt}F(S(t))$ exist?

First Approach: Write:

$$S(t) = U(t) \left(egin{array}{cc} x_1(t) & & \ & \ddots & \ & & \ddots & \ & & & x_n(t) \end{array}
ight) U^*(t),$$

so that:

$$F(S(t)) = U(t) \begin{pmatrix} f(x_1(t)) & & \\ & \ddots & \\ & & f(x_n(t)) \end{pmatrix} U^*(t).$$

ヨト・モート

Then, we can differentiate using the product rule.

프 + + 프 +

$$S(t) = e^{-\frac{1}{t^2}} \begin{pmatrix} \cos(\frac{2}{t}) & \sin(\frac{2}{t}) \\ & \\ \sin(\frac{2}{t}) & -\cos(\frac{2}{t}) \end{pmatrix} \quad \text{for } t \neq 0, \quad \text{and} \quad S(0) = 0.$$

프 + + 프 +

$$S(t) = e^{-\frac{1}{t^2}} \begin{pmatrix} \cos(\frac{2}{t}) & \sin(\frac{2}{t}) \\ & \\ \sin(\frac{2}{t}) & -\cos(\frac{2}{t}) \end{pmatrix} \text{ for } t \neq 0, \text{ and } S(0) = 0.$$

For $t \neq 0$, the eigenvalues of S(t) are $\pm e^{-\frac{1}{t^2}}$ and their associated eigenvectors are:

$$\pm \begin{pmatrix} \cos(\frac{1}{t}) \\ \sin(\frac{1}{t}) \end{pmatrix}$$
 and $\pm \begin{pmatrix} \sin(\frac{1}{t}) \\ -\cos(\frac{1}{t}) \end{pmatrix}$.

4 E b

$$S(t) = e^{-\frac{1}{t^2}} \begin{pmatrix} \cos(\frac{2}{t}) & \sin(\frac{2}{t}) \\ & \\ \sin(\frac{2}{t}) & -\cos(\frac{2}{t}) \end{pmatrix} \text{ for } t \neq 0, \text{ and } S(0) = 0.$$

For $t \neq 0$, the eigenvalues of S(t) are $\pm e^{-\frac{1}{t^2}}$ and their associated eigenvectors are:

$$\pm \left(\begin{array}{c} \cos(\frac{1}{t}) \\ \sin(\frac{1}{t}) \end{array}\right) \text{ and } \pm \left(\begin{array}{c} \sin(\frac{1}{t}) \\ -\cos(\frac{1}{t}) \end{array}\right).$$

Thus, even an infinitely differentiable curve can have discontinuous eigenvectors.

< ≣ >

One-Variable Results

Define the spaces:

 $C^{m}(\mathbb{R},\mathbb{R}) = \{f:\mathbb{R} \to \mathbb{R}: f \text{ is } m \text{-times continuously differentiable}\}$ $C^{m}(S_{n},S_{n}) = \{F:S_{n} \to S_{n}: F \text{ is } m \text{-times continuously Frechét differentiable}\}$

 $S_n(K) = \{n \times n \text{ self -adjoint matrices with spectrum in } K\}.$

One-Variable Results

Define the spaces:

 $C^{m}(\mathbb{R},\mathbb{R}) = \{f:\mathbb{R} \to \mathbb{R}: f \text{ is } m \text{-times continuously differentiable}\}$ $C^{m}(S_{n},S_{n}) = \{F:S_{n} \to S_{n}: F \text{ is } m \text{-times continuously Frechét differentiable}\}$

 $S_n(K) = \{n \times n \text{ self -adjoint matrices with spectrum in } K\}.$

Theorem 1 (Brown and Vasudeva, 2000)

If f is in $C^{m}(\mathbb{R},\mathbb{R})$, then the induced matrix function F is in $C^{m}(S_{n},S_{n})$.

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ の Q ()

Proof Sketch:

프 + + 프 +

Proof Sketch:

• The result follows by direct calculation for polynomials.

< ∃ →

Proof Sketch:

- The result follows by direct calculation for polynomials.
- $C^m(\mathbb{R},\mathbb{R})$ and $C^m(S_n,S_n)$ are Frechét spaces induced by the semi-norms

$$\|f^{(l)}\|_{\mathcal{K}} = \sup_{x\in\mathcal{K}} |f^{(l)}(x)|$$
 and $\|d^{l}F\|_{\mathcal{K}} = \sup_{A\in S_{n}(\mathcal{K})} \|d^{l}F(A)\|,$

< ∃ →

for $0 \leq l \leq m$ and $K \subset \mathbb{R}$ compact.

Proof Sketch:

- The result follows by direct calculation for polynomials.
- $C^m(\mathbb{R},\mathbb{R})$ and $C^m(S_n,S_n)$ are Frechét spaces induced by the semi-norms

$$\|f^{(l)}\|_{\mathcal{K}} = \sup_{x\in\mathcal{K}} |f^{(l)}(x)|$$
 and $\|d^{l}F\|_{\mathcal{K}} = \sup_{A\in S_{n}(\mathcal{K})} \|d^{l}F(A)\|,$

for $0 \leq l \leq m$ and $K \subset \mathbb{R}$ compact.

• For each polynomial p, index I, and compact K:

 $\|d'P\|_{\mathcal{K}} \leq n! I! \|p^{(I)}\|_{\mathcal{K}}$

-∢ ≣ ▶

Proof Sketch:

- The result follows by direct calculation for polynomials.
- $C^m(\mathbb{R},\mathbb{R})$ and $C^m(S_n,S_n)$ are Frechét spaces induced by the semi-norms

$$\|f^{(l)}\|_{\mathcal{K}} = \sup_{x\in\mathcal{K}} |f^{(l)}(x)|$$
 and $\|d^{l}F\|_{\mathcal{K}} = \sup_{A\in S_{n}(\mathcal{K})} \|d^{l}F(A)\|,$

for $0 \leq l \leq m$ and $K \subset \mathbb{R}$ compact.

• For each polynomial *p*, index *l*, and compact *K*:

$$\|d^{I}P\|_{K} \leq n!I!\|p^{(I)}\|_{K}$$

• For $f \in C^m(\mathbb{R}, \mathbb{R})$, there exists a sequence of polynomials $\{p_j\}$ such that

$$\{p_j\} \to f$$
 in $C^m(\mathbb{R},\mathbb{R})$.

글 🕨 🖌 글 🕨

Proof Sketch:

- The result follows by direct calculation for polynomials.
- $C^m(\mathbb{R},\mathbb{R})$ and $C^m(S_n,S_n)$ are Frechét spaces induced by the semi-norms

$$\|f^{(l)}\|_{\mathcal{K}} = \sup_{x\in\mathcal{K}} |f^{(l)}(x)|$$
 and $\|d^{l}F\|_{\mathcal{K}} = \sup_{A\in S_{n}(\mathcal{K})} \|d^{l}F(A)\|,$

for $0 \leq l \leq m$ and $K \subset \mathbb{R}$ compact.

• For each polynomial *p*, index *l*, and compact *K*:

$$\|d^{I}P\|_{K} \leq n!I!\|p^{(I)}\|_{K}$$

• For $f \in C^m(\mathbb{R}, \mathbb{R})$, there exists a sequence of polynomials $\{p_j\}$ such that

$$\{p_j\} \to f$$
 in $C^m(\mathbb{R},\mathbb{R})$.

• Then, $\{P_j\}$ is Cauchy and hence, converges to some $G \in C^m(S_n, S_n)$. It can be shown that G = F.

If $f : \mathbb{R}^2 \to \mathbb{R}$, then $F : CS_n \to S_n$.

- ∢ ≣ ▶

< 3 >

- If $f : \mathbb{R}^2 \to \mathbb{R}$, then $F : CS_n \to S_n$.
 - The best notion of differentiation on CS_n is differentiation along curves.

글 🖌 🖌 글 🛌

3

If $f : \mathbb{R}^2 \to \mathbb{R}$, then $F : CS_n \to S_n$.

• The best notion of differentiation on CS_n is differentiation along curves.

Lemma 1

Let $S(t) = (S_1(t), S_2(t))$ be a curve in CS_n . If S(t) is Lipschitz, the joint eigenvalues of S(t) can be represented by Lipschitz functions

 $(x_i(t), y_i(t))$ for i = 1, ..., n.

▲글▶ ▲글▶

If $f : \mathbb{R}^2 \to \mathbb{R}$, then $F : CS_n \to S_n$.

• The best notion of differentiation on CS_n is differentiation along curves.

Lemma 1

Let $S(t) = (S_1(t), S_2(t))$ be a curve in CS_n . If S(t) is Lipschitz, the joint eigenvalues of S(t) can be represented by Lipschitz functions

 $(x_i(t), y_i(t))$ for i = 1, ..., n.

• Let U(t) = the unitary matrix diagonalizing S(t) for each t.

If $f : \mathbb{R}^2 \to \mathbb{R}$, then $F : CS_n \to S_n$.

• The best notion of differentiation on CS_n is differentiation along curves.

Lemma 1

Let $S(t) = (S_1(t), S_2(t))$ be a curve in CS_n . If S(t) is Lipschitz, the joint eigenvalues of S(t) can be represented by Lipschitz functions

$$(x_i(t), y_i(t))$$
 for $i = 1, ..., n$.

- Let U(t) = the unitary matrix diagonalizing S(t) for each t.
- For ease of notation, define:

$$egin{array}{rcl} U & := & U(t) \ (x_i,y_i) & := & (x_i(t),y_i(t)) & ext{ for } i=1,\ldots,n. \ S'_r & := & S'_r(t) & ext{ for } r=1,2. \end{array}$$

< 三ト < 三ト

Divided Differences

Let $f \in C^1(\mathbb{R}, \mathbb{R})$. The first divided difference of f is defined by

$$f^{[1]}(a,b) = \frac{f(a)-f(b)}{a-b}$$
 for $a \neq b$

$$f^{[1]}(a,b) = f'(a)$$
 for $a = b$.

★ 문 → < 문 → </p>

3

Divided Differences

Let $f \in C^1(\mathbb{R}, \mathbb{R})$. The first divided difference of f is defined by

$$f^{[1]}(a,b) = rac{f(a)-f(b)}{a-b}$$
 for $a
eq b$

$$f^{[1]}(a,b) = f'(a)$$
 for $a = b$.

Let $f \in C^1(\mathbb{R}^2, \mathbb{R})$. The **first divided difference** of f taken in the first variable is defined by

$$f^{[1,0]}(a,b;c) = \frac{f(a,c) - f(b,c)}{a-b} \quad \text{for } a \neq b$$
$$f^{[1,0]}(a,b;c) = f^{(1,0)}(a,c) \quad \text{for } a = b.$$

(문) (문) (문)

Divided Differences

Let $f \in C^1(\mathbb{R}, \mathbb{R})$. The first divided difference of f is defined by

$$f^{[1]}(a,b) = rac{f(a)-f(b)}{a-b}$$
 for $a
eq b$

$$f^{[1]}(a,b) = f'(a)$$
 for $a = b$.

Let $f \in C^1(\mathbb{R}^2, \mathbb{R})$. The **first divided difference** of f taken in the first variable is defined by

$$f^{[1,0]}(a,b;c) = \frac{f(a,c) - f(b,c)}{a-b} \quad \text{for } a \neq b$$
$$f^{[1,0]}(a,b;c) = f^{(1,0)}(a,c) \quad \text{for } a = b.$$

(문) (문) (문)

If $f \in C^1(\mathbb{R}^2, \mathbb{R})$ and S(t) is a C^1 curve in CS_n , then $\frac{d}{dt}F(S(t))$ exists and $\frac{d}{dt}F(S(t)) = U\left(\left[f^{[1,0]}(x_i, x_j; y_j)\right]_{i,j=1}^n \odot \left(U^* S'_1 U\right) + \left[f^{[0,1]}(x_i; y_i, y_j)\right]_{i,j=1}^n \odot \left(U^* S'_2 U\right)\right)U^*, \quad (1)$

where $f^{[1,0]}$ and $f^{[0,1]}$ are divided differences taken in the first and second variables respectively and \odot denotes the Schur product.

- 金田子 - 金田子 - -

Two-Variable Results: Analytic Functions

Lemma 2

If f is a real-valued analytic function on \mathbb{R}^2 and S(t) is a C^1 curve in CS_n , then $\frac{d}{dt}F(S(t))$ exists, is of form (1), and is continuous.

Lemma 2

If f is a real-valued analytic function on \mathbb{R}^2 and S(t) is a C^1 curve in CS_n , then $\frac{d}{dt}F(S(t))$ exists, is of form (1), and is continuous.

Proof Sketch

Fix t^* . For all t sufficiently close to t^* :

Lemma 2

If f is a real-valued analytic function on \mathbb{R}^2 and S(t) is a C^1 curve in CS_n , then $\frac{d}{dt}F(S(t))$ exists, is of form (1), and is continuous.

Proof Sketch

Fix t^* . For all t sufficiently close to t^* :

$$F(S(t)) = \frac{1}{(2\pi i)^2} \int_{C_2} \int_{C_1} f(\zeta_1, \zeta_2) \ (\zeta_1 I - S_1(t))^{-1} \ (\zeta_2 I - S_2(t))^{-1} \ d\zeta_1 d\zeta_2,$$

where C_1 and C_2 are curves containing the eigenvalues of $S_1(t^*)$ and $S_2(t^*)$.

Lemma 2

If f is a real-valued analytic function on \mathbb{R}^2 and S(t) is a C^1 curve in CS_n , then $\frac{d}{dt}F(S(t))$ exists, is of form (1), and is continuous.

Proof Sketch

Fix t^* . For all t sufficiently close to t^* :

$$F(S(t)) = \frac{1}{(2\pi i)^2} \int_{C_2} \int_{C_1} f(\zeta_1, \zeta_2) \ (\zeta_1 I - S_1(t))^{-1} \ (\zeta_2 I - S_2(t))^{-1} \ d\zeta_1 d\zeta_2,$$

where C_1 and C_2 are curves containing the eigenvalues of $S_1(t^*)$ and $S_2(t^*)$. Since the integrand is bounded near t^* , we can differentiate under the integral. The result is a continuous function of t.

Two-Variable Results: Existence

Proof of Theorem 2:

< ≣⇒

≣ ▶

Proof of Theorem 2:

Fix t^* . Choose a polynomial p so that p and f agree to first order on the joint eigenvalues of $S(t^*)$.

Recall that the eigenvalue functions (x_i, y_i) , for i = 1, ..., n, are Lipschitz.

→ Ξ →

Proof of Theorem 2:

Fix t^* . Choose a polynomial p so that p and f agree to first order on the joint eigenvalues of $S(t^*)$.

Recall that the eigenvalue functions (x_i, y_i) , for i = 1, ..., n, are Lipschitz. Then

$$\begin{split} \|F(S(t)) - P(S(t))\| &= \max_{1 \le i \le n} |f(x_i, y_i) - p(x_i, y_i)| \\ &= \max_{1 \le i \le n} |(f - p)(x_i, y_i) - (f - p)(x_i(t^*), y_i(t^*))| \\ &= o(|t - t^*|), \end{split}$$

三下 人王下

Proof of Theorem 2:

Fix t^* . Choose a polynomial p so that p and f agree to first order on the joint eigenvalues of $S(t^*)$.

Recall that the eigenvalue functions (x_i, y_i) , for i = 1, ..., n, are Lipschitz. Then

$$\begin{aligned} \|F(S(t)) - P(S(t))\| &= \max_{1 \le i \le n} |f(x_i, y_i) - p(x_i, y_i)| \\ &= \max_{1 \le i \le n} |(f - p)(x_i, y_i) - (f - p)(x_i(t^*), y_i(t^*))| \\ &= o(|t - t^*|), \end{aligned}$$

Thus, F(S(t)) is differentiable at t^* and

$$\frac{d}{dt}F(S(t))\big|_{t=t^*} = \frac{d}{dt}P(S(t))\big|_{t=t^*}. \qquad \Box$$

(E) < E) </p>

Two-Variable Results: Continuity

Kelly Bickel Washington University St. Louis, Missouri 63130 Differentiating Matrix Functions

< ∃⇒

If $f \in C^1(\mathbb{R}^2, \mathbb{R})$ and S(t) is a C^1 curve in CS_n , then $\frac{d}{dt}F(S(t))$ is continuous.

- ∢ ⊒ ▶

If $f \in C^1(\mathbb{R}^2, \mathbb{R})$ and S(t) is a C^1 curve in CS_n , then $\frac{d}{dt}F(S(t))$ is continuous.

Proof

(문) (문)

If $f \in C^1(\mathbb{R}^2, \mathbb{R})$ and S(t) is a C^1 curve in CS_n , then $\frac{d}{dt}F(S(t))$ is continuous.

Proof

Fix t_0 . For every $g \in C^1(\mathbb{R}^2, \mathbb{R})$ and t^* sufficiently close to t_0 ,

$$\|\frac{d}{dt}G(S(t))|_{t=t^*}\| \leq C \sup_{(x,y)\in K} \{|g_x(x,y)|, |g_y(x,y)|\},\$$

for a fixed constant C and compact set K.

If $f \in C^1(\mathbb{R}^2, \mathbb{R})$ and S(t) is a C^1 curve in CS_n , then $\frac{d}{dt}F(S(t))$ is continuous.

Proof

Fix t_0 . For every $g \in C^1(\mathbb{R}^2, \mathbb{R})$ and t^* sufficiently close to t_0 ,

$$\|\frac{d}{dt}G(S(t))|_{t=t^*}\| \leq C \sup_{(x,y)\in K} \{|g_x(x,y)|, |g_y(x,y)|\},\$$

-∢ ⊒ ▶

for a fixed constant C and compact set K.

Let $f \in C^1(\mathbb{R}^2, \mathbb{R})$.

If $f \in C^1(\mathbb{R}^2, \mathbb{R})$ and S(t) is a C^1 curve in CS_n , then $\frac{d}{dt}F(S(t))$ is continuous.

Proof

Fix t_0 . For every $g \in C^1(\mathbb{R}^2, \mathbb{R})$ and t^* sufficiently close to t_0 ,

$$\|\frac{d}{dt}G(S(t))|_{t=t^*}\| \leq C \sup_{(x,y)\in K} \{|g_x(x,y)|, |g_y(x,y)|\},\$$

for a fixed constant C and compact set K.

Let $f \in C^1(\mathbb{R}^2, \mathbb{R})$. There exists a sequence $\{\phi_m\}$ of analytic functions such that: $\{\phi_m\} \to f$ uniformly on K

and

$$\sup_{x,y)\in K} \left\{ \left| (\phi_m - f)_x(x,y) \right|, \left| (\phi_m - f)_y(x,y) \right| \right\} \le \frac{1}{m}.$$

Proof of Theorem 3 (cont.)

< ∃ >

-

Proof of Theorem 3 (cont.)

Then for all t^* sufficiently close to t_0 ,

$$\left\|\frac{d}{dt}\Phi_m(S(t))\right|_{t=t^*}-\frac{d}{dt}F(S(t))\Big|_{t=t^*}\right\|\leq \frac{C}{m},$$

< ∃⇒

Proof of Theorem 3 (cont.)

Then for all t^* sufficiently close to t_0 ,

$$\left\|\frac{d}{dt}\Phi_m(S(t))\right|_{t=t^*}-\frac{d}{dt}F(S(t))\big|_{t=t^*}\right\|\leq \frac{C}{m},$$

which implies

$$\left\{\frac{d}{dt}\Phi_m(S(t))|_{t=t^*}\right\} \text{ converges uniformly to } \frac{d}{dt}F(S(t))|_{t=t^*}.$$

< ∃⇒

Proof of Theorem 3 (cont.)

Then for all t^* sufficiently close to t_0 ,

$$\left\|\frac{d}{dt}\Phi_m(S(t))\right|_{t=t^*}-\frac{d}{dt}F(S(t))\big|_{t=t^*}\right\|\leq \frac{C}{m},$$

which implies

$$\left\{\frac{d}{dt}\Phi_m(S(t))|_{t=t^*}\right\} \text{ converges uniformly to } \frac{d}{dt}F(S(t))|_{t=t^*}.$$

< ≣⇒

By Lemma 1, each $\frac{d}{dt}\Phi_m(S(t))$ is continuous at each t^* .

Proof of Theorem 3 (cont.)

Then for all t^* sufficiently close to t_0 ,

$$\left\|\frac{d}{dt}\Phi_m(S(t))\right|_{t=t^*}-\frac{d}{dt}F(S(t))\big|_{t=t^*}\right\|\leq \frac{C}{m},$$

which implies

$$\left\{\frac{d}{dt}\Phi_m(S(t))|_{t=t^*}\right\} \text{ converges uniformly to } \frac{d}{dt}F(S(t))|_{t=t^*}.$$

医下 不良下

By Lemma 1, each $\frac{d}{dt}\Phi_m(S(t))$ is continuous at each t^* . Thus, $\frac{d}{dt}F(S(t))$ is continuous in a neighborhood of t_0 .

Generalizations

• Let $f \in \mathcal{C}^1(\mathbb{R}^d,\mathbb{R})$ and define

 $CS_n^d := \{ d$ -tuples of pairwise commuting $n \times n$ self-adjoint matrices $\}$. If S(t) is a C^1 curve in CS_n^d , then

$$\frac{d}{dt}F(S(t))$$
 exists and is continuous.

- ∢ ⊒ ▶

Generalizations

• Let $f\in C^1(\mathbb{R}^d,\mathbb{R})$ and define

 $CS_n^d := \{ d$ -tuples of pairwise commuting $n \times n$ self-adjoint matrices $\}$. If S(t) is a C^1 curve in CS_n^d , then

$$\frac{d}{dt}F(S(t))$$
 exists and is continuous.

• Let $f \in C^m(\mathbb{R}^2, \mathbb{R})$ and S(t) be a C^m curve in CS_n .

Then

$$\frac{d^m}{dt^m}F(S(t))$$
 exists and is continuous.

E > < E >

K.A. Bickel, Differentiating matrix functions, to appear.

A.L. Brown and H.L. Vasudeva. The calculus of operator functions and operator convexity. *Dissertationes Mathematicae, Polska Akademia Nauk, Instytut Matematyczny*, 2000.

F. Rellich. Störungstheorie der Spektralzerlegung, I, *Ann. of Math.*, 113: 600-619, 19 37.

- ∢ ≣ →