On the Uniqueness of Solutions to the Gross-Pitaevskii Hierarchy with a Switchable Quadratic Trap

Xuwen Chen chenxuwen@math.umd.edu Department of Mathematics

University of Maryland
College Park, MD 20742

$$
03 / 17 / 2011
$$

Outline

- Background, physical and mathematical

Outline

- Background, physical and mathematical
- Statement of theorems

Outline

- Background, physical and mathematical
- Statement of theorems
- Proof of theorems

Outline

- Background, physical and mathematical
- Statement of theorems
- Proof of theorems
- Conclusion

Background I

- Bose-Einstein condensation (BEC) is the phenomenon that particles of integer spin ("Bosons") occupy a macroscopic quantum state. The first experimental observation of BEC in an interacting atomic gas occurred in 1995. Cornell and Ketterle got the Nobel prize of physics for that.

Background I

- Bose-Einstein condensation (BEC) is the phenomenon that particles of integer spin ("Bosons") occupy a macroscopic quantum state. The first experimental observation of BEC in an interacting atomic gas occurred in 1995. Cornell and Ketterle got the Nobel prize of physics for that.
- In lab experiments, the particles are initially confined by traps, e.g., magnetic fields in 1995, then the traps are switched in order to enable observation.

Background I

- Bose-Einstein condensation (BEC) is the phenomenon that particles of integer spin ("Bosons") occupy a macroscopic quantum state. The first experimental observation of BEC in an interacting atomic gas occurred in 1995. Cornell and Ketterle got the Nobel prize of physics for that.
- In lab experiments, the particles are initially confined by traps, e.g., magnetic fields in 1995, then the traps are switched in order to enable observation.
- This is modeled by the N body Schrödinger equation with switchable quadratic potential:

$$
i \partial_{\tau} \psi_{N}=\frac{1}{2}\left(-\triangle_{\mathbf{y}_{N}}+\eta(\tau)\left|\mathbf{y}_{N}\right|^{2}\right) \psi_{N}+\sum_{i<j} V_{N}\left(y_{i}-y_{j}\right) \psi_{N}
$$

where $\tau \in \mathbb{R}, \mathbf{y}_{N}=\left(y_{1}, y_{2}, \ldots, y_{N}\right) \in \mathbb{R}^{3 N}$ and $\eta(\tau)$ is the switch function.

Marginal Density

- Since ψ_{N} is not a product of one-particle states, the rigorous mathematical description is highly non-trivial. However, the concept of a macroscopic occupation of a single state acquires a precise meaning through the k-particle marginal density $\gamma_{N}^{(k)}$ associated with ψ_{N}, where

$$
\gamma_{N}^{(k)}\left(\tau, \mathbf{y}_{k} ; \mathbf{y}_{k}^{\prime}\right)=\int \psi_{N}\left(\tau, \mathbf{y}_{k}, \mathbf{y}_{N-k}\right) \overline{\left.\psi_{N}\left(\tau, \mathbf{y}_{k}^{\prime}, \mathbf{y}_{N-k}\right)\right)} d \mathbf{y}_{N-k}
$$

with $\mathbf{y}_{k}, \mathbf{y}_{k}^{\prime} \in \mathbb{R}^{3 k}$.

Marginal Density

- Since ψ_{N} is not a product of one-particle states, the rigorous mathematical description is highly non-trivial. However, the concept of a macroscopic occupation of a single state acquires a precise meaning through the k-particle marginal density $\gamma_{N}^{(k)}$ associated with ψ_{N}, where

$$
\gamma_{N}^{(k)}\left(\tau, \mathbf{y}_{k} ; \mathbf{y}_{k}^{\prime}\right)=\int \psi_{N}\left(\tau, \mathbf{y}_{k}, \mathbf{y}_{N-k}\right) \overline{\left.\psi_{N}\left(\tau, \mathbf{y}_{k}^{\prime}, \mathbf{y}_{N-k}\right)\right)} d \mathbf{y}_{N-k}
$$

with $\mathbf{y}_{k}, \mathbf{y}_{k}^{\prime} \in \mathbb{R}^{3 k}$.

- We are here interested in the case $N \rightarrow \infty$ in which the Gross-Pitaevskii limit applies. This is also called the mean field approximation.

Gross-Pitaevski hierarchy I

- As $N \rightarrow \infty$, consider the equation $\gamma_{N}^{(k)}$ satisfies.

Gross-Pitaevski hierarchy I

- As $N \rightarrow \infty$, consider the equation $\gamma_{N}^{(k)}$ satisfies. Then we formally arrive at the the switchable quadratic trap Gross-Pitaevskii infinite hierarchy of equations:

$$
\begin{equation*}
\left(i \partial_{\tau}-H_{\mathbf{y}_{k}}(\tau)+H_{\mathbf{y}_{k}^{\prime}}(\tau)\right) \gamma^{(k)}=\sum_{j=1}^{k} B_{j, k+1}\left(\gamma^{(k+1)}\right) . \tag{1}
\end{equation*}
$$

where we write $H_{\mathbf{y}_{k}}(\tau)=\frac{1}{2}\left(-\triangle_{\mathbf{y}_{k}}+\eta(\tau)\left|\mathbf{y}_{k}\right|^{2}\right)$ for convenience.

Gross-Pitaevski hierarchy I (cont.)

- $B_{j, k+1}=B_{j, k+1}^{1}-B_{j, k+1}^{2}$ are defined as

$$
\begin{aligned}
& B_{j, k+1}^{1}\left(\gamma^{(k+1)}\right)\left(\tau, \mathbf{y}_{k} ; \mathbf{y}_{k}^{\prime}\right) \\
&= \iint \delta\left(y_{j}-y_{k+1}\right) \delta\left(y_{j}-y_{k+1}^{\prime}\right) \\
& \gamma^{(k+1)}\left(\tau, \mathbf{y}_{k+1} ; \mathbf{y}_{k+1}^{\prime}\right) d y_{k+1} d y_{k+1}^{\prime} \\
& B_{j, k+1}^{2}\left(\gamma^{(k+1)}\right)\left(\tau, \mathbf{y}_{k} ; \mathbf{y}_{k}^{\prime}\right) \\
&= \iint \delta\left(y_{j}^{\prime}-y_{k+1}\right) \delta\left(y_{j}^{\prime}-y_{k+1}^{\prime}\right) \\
& \gamma^{(k+1)}\left(\tau, \mathbf{y}_{k+1} ; \mathbf{y}_{k+1}^{\prime}\right) d y_{k+1} d y_{k+1}^{\prime} .
\end{aligned}
$$

Why study the G-P Hierarchy?

- Because the cubic NLS

$$
i \partial_{\tau} \phi=H_{y}(\tau) \phi+|\phi|^{2} \phi
$$

comes form this linear Gross-Pitaevskii hierarchy. This is why the cubic NLS is also called the Gross-Pitaevskii equation.

Why study the G-P Hierarchy?

- Because the cubic NLS

$$
i \partial_{\tau} \phi=H_{y}(\tau) \phi+|\phi|^{2} \phi
$$

comes form this linear Gross-Pitaevskii hierarchy. This is why the cubic NLS is also called the Gross-Pitaevskii equation.

- When we have a condensate initial data

$$
\gamma^{(k)}\left(0, \mathbf{y}_{k} ; \mathbf{y}_{k}^{\prime}\right)=\prod_{j=1}^{k} \phi_{0}\left(y_{j}\right) \overline{\phi_{0}\left(y_{j}^{\prime}\right)}
$$

then

$$
\gamma^{(k)}\left(\tau, \mathbf{y}_{k} ; \mathbf{y}_{k}^{\prime}\right)=\prod_{j=1}^{k} \phi\left(\tau, y_{j}\right) \overline{\phi\left(\tau, y_{j}^{\prime}\right)}
$$

where ϕ satisfies the cubic NLS above, is the solution to the Gross-Pitaevskii hierarchy.

Why the uniqueness of G-P Hierarchy?

- Away from the solution in the last slide, there is no guarantee that the infinite hierarchy wouldn't have another solution.

Why the uniqueness of G-P Hierarchy?

- Away from the solution in the last slide, there is no guarantee that the infinite hierarchy wouldn't have another solution.
- So to justify the mean field approximation, we have to prove the uniqueness of the infinite hierarchy. Our main theorem addresses this.

Previous Work I

- When the switch is off $(\eta=0)$, hierarchy 1 becomes

$$
\begin{equation*}
\left(i \partial_{t}+\frac{1}{2} \triangle_{\mathbf{x}_{k}}-\frac{1}{2} \triangle_{\mathbf{x}_{k}^{\prime}}\right) \gamma^{(k)}=\sum_{j=1}^{k} B_{j, k+1}\left(\gamma^{(k+1)}\right) . \tag{2}
\end{equation*}
$$

which corresponds to the evolution after the removal of the traps. It was studied by Elgart, Erdös, Schlein, and Yau in a series of papers together with the no trapping potential BBGKY hierarchy.

Previous Work I

- When the switch is off $(\eta=0)$, hierarchy 1 becomes

$$
\begin{equation*}
\left(i \partial_{t}+\frac{1}{2} \triangle_{\mathbf{x}_{k}}-\frac{1}{2} \triangle_{\mathbf{x}_{k}^{\prime}}\right) \gamma^{(k)}=\sum_{j=1}^{k} B_{j, k+1}\left(\gamma^{(k+1)}\right) . \tag{2}
\end{equation*}
$$

which corresponds to the evolution after the removal of the traps. It was studied by Elgart, Erdös, Schlein, and Yau in a series of papers together with the no trapping potential BBGKY hierarchy.

- Their program consists of two main parts: on the one hand, they prove that an appropriate limit of $\gamma_{N}^{(k)}$ as $N \rightarrow \infty$ solves hierarchy 2 , on the other hand, they show that hierarchy 2 has a unique solution.

Previous Work II

- In 2008, Klainerman and Machedon simplified the proof of uniqueness.

Previous Work II

- In 2008, Klainerman and Machedon simplified the proof of uniqueness.
- Later, the method by Klainerman and Machedon was taken up by Kirkpatrick, Schlein, and Staffilani to study the corresponding problem in 2d, and Chen and Pavlović to study the 3-body interaction problem.

Previous Work II

Their key estimate reads: there is $C>0$, independent of j, k, s.t.

$$
\begin{align*}
& \left\|\left(\prod_{j=1}^{k}\left(\nabla_{x_{j}} \nabla_{x_{j}^{\prime}}\right)\right)\left(B_{j, k+1}^{1} u^{(k+1)}\right)\left(t, \mathbf{x}_{k} ; \mathbf{x}_{k}^{\prime}\right)\right\|_{L^{2}\left(\mathbb{R} \times \mathbb{R}^{3 k} \times \mathbb{R}^{3 k}\right)} \tag{3}\\
\leqslant & C\left\|\left(\prod_{j=1}^{k+1}\left(\nabla_{x_{j}} \nabla_{x_{j}^{\prime}}\right)\right) u^{(k+1)}\left(0, \mathbf{x}_{k+1} ; \mathbf{x}_{k+1}^{\prime}\right)\right\|_{L^{2}\left(\mathbb{R}^{3(k+1)} \times \mathbb{R}^{3(k+1)}\right)},
\end{align*}
$$

if $u^{(k+1)}$ verifies non trapping equation

$$
\left(i \partial_{t}+\frac{1}{2} \triangle_{\mathbf{x}_{k+1}}-\frac{1}{2} \triangle_{\mathbf{x}_{k+1}^{\prime}}\right) u^{(k+1)}=0 .
$$

Previous Work II

Their key estimate reads: there is $C>0$, independent of j, k, s.t.

$$
\begin{aligned}
& \left\|\left(\prod_{j=1}^{k}\left(\nabla_{x_{j}} \nabla_{x_{j}^{\prime}}\right)\right)\left(B_{j, k+1}^{1} u^{(k+1)}\right)\left(t, \mathbf{x}_{k} ; \mathbf{x}_{k}^{\prime}\right)\right\|_{L^{2}\left(\mathbb{R} \times \mathbb{R}^{3 k} \times \mathbb{R}^{3 k}\right)} \\
\leqslant & C\left\|\left(\prod_{j=1}^{k+1}\left(\nabla_{x_{j}} \nabla_{x_{j}^{\prime}}\right)\right) u^{(k+1)}\left(0, \mathbf{x}_{k+1} ; \mathbf{x}_{k+1}^{\prime}\right)\right\|_{L^{2}\left(\mathbb{R}^{3(k+1)} \times \mathbb{R}^{3(k+1)}\right)},
\end{aligned}
$$

if $u^{(k+1)}$ verifies non trapping equation

$$
\begin{equation*}
\left(i \partial_{t}+\frac{1}{2} \triangle_{\mathbf{x}_{k+1}}-\frac{1}{2} \triangle_{\mathbf{x}_{k+1}^{\prime}}\right) u^{(k+1)}=0 \tag{4}
\end{equation*}
$$

- We will also use this estimate in our problem.

Conditions on the switch

- Through out this talk, we assume that the switch $\eta \in C^{1}\left(\mathbb{R}_{0}^{+} \rightarrow \mathbb{R}_{0}^{+}\right)$satisfies

Conditions on the switch

- Through out this talk, we assume that the switch $\eta \in C^{1}\left(\mathbb{R}_{0}^{+} \rightarrow \mathbb{R}_{0}^{+}\right)$satisfies 1. $\dot{\eta}(0)=0$.

Conditions on the switch

- Through out this talk, we assume that the switch $\eta \in C^{1}\left(\mathbb{R}_{0}^{+} \rightarrow \mathbb{R}_{0}^{+}\right)$satisfies

1. $\dot{\eta}(0)=0$.
2. $\dot{\eta}$ is supported in $\left[0, T_{0}\right]$ and $T_{0} \sqrt{\sup _{\tau}|\eta(\tau)|}<\frac{\pi}{2}$

Conditions on the switch

- Through out this talk, we assume that the switch $\eta \in C^{1}\left(\mathbb{R}_{0}^{+} \rightarrow \mathbb{R}_{0}^{+}\right)$satisfies

1. $\dot{\eta}(0)=0$.
2. $\dot{\eta}$ is supported in $\left[0, T_{0}\right]$ and $T_{0} \sqrt{\sup _{\tau}|\eta(\tau)|}<\frac{\pi}{2}$

- The switch we are considering here includes the cases: turning off / on and tuning up / down the trap. It also allows some spikes in the switching period.

Conditions on the switch

- Through out this talk, we assume that the switch $\eta \in C^{1}\left(\mathbb{R}_{0}^{+} \rightarrow \mathbb{R}_{0}^{+}\right)$satisfies 1. $\dot{\eta}(0)=0$.

2. $\dot{\eta}$ is supported in $\left[0, T_{0}\right]$ and $T_{0} \sqrt{\sup _{\tau}|\eta(\tau)|}<\frac{\pi}{2}$

- The switch we are considering here includes the cases: turning off / on and tuning up / down the trap. It also allows some spikes in the switching period.
- The 1 st condition yields a C^{1} even extension of η i.e. we define $\eta(\tau)=\eta(-\tau)$ for $\tau<0$.

Conditions on the switch

- Through out this talk, we assume that the switch $\eta \in C^{1}\left(\mathbb{R}_{0}^{+} \rightarrow \mathbb{R}_{0}^{+}\right)$satisfies

1. $\dot{\eta}(0)=0$.
2. $\dot{\eta}$ is supported in $\left[0, T_{0}\right]$ and $T_{0} \sqrt{\sup _{\tau}|\eta(\tau)|}<\frac{\pi}{2}$

- The switch we are considering here includes the cases: turning off / on and tuning up / down the trap. It also allows some spikes in the switching period.
- The 1st condition yields a C^{1} even extension of η i.e. we define $\eta(\tau)=\eta(-\tau)$ for $\tau<0$.
- The fast switching condition (2nd) ensures that the tools to prove our main theorem are well-defined.

The norm we consider

- Define

$$
R_{\tau}^{(k)}=\left(\prod_{j=1}^{k} P_{y_{j}}(\tau) P_{y_{j}^{\prime}}(-\tau)\right)
$$

in which

$$
P_{y}(\tau)=i \beta(\tau) \nabla_{y}+\dot{\beta}(\tau) y
$$

where β solves

$$
\begin{equation*}
\ddot{\beta}(\tau)+\eta(\tau) \beta(\tau)=0, \beta(0)=1, \dot{\beta}(0)=0 \tag{5}
\end{equation*}
$$

- We consider the norm $\left\|R_{\tau}^{(k)} \gamma^{(k)}(\tau, \cdot ; \cdot)\right\|_{L^{2}\left(\mathbb{R}^{3 k} \times \mathbb{R}^{3 k}\right)}$

The norm we consider

- Define

$$
R_{\tau}^{(k)}=\left(\prod_{j=1}^{k} P_{y_{j}}(\tau) P_{y_{j}^{\prime}}(-\tau)\right)
$$

in which

$$
P_{y}(\tau)=i \beta(\tau) \nabla_{y}+\dot{\beta}(\tau) y
$$

where β solves

$$
\begin{equation*}
\ddot{\beta}(\tau)+\eta(\tau) \beta(\tau)=0, \beta(0)=1, \dot{\beta}(0)=0 . \tag{5}
\end{equation*}
$$

- We consider the norm $\left\|R_{\tau}^{(k)} \gamma^{(k)}(\tau, \because \cdot \cdot)\right\|_{L^{2}\left(\mathbb{R}^{3 k} \times \mathbb{R}^{3 k}\right)}$
- β is a non-zero even function in $\left[-T_{0}, T_{0}\right.$]. This is important.

The norm we consider

- Define

$$
R_{\tau}^{(k)}=\left(\prod_{j=1}^{k} P_{y_{j}}(\tau) P_{y_{j}^{\prime}}(-\tau)\right)
$$

in which

$$
P_{y}(\tau)=i \beta(\tau) \nabla_{y}+\dot{\beta}(\tau) y
$$

where β solves

$$
\begin{equation*}
\ddot{\beta}(\tau)+\eta(\tau) \beta(\tau)=0, \beta(0)=1, \dot{\beta}(0)=0 \tag{5}
\end{equation*}
$$

- We consider the norm $\left\|R_{\tau}^{(k)} \gamma^{(k)}(\tau, \because \cdot \cdot)\right\|_{L^{2}\left(\mathbb{R}^{3 k} \times \mathbb{R}^{3 k}\right)}$
- β is a non-zero even function in $\left[-T_{0}, T_{0}\right]$. This is important.
- $P_{y}(\tau)$ is in fact the evolution of the momentum operator $i \nabla$.

The norm we consider

- Define

$$
R_{\tau}^{(k)}=\left(\prod_{j=1}^{k} P_{y_{j}}(\tau) P_{y_{j}^{\prime}}(-\tau)\right)
$$

in which

$$
P_{y}(\tau)=i \beta(\tau) \nabla_{y}+\dot{\beta}(\tau) y
$$

where β solves

$$
\begin{equation*}
\ddot{\beta}(\tau)+\eta(\tau) \beta(\tau)=0, \beta(0)=1, \dot{\beta}(0)=0 \tag{5}
\end{equation*}
$$

- We consider the norm $\left\|R_{\tau}^{(k)} \gamma^{(k)}(\tau, \because \cdot \cdot)\right\|_{L^{2}\left(\mathbb{R}^{3 k} \times \mathbb{R}^{3 k}\right)}$
- β is a non-zero even function in $\left[-T_{0}, T_{0}\right.$. This is important.
- $P_{y}(\tau)$ is in fact the evolution of the momentum operator $i \nabla$. It was introduced by Carles in 2010. Himself and Killip-Visan-Zhang used the special case $\eta(\tau)= \pm 1$ in many earlier papers.

Uniqueness Theorem

Theorem

Let $\left\{\gamma^{(k)}\left(\tau, \mathbf{y}_{k}, \mathbf{y}_{k}^{\prime}\right)\right\}_{k=1}^{\infty}$ solves the Gross-Pitaevskii hierarchy 1 subject to zero initial data and

$$
\int_{0}^{T_{0}} \| R_{\tau}^{(k)} B_{j, k+1} \gamma^{(k+1)}\left(\tau, \because ; \cdot \|_{L^{2}\left(\mathbb{R}^{3 k} \times \mathbb{R}^{3 k}\right)} d \tau \leqslant C^{k}\right.
$$

for some $C>0$ and all $1 \leqslant j \leqslant k$. Then $\forall k, \tau \in\left[0, T_{0}\right]$,

$$
\left\|R_{\tau}^{(k)} \gamma^{(k)}(\tau, \because \cdot \cdot)\right\|_{L^{2}\left(\mathbb{R}^{3 k} \times \mathbb{R}^{3 k}\right)}=0
$$

Collapsing estimate used to prove the main theorem

Theorem

Let $[s, T] \subset\left[0, T_{0}\right]$. There exists a $C>0$ independent of j, k, s, and T s.t.

$$
\begin{aligned}
& \left\|R_{\tau}^{(k)} B_{j, k+1}\left(\gamma^{(k+1)}\right)\right\|_{L^{2}\left([s, T] \times \mathbb{R}^{3 k} \times \mathbb{R}^{3 k}\right)}^{2} \\
\leqslant & C\left(\sup _{\tau \in\left[0, T_{0}\right]} \frac{1}{(\beta(\tau))^{4}}\right)\left\|R_{\tau}^{(k+1)} \gamma^{(k+1)}\right\|_{L^{2}\left(\mathbb{R}^{3(k+1)} \times \mathbb{R}^{3(k+1)}\right)}^{2}
\end{aligned}
$$

where the τ on the RHS of the above estimate can be chosen freely in $[s, T]$, if $\gamma^{(k+1)}\left(\tau, \mathbf{y}_{k+1} ; \mathbf{y}_{k+1}^{\prime}\right)$ satisfies

$$
\begin{align*}
\left(i \partial_{\tau}-H_{\mathbf{y}_{k}}(\tau)+H_{\mathbf{y}_{k}^{\prime}}(\tau)\right) \gamma^{(k+1)} & =0 \tag{6}\\
\gamma^{(k+1)}\left(s, \mathbf{y}_{k+1} ; \mathbf{y}_{k+1}^{\prime}\right) & =\gamma_{s}^{(k+1)}\left(\mathbf{y}_{k+1} ; \mathbf{y}_{k+1}^{\prime}\right) .
\end{align*}
$$

A remark on the collapsing estimate

The collapsing estimates can be interpreted as a local smoothing estimate for which integrating in time results in a gain of one hidden derivative in the sense of the trace theorem. Some other collapsing estimates were obtained by myself and Kirkpatrick-Schlein-Staffilani. The work by Yajima and Zhang suggests that the local smoothing effect will be weakened if $|x|^{2}$ is replaced by $|x|^{m}, m>2$. Accordingly, $V(x)=|x|^{2}$ is the strongest possible trap in our setting.

Proof of collapsing estimate

Without loss of generality, we show the collapsing estimate for $B_{j, k+1}^{1}$ in $B_{j, k+1}$ when j is taken to be 1 .

Proof of collapsing estimate

Without loss of generality, we show the collapsing estimate for $B_{j, k+1}^{1}$ in $B_{j, k+1}$ when j is taken to be 1 . This corresponds to the estimate:

$$
\begin{aligned}
& \int_{s}^{T} d \tau \int_{\mathbb{R}^{3 k} \times \mathbb{R}^{3 k}}\left|R_{\tau}^{(k)} \gamma^{(k+1)}\left(\tau, \mathbf{y}_{k}, y_{1} ; \mathbf{y}_{k}^{\prime}, y_{1}\right)\right|^{2} d \mathbf{y}_{k} d \mathbf{y}_{k}^{\prime} \\
\leqslant & C \sup _{\tau \in\left[0, T_{0}\right]} \frac{1}{(\beta(\tau))^{4}} \int_{\mathbb{R}^{3(k+1)} \times \mathbb{R}^{3(k+1)}} d \mathbf{y}_{k+1} d \mathbf{y}_{k+1}^{\prime} \\
& \left|R_{\tau}^{(k+1)} \gamma^{(k+1)}\left(\tau, \mathbf{y}_{k+1} ; \mathbf{y}_{k+1}^{\prime}\right)\right|^{2},
\end{aligned}
$$

$\forall \tau \in[s, T]$, if $\gamma^{(k+1)}$ satisfies equation 6 (with switch).

Proof of collapsing estimate

Without loss of generality, we show the collapsing estimate for $B_{j, k+1}^{1}$ in $B_{j, k+1}$ when j is taken to be 1 . This corresponds to the estimate:

$$
\begin{aligned}
& \int_{s}^{T} d \tau \int_{\mathbb{R}^{3 k} \times \mathbb{R}^{3 k}}\left|R_{\tau}^{(k)} \gamma^{(k+1)}\left(\tau, \mathbf{y}_{k}, y_{1} ; \mathbf{y}_{k}^{\prime}, y_{1}\right)\right|^{2} d \mathbf{y}_{k} d \mathbf{y}_{k}^{\prime} \\
\leqslant & C \sup _{\tau \in\left[0, T_{0}\right]} \frac{1}{(\beta(\tau))^{4}} \int_{\mathbb{R}^{3(k+1)} \times \mathbb{R}^{3(k+1)}} d \mathbf{y}_{k+1} d \mathbf{y}_{k+1}^{\prime} \\
& \left|R_{\tau}^{(k+1)} \gamma^{(k+1)}\left(\tau, \mathbf{y}_{k+1} ; \mathbf{y}_{k+1}^{\prime}\right)\right|^{2},
\end{aligned}
$$

$\forall \tau \in[s, T]$, if $\gamma^{(k+1)}$ satisfies equation 6 (with switch). We will need the two lemmas stated below.

Lemma:The generalized lens transform

Lemma

Assume $u^{(k+1)}$ solves equation 4 (no trap) with $u^{(k+1)}(0, \cdot ; \cdot)=\gamma_{0}^{(k+1)}$. Define the generalized lens transform of $u^{(k+1)}$ to be

$$
\begin{aligned}
& L u^{(k+1)}\left(\tau, \mathbf{y}_{k+1} ; \mathbf{y}_{k+1}^{\prime}\right) \\
= & \frac{1}{(\beta(\tau))^{3(k+1)}} u^{(k+1)}\left(\frac{\alpha(\tau)}{\beta(\tau)}, \frac{\mathbf{y}_{k+1}}{\beta(\tau)} ; \frac{\mathbf{y}_{k+1}^{\prime}}{\beta(\tau)}\right) e^{i \frac{\dot{\beta}(\tau)}{\beta(\tau)} \frac{\left(\left|y_{k+1}\right|^{2}-\left|y_{k+1}^{\prime}\right|^{2}\right)}{2}},
\end{aligned}
$$

where β is as in equation 5 and

$$
\ddot{\alpha}(\tau)+\eta(\tau) \alpha(\tau)=0, \alpha(0)=0, \dot{\alpha}(0)=1 .
$$

Then in $\left[0, T_{0}\right], L u^{(k+1)}$ solves equation 6 (with switch).

Lemma:The norm

Lemma

[Carles 2010] $P_{y}(\tau)$ commutes with the linear operator

$$
i \partial_{\tau}-\frac{1}{2}\left(-\triangle_{\mathbf{y}_{k}}+\eta(\tau)\left|\mathbf{y}_{k}\right|^{2}\right)
$$

Moreover,

$$
P_{y}(\tau) U_{y}(\tau ; s) f=U_{y}(\tau ; s) P_{y}(s) f
$$

where $U_{y}(\tau ; s)$ is the solution operator to

$$
\left(i \partial_{\tau}-H_{y}(\tau)\right) u=0, y \in \mathbb{R}^{3}, u(s, y)=u_{s}(y)
$$

Lemma:The norm

Lemma

[Carles 2010] $P_{y}(\tau)$ commutes with the linear operator

$$
i \partial_{\tau}-\frac{1}{2}\left(-\triangle_{\mathbf{y}_{k}}+\eta(\tau)\left|\mathbf{y}_{k}\right|^{2}\right)
$$

Moreover,

$$
P_{y}(\tau) U_{y}(\tau ; s) f=U_{y}(\tau ; s) P_{y}(s) f
$$

where $U_{y}(\tau ; s)$ is the solution operator to

$$
\left(i \partial_{\tau}-H_{y}(\tau)\right) u=0, y \in \mathbb{R}^{3}, u(s, y)=u_{s}(y)
$$

- Now we can prove the collapsing estimate

Proof I

Use the lens transform we compute

$$
\begin{aligned}
& R_{\tau}^{(k)} \gamma^{(k+1)}\left(\tau, \mathbf{y}_{k}, y_{1} ; \mathbf{y}_{k}^{\prime}, y_{1}\right) \\
= & \frac{e^{i \frac{\dot{\beta}(\tau)}{\beta(\tau)} \frac{\left(\left|y_{k}\right|^{2}-\left|y_{k}^{\prime}\right|^{2}\right)}{2}}}{(\beta(\tau))^{k+3}} \\
& \left(\left(\prod_{j=1}^{k}\left(\nabla_{y_{j}} \nabla_{y_{j}^{\prime}}\right)\right) u^{(k+1)}\left(\frac{\alpha(\tau)}{\beta(\tau)}, \frac{\mathbf{y}_{k}}{\beta(\tau)}, \frac{y_{1}}{\beta(\tau)} ; \frac{\mathbf{y}_{k}^{\prime}}{\beta(\tau)}, \frac{y_{1}}{\beta(\tau)}\right)\right),
\end{aligned}
$$

because

$$
i \beta(\tau) \nabla_{y}\left(e^{i \frac{\dot{\beta}(\tau)}{\beta(\tau)} \frac{\left(|y|^{2}\right)}{2}}\right)+\dot{\beta}(\tau) y\left(e^{i \frac{\dot{\beta}(\tau)}{\beta(\tau)} \frac{\left(|y|^{2}\right)}{2}}\right)=0 .
$$

Proof II

So

$$
\begin{aligned}
& \int_{s}^{T} d \tau \int_{\mathbb{R}^{6 k}}\left|R_{\tau}^{(k)} \gamma^{(k+1)}\left(\tau, \mathbf{y}_{k}, y_{1} ; \mathbf{y}_{k}^{\prime}, y_{1}\right)\right|^{2} d \mathbf{y}_{k} d \mathbf{y}_{k}^{\prime} \\
\leqslant & \left(\sup _{\tau \in\left[0, T_{0}\right]} \frac{1}{(\beta(\tau))^{4}}\right) \\
& \int_{-\infty}^{\infty} d t \int_{\mathbb{R}^{6 k}}\left|\left(\prod_{j=1}^{k}\left(\nabla_{x_{j}} \nabla_{x_{j}^{\prime}}\right)\right) u^{(k+1)}\left(t, \mathbf{x}_{k}, x_{1} ; \mathbf{x}_{k}^{\prime}, x_{1}\right)\right|^{2} d \mathbf{x}_{k} d \mathbf{x}_{k}^{\prime}
\end{aligned}
$$

Proof II

So

$$
\begin{aligned}
& \int_{s}^{T} d \tau \int_{\mathbb{R}^{6 k}}\left|R_{\tau}^{(k)} \gamma^{(k+1)}\left(\tau, \mathbf{y}_{k}, y_{1} ; \mathbf{y}_{k}^{\prime}, y_{1}\right)\right|^{2} d \mathbf{y}_{k} d \mathbf{y}_{k}^{\prime} \\
\leqslant & \left(\sup _{\tau \in\left[0, T_{0}\right]} \frac{1}{(\beta(\tau))^{4}}\right) \\
& \int_{-\infty}^{\infty} d t \int_{\mathbb{R}^{6 k}}\left|\left(\prod_{j=1}^{k}\left(\nabla_{x_{j}} \nabla_{x_{j}^{\prime}}\right)\right) u^{(k+1)}\left(t, \mathbf{x}_{k}, x_{1} ; \mathbf{x}_{k}^{\prime}, x_{1}\right)\right|^{2} d \mathbf{x}_{k} d \mathbf{x}_{k}^{\prime}
\end{aligned}
$$

By estimate 3, we conclude the collapsing estimate.

Key Lemma I

For convenience, we write the solution operator of equation 6 as $U^{(k+1)}(\tau ; s)$, then we have lemma:
One can express $\gamma^{(1)}\left(\tau_{1}, \because ; \cdot\right)$ in the Gross-Pitaevskii hierarchy 1 as a sum of at most 4^{n} terms of the form

$$
\int_{D} J\left(\underline{\tau}_{n+1}, \mu_{m}\right) d \underline{\tau}_{n+1}
$$

or in other words,

$$
\begin{equation*}
\gamma^{(1)}\left(\tau_{1}, \cdot ; \cdot\right)=\sum_{m} \int_{D} J\left(\underline{\tau}_{n+1}, \mu_{m}\right) d \underline{\tau}_{n+1} \tag{7}
\end{equation*}
$$

Key Lemma II

In last slide, $\underline{\tau}_{n+1}=\left(\tau_{2}, \tau_{3}, \ldots, \tau_{n+1}\right), D \subset\left[s, \tau_{1}\right]^{n}, \mu_{m}$ are a set of maps from $\{2, \ldots, n+1\}$ to $\{1, \ldots, n\}$ satisfying $\mu_{m}(2)=1$ and $\mu_{m}(j)<j$ for all j, and

$$
\begin{aligned}
J\left(\underline{\tau}_{n+1}, \mu_{m}\right)= & U^{(1)}\left(\tau_{1} ; \tau_{2}\right) B_{1,2} U^{(2)}\left(\tau_{2} ; \tau_{3}\right) B_{\mu_{m}(3), 2} \cdots \\
& U^{(n)}\left(\tau_{n} ; \tau_{n+1}\right) B_{\mu_{m}}(n+1), n+1
\end{aligned}\left(\gamma^{(n+1)}\left(\tau_{n+1}, \cdot ; \cdot\right)\right) .
$$

Key Lemma II

In last slide, $\underline{\tau}_{n+1}=\left(\tau_{2}, \tau_{3}, \ldots, \tau_{n+1}\right), D \subset\left[s, \tau_{1}\right]^{n}, \mu_{m}$ are a set of maps from $\{2, \ldots, n+1\}$ to $\{1, \ldots, n\}$ satisfying $\mu_{m}(2)=1$ and $\mu_{m}(j)<j$ for all j, and

$$
\begin{aligned}
J\left(\underline{\tau}_{n+1}, \mu_{m}\right)= & U^{(1)}\left(\tau_{1} ; \tau_{2}\right) B_{1,2} U^{(2)}\left(\tau_{2} ; \tau_{3}\right) B_{\mu_{m}(3), 2 \cdots} \\
& U^{(n)}\left(\tau_{n} ; \tau_{n+1}\right) B_{\mu_{m}(n+1), n+1}\left(\gamma^{(n+1)}\left(\tau_{n+1}, \cdot ; \cdot\right)\right)
\end{aligned}
$$

- The RHS of formula 7 is in fact a Duhamel principle. This lemma follows from the proof of Theorem 3.4 in [Klainerman-Machedon 2008]. One just needs to replace $e^{i\left(t_{1}-t_{2}\right) \Delta_{y}}$ by $U_{y}\left(t_{1} ; t_{2}\right)$, and $e^{i\left(t_{1}-t_{2}\right) \Delta^{(k)}}$ by $U^{(k)}\left(t_{1} ; t_{2}\right)$.

The Proof I

Assuming that we have already verified

$$
\left\|R_{s}^{(1)} \gamma^{(1)}(s, \cdot)\right\|_{L^{2}\left(\mathbb{R}^{3} \times \mathbb{R}^{3}\right)}=0
$$

applying the key lemma to $\left[s, \tau_{1}\right] \subset\left[0, T_{0}\right]$, we have

$$
\begin{aligned}
& \left\|R_{\tau_{1}}^{(1)} \gamma^{(1)}\left(\tau_{1}, \cdot\right)\right\|_{L^{2}\left(\mathbb{R}^{3} \times \mathbb{R}^{3}\right)} \\
\leqslant & \left(\tau_{1}-s\right)^{\frac{1}{2}} \int_{\left[s, \tau_{1}\right]^{n-1}} d \tau_{3} \ldots d \tau_{n+1} \\
& \left\|R_{\tau_{2}}^{(1)} B_{1,2} U^{(2)}\left(\tau_{2} ; \tau_{3}\right) B_{\mu_{m}(3), 2} \cdots\right\|_{L^{2}\left(\tau_{2} \in\left[s, \tau_{1}\right] \times \mathbb{R}^{3} \times \mathbb{R}^{3}\right)}
\end{aligned}
$$

The Proof II

$$
\begin{aligned}
& \leqslant C\left(\tau_{1}-s\right)^{\frac{1}{2}} \int_{\left[s, \tau_{1}\right]^{n-1}} d \tau_{3} \ldots d \tau_{n+1}
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant C\left(C\left(\tau_{1}-s\right)\right)^{\frac{n-1}{2}} \\
& \int_{s}^{\tau_{1}}\left\|R_{\tau_{n+1}}^{(n)} B_{\mu_{m}(n+1), n+1} \gamma^{(n+1)}\left(\tau_{n+1}, \cdot\right)\right\|_{L^{2}\left(\mathbb{R}^{3 n} \times \mathbb{R}^{3 n}\right)} d \tau_{n+1} \\
& \leqslant C\left(C\left(\tau_{1}-s\right)\right)^{\frac{n-1}{2}} \text {. }
\end{aligned}
$$

Let $\left(\tau_{1}-s\right)$ be sufficiently small, and $n \rightarrow \infty$, we conclude that

$$
\left\|R_{\tau_{1}}^{(1)} \gamma^{(1)}\left(\tau_{1}, \cdot\right)\right\|_{L^{2}\left(\mathbb{R}^{3} \times \mathbb{R}^{3}\right)}=0 \text { in }\left[s, \tau_{1}\right] .
$$

- In this talk, we have established the uniqueness of the hierarchy

$$
\left(i \partial_{\tau}-H_{\mathbf{y}_{k}}(\tau)+H_{\mathbf{y}_{k}^{\prime}}(\tau)\right) \gamma^{(k)}=\sum_{j=1}^{k} B_{j, k+1}\left(\gamma^{(k+1)}\right) .
$$

where $H_{\mathbf{y}_{k}}(\tau)=\frac{1}{2}\left(-\triangle_{\mathbf{y}_{k}}+\eta(\tau)\left|\mathbf{y}_{k}\right|^{2}\right)$.

- In this talk, we have established the uniqueness of the hierarchy

$$
\left(i \partial_{\tau}-H_{\mathbf{y}_{k}}(\tau)+H_{\mathbf{y}_{k}^{\prime}}(\tau)\right) \gamma^{(k)}=\sum_{j=1}^{k} B_{j, k+1}\left(\gamma^{(k+1)}\right) .
$$

where $H_{\mathbf{y}_{k}}(\tau)=\frac{1}{2}\left(-\triangle_{\mathbf{y}_{k}}+\eta(\tau)\left|\mathbf{y}_{k}\right|^{2}\right)$.

- This corresponds to the second part of the program initiated by Elgart, Erdös, Schlein, and Yau in the case when $\eta \neq 0$.
- In this talk, we have established the uniqueness of the hierarchy

$$
\left(i \partial_{\tau}-H_{\mathbf{y}_{k}}(\tau)+H_{\mathbf{y}_{k}^{\prime}}(\tau)\right) \gamma^{(k)}=\sum_{j=1}^{k} B_{j, k+1}\left(\gamma^{(k+1)}\right) .
$$

where $H_{\mathbf{y}_{k}}(\tau)=\frac{1}{2}\left(-\triangle_{\mathbf{y}_{k}}+\eta(\tau)\left|\mathbf{y}_{k}\right|^{2}\right)$.

- This corresponds to the second part of the program initiated by Elgart, Erdös, Schlein, and Yau in the case when $\eta \neq 0$.
- The next thing to do is to look at the first part of the program, the analysis of the BBGKY hierarchy related to the above hierarchy.
- In this talk, we have established the uniqueness of the hierarchy

$$
\left(i \partial_{\tau}-H_{\mathbf{y}_{k}}(\tau)+H_{\mathbf{y}_{k}^{\prime}}(\tau)\right) \gamma^{(k)}=\sum_{j=1}^{k} B_{j, k+1}\left(\gamma^{(k+1)}\right) .
$$

where $H_{\mathbf{y}_{k}}(\tau)=\frac{1}{2}\left(-\triangle_{\mathbf{y}_{k}}+\eta(\tau)\left|\mathbf{y}_{k}\right|^{2}\right)$.

- This corresponds to the second part of the program initiated by Elgart, Erdös, Schlein, and Yau in the case when $\eta \neq 0$.
- The next thing to do is to look at the first part of the program, the analysis of the BBGKY hierarchy related to the above hierarchy.
- My talk ends here. Thank you!

