$$
\left[g(z)=\log f^{\prime}(z)\right]
$$

Joseph A. Cima, UNC-Chapel Hill, NC

Motivation:

f conformal on \mathbb{D}
$V=\left\{g(z)=\log f^{\prime}(z)\right\} \subseteq$ Bloch space $=B$
$W=$ interior of the set V in B.
(W is a version of the universal Teichmuller space.)

Theorem 1. The following holds.

1) $g(z)=\log f^{\prime} \in W \Leftrightarrow f$ has a quasi-conformal extension to $\mathbb{R}^{2} \simeq \mathbb{C}$.
2) $g(z)=\log f^{\prime} \in W \Leftrightarrow \Gamma=f(\partial D)$ is a quasicircle (e.g., $\exists C>0$) with $\forall z, \zeta \in \Gamma$,
diameter $(\gamma) \leq C|z-\zeta|$ where γ is the shortest subarc of Γ containing z and ζ.

$$
\text { Let } X \equiv C . T .=(A)^{*} \simeq\left(L^{\prime} / \overline{H_{0}^{1}}\right) \oplus \mathcal{M}_{s} \text {. Given }
$$

$[\mu] \in A^{*}$, associate

$$
\begin{aligned}
f(z) & \equiv C * \mu(z) \equiv \int_{\mathbb{T}} \frac{d \mu(\zeta)}{1-z \bar{\zeta}} . \\
\|f\|_{X} & \equiv \inf \{\|\mu\|: f=C * \mu\} .
\end{aligned}
$$

\exists a unique $\nu \in[\mu] \ni\|f\|_{X}=\|\nu\|$.

Primitives of H^{p} functions are well studied. For $f \in X$, set

$$
I f(z)=g(z) \equiv \int_{o}^{z} f(\omega) d \omega, \quad|z|<1
$$

Easy to check that $g \in B$.
Theorem 2. I maps X into BMOA.

Proof. Use the integral representation to write (use
Fubini)

$$
I f(z)=-\int_{\mathbb{T}} \zeta \log (1-t|z| \bar{\zeta}) d \nu(\zeta)
$$

where $z=|z| t,|t|=1$.

Assume p is a polynomial; consider

$$
\begin{aligned}
\langle g, p\rangle & =\int_{\mathbb{T}} \bar{p}(u) g(u) d m(u) \\
& =\int_{\mathbb{T}} \bar{p}(u)\left(-\int_{\pi} \zeta \log (1-u \bar{\zeta}) d \nu(\zeta)\right) d m(u) \\
& =-\int_{\mathbb{T}} \cdot\left(\int_{\mathbb{T}} \bar{p}(u) \log (1-u \bar{\zeta}) d m(u)\right)(-\zeta d \nu(\zeta)) .
\end{aligned}
$$

Hence,

$$
|\langle g, p\rangle| \leq\|p\|_{L^{\prime}}\left(\|\nu\| \cdot\|\log \|_{*}\right) .
$$

Also note: if $G \in H^{2} \subset X$ then $\|G\|_{X} \leq\|G\|_{H^{2}}$. Further if $f \in X, f(z)=\sum_{k=0}^{\infty} \nu_{k} z^{k}$ and $\|\nu\| \leq 1$, then

$$
\begin{gathered}
I f(z)=\sum_{k=0}^{\infty} \frac{\nu_{k}}{(k+1)} z^{k+1} \quad \text { and } \\
\|I f\|_{H^{2}}=\sqrt{\sum_{0}^{\infty} \frac{\left|\nu_{k}\right|^{2}}{(k+1)^{2}}} \leq \sqrt{\sum_{0}^{\infty} \frac{1}{(k+1)^{2}}} .
\end{gathered}
$$

Bourgain has shown that every ball algebra has the Dunford-Pettis property (i.e., every weakly compact bounded linear operator is completely continuousweakly convergent sequences are mapped to strongly convergent sequences, e.g., $\left.L^{\prime}(\mu), \mathcal{C}(X)\right)$ and also he showed $A^{*} \cong X$ has $D+P$ property.

Proposition 1. $I: X \rightarrow X$ is a compact operator

Proof. Assume $f_{n} \in X,\left\|f_{n}\right\|_{X} \leq 1$,

$$
g_{n}(z)=\sum_{k=0}^{\infty} \frac{\nu_{k}(n)}{(k+1)} z^{k+1} \quad\left(f=C \times d \nu_{n}\right) .
$$

By the above it is sufficient to prove that some subsequence of g_{n} converges in H^{2}. The sequence $\left\{g_{n}\right\}$ is a normal family as well as all of its derivatives. So there is a subsequence of $\left\{g_{n}\right\}$ written as g_{j} with $g_{j}(z) \Rightarrow g(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$ and $g_{j}^{(t)}(z) \Rightarrow g^{(t)}(z)$ uniformly on compacts of D. Then $g \in H^{2}$ and, if

$$
g_{j}(z)=\sum_{k=0} \frac{\nu_{k}(j) z^{j+1}}{(k+1)}
$$

then $\lim _{j \rightarrow \infty}\left(\frac{\nu_{k}(j)}{k+1}\right)$ exists and equals a_{k}.

Consider then

$$
\left\|g_{j}-g_{p}\right\|_{H^{2}}^{2}=\left|\sum_{k=0} \frac{\left.\left|\nu_{k}(j)-\nu_{k}(p)\right|^{2}\right)}{(k+1)^{2}}\right| .
$$

For $\varepsilon>0 \exists K$ with

$$
\left|\sum_{K=k}^{\infty} \frac{\left.\left|\nu_{k}(j)-\nu_{k}(p)\right|^{2}\right)}{(k+1)^{2}}\right| \leq 4 \sum_{K=k}^{\infty} \frac{1}{(k+1)^{2}}<\varepsilon .
$$

Using the sequential converge, we (may) (by choosing more subsequences) have

$$
\frac{\left.\left|\nu_{k}(j)-\nu_{k}(p)\right|^{2}\right)}{(k+1)^{2}}<\frac{\varepsilon}{K}
$$

for all $0 \leq k \leq K-1$ with $j, p \geq J$. This proves that some subsequence converges in H^{2} and hence in X.
\square

Digression. Consider $I: X \rightarrow B$.
Proposition 2. $I:\left(L^{\prime} / \overline{H_{0}^{1}}\right) \rightarrow B_{0}$.

Proof. Assume $f \in X$ and $f(z)=C * F(z)$ with $F \in L^{1}(\mathbb{T})$. Choose $\sigma_{n}(\zeta, F)=\sigma_{n}$ as the Cesaro means of F on \mathbb{T} and recall $\sigma_{n} \rightarrow F$ in L^{1}. Obviously $I \sigma_{n}=p_{n}$ is a polynomial and so is in B_{0}.

$$
\text { Since }\left\|f-C * \sigma_{n}\right\|_{X} \leq\left\|F-\sigma_{n}\right\|_{L^{1}} \rightarrow 0 \text { and } I \text { is }
$$ continuous we must have that $\left\|p_{n}-I f\right\|_{B} \rightarrow 0$. This is sufficient to conclude that $I f \in B_{0}$.

Observation. It is known that for $f \in H^{\prime}$

$$
\begin{aligned}
\lim _{r \uparrow 1} f\left(r e^{i \theta}\right)(1-r) & =0 \quad \text { a.e. } \theta \\
\text { (and) } \quad|f(z)| & \leq \frac{\|f\|_{H^{\prime}}}{(1-|z|)}
\end{aligned}
$$

But $H^{\prime} \subseteq L^{\prime} / \overline{H_{0}^{1}}$ and we have

$$
\lim _{|z| \rightarrow 1}|f(z)|\left(1-|z|^{2}\right)=0 \quad \text { uniformly }
$$

(e.g., independent of $e^{i \theta}$).

Pommerenke has shown that if g is a Bloch function there is a univalent function h with

$$
g(z)=\log h^{\prime} .
$$

In the case we are concerned with, this can be stated as: for every f in X there is a univalent h with

$$
h^{\prime}(z)=e^{\alpha} \int_{0}^{z} f(\omega) d \omega .
$$

Using the Jensen's inequality for probability measures and estimates on $|f|$, one can show the following.

Theorem 3. Assume $F \in H^{\prime}(X)$ and $I F(z)=\alpha \ln \left(f^{\prime}\right)$, with $f \in S$. Then f has a q.c. extension to \mathbb{C} with complex dilation

$$
\mu_{f}(z)=\frac{1}{\bar{z}^{2}}\left(z-\frac{1}{\bar{z}}\right) F(z)\left(\frac{1}{\bar{z}}\right), \quad|z|<1 .
$$

Also Zinsmeister has defined the following. For Ω a simply connected domain in \mathbb{C}, the Carleson measures on Ω are measures ν on Ω for which $\exists C>0$ and $|\nu|(D(z, r) \leq C \cdot r, \forall z \in \partial \Omega$ and $r \leq$ diameter $(\partial \Omega)$.

An easy estimate shows that

$$
\nu \equiv|\mu|^{2}\left(|z|^{2}-1\right)^{-1} d x d y
$$

is a Carleson measure on $\mathbb{C} \backslash D$. In our case the ratio

$$
\frac{|\nu|(D(z, r))}{r}
$$

has zero limit as $r \rightarrow 0$.

