Schroeder's Equation in Several Variables

Robert A. Bridges
bridges@purdue.edu

Purdue University
West Lafayette, IN
April 23, 2011

Schroeder's Equation for $n=1$

Schroeder's
Equation in Several Variables

History \& Preliminaries
The Problem
Notation
Outline
Examples
Reducing to Jordan form

Using
Compactness of C_{ϕ}

Jordan form of U

Results

Given analytic
$\phi: \mathbb{D} \rightarrow \mathbb{D}$ such that

- $\phi(0)=0$.
- $\phi \neq 0$.

Does there exist an analytic $f: \mathbb{D} \rightarrow \mathbb{C}$ such that

■ $f \circ \phi=\phi^{\prime}(0) f$ or $C_{\phi} f=\phi^{\prime}(0) f$

- $f \neq 0$?

Schroeder's Equation for $n=1$

Schroeder's
Equation in Several
Variables

History \& Preliminaries The Problem Notation

Outline
Examples
Reducing to Jordan form

Using
Compactness of C_{ϕ}

Given analytic $\phi: \mathbb{D} \rightarrow \mathbb{D}$ such that

- $\phi(0)=0$.
- $\phi \neq 0$.

Does there exist an analytic $f: \mathbb{D} \rightarrow \mathbb{C}$ such that

■ $f \circ \phi=\phi^{\prime}(0) f$ or $C_{\phi} f=\phi^{\prime}(0) f$

- $f \neq 0$?

Theorem (Koenig 1884)
$Y E S$! if $0<\left|\phi^{\prime}(0)\right| \leq 1$

Schroeder's Equation for $n=1$

Schroeder's
Equation in Several
Variables

History \& Preliminaries The Problem Notation

Outline
Examples
Reducing to Jordan form

Using
Compactness of C_{ϕ}

Jordan form of U

Results

Given analytic $\phi: \mathbb{D} \rightarrow \mathbb{D}$ such that

- $\phi(0)=0$.
- $\phi \neq 0$.

Does there exist an analytic $f: \mathbb{D} \rightarrow \mathbb{C}$ such that

■ $f \circ \phi=\phi^{\prime}(0) f$ or $C_{\phi} f=\phi^{\prime}(0) f$

- $f \neq 0$?

Theorem (Koenig 1884)
YES! if $0<\left|\phi^{\prime}(0)\right| \leq 1$
Proof: $\frac{\phi^{(n)}(z)}{\phi^{\prime}(0)^{n}} \rightarrow f(z)$

2003 Cowen \& MacCluer generalize to \mathbb{B}^{n}

Schroeder's

Equation in Several Variables

History \&

 PreliminariesThe Problem
Notation
Outline
Examples
Reducing to Jordan form

Using
Compactness of C_{ϕ}

Jordan form of U

Results

Given $\phi: \mathbb{B}^{n} \rightarrow \mathbb{B}^{n}$
such that

- ϕ analytic
- $\phi(0)=0$

2003 Cowen \& MacCluer generalize to \mathbb{B}^{n}

Schroeder's

Equation in Several Variables

History \& Preliminaries
The Problem
Notation
Outline
Examples
Reducing to Jordan form

Using
Compactness of C_{ϕ}

Jordan form of U

Results

Given $\phi: \mathbb{B}^{n} \rightarrow \mathbb{B}^{n}$
such that

- ϕ analytic
- $\phi(0)=0$
- $\phi^{\prime}(0)$ full rank

2003 Cowen \& MacCluer generalize to \mathbb{B}^{n}

Schroeder's
Equation in Several Variables

History \& Preliminaries
The Problem
Notation
Outline
Examples
Reducing to Jordan form

Using
Compactness of C_{ϕ}

Jordan form of U

Results

Given $\phi: \mathbb{B}^{n} \rightarrow \mathbb{B}^{n}$ such that

- ϕ analytic
- $\phi(0)=0$
- $\phi^{\prime}(0)$ full rank
- $|\phi(z)|<|z|$ for $0<|z|<1$

Does there exist
$F: \mathbb{B}^{n} \rightarrow \mathbb{C}^{n}$ such that

- F is analytic
- $F \circ \phi=\phi^{\prime}(0) F$

2003 Cowen \& MacCluer generalize to \mathbb{B}^{n}

Schroeder's

Equation in Several Variables

History \& Preliminaries
The Problem
Notation
Outline
Examples
Reducing to Jordan form

Using
Compactness of C_{ϕ}

Jordan form of U

Given $\phi: \mathbb{B}^{n} \rightarrow \mathbb{B}^{n}$ such that

- ϕ analytic

■ $\phi(0)=0$

- $\phi^{\prime}(0)$ full rank
- $|\phi(z)|<|z|$ for $0<|z|<1$

Does there exist
$F: \mathbb{B}^{n} \rightarrow \mathbb{C}^{n}$ such that

- F is analytic

■ $F \circ \phi=\phi^{\prime}(0) F$

- F has full rank near 0 .

2003 Cowen \& MacCluer generalize to \mathbb{B}^{n}

Schroeder's

Equation
in Several
Variables

History \&
Preliminaries

The Problem

Notation
Outline
Examples
Reducing to
Jordan form
Using
Compactness of C_{ϕ}

Jordan form of U

Results

Given $\phi: \mathbb{B}^{n} \rightarrow \mathbb{B}^{n}$ such that

- ϕ analytic

■ $\phi(0)=0$

- $\phi^{\prime}(0)$ full rank

■ $|\phi(z)|<|z|$ for $0<|z|<1$

Does there exist
$F: \mathbb{B}^{n} \rightarrow \mathbb{C}^{n}$ such that

- F is analytic

■ $F \circ \phi=\phi^{\prime}(0) F$

- F has full rank near 0 .

C \& M give necessary and sufficient conditions under the additional hypothesis

■ $\phi^{\prime}(0)$ diagonalizable.

Notation

Schroeder's
Equation in Several Variables

History \& Preliminaries
The Problem
Notation
Outline
Examples
Reducing to Jordan form

Using
Compactness of C_{ϕ}

Jordan form of U

Results

Represent functions as (infinite) column vectors with entries from their Taylor Series; for example

$$
f\left(z_{1}, z_{2}\right)=a_{0,0}+a_{1,0} z_{1}+a_{0,1} z_{2}+a_{2,0} z_{1}^{2}+\ldots=\left[\begin{array}{c}
a_{0,0} \\
a_{1,0} \\
a_{0,1} \\
\vdots
\end{array}\right] .
$$

Notation

Schroeder's
Equation
in Several
Variables

History \&
Preliminaries
The Problem
Notation
Outline
Examples
Reducing to Jordan form

Using
Compactness of C_{ϕ}

Jordan form of U

Results

Represent functions as (infinite) column vectors with entries from their Taylor Series; for example

$$
f\left(z_{1}, z_{2}\right)=a_{0,0}+a_{1,0} z_{1}+a_{0,1} z_{2}+a_{2,0} z_{1}^{2}+\ldots=\left[\begin{array}{c}
a_{0,0} \\
a_{1,0} \\
a_{0,1} \\
\vdots
\end{array}\right] .
$$

We want to represent C_{ϕ} as a large (infinite) matrix. Let $\phi=\left(\phi_{1}, \phi_{2}\right)$ with

$$
\phi_{1}=\left[\begin{array}{c}
0 \\
b_{1,0} \\
b_{0,1} \\
\vdots
\end{array}\right], \text { and } \phi_{2}=\left[\begin{array}{c}
0 \\
c_{1,0} \\
c_{0,1} \\
\vdots
\end{array}\right] .
$$

Notation Continued

Schroeder's
Equation in Several Variables

History \&

 Preliminaries The Problem NotationOutline
Examples
Reducing to Jordan form

Using
Compactness of C_{ϕ}

Jordan form of U

Results

Since C_{ϕ} maps

$$
\begin{gathered}
z_{1} \rightarrow \phi_{1}, \\
z_{2} \rightarrow \phi_{2}, \\
z_{1}^{2} \rightarrow \phi_{1}^{2}, \\
\vdots \\
C_{\phi}=\begin{array}{c}
\\
1 \\
z_{1} \\
z_{2} \\
z_{1}^{2} \\
\vdots
\end{array}\left[\begin{array}{ccccc}
1 & \phi_{1} & \phi_{2} & \phi_{1}^{2} & \\
0 & 0 & 0 & 0 & \cdots \\
0 & b_{1,0} & c_{1,0} & 0 & \cdots \\
0 & b_{0,1} & c_{0,1} & 0 & \cdots \\
0 & b_{2,0} & c_{2,0} & b_{1,0}^{2} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right] .
\end{gathered}
$$

Notation Continued

Schroeder's
Equation in Several Variables

History \&
Preliminaries
The Problem
Notation
Outline
Examples
Reducing to Jordan form

Using
Compactness of C_{ϕ}

Jordan form of U

Results

$$
C_{\phi}=\begin{gathered}
\\
1 \\
z_{1} \\
z_{2} \\
z_{1}^{2} \\
\vdots
\end{gathered}\left[\begin{array}{ccccc}
1 & \phi_{1} & \phi_{2} & \phi_{1}^{2} & \\
0 & 0 & 0 & 0 & \ldots \\
0 & b_{1,0} & c_{1,0} & 0 & \ldots \\
0 & b_{0,1} & c_{0,1} & 0 & \ldots \\
0 & b_{2,0} & c_{2,0} & b_{1,0}^{2} & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

Notice that

- C_{ϕ} is block lower triangular

■ After omitting the first row and column of $C_{\phi}, \phi^{\prime}(0)^{t}$ is the upper left $n \times n$.

Jordan form glasses

Schroeder's
Equation in Several Variables

History \&

Preliminaries
The Problem
Notation
Outline
Examples
Reducing to Jordan form

Using
Compactness
of C_{ϕ}
Jordan form of U

Results

$$
\phi^{\prime}(0)=\left[\begin{array}{lllll}
\lambda & 1 & & & \\
0 & \lambda & & & \\
& & \alpha & 1 & 0 \\
& & 0 & \alpha & 1 \\
& & 0 & 0 & \alpha
\end{array}\right],
$$

Jordan form glasses

Schroeder's
Equation in Several Variables

History \& Preliminaries The Problem
Notation
Outline
Examples
Reducing to
Jordan form
Using
Compactness of C_{ϕ}
$\phi^{\prime}(0)=\left[\begin{array}{ccccc}\lambda & 1 & & & \\ 0 & \lambda & & & \\ & & \alpha & 1 & 0 \\ & & 0 & \alpha & 1 \\ & & 0 & 0 & \alpha\end{array}\right]$, if and only if $\phi^{\prime}(0)^{t}$ has two
chains, namely
$\left(\phi^{\prime}(0)-\lambda I_{n}\right): e_{2} \mapsto e_{1} \mapsto 0$, and
$\left(\phi^{\prime}(0)-\alpha I_{n}\right): e_{5} \mapsto e_{4} \mapsto e_{3} \mapsto 0$.

Jordan form glasses

Schroeder's
Equation in Several Variables

History \&

Preliminaries

 The Problem NotationOutline
Examples
Reducing to Jordan form

Using
Compactness of C_{ϕ}

Jordan form of U

Results
$\phi^{\prime}(0)=\left[\begin{array}{lllll}\lambda & 1 & & & \\ 0 & \lambda & & & \\ & & \alpha & 1 & 0 \\ & & 0 & \alpha & 1 \\ & & 0 & 0 & \alpha\end{array}\right]$,
Schroeder's equation is $\left[\begin{array}{c}C_{\phi} f_{1} \\ \vdots \\ C_{\phi} f_{5}\end{array}\right]=\phi^{\prime}(0)\left[\begin{array}{c}f_{1} \\ \vdots \\ f_{5}\end{array}\right]=\left[\begin{array}{c}\lambda f_{1}+f_{2} \\ \lambda f_{2} \\ \lambda f_{3}+f_{4} \\ \lambda f_{4}+f_{5} \\ \lambda f_{5}\end{array}\right]$
$\left(C_{\phi}-\lambda I\right): f_{1} \mapsto f_{2} \mapsto 0$ and
$\left(C_{\phi}-\alpha I\right): f_{3} \mapsto f_{4} \mapsto f_{5} \mapsto 0$.

Theorem

There exists a solution to Schroeder's equation \Leftrightarrow given any chain of $\phi^{\prime}(0)$, there is a chain of C_{ϕ} of greater length with the same eigenvalue.

Outline

Schroeder's
Equation in Several Variables

History \& Preliminaries The Problem

Outline
Examples
Reducing to Jordan form

Using
Compactness of C_{ϕ}

Jordan form of U

Results

1 Reduce to $\phi^{\prime}(0)=\operatorname{diag}\left(J_{1}, \ldots, J_{m}\right)$
$J_{j}=\left[\begin{array}{cccc}\lambda_{j} & 1 & & \\ & \ddots & \ddots & \\ & & \lambda_{j} & 1 \\ & & & \lambda_{j}\end{array}\right]$ So we just need to find the chains of C_{ϕ} with eigenvalue λ_{j}.

Outline

Schroeder's
Equation
in Several
Variables

History \& Preliminaries The Problem Notation

Outline
Examples
Reducing to Jordan form

Using
Compactness of C_{ϕ}

1 Reduce to $\phi^{\prime}(0)=\operatorname{diag}\left(J_{1}, \ldots, J_{m}\right)$
$J_{j}=\left[\begin{array}{cccc}\lambda_{j} & 1 & & \\ & \ddots & \ddots & \\ & & \lambda_{j} & 1 \\ & & & \lambda_{j}\end{array}\right]$ So we just need to find the chains of C_{ϕ} with eigenvalue λ_{j}.

2 Theorem (C\&M)

$\exists H\left(\mathbb{B}^{n}\right)$ a Hilbert space of analytic functions on which C_{ϕ} compact.

Idea: $C_{\phi}=\left[\begin{array}{cc}U & 0 \\ V & W\end{array}\right], U$ is $N \times N$ controls C_{ϕ}.

Outline

Schroeder's
Equation
in Several
Variables

History \& Preliminaries The Problem Notation

Outline
Examples
Reducing to Jordan form

Using
Compactness of C_{ϕ}

1 Reduce to $\phi^{\prime}(0)=\operatorname{diag}\left(J_{1}, \ldots, J_{m}\right)$
$J_{j}=\left[\begin{array}{cccc}\lambda_{j} & 1 & & \\ & \ddots & \ddots & \\ & & \lambda_{j} & 1 \\ & & & \lambda_{j}\end{array}\right]$ So we just need to find the chains of C_{ϕ} with eigenvalue λ_{j}.

2 Theorem (C\&M)

$\exists H\left(\mathbb{B}^{n}\right)$ a Hilbert space of analytic functions on which C_{ϕ} compact.

Idea: $C_{\phi}=\left[\begin{array}{cc}U & 0 \\ V & W\end{array}\right], U$ is $N \times N$ controls C_{ϕ}.
$3 U$ has a λ_{j}-chain $\Leftrightarrow C_{\phi}$ does.

Outline

Schroeder's
Equation
in Several
Variables

History \& Preliminaries The Problem Notation

Outline
Examples
Reducing to Jordan form

Using
Compactness of C_{ϕ}

1 Reduce to $\phi^{\prime}(0)=\operatorname{diag}\left(J_{1}, \ldots, J_{m}\right)$
$J_{j}=\left[\begin{array}{cccc}\lambda_{j} & 1 & & \\ & \ddots & \ddots & \\ & & \lambda_{j} & 1 \\ & & & \lambda_{j}\end{array}\right]$ So we just need to find the chains of C_{ϕ} with eigenvalue λ_{j}.

2 Theorem (C\&M)

$\exists H\left(\mathbb{B}^{n}\right)$ a Hilbert space of analytic functions on which C_{ϕ} compact.

Idea: $C_{\phi}=\left[\begin{array}{cc}U & 0 \\ V & W\end{array}\right], U$ is $N \times N$ controls C_{ϕ}.
$3 U$ has a λ_{j}-chain $\Leftrightarrow C_{\phi}$ does.
4 So we just find the chains of U, an $N \times N$ matrix.

Example 1

Schroeder's
Equation in Several Variables

History \&

Preliminaries
The Problem
Notation
Outline
Examples
Reducing to Jordan form

Using
Compactness
of C_{ϕ}
Jordan form of U

Results

$$
\phi\left(z_{1}, z_{2}\right)=\left(z_{1} / 2, z_{2} / 4\right)
$$

$$
\phi^{\prime}(0)=\left[\begin{array}{cc}
1 / 2 & 0 \\
0 & 1 / 4
\end{array}\right]
$$

Example 1

Schroeder's
Equation in Several Variables

$$
\phi\left(z_{1}, z_{2}\right)=\left(z_{1} / 2, z_{2} / 4\right)
$$

$$
\phi^{\prime}(0)=\left[\begin{array}{cc}
1 / 2 & 0 \\
0 & 1 / 4
\end{array}\right]
$$

$$
C_{\phi}=\begin{gathered}
z_{1} \\
z_{2} \\
z_{1}^{2} \\
z_{1} z_{2} \\
\vdots
\end{gathered}\left[\begin{array}{ccccc}
\psi_{1} / 2 & 0 & 0 & 0 & \cdots \\
0 & 1 / 4 & 0 & 0 & \cdots \\
0 & 0 & 1 / 4 & 0 & \cdots \\
0 & 0 & 0 & 1 / 8 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

Example 1

Schroeder's
Equation in Several Variables

$$
\phi\left(z_{1}, z_{2}\right)=\left(z_{1} / 2, z_{2} / 4\right)
$$

$$
\begin{gathered}
\phi^{\prime}(0)=\left[\begin{array}{cc}
1 / 2 & 0 \\
0 & 1 / 4
\end{array}\right] \\
C_{\phi}=\begin{array}{c}
\phi_{1} \\
\phi_{2}
\end{array} \phi_{1}^{2} \\
z_{1} \\
z_{2} \\
z_{1}^{2} \\
z_{1} z_{2} \\
\vdots
\end{gathered}\left[\begin{array}{ccccc}
1 / 2 & 0 & 0 & 0 & \ldots \\
0 & 1 / 4 & 0 & 0 & \ldots \\
0 & 0 & 1 / 4 & 0 & \ldots \\
0 & 0 & 0 & 1 / 8 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right] .
$$

Example 1

Schroeder's
Equation in Several Variables

History \& Preliminaries The Problem Notation

Outline
Examples
Reducing to Jordan form

Using
Compactness of C_{ϕ}

Jordan form of U

Results

$$
\phi\left(z_{1}, z_{2}\right)=\left(z_{1} / 2, z_{2} / 4\right) \quad \phi^{\prime}(0)^{t}, \text { and } U
$$

$$
C_{\phi}=\begin{gathered}
\\
z_{1} \\
z_{2} \\
z_{1}^{2} \\
z_{1} z_{2} \\
\vdots
\end{gathered}\left[\begin{array}{ccccc}
\phi_{1} & \phi_{2} & \phi_{1}^{2} & \phi_{1} \phi_{2} & \ldots \\
1 / 2 & 0 & 0 & 0 & \ldots \\
0 & 1 / 4 & 0 & 0 & \ldots \\
0 & 0 & 1 / 4 & 0 & \ldots \\
0 & 0 & 0 & 1 / 8 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

Example 1

Schroeder's
Equation in Several Variables

History \&
Preliminaries

The Problem

Notation
Outline
Examples
Reducing to
Jordan form
Using
Compactness of C_{ϕ}

Jordan form of U

Results

$$
\begin{aligned}
& \phi\left(z_{1}, z_{2}\right)=\left(z_{1} / 2, z_{2} / 4\right) \\
&\left(\phi^{\prime}(0)^{t}-1 / 2\right): z_{1} \mapsto 0 \\
&\left(\phi^{\prime}(0)^{t}-1 / 4\right): z_{2} \mapsto 0
\end{aligned} \quad\left[\begin{array}{ccc}
1 / 2 & 0 & 0 \\
0 & 1 / 4 & 0 \\
0 & 0 & 1 / 4
\end{array}\right] .
$$

Example 1

Schroeder's
Equation in Several
Variables

History \&
Preliminaries The Problem Notation

Outline
Examples
Reducing to Jordan form

Using
Compactness of C_{ϕ}

$$
\begin{aligned}
& \phi\left(z_{1}, z_{2}\right)=\left(z_{1} / 2, z_{2} / 4\right) \\
& \left(\phi^{\prime}(0)^{t}-1 / 2\right): z_{1} \mapsto 0 \\
& \left(\phi^{\prime}(0)^{t}-1 / 4\right): z_{2} \mapsto 0
\end{aligned}
$$

$$
U=\left[\begin{array}{c}
1 / 2 \\
0 \\
0
\end{array}\right.
$$

$$
\left.\begin{array}{cc}
0 & 0 \\
1 / 4 & 0 \\
0 & 1 / 4
\end{array}\right]
$$

$$
\left(\phi^{\prime}(0)^{t}-1 / 2\right): z_{1} \mapsto 0 \quad(U-1 / 2): z_{1} \mapsto 0
$$

$$
(U-1 / 4): z_{2} \mapsto 0
$$

$$
(U-1 / 4): z_{1}^{2} \mapsto 0
$$

So Schroeder's Equation has two solutions,

$$
F_{1}=\left[\begin{array}{l}
c_{1} z_{1} \\
c_{2} z_{2}
\end{array}\right], F_{2}=\left[\begin{array}{l}
c_{1} z_{1} \\
c_{2} z_{1}^{2}
\end{array}\right]
$$

F_{1} has full rank near 0.

Example 2

Schroeder's

Equation in Several Variables

History \&

Preliminaries
The Problem
Notation
Outline
Examples
Reducing to Jordan form

Using
Compactness
of C_{ϕ}
Jordan form of U

Results

$$
\phi\left(z_{1}, z_{2}\right)=\left(z_{1} / 2, z_{2} / 4+z_{1}^{2} / 2\right)
$$

Example 2

Schroeder's
Equation in Several Variables

$$
\phi\left(z_{1}, z_{2}\right)=\left(z_{1} / 2, z_{2} / 4+z_{1}^{2} / 2\right)
$$ $\phi^{\prime}(0)^{t}$ in red and U in purple

$$
C_{\phi}=\begin{gathered}
\\
z_{1} \\
z_{2} \\
z_{1}^{2} \\
z_{1} z_{2} \\
\vdots
\end{gathered}\left[\begin{array}{ccccc}
\phi_{1} & \phi_{2} & \phi_{1}^{2} & \phi_{1} \phi_{2} & \cdots \\
1 / 2 & 0 & 0 & 0 & \cdots \\
0 & 1 / 4 & 0 & 0 & \cdots \\
0 & 1 / 2 & 1 / 4 & 0 & \cdots \\
0 & 0 & 0 & 1 / 8 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

Example 2

Schroeder's
Equation in Several Variables

History \& Preliminaries
The Problem
Notation
Outline
Examples
Reducing to
Jordan form
Using
Compactness of C_{ϕ}

Jordan form of U

Results

$$
\begin{aligned}
& \phi\left(z_{1}, z_{2}\right)=\left(z_{1} / 2, z_{2} / 4+z_{1}^{2} / 2\right) \\
& U=\left[\begin{array}{ccc}
1 / 2 & 0 & 0 \\
0 & 1 / 4 & 0 \\
0 & 0 & 1 / 4
\end{array}\right] \\
& \left(\phi^{\prime}(0)^{t}-1 / 2\right): z_{1} \mapsto 0 \\
& \left(\phi^{\prime}(0)^{t}-1 / 4\right): z_{2} \mapsto 0
\end{aligned}
$$

$$
\begin{gathered}
(U-1 / 2): z_{1} \mapsto 0 \\
(U-1 / 4): 2 z_{2} \mapsto z_{1}^{2} \mapsto 0
\end{gathered}
$$

Example 2

Schroeder's
Equation in Several Variables

History \& Preliminaries
The Problem
Notation
Outline
Examples
Reducing to
Jordan form
Using
Compactness of C_{ϕ}

Jordan form of U

Results

$$
\begin{aligned}
& \phi\left(z_{1}, z_{2}\right)=\left(z_{1} / 2, z_{2} / 4+z_{1}^{2} / 2\right) \\
& U=\left[\begin{array}{ccc}
1 / 2 & 0 & 0 \\
0 & 1 / 4 & 0 \\
0 & 0 & 1 / 4
\end{array}\right] \\
& \left(\phi^{\prime}(0)^{t}-1 / 2\right): z_{1} \mapsto 0 \\
& \left(\phi^{\prime}(0)^{t}-1 / 4\right): z_{2} \mapsto 0
\end{aligned}
$$

$$
\begin{gathered}
(U-1 / 2): z_{1} \mapsto 0 \\
(U-1 / 4): 2 z_{2} \mapsto z_{1}^{2} \mapsto 0
\end{gathered}
$$

Example 2

Schroeder's
Equation in Several Variables

History \& Preliminaries
The Problem
Notation
Outline
Examples
Reducing to
Jordan form
Using
Compactness of C_{ϕ}

Jordan form of U

Results

$$
\begin{aligned}
& \phi\left(z_{1}, z_{2}\right)=\left(z_{1} / 2, z_{2} / 4+z_{1}^{2} / 2\right) \\
& U=\left[\begin{array}{ccc}
1 / 2 & 0 & 0 \\
0 & 1 / 4 & 0 \\
0 & 0 & 1 / 4
\end{array}\right] \\
& \left(\phi^{\prime}(0)^{t}-1 / 2\right): z_{1} \mapsto 0 \\
& \left(\phi^{\prime}(0)^{t}-1 / 4\right): z_{2} \mapsto 0
\end{aligned}
$$

$$
\begin{gathered}
(U-1 / 2): z_{1} \mapsto 0 \\
(U-1 / 4): 2 z_{2} \mapsto z_{1}^{2} \mapsto 0
\end{gathered}
$$

Example 2

Schroeder's
Equation in Several Variables

History \&
Preliminaries
The Problem
Notation
Outline
Examples
Reducing to
Jordan form
Using
Compactness of C_{ϕ}

$$
\begin{aligned}
& \phi\left(z_{1}, z_{2}\right)=\left(z_{1} / 2, z_{2} / 4+z_{1}^{2} / 2\right) \\
& U=\left[\begin{array}{ccc}
1 / 2 & 0 & 0 \\
0 & 1 / 4 & 0 \\
0 & 0 & 1 / 4
\end{array}\right] \\
& \left(\phi^{\prime}(0)^{t}-1 / 2\right): z_{1} \mapsto 0 \\
& \left(\phi^{\prime}(0)^{t}-1 / 4\right): z_{2} \mapsto 0
\end{aligned}\left(\begin{array}{l}
\\
\left.U^{t} \mapsto-1 / 2\right): z_{1} \mapsto 0 \\
\end{array}\right.
$$

So Schroeder's Equation has one solution,

$$
F=\left[\begin{array}{l}
c_{1} z_{1} \\
c_{2} z_{1}^{2}
\end{array}\right]
$$

which is not full rank.

Reduce to Jordan form

Schroeder's
Equation in Several Variables

History \&

Preliminaries
The Problem
Notation
Outline
Examples
Reducing to Jordan form

Using
Compactness of C_{ϕ}

Jordan form of U

Results
$\exists D$ an $n \times n$ invertible matrix $D \phi^{\prime}(0) D^{-1}$ is in Jordan form.

- Replace ϕ with $\psi=D \phi D^{-1}$ (so $\psi^{\prime}(0)$ is in Jordan form).

Reduce to Jordan form

Schroeder's
Equation
in Several
Variables

History \&
Preliminaries
The Problem
Notation
Outline
Examples
Reducing to
Jordan form
Using
Compactness of C_{ϕ}

- Replace ϕ with $\psi=D \phi D^{-1}$ (so $\psi^{\prime}(0)$ is in Jordan form).

$$
\begin{aligned}
C_{\psi} F & =\psi^{\prime}(0) F \\
\Leftrightarrow F D \phi\left(D^{-1} w\right) & =D \phi^{\prime}(0) D^{-1} F(w) \\
\Leftrightarrow D^{-1} F D(\phi(z)) & =\phi^{\prime}(0)\left(D^{-1} F D\right)(z), z=D^{-1} w \\
\Leftrightarrow C_{\phi}\left(D^{-1} F D\right) & =\phi^{\prime}(0)\left(D^{-1} F D\right)
\end{aligned}
$$

- So it suffices to solve Schroeder's equation for ψ.

Reduce to Jordan form

Schroeder's
Equation
in Several
Variables

History \&
Preliminaries
The Problem
Notation

- Replace ϕ with $\psi=D \phi D^{-1}$ (so $\psi^{\prime}(0)$ is in Jordan form).
- So it suffices to solve Schroeder's equation for ψ.

Outline
Examples
Reducing to
Jordan form
Using
Compactness of C_{ϕ}

Jordan form of U

Results

The domain of ϕ is \mathbb{B}^{n}, but the domain of ψ is the ellipsoid $D \mathbb{B}^{n}$.

- Replace \mathbb{B}^{n} with $D \mathbb{B}^{n}$ (an ellipsoid).

Reduce to Jordan form

Schroeder's

Equation
in Several
Variables

History \&
Preliminaries
The Problem
Notation
Outline
Examples
Reducing to
Jordan form
Using
Compactness
of C_{ϕ}
Jordan form of U

Results

- Replace ϕ with $\psi=D \phi D^{-1}$ (so $\psi^{\prime}(0)$ is in Jordan form).
- So it suffices to solve Schroeder's equation for ψ.
- Replace \mathbb{B}^{n} with $D \mathbb{B}^{n}$ (an ellipsoid).

We need a Hilbert space of analytic functions on $D \mathbb{B}^{n}$ on which C_{ψ} is compact.

$$
\begin{aligned}
& H\left(\mathbb{B}^{n}\right) \xrightarrow{C_{D^{-1}}} H\left(D \mathbb{B}^{n}\right) \\
& C_{\phi} \downarrow \\
& H\left(\mathbb{B}^{n}\right) \xrightarrow{C_{D-1}} H\left(D \mathbb{B}^{n}\right)
\end{aligned}
$$

Reduce to Jordan form

Schroeder's
Equation
in Several
Variables

History \&
Preliminaries
The Problem Notation

Outline
Examples
Reducing to
Jordan form
Using
Compactness of C_{ϕ}

Jordan form of U

Results

- Replace ϕ with $\psi=D \phi D^{-1}$ (so $\psi^{\prime}(0)$ is in Jordan form).
- So it suffices to solve Schroeder's equation for ψ.
- Replace \mathbb{B}^{n} with $D \mathbb{B}^{n}$ (an ellipsoid).

$$
\begin{aligned}
& H\left(\mathbb{B}^{n}\right) \xrightarrow{C_{D^{-1}}} H\left(D \mathbb{B}^{n}\right) \\
& C_{\phi} \downarrow \\
& H\left(\mathbb{B}^{n}\right) \xrightarrow{C_{D-1}} H\left(D \mathbb{B}^{n}\right)
\end{aligned}
$$

Define $H\left(D \mathbb{B}^{n}\right):=C_{D^{-1}} H\left(\mathbb{B}^{n}\right)$, and
$\left\langle f \circ D^{-1}, g \circ D^{-1}\right\rangle_{H\left(D \mathbb{B}^{n}\right)}=\langle f, g\rangle_{H\left(\mathbb{B}^{n}\right)}$

Reduce to Jordan form

Schroeder's
Equation
in Several
Variables

History \&
Preliminaries
The Problem
Notation
Outline
Examples
Reducing to
Jordan form

Using
Compactness of C_{ϕ}

Jordan form of U

- Replace ϕ with $\psi=D \phi D^{-1}$ (so $\psi^{\prime}(0)$ is in Jordan form).
- So it suffices to solve Schroeder's equation for ψ.
- Replace \mathbb{B}^{n} with $D \mathbb{B}^{n}$ (an ellipsoid).

$$
\begin{aligned}
& H\left(\mathbb{B}^{n}\right) \xrightarrow{C_{D^{-1}}} H\left(D \mathbb{B}^{n}\right) \\
& C_{\phi} \downarrow \\
& H\left(\mathbb{B}^{n}\right) \xrightarrow{C_{D-1}} H\left(D \mathbb{B}^{n}\right)
\end{aligned}
$$

- Replace $H\left(\mathbb{B}^{n}\right)$ with $H\left(D \mathbb{B}^{n}\right)$ (so C_{ψ} is compact).

Was this WLOG?

Schroeder's
Equation in Several Variables

History \&
Preliminaries
The Problem
Notation
Outline
Examples
Reducing to
Jordan form
Using
Compactness of C_{ϕ}

Jordan form of U

Results

Yes, it is WITH loss of generality!
$\left\{z^{\alpha}\right\}$ is an orthogonal basis for the original space $H\left(\mathbb{B}^{n}\right)$.
$\Rightarrow\left\{(D z)^{\alpha}\right\}$ is an orthonormal basis for $H\left(D \mathbb{B}^{n}\right)$.
Very Inconvenient

Was this WLOG?

Schroeder's

Equation
in Several
Variables

History \& Preliminaries The Problem Notation

Outline
Examples
Reducing to
Jordan form

Using
Compactness of C_{ϕ}

Jordan form of U

Results

Yes, it is WITH loss of generality!
$\left\{z^{\alpha}\right\}$ is an orthogonal basis for the original space $H\left(\mathbb{B}^{n}\right)$.
$\Rightarrow\left\{(D z)^{\alpha}\right\}$ is an orthonormal basis for $H\left(D \mathbb{B}^{n}\right)$.
In general, $g \in \mathcal{O}\left(D \mathbb{B}^{n}\right)$ is conveniently represented

$$
g(z)=\sum a_{\alpha} z^{\alpha}
$$

- $\left\{z^{\alpha}\right\}$ is a basis for $H\left(D \mathbb{B}^{n}\right)$
- $z^{\alpha} \perp z^{\beta}$ is $|\alpha| \neq|\beta|$.

■ For example, $z_{1} \not \perp z_{2}$ is possible.

Was this WLOG?

Schroeder's
Equation
in Several
Variables

History \&
Preliminaries
The Problem
Notation
Outline
Examples
Reducing to
Jordan form
Using
Compactness
of C_{ϕ}

Yes, it is WITH loss of generality!
$\left\{z^{\alpha}\right\}$ is an orthogonal basis for the original space $H\left(\mathbb{B}^{n}\right)$.

- $\left\{z^{\alpha}\right\}$ is a basis for $H\left(D \mathbb{B}^{n}\right)$
- $z^{\alpha} \perp z^{\beta}$ is $|\alpha| \neq|\beta|$.

■ For example, $z_{1} \not \perp z_{2}$ is possible.

$$
g=\sum a_{\alpha} z^{\alpha}=\sum_{s=0}^{\infty} g_{s}(z)
$$

The sum on the right converges in $H\left(D \mathbb{B}^{n}\right)$ since

$$
\begin{aligned}
g_{s}(\lambda z) & =\lambda^{s} g_{s}(z) \\
\Leftrightarrow g_{s} D(\lambda z) & =\lambda^{s} g_{s} D
\end{aligned}
$$

Outline

Schroeder's
Equation in Several Variables

History \& Preliminaries The Problem Notation

Outline
Examples
Reducing to
Jordan form
Using
Compactness
of C_{ϕ}
Jordan form of U

Results

1 Reduce to $\phi^{\prime}(0)=\operatorname{diag}\left(J_{1}, \ldots, J_{m}\right)$
$J_{j}=\left[\begin{array}{cccc}\lambda_{j} & 1 & & \\ & \ddots & \ddots & \\ & & \lambda_{j} & 1 \\ & & & \lambda_{j}\end{array}\right]$ So we just need to find the chains of C_{ϕ} with eigenvalue λ_{j}.
$2 \exists H$ a Hilbert space of analytic functions on which C_{ϕ} compact.
3 Idea: $C_{\phi}=\left[\begin{array}{cc}U & 0 \\ V & W\end{array}\right], U$ is $N \times N$ controls C_{ϕ}. U has a λ_{j}-chain $\Leftrightarrow C_{\phi}$ does.
4 So we just find the chains of U, an $N \times N$ matrix.

Schroeder's
Equation
in Several
Variables

History \&
Preliminaries
The Problem
Notation
Outline
Examples
Reducing to Jordan form

Using
Compactness of C_{ϕ}

Jordan form of U

Lemma

Let $\lambda \in \mathbb{C} \backslash\{0\} . H=H_{1} \oplus H_{2}$ with $H_{1} \cong \mathbb{C}^{N}, C_{\phi}=\left[\begin{array}{cc}U & 0 \\ V & W\end{array}\right]$ and $\lambda \notin \sigma(W)$.
$\|W\|=\left\|\left(I-P_{N}\right) C_{\phi}\left(I-P_{N}\right)\right\|<|\lambda|$ for N large, and P_{N} the projection to the first N coordinates.
$\Rightarrow W-\lambda$ is bounded below, and hence 1-1.
$\Rightarrow W^{*}-\bar{\lambda}$ is $1-1$.
$\Rightarrow W-\lambda$ is invertible, since $H_{2}=\operatorname{ker}\left(W^{*}-\bar{\lambda}\right) \oplus(W-\lambda)\left(H_{2}\right)$.

Schroeder's
Equation in Several Variables

History \&
Preliminaries
The Problem
Notation
Outline
Examples
Reducing to

Jordan form

Using
Compactness
of C_{ϕ}
Jordan form of U

Corollary

$$
\sigma\left(C_{\phi}\right) \backslash\{0\}=\operatorname{diag}\left(C_{\phi}\right)
$$

Chain Correspondence

Schroeder's
Equation
in Several
Variables

History \& Preliminaries The Problem Notation

Outline
Examples
Reducing to Jordan form

Using
Compactness of C_{ϕ}

Theorem

Let $(U-\lambda): E_{k} \mapsto \ldots \mapsto E_{1} \mapsto 0$, then $\exists!f_{j}=\left[\begin{array}{c}E_{j} \\ \tilde{E}_{j}\end{array}\right]$ so that $\left(C_{\phi}-\lambda\right): f_{k} \mapsto \ldots \mapsto f_{1} \mapsto 0$.
$k=1$: Given by the previous lemma.
$k \geq 2$: Notice $(U-\lambda)(U-\lambda) E_{2}=0$, and $(U-\lambda)^{2}$ is the upper left corner of

$$
\left(C_{\phi}-\lambda\right)^{2}=C_{\phi}^{2}-2 \lambda C_{\phi}+\lambda^{2}=K+\lambda^{2}
$$

K is lower triangular, and compact, so $\exists!\tilde{E}_{2}$ such that $f_{2}=\left[\begin{array}{c}E_{2} \\ \tilde{E}_{2}\end{array}\right] \in \operatorname{ker}\left[\left(C_{\phi}-\lambda\right)^{2}\right]$. Lastly,
$(C-\lambda) f_{2}=\left[\begin{array}{c}E_{1} \\ ?\end{array}\right] \in \operatorname{ker}\left(C_{\phi}-\lambda\right)$. So $?=\tilde{E}_{1}$ by uniqueness.

Outline

Schroeder's

Equation in Several Variables

History \& Preliminaries The Problem Notation

Outline
Examples
Reducing to

Jordan form

Using
Compactness of C_{ϕ}

Jordan form of U U

Results

1 Reduce to $\phi^{\prime}(0)=\operatorname{diag}\left(J_{1}, \ldots, J_{m}\right)$

$$
J_{j}=\left[\begin{array}{cccc}
\lambda_{j} & 1 & & \\
& \ddots & \ddots & \\
& & \lambda_{j} & 1 \\
& & & \lambda_{j}
\end{array}\right]
$$

So we just need to find the chains of C_{ϕ} with eigenvalue λ_{j}.
$2 \exists \mathrm{H}$ a Hilbert space of analytic functions on which C_{ϕ} compact.
3 Idea: $C_{\phi}=\left[\begin{array}{cc}U & 0 \\ V & W\end{array}\right], U$ is $N \times N$ controls C_{ϕ} U has a λ_{j}-chain $\Leftrightarrow C_{\phi}$ does.
4 So we just find the chains of U, an $N \times N$ matrix.

Schroeder's
Equation in Several Variables

History \&

Preliminaries
The Problem
Notation
Outline
Examples
Reducing to Jordan form

Using
Compactness of C_{ϕ}

Jordan form of U

Results

In general $U=\left[\begin{array}{cc}\phi^{\prime}(0)^{t} & 0 \\ B & C\end{array}\right]$ and $\phi^{\prime}(0)^{t}=\left[\begin{array}{lll}J_{1} & & \\ & \ddots & \\ & & J_{m}\end{array}\right]$ with each J_{j} a Jordan block.

Schroeder's
Equation in Several
Variables

History \&
Preliminaries
The Problem
Notation
Outline
Examples
Reducing to Jordan form

Using
Compactness
of C_{ϕ}
Jordan form of U

Results

In general

$$
U=\left[\begin{array}{cccccccc|cc}
\lambda & & & & & & & \\
1 & \lambda & & & & & \\
& \ddots & \ddots & & & & & \\
& & 1 & \lambda & & & & \\
& & & & J_{2} & & & \\
& & & & & \ddots & & \\
& & & & & & J_{m} & & \\
\hline a_{1} & a_{2} & \ldots & a_{k} & \ldots & \ldots & \ldots a_{n} & a_{n+1} & \\
& & ? & & & ? & & ? & \ddots
\end{array}\right]
$$

Our task is to put this into Jordan form.

Schroeder's
Equation in Several Variables

History \& Preliminaries The Problem Notation

Outline
Examples
Reducing to
Jordan form
Using
Compactness of C_{ϕ}

Jordan form of U

Results

In general

Schroeder's
Equation in Several Variables

History \& Preliminaries The Problem Notation

Outline
Examples
Reducing to Jordan form

Using
Compactness of C_{ϕ}

Jordan form of U

Results

Put into Jordan form.

Schroeder's
Equation in Several Variables

History \&
Preliminaries The Problem Notation

Outline
Examples
Reducing to Jordan form

Using
Compactness of C_{ϕ}

Jordan form of U

Results

Put into Jordan form.

Schroeder's
Equation in Several Variables

History \& Preliminaries
The Problem
Notation
Outline
Examples
Reducing to
Jordan form
Using
Compactness
of C_{ϕ}
Jordan form of U

Results

Schroeder's
Equation in Several Variables

History \& Preliminaries The Problem
Notation
Outline
Examples
Reducing to
Jordan form
Using
Compactness
of C_{ϕ}
Jordan form of U

Results

Schroeder's
Equation in Several Variables

History \&
Preliminaries
The Problem Notation

Outline
Examples
Reducing to Jordan form

Using
Compactness
of C_{ϕ}
Jordan form of U

Results

Theorem (Main Theorem)

- $\exists F$ such that $C_{\phi} F=\phi^{\prime}(0) F$ with linearly independent component functions.
- $\exists F$ such that both $C_{\phi} F=\phi^{\prime}(0) F$ and $F^{\prime}(0)$ full rank $\Leftrightarrow P \operatorname{ker}\left(C_{\phi}-\lambda\right)=\operatorname{ker}\left(\phi^{\prime}(0)^{t}-\lambda\right)$ for each $\lambda \in \sigma\left(\phi^{\prime}(0)\right)$, with P the projection to $\left\langle z_{1}, \ldots z_{n}\right\rangle$.

Theorem (Main Theorem)

- $\exists F$ such that $C_{\phi} F=\phi^{\prime}(0) F$ with linearly independent component functions.
- $\exists F$ such that both $C_{\phi} F=\phi^{\prime}(0) F$ and $F^{\prime}(0)$ full rank $\Leftrightarrow P \operatorname{ker}\left(C_{\phi}-\lambda\right)=\operatorname{ker}\left(\phi^{\prime}(0)^{t}-\lambda\right)$ for each $\lambda \in \sigma\left(\phi^{\prime}(0)\right)$, with P the projection to $\left\langle z_{1}, \ldots z_{n}\right\rangle$.

Corollary

A full rank solution exists
$\Leftrightarrow \operatorname{dim}\left[P \operatorname{ker}\left(C_{\phi}-\lambda\right)\right]=\operatorname{dim}\left[\operatorname{ker}\left(\phi^{\prime}(0)^{t}-\lambda\right)\right]$.

Schroeder's
Equation in Several Variables

History \&
Preliminaries
The Problem Notation

Outline
Examples
Reducing to Jordan form

Using
Compactness
of C_{ϕ}
Jordan form of U

Results

Definition

λ_{j} is a resonant eigenvalue of $\phi^{\prime}(0)$ iff it occurs on the diagonal of C_{ϕ} below $\phi^{\prime}(0)^{t}$.

Corollary

If there are no resonant eigenvalues of $\phi^{\prime}(0)$, then a full rank solution exists.

Definition

λ_{j} is a resonant eigenvalue of $\phi^{\prime}(0)$ iff it occurs on the diagonal of C_{ϕ} below $\phi^{\prime}(0)^{t}$.

Corollary

If there are no resonant eigenvalues of $\phi^{\prime}(0)$, then a full rank solution exists.

Corollary

If λ is a resonant eigenvalue and $\operatorname{dim}\left[\operatorname{ker}\left(C_{\phi}-\lambda\right)\right]=\operatorname{dim}\left[\operatorname{ker}\left(\phi^{\prime}(0)-\lambda\right)\right]$ no full rank solution can exist.

Theorem

$\exists F_{k}$ such that $C_{\phi} F_{k}=\phi^{\prime}(0)^{k} F_{k}$ with linearly independent component functions for $k=1,2, \ldots$. Furthermore, if $k \neq 1$, then F_{k} cannot have full rank near 0 .

We can find F_{k} explicitly in therms of an F_{1}.

Algebraic Solutions are Analytic

Schroeder's
Equation in Several Variables

History \& Preliminaries The Problem Notation

Outline
Examples
Reducing to Jordan form

Using
Compactness of C_{ϕ}

Definition

λ is a resonant eigenvalue of ϕ if (and only if) $\lambda=\lambda_{1}^{k_{1}} \ldots \lambda_{m}^{k_{m}}$ with λ_{j} eigenvalues of $\phi^{\prime}(0)$, and positive integers k_{j} satisfying $\sum k_{j}>2$.

Algebraic Solutions are Analytic

Definition

λ is a resonant eigenvalue of ϕ if (and only if) $\lambda=\lambda_{1}^{k_{1}} \ldots \lambda_{m}^{k_{m}}$ with λ_{j} eigenvalues of $\phi^{\prime}(0)$, and positive integers k_{j} satisfying $\sum k_{j}>2$.

- R. D. Enoch's 2007 paper gives criteria for formal power series solutions to Schroeder's equation.
- Every function from \mathbb{B}^{n} to \mathbb{C} (for example $\phi_{1}, \ldots \phi_{n}$, and $\left.f_{1}, \ldots, f_{n}\right)$ is treated as a column vector. Under some hypotheses on ϕ, the coefficients of each f_{j} are found to satisfy $C_{\phi} F=\phi^{\prime}(0) F$ and $\operatorname{det}\left(F^{\prime}(0)\right) \neq 0$.
- Do these formal power series converge on \mathbb{B}^{n} ?

Schroeder's
Equation in Several Variables

History \& Preliminaries The Problem Notation

Outline
Examples
Reducing to Jordan form

Using
Compactness of C_{ϕ}

Theorem (Bobby \& Cowen)
Any formal power series solution to Schroeder's equation is indeed an analytic solution.

Theorem (Bobby \& Cowen)

Any formal power series solution to Schroeder's equation is indeed an analytic solution.

Corollary

If $\phi^{\prime}(0)$ has no resonant eigenvalues, then a full rank solution to Schroeder's equation exists.

Theorem (Bobby \& Cowen)

Any formal power series solution to Schroeder's equation is indeed an analytic solution.

Corollary

If $\phi^{\prime}(0)$ has no resonant eigenvalues, then a full rank solution to Schroeder's equation exists.

Theorem (Bobby \& Cowen)
If λ is a resonant eigenvalue, and $\operatorname{dim}\left[\operatorname{ker}\left(U-\lambda I_{N}\right)\right]=\operatorname{dim}\left[\operatorname{ker}\left(\phi^{\prime}(0)^{t}-\lambda I_{n}\right)\right]$ then no full rank solution exists.

References

■ bridges@purdue.edu - I have a paper that I have not submitted yet, so email me for details.
■ G. Koenigs, Recherches sur les integrales de certaines equations fonctionnelles, Ann. Sci. Ecole Norm. Sup. (Ser. 3) 1(1884), 3-41.

- C. C. Cowen, B. D. MacCluer, "Composition Operators on Spaces of Analytic Functions" CRC Press, Boca Raton, 1995.

■ C. C. Cowen, Schroeder's Equation in Several Variables, Taiwanese J. Math. (2003), 129154.

- R. Enoch, Formal power series solutions of Schroders equation, Aequationes Mathematicae XX (2007) 136.

