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Schroeder’s Equation for n = 1

Given analytic
φ : D→ D such that

φ(0) = 0.

φ 6= 0.

Does there exist an
analytic f : D→ C
such that

f ◦ φ = φ′(0)f or
Cφf = φ′(0)f

f 6= 0?

Theorem (Koenig 1884)

YES! if 0 < |φ′(0)| ≤ 1

Proof:
φ(n)(z)

φ′(0)n
→ f (z)



Schroeder’s
Equation
in Several
Variables

History &
Preliminaries

The Problem

Notation

Outline

Examples

Reducing to
Jordan form

Using
Compactness
of Cφ

Jordan form of
U

Results

Schroeder’s Equation for n = 1

Given analytic
φ : D→ D such that

φ(0) = 0.

φ 6= 0.

Does there exist an
analytic f : D→ C
such that

f ◦ φ = φ′(0)f or
Cφf = φ′(0)f

f 6= 0?

Theorem (Koenig 1884)

YES! if 0 < |φ′(0)| ≤ 1

Proof:
φ(n)(z)

φ′(0)n
→ f (z)



Schroeder’s
Equation
in Several
Variables

History &
Preliminaries

The Problem

Notation

Outline

Examples

Reducing to
Jordan form

Using
Compactness
of Cφ

Jordan form of
U

Results

Schroeder’s Equation for n = 1

Given analytic
φ : D→ D such that

φ(0) = 0.

φ 6= 0.

Does there exist an
analytic f : D→ C
such that

f ◦ φ = φ′(0)f or
Cφf = φ′(0)f

f 6= 0?

Theorem (Koenig 1884)

YES! if 0 < |φ′(0)| ≤ 1

Proof:
φ(n)(z)

φ′(0)n
→ f (z)



Schroeder’s
Equation
in Several
Variables

History &
Preliminaries

The Problem

Notation

Outline

Examples

Reducing to
Jordan form

Using
Compactness
of Cφ

Jordan form of
U

Results

2003 Cowen & MacCluer generalize to Bn

Given φ : Bn → Bn

such that

φ analytic

φ(0) = 0

φ′(0) full rank

|φ(z)| < |z | for
0 < |z | < 1

Does there exist
F : Bn → Cn such that

F is analytic

F ◦ φ = φ′(0)F

F has full rank
near 0.

C & M give necessary and sufficient conditions under the
additional hypothesis

φ′(0) diagonalizable.
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Notation

Represent functions as (infinite) column vectors with entries
from their Taylor Series; for example

f (z1, z2) = a0,0 + a1,0z1 + a0,1z2 + a2,0z
2
1 + ... =


a0,0
a1,0
a0,1

...

 .

We want to represent Cφ as a large (infinite) matrix. Let
φ = (φ1, φ2) with

φ1 =


0

b1,0
b0,1

...

 , and φ2 =


0
c1,0
c0,1

...

 .
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Notation Continued

Since Cφ maps

z1 → φ1,
z2 → φ2,
z21 → φ21,

...

Cφ =

1 φ1 φ2 φ21
1
z1
z2
z21
...


1 0 0 0 . . .
0 b1,0 c1,0 0 . . .
0 b0,1 c0,1 0 . . .
0 b2,0 c2,0 b21,0 . . .
...

...
...

...
. . .


.
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Notation Continued

Cφ =

1 φ1 φ2 φ21
1
z1
z2
z21
...


1 0 0 0 . . .
0 b1,0 c1,0 0 . . .
0 b0,1 c0,1 0 . . .
0 b2,0 c2,0 b21,0 . . .
...

...
...

...
. . .


.

Notice that

Cφ is block lower triangular

After omitting the first row and column of Cφ, φ′(0)t is
the upper left n × n.
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Jordan form glasses

φ′(0) =


λ 1
0 λ

α 1 0
0 α 1
0 0 α

 ,
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Jordan form glasses

φ′(0) =


λ 1
0 λ

α 1 0
0 α 1
0 0 α

 , if and only if φ′(0)t has two

chains, namely
(φ′(0)− λIn) : e2 7→ e1 7→ 0, and
(φ′(0)− αIn) : e5 7→ e4 7→ e3 7→ 0.
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Jordan form glasses

φ′(0) =


λ 1
0 λ

α 1 0
0 α 1
0 0 α

 ,

Schroeder’s equation is

Cφf1...
Cφf5

 = φ′(0)

f1...
f5

 =


λf1 + f2
λf2

λf3 + f4
λf4 + f5
λf5


(Cφ − λI ) : f1 7→ f2 7→ 0 and
(Cφ − αI ) : f3 7→ f4 7→ f5 7→ 0.
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Theorem

There exists a solution to Schroeder’s equation ⇔ given any
chain of φ′(0), there is a chain of Cφ of greater length with the
same eigenvalue.
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Outline

1 Reduce to φ′(0) =diag(J1, . . . , Jm)

Jj =


λj 1

. . .
. . .

λj 1
λj

 So we just need to find the

chains of Cφ with eigenvalue λj .

2 Theorem (C&M)

∃ H(Bn) a Hilbert space of analytic functions on which Cφ
compact.

Idea: Cφ =

[
U 0
V W

]
,U is N × N controls Cφ.

3 U has a λj -chain ⇔ Cφ does.

4 So we just find the chains of U, an N × N matrix.
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Example 1

φ(z1, z2) = (z1/2, z2/4)

φ′(0) =

[
1/2 0

0 1/4

]
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Example 1

φ(z1, z2) = (z1/2, z2/4)

φ′(0) =

[
1/2 0

0 1/4

]

Cφ =

φ1 φ2 φ21 φ1φ2 . . .
z1
z2
z21
z1z2

...


1/2 0 0 0 . . .

0 1/4 0 0 . . .
0 0 1/4 0 . . .
0 0 0 1/8 . . .
...

...
...

...
. . .


.
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Example 1

φ(z1, z2) = (z1/2, z2/4) U =

1/2 0 0
0 1/4 0
0 0 1/4


(φ′(0)t −1/2) : z1 7→ 0 (U −1/2) : z1 7→ 0
(φ′(0)t −1/4) : z2 7→ 0 (U −1/4) : z2 7→ 0

(U −1/4) : z21 7→ 0
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Example 1

φ(z1, z2) = (z1/2, z2/4) U =

1/2 0 0
0 1/4 0
0 0 1/4


(φ′(0)t −1/2) : z1 7→ 0 (U −1/2) : z1 7→ 0
(φ′(0)t −1/4) : z2 7→ 0 (U −1/4) : z2 7→ 0

(U −1/4) : z21 7→ 0
So Schroeder’s Equation has two solutions,

F1 =

[
c1z1
c2z2

]
,F2 =

[
c1z1
c2z

2
1

]
F1 has full rank near 0.
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Example 2

φ(z1, z2) = (z1/2, z2/4 + z21/2)
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Example 2

φ(z1, z2) = (z1/2, z2/4 + z21/2)
φ′(0)t in red and U in purple

Cφ =

φ1 φ2 φ21 φ1φ2 . . .
z1
z2
z21
z1z2

...


1/2 0 0 0 . . .

0 1/4 0 0 . . .
0 1/2 1/4 0 . . .
0 0 0 1/8 . . .
...

...
...

...
. . .
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Example 2

φ(z1, z2) = (z1/2, z2/4 + z21/2)

U =

1/2 0 0
0 1/4 0
0 0 1/4


(φ′(0)t −1/2) : z1 7→ 0 (U −1/2) : z1 7→ 0
(φ′(0)t −1/4) : z2 7→ 0 (U −1/4) : 2z2 7→ z21 7→ 0
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φ(z1, z2) = (z1/2, z2/4 + z21/2)

U =

1/2 0 0
0 1/4 0
0 0 1/4


(φ′(0)t −1/2) : z1 7→ 0 (U −1/2) : z1 7→ 0
(φ′(0)t −1/4) : z2 7→ 0 (U −1/4) : 2z2 7→ z21 7→ 0
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Example 2

φ(z1, z2) = (z1/2, z2/4 + z21/2)

U =

1/2 0 0
0 1/4 0
0 0 1/4


(φ′(0)t −1/2) : z1 7→ 0 (U −1/2) : z1 7→ 0
(φ′(0)t −1/4) : z2 7→ 0 (U −1/4) : 2z2 7→ z21 7→ 0
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Example 2

φ(z1, z2) = (z1/2, z2/4 + z21/2)

U =

1/2 0 0
0 1/4 0
0 0 1/4


(φ′(0)t −1/2) : z1 7→ 0 (U −1/2) : z1 7→ 0
(φ′(0)t −1/4) : z2 7→ 0 (U −1/4) : 2z2 7→ z21 7→ 0
So Schroeder’s Equation has one solution,

F =

[
c1z1
c2z

2
1

]
which is not full rank.
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Reduce to Jordan form

∃ D an n × n invertible matrix Dφ′(0)D−1 is in Jordan form.

• Replace φ with ψ = DφD−1 (so ψ′(0) is in Jordan form).
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Reduce to Jordan form

• Replace φ with ψ = DφD−1 (so ψ′(0) is in Jordan form).

CψF = ψ′(0)F

⇔ FDφ(D−1w) = Dφ′(0)D−1F (w)

⇔ D−1FD(φ(z)) = φ′(0)(D−1FD)(z), z = D−1w

⇔ Cφ(D−1FD) = φ′(0)(D−1FD)

• So it suffices to solve Schroeder’s equation for ψ.



Schroeder’s
Equation
in Several
Variables

History &
Preliminaries

The Problem

Notation

Outline

Examples

Reducing to
Jordan form

Using
Compactness
of Cφ

Jordan form of
U

Results

Reduce to Jordan form

• Replace φ with ψ = DφD−1 (so ψ′(0) is in Jordan form).
• So it suffices to solve Schroeder’s equation for ψ.

The domain of φ is Bn, but the domain of ψ is the ellipsoid
DBn.
• Replace Bn with DBn (an ellipsoid).
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Reduce to Jordan form

• Replace φ with ψ = DφD−1 (so ψ′(0) is in Jordan form).
• So it suffices to solve Schroeder’s equation for ψ.
• Replace Bn with DBn (an ellipsoid).

We need a Hilbert space of analytic functions on DBn on which
Cψ is compact.

H(Bn)
CD−1−−−−→ H(DBn)

Cφ

y yCDφD−1

H(Bn)
CD−1−−−−→ H(DBn)
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Reduce to Jordan form

• Replace φ with ψ = DφD−1 (so ψ′(0) is in Jordan form).
• So it suffices to solve Schroeder’s equation for ψ.
• Replace Bn with DBn (an ellipsoid).

H(Bn)
CD−1−−−−→ H(DBn)

Cφ

y yCDφD−1

H(Bn)
CD−1−−−−→ H(DBn)

Define H(DBn) := CD−1H(Bn), and
〈f ◦ D−1, g ◦ D−1〉H(DBn) = 〈f , g〉H(Bn)
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Reduce to Jordan form

• Replace φ with ψ = DφD−1 (so ψ′(0) is in Jordan form).
• So it suffices to solve Schroeder’s equation for ψ.
• Replace Bn with DBn (an ellipsoid).

H(Bn)
CD−1−−−−→ H(DBn)

Cφ

y yCDφD−1

H(Bn)
CD−1−−−−→ H(DBn)

• Replace H(Bn) with H(DBn) (so Cψ is compact).
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Was this WLOG?

Yes, it is WITH loss of generality!

{zα} is an orthogonal basis for the original space H(Bn).

⇒ {(Dz)α} is an orthonormal basis for H(DBn).
Very Inconvenient :/
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Was this WLOG?

Yes, it is WITH loss of generality!

{zα} is an orthogonal basis for the original space H(Bn).

⇒ {(Dz)α} is an orthonormal basis for H(DBn).
In general, g ∈ O(DBn) is conveniently represented

g(z) =
∑

aαz
α

{zα} is a basis for H(DBn)

zα ⊥ zβ is |α| 6= |β|.
For example, z1 6⊥ z2 is possible.
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Was this WLOG?

Yes, it is WITH loss of generality!

{zα} is an orthogonal basis for the original space H(Bn).

{zα} is a basis for H(DBn)

zα ⊥ zβ is |α| 6= |β|.
For example, z1 6⊥ z2 is possible.

g =
∑

aαz
α =

∞∑
s=0

gs(z)

The sum on the right converges in H(DBn) since

gs(λz) = λsgs(z)

⇔ gsD(λz) = λsgsD
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1 Reduce to φ′(0) =diag(J1, . . . , Jm)

Jj =


λj 1

. . .
. . .

λj 1
λj

 So we just need to find the

chains of Cφ with eigenvalue λj .

2 ∃ H a Hilbert space of analytic functions on which Cφ
compact.

3 Idea: Cφ =

[
U 0
V W

]
,U is N × N controls Cφ.

U has a λj -chain ⇔ Cφ does.

4 So we just find the chains of U, an N × N matrix.
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Lemma

Let λ ∈ C \ {0}. H = H1 ⊕ H2 with H1
∼= CN , Cφ =

[
U 0
V W

]
and λ /∈ σ(W ).

‖W ‖ = ‖(I − PN)Cφ(I − PN)‖ < |λ| for N large, and PN the
projection to the first N coordinates.
⇒W − λ is bounded below, and hence 1-1.
⇒W ∗ − λ̄ is 1-1.
⇒W −λ is invertible, since H2 = ker(W ∗− λ̄)⊕ (W −λ)(H2).
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Lemma

If h =

h1...
hN

 ∈ ker(U − λ), then ∃! h̃ =

[
hN+1
...

]
∈ H2 such

that

[
h

h̃

]
∈ ker(Cφ − λ).

Recall, Cφ =

[
U 0
V W

]
, so −Vh is fixed in H2.

⇒ ∃! h̃ ∈ H2 so that Wh̃ + Vh = 0

⇒ (Cφ − λ)

[
h

h̃

]
= 0.

Corollary

σ(Cφ) \ {0} =diag(Cφ).
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Chain Correspondence

Theorem

Let (U − λ) : Ek 7→ . . . 7→ E1 7→ 0, then ∃! fj =

[
Ej

Ẽj

]
so that

(Cφ − λ) : fk 7→ . . . 7→ f1 7→ 0.

k = 1 : Given by the previous lemma.
k ≥ 2 : Notice (U − λ)(U − λ)E2 = 0, and (U − λ)2 is the
upper left corner of

(Cφ − λ)2 = C 2
φ − 2λCφ + λ2 = K + λ2

K is lower triangular, and compact, so ∃! Ẽ2 such that

f2 =

[
E2

Ẽ2

]
∈ ker[(Cφ − λ)2]. Lastly,

(C − λ)f2 =

[
E1

?

]
∈ ker(Cφ − λ). So ? = Ẽ1 by uniqueness.
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1 Reduce to φ′(0) =diag(J1, . . . , Jm)

Jj =


λj 1

. . .
. . .

λj 1
λj

 So we just need to find the

chains of Cφ with eigenvalue λj .

2 ∃ H a Hilbert space of analytic functions on which Cφ
compact.

3 Idea: Cφ =

[
U 0
V W

]
,U is N × N controls Cφ

U has a λj -chain ⇔ Cφ does.

4 So we just find the chains of U, an N × N matrix.
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In general U =

[
φ′(0)t 0
B C

]
and φ′(0)t =

J1 . . .

Jm

 with

each Jj a Jordan block.
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In general

U =



λ
1 λ

. . .
. . .

1 λ

J 2
. . .

J m

a1 a2 . . . ak . . . . . . . . . an an+1

? ? ?
. . .


Our task is to put this into Jordan form.



Schroeder’s
Equation
in Several
Variables

History &
Preliminaries

The Problem

Notation

Outline

Examples

Reducing to
Jordan form

Using
Compactness
of Cφ

Jordan form of
U

Results

In general

U =



λ
1 λ

. . .
. . .

1 λ

J 2
. . .

J m

a1 a2 . . . ak . . . . . . . . . an an+1

? ? ?
. . .





Schroeder’s
Equation
in Several
Variables

History &
Preliminaries

The Problem

Notation

Outline

Examples

Reducing to
Jordan form

Using
Compactness
of Cφ

Jordan form of
U

Results


λ
1 λ

. . .
. . .

1 λ

0
...
...
0

a1 . . . ak−1 ak ak+1

 Put into Jordan form.


λ
1 λ

. . .
. . .

1 λ

0
...
...
0

0 . . . 0 0 ak+1


if ak+1 6= λ, or
if ak+1 = λ & ak = 0


λ
1 λ

. . .
. . .

1 λ

0
...
...
0

0 . . . 0 1 λ


if ak+1 = λ & ak 6= 0
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U =



λ
1 λ

. . .
. . .

1 λ

J 2
. . .

J m

0 0 . . . 0or1 . . . . . . . . . 0or1 λ

? ? ?
. . .
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Theorem (Main Theorem)

∃F such that CφF = φ′(0)F with linearly independent
component functions.

∃F such that both CφF = φ′(0)F and F ′(0) full rank
⇔ P ker(Cφ − λ) = ker(φ′(0)t − λ) for each λ ∈ σ(φ′(0)),
with P the projection to 〈z1, ...zn〉.

Corollary

A full rank solution exists
⇔ dim[P ker(Cφ − λ)] = dim[ker(φ′(0)t − λ)].
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∃F such that CφF = φ′(0)F with linearly independent
component functions.

∃F such that both CφF = φ′(0)F and F ′(0) full rank
⇔ P ker(Cφ − λ) = ker(φ′(0)t − λ) for each λ ∈ σ(φ′(0)),
with P the projection to 〈z1, ...zn〉.

Corollary

A full rank solution exists
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Definition

λj is a resonant eigenvalue of φ′(0) iff it occurs on the diagonal
of Cφ below φ′(0)t .

Corollary

If there are no resonant eigenvalues of φ′(0), then a full rank
solution exists.

Corollary

If λ is a resonant eigenvalue and
dim[ker(Cφ − λ)] = dim[ker(φ′(0)− λ)] no full rank solution
can exist.
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Definition

λj is a resonant eigenvalue of φ′(0) iff it occurs on the diagonal
of Cφ below φ′(0)t .

Corollary

If there are no resonant eigenvalues of φ′(0), then a full rank
solution exists.

Corollary

If λ is a resonant eigenvalue and
dim[ker(Cφ − λ)] = dim[ker(φ′(0)− λ)] no full rank solution
can exist.
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Theorem

∃Fk such that CφFk = φ′(0)kFk with linearly independent
component functions for k = 1, 2, . . . . Furthermore, if k 6= 1,
then Fk cannot have full rank near 0.

We can find Fk explicitly in therms of an F1.
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Algebraic Solutions are Analytic

Definition

λ is a resonant eigenvalue of φ if (and only if) λ = λk11 ...λ
km
m

with λj eigenvalues of φ′(0), and positive integers kj satisfying∑
kj > 2.

R. D. Enoch’s 2007 paper gives criteria for formal power
series solutions to Schroeder’s equation.

Every function from Bn to C (for example φ1, ...φn, and
f1, ..., fn) is treated as a column vector. Under some
hypotheses on φ, the coefficients of each fj are found to
satisfy CφF = φ′(0)F and det(F ′(0)) 6= 0.

Do these formal power series converge on Bn?
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Algebraic Solutions are Analytic

Definition

λ is a resonant eigenvalue of φ if (and only if) λ = λk11 ...λ
km
m

with λj eigenvalues of φ′(0), and positive integers kj satisfying∑
kj > 2.

R. D. Enoch’s 2007 paper gives criteria for formal power
series solutions to Schroeder’s equation.

Every function from Bn to C (for example φ1, ...φn, and
f1, ..., fn) is treated as a column vector. Under some
hypotheses on φ, the coefficients of each fj are found to
satisfy CφF = φ′(0)F and det(F ′(0)) 6= 0.

Do these formal power series converge on Bn?
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Theorem (Bobby & Cowen)

Any formal power series solution to Schroeder’s equation is
indeed an analytic solution.

Corollary

If φ′(0) has no resonant eigenvalues, then a full rank solution
to Schroeder’s equation exists.

Theorem (Bobby & Cowen)

If λ is a resonant eigenvalue, and
dim[ker(U − λIN)] = dim[ker(φ′(0)t − λIn)] then no full rank
solution exists.
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