[g(z) = Log f'(z)]

Joseph A. Cima, UNC-Chapel Hill, NC

Motivation:

f conformal on $\mathbb D$

 $V = \{g(z) = \text{Log } f'(z)\} \subseteq \text{Bloch space} = B$

W =interior of the set V in B.

(W is a version of the universal Teichmuller space.)

Theorem 1. The following holds.

1) $g(z) = \text{Log } f' \in W \Leftrightarrow f$ has a quasi-conformal extension to $\mathbb{R}^2 \simeq \mathbb{C}$.

2) $g(z) = \text{Log } f' \in W \Leftrightarrow \Gamma = f(\partial D)$ is a quasicircle (e.g., $\exists C > 0$) with $\forall z, \zeta \in \Gamma$, diameter $(\gamma) \leq C|z - \zeta|$ where γ is the shortest subarc of Γ containing z and ζ .

Let $X \equiv C.T. = (A)^* \simeq (L'/\overline{H_0^1}) \oplus \mathcal{M}_s$. Given $[\mu] \in A^*$, associate

$$f(z) \equiv C * \mu(z) \equiv \int_{\mathbb{T}} \frac{d\mu(\zeta)}{1 - z\overline{\zeta}}.$$
$$\|f\|_X \equiv \inf\{\|\mu\| : f = C * \mu\}.$$

 \exists a unique $\nu \in [\mu] \ni ||f||_X = ||\nu||.$

Primitives of H^p functions are well studied. For $f \in X$, set

$$If(z) = g(z) \equiv \int_{0}^{z} f(\omega) d\omega, \quad |z| < 1.$$

Easy to check that $g \in B$.

Theorem 2. *I maps X into BMOA.*

Proof. Use the integral representation to write (use Fubini)

$$If(z) = -\int_{\mathbb{T}} \zeta \operatorname{Log}(1-t|z|\overline{\zeta}) d\nu(\zeta)$$

where z = |z|t, |t| = 1.

Assume p is a polynomial; consider

$$\langle g, p
angle = \int_{\mathbb{T}} \overline{p}(u) g(u) dm(u)$$

= $\int_{\mathbb{T}} \overline{p}(u) \left(-\int_{\pi} \zeta \operatorname{Log}(1 - u\overline{\zeta}) d\nu(\zeta) \right) dm(u)$
= $-\int_{\mathbb{T}} \cdot \left(\int_{\mathbb{T}} \overline{p}(u) \operatorname{Log}(1 - u\overline{\zeta}) dm(u) \right) (-\zeta d\nu(\zeta)).$

Hence,

$$|\langle g,p\rangle| \le \|p\|_{L'}(\|\nu\|\cdot\|\operatorname{Log}\|_*).$$

Also note: if $G \in H^2 \subset X$ then $||G||_X \leq ||G||_{H^2}$. Further if $f \in X$, $f(z) = \sum_{k=0}^{\infty} \nu_k z^k$ and $||\nu|| \leq 1$, then

$$If(z) = \sum_{k=0}^{\infty} \frac{\nu_k}{(k+1)} z^{k+1} \quad \text{and}$$
$$\|If\|_{H^2} = \sqrt{\sum_{0}^{\infty} \frac{|\nu_k|^2}{(k+1)^2}} \le \sqrt{\sum_{0}^{\infty} \frac{1}{(k+1)^2}}$$

Bourgain has shown that every ball algebra has the Dunford-Pettis property (i.e., every weakly compact bounded linear operator is completely continuous—weakly convergent sequences are mapped to strongly convergent sequences, e.g., $L'(\mu), C(X)$) and also he showed $A^* \cong X$ has D + P property.

Proposition 1. $I: X \to X$ is a compact operator

Proof. Assume $f_n \in X$, $||f_n||_X \leq 1$,

$$g_n(z) = \sum_{k=0}^{\infty} \frac{\nu_k(n)}{(k+1)} z^{k+1} \quad (f = C \times d\nu_n).$$

By the above it is sufficient to prove that some subsequence of g_n converges in H^2 . The sequence $\{g_n\}$ is a normal family as well as all of its derivatives. So there is a subsequence of $\{g_n\}$ written as g_j with $g_j(z) \Rightarrow g(z) = \sum_{k=0}^{\infty} a_k z^k$ and $g_j^{(t)}(z) \Rightarrow g^{(t)}(z)$ uniformly on compacts of D. Then $g \in H^2$ and, if

$$g_j(z) = \sum_{k=0} \frac{\nu_k(j) z^{j+1}}{(k+1)},$$

then $\lim_{j\to\infty}\left(\frac{\nu_k(j)}{k+1}\right)$ exists and equals a_k .

6

Consider then

$$||g_j - g_p||_{H^2}^2 = \Big|\sum_{k=0} \frac{|\nu_k(j) - \nu_k(p)|^2}{(k+1)^2}\Big|.$$

For $\varepsilon > 0 \exists K$ with

$$\Big|\sum_{K=k}^{\infty} \frac{|\nu_k(j) - \nu_k(p)|^2)}{(k+1)^2}\Big| \le 4 \sum_{K=k}^{\infty} \frac{1}{(k+1)^2} < \varepsilon.$$

Using the sequential converge, we (may) (by choosing more subsequences) have

$$\frac{|\nu_k(j) - \nu_k(p)|^2)}{(k+1)^2} < \frac{\varepsilon}{K}$$

for all $0 \le k \le K - 1$ with $j, p \ge J$. This proves that some subsequence converges in H^2 and hence in X.

Digression. Consider $I : X \to B$. **Proposition 2.** $I : \left(L' / \overline{H_0^1} \right) \to B_0$.

Proof. Assume $f \in X$ and f(z) = C * F(z) with $F \in L^1(\mathbb{T})$. Choose $\sigma_n(\zeta, F) = \sigma_n$ as the Cesaro means of F on \mathbb{T} and recall $\sigma_n \to F$ in L^1 . Obviously $I\sigma_n = p_n$ is a polynomial and so is in B_0 .

Since $||f - C * \sigma_n||_X \le ||F - \sigma_n||_{L^1} \to 0$ and *I* is continuous we must have that $||p_n - If||_B \to 0$. This is sufficient to conclude that $If \in B_0$.

Observation. It is known that for $f \in H'$

$$\lim_{r \uparrow 1} f(re^{i\theta})(1-r) = 0 \quad \text{a.e. } \theta$$
(and) $|f(z)| \leq \frac{\|f\|_{H'}}{(1-|z|)}$

8

But $H' \subseteq L'/\overline{H_0^1}$ and we have $\lim_{|z|\to 1} |f(z)|(1-|z|^2) = 0 \quad \text{uniformly}$ (e.g., independent of $e^{i\theta}$).

Pommerenke has shown that if g is a Bloch function there is a univalent function h with

$$g(z) = \operatorname{Log} h'.$$

In the case we are concerned with, this can be stated as: for every f in X there is a univalent h with

$$h'(z) = e^{\alpha \int_0^z f(\omega) d\omega}.$$

Using the Jensen's inequality for probability measures and estimates on |f|, one can show the following.

Theorem 3. Assume $F \in H'(X)$ and $IF(z) = \alpha \ln(f')$, with $f \in S$. Then f has a q.c. extension to \mathbb{C} with complex dilation

$$\mu_f(z) = \frac{1}{\overline{z}^2} \left(z - \frac{1}{\overline{z}} \right) F(z) \left(\frac{1}{\overline{z}} \right), \quad |z| < 1.$$

Also Zinsmeister has defined the following. For Ω a simply connected domain in \mathbb{C} , the Carleson measures on Ω are measures ν on Ω for which $\exists C > 0$ and $|\nu|(D(z,r) \leq C \cdot r, \forall z \in \partial \Omega \text{ and } r \leq \text{diameter}$ $(\partial \Omega).$ An easy estimate shows that

$$\nu \equiv |\mu|^2 (|z|^2 - 1)^{-1} dx dy$$

is a Carleson measure on $\mathbb{C} \setminus D$. In our case the ratio

$$\frac{|\nu|(D(z,r))}{r}$$

has zero limit as $r \rightarrow 0$.