SEAM XXVII

University of Florida, Gainesville

New Criteria for Boundedness and Compactness of Weighted Composition Operators Mapping into the Bloch Space

Flavia Colonna

March 18, 2011

Today's Question

Given Banach spaces X and Y and an operator $T: X \to Y$, what is a minimal bounded subset E of X such that

•
$$\sup_{x \in E} ||Tx||_Y < \infty \implies T$$
 is bounded?

• $\lim_{n\to\infty} ||Tx_n||_Y = 0$, for each sequence $\{x_n\}$ in E convergent to 0 pointwise,

 \implies T is compact?

Today's Environment

Notation

$$\mathbb{D} = \{ z \in \mathbb{C} : |z| < 1 \}$$

$$H(\mathbb{D}) = \{ f : \mathbb{D} \to \mathbb{C} : f \text{ analytic} \}.$$

The space Y we will be considering

Mostly the Bloch space \mathcal{B} defined as the set of $f \in H(\mathbb{D})$ such that

$$||f||_{\beta} := \sup_{z \in \mathbb{D}} (1 - |z|^2) |f'(z)| < \infty.$$

 \mathcal{B} is a Banach space with norm $||f||_{\mathcal{B}} = |f(0)| + ||f||_{\beta}$.

Some remarks will be made also for the case of BMOA.

Today's Environment

The spaces X we will be considering

• The Hardy space H^{∞} defined as the set of $f \in H(\mathbb{D})$ such that

$$||f||_{\infty} := \sup_{z \in \mathbb{D}} |f(z)| < \infty.$$

- The Bloch space itself.
- The Dirichlet space $\mathcal D$ defined as the set of $f \in H(\mathbb D)$ such that

$$||f||_{\mathcal{D}} := \left(|f(0)|^2 + \int_{\mathbb{D}} |f'(z)|^2 dA(z)\right)^{1/2} < \infty,$$

where A is Lebesgue area normalized by $A(\mathbb{D}) = 1$.

Today's Environment

The spaces X we will be considering

• The Hardy spaces H^p $(1 \le p < \infty)$ defined as the set of $f \in \mathcal{H}(\mathbb{D})$ such that

$$\|f\|_{H^p} := \sup_{0 < r < 1} \left(\frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^p d\theta \right)^{1/p} < \infty.$$

• The weighted Bergman spaces A^p_{α} $(1 \le p < \infty, \alpha > -1)$ defined as the set of $f \in H(\mathbb{D})$ such that

$$||f||_{A^p_{\alpha}}:=\left(\int_{\mathbb{D}}|f(z)|^p(1-|z|^2)^{\alpha}\,dA(z)\right)^{1/p}<\infty.$$

The Hardy spaces can be considered as limiting spaces of A^p_α as α decreases to -1.

The operator we will be considering

Let $\psi, \varphi \in \mathcal{H}(\mathbb{D})$, with $\varphi(\mathbb{D}) \subseteq \mathbb{D}$, and let X be and Y be Banach spaces of analytic functions defined on \mathbb{D} . The weighted composition operator with symbols ψ and φ is the operator $W_{\psi,\varphi}$ defined as

$$W_{\psi,\varphi}f=\psi(f\circ\varphi)=M_{\psi}C_{\varphi}f.$$

Motivation

In the study of the Isometry Problem, it has been shown that for many functions spaces, the isometries are weighted composition operators.

- Banach (1932) C(K), K compact metric space, surjective isometries
- Forelli (1964) H^p , $p \neq 2$
- Kolaski (1982) A^p, surjective isometries
- El-Geberly-Wolfe (1985) disk algebra

Origin of the Problem

Wulan, Zheng and Zhu (2009)

Let $\varphi \in \mathbb{D}$ such that $\varphi(\mathbb{D}) \subseteq \mathbb{D}$. Then:

$$C_{\varphi}:\mathcal{B}
ightarrow\mathcal{B}$$
 is compact iff $\lim_{n
ightarrow\infty}\|arphi^{n}\|_{eta}=0.$

History of the WCO mapping into ${\cal B}$

The weighted composition operators mapping into ${\cal B}$ have been studied by

- Ohno (2001) boundedness and compactness for $X = H^{\infty}$
- Ohno and Zhao (2001) boundedness and compactness for $X=\mathcal{B}$
- Ohno and Stroethoff (2011) -
 - boundedness and compactness for $X = H^2, A_{\alpha}^2$
 - boundedness for $X = H^p, A^p_{\alpha}$, with $1 , and <math>\mathcal{D}$

Boundedness of $W_{\psi,\varphi}:X\to\mathcal{B}$

What is Needed?

- $\psi = W_{\psi,\varphi} 1 \in \mathcal{B}$.
- $(1-|z|^2)|(\psi(f\circ\varphi))'(z)|\leq C$, for $z\in\mathbb{D}$ for $f\in X$, $||f||_X=1$,

or the uniform boundedness of

(A)
$$(1-|z|^2)|\psi'(z)f(\varphi(z))|$$
 and

(B)
$$(1-|z|^2)|\psi(z)f'(\varphi(z))\varphi'(z)|$$
.

Thus, we need to relate $|f(\varphi(z))|$ and $|f'(\varphi(z))|$ to $||f||_X$.

$X = H^{\infty}$

Then $|f(\varphi(z))| \leq ||f||_{\infty}$, so the boundedness of (A) is satisfied just with the assumption that $\psi \in \mathcal{B}$.

Boundedness of $W_{\psi,\varphi}: H^{\infty} \to \mathcal{B}$

By the Schwarz-Pick Lemma $H^{\infty}\subseteq\mathcal{B}$ and, for $f\in H^{\infty}$, $z\in\mathbb{D}$,

$$(1 - |\varphi(z)|^2)|f'(\varphi(z))| \le ||f||_{\infty}$$
 so

$$(1-|z|^2)|\psi(z)\varphi'(z)f'(\varphi(z))| \leq \frac{(1-|z|^2)|\psi(z)\varphi'(z)|}{1-|\varphi(z)|^2} ||f||_{\infty}.$$

Ohno (2001)

- (a) $W_{\psi,\varphi}$ is bounded iff $\psi \in \mathcal{B}$ and $\sup_{z \in \mathbb{D}} \frac{(1-|z|^2)|\psi(z)\varphi'(z)|}{1-|\varphi(z)|^2} < \infty$.
- (b) If $W_{\psi,\varphi}$ is bounded, then $W_{\psi,\varphi}$ is compact iff

$$\lim_{|\varphi(z)| \to 1} (1 - |z|^2) |\psi'(z)| = 0$$
 and

$$\lim_{|\varphi(z)| \to 1} \frac{(1 - |z|^2)|\psi(z)\varphi'(z)|}{1 - |\varphi(z)|^2} = 0.$$

Case $W_{\psi, \varphi}: H^\infty o \mathcal{B}$

New Characterization of Boundedness (C.)

- (a) $W_{\psi,\varphi}$ is bounded.
- (b) $\sup_{n>0} \|\psi\varphi^n\|_{\mathcal{B}} < \infty.$

Case $W_{\psi,\varphi}:H^\infty\to\mathcal{B}$

Proof. (a) \Longrightarrow (b): For $n \ge 0$, $z \in \mathbb{D}$, let $p_n(z) = z^n$. Then $p_n \in H^{\infty}$ and $\|p_n\|_{\infty} = 1$. Since $W_{\psi,\varphi}$ is bounded,

$$\|\psi\varphi^n\|_{\mathcal{B}} = \|W_{\psi,\varphi}p_n\|_{\mathcal{B}} \leq \|W_{\psi,\varphi}\|.$$

(b) \Longrightarrow (a): By Ohno's Theorem, it suffices to show that

$$\sup_{z\in\mathbb{D}}\frac{(1-|z|^2)|\psi(z)\varphi'(z)|}{1-|\varphi(z)|^2}<\infty.$$

Let C be an upper bound for $\|\psi\varphi^n\|_{\mathcal{B}}$, $n\geq 0$. Fix $N\geq 2$ and $z\in\mathbb{D}$. For $|\varphi(z)|\leq 1-\frac{1}{N}$, by the Schwarz-Pick lemma, we have

$$\frac{(1-|z|^2)|\psi(z)\varphi'(z)|}{1-|\varphi(z)|^2} \leq \max\left\{|\psi(w)|: w \in \mathbb{D}, |\varphi(w)| \leq 1-\frac{1}{N}\right\}. \tag{1}$$

Case $W_{\psi,\varphi}:H^\infty o \mathcal{B}$

For $|\varphi(z)| > 1 - \frac{1}{N}$, $\exists n > N$ such that $1 - \frac{1}{n-1} \le |\varphi(z)| \le 1 - \frac{1}{n}$. So

$$\frac{(1-|z|^2)|\psi(z)\varphi'(z)|}{1-|\varphi(z)|^2} \leq \frac{(1-|z|^2)|\psi(z)n\varphi(z)^{n-1}\varphi'(z)|}{(1-|\varphi(z)|)n|\varphi(z)|^{n-1}}.$$

Let $g(x) = (1-x)nx^{n-1}$ for $1 - \frac{1}{n-1} \le x \le 1 - \frac{1}{n}$. Then

$$g'(x) = nx^{n-2}(n-1-nx) \ge 0.$$

Thus, g is increasing, so its minimum is attained at $1 - \frac{1}{n-1}$ and given by

$$\frac{n}{n-1}\left(1-\frac{1}{n-1}\right)^{n-1}.$$

As a function of n, this is decreasing and its limit is 1/e.

Case $W_{\psi,\varphi}:H^\infty\to\mathcal{B}$

Therefore,

$$\frac{(1-|z|^{2})|\psi(z)\varphi'(z)|}{1-|\varphi(z)|^{2}} \leq e(1-|z|^{2})|\psi(z)n\varphi(z)^{n-1}\varphi'(z)|
\leq e[(1-|z|^{2})|(\psi\varphi^{n})'(z)|
+(1-|z|^{2})|\psi'(z)\varphi(z)^{n}|]
\leq e(\|\psi\varphi^{n}\|_{\mathcal{B}} + \|\psi\|_{\mathcal{B}})
\leq 2eC.$$
(2)

From (1) and (2), we deduce that

$$\sup_{z\in\mathbb{D}}\frac{(1-|z|^2)|\psi(z)\varphi'(z)|}{1-|\varphi(z)|^2}<\infty.$$

Case $W_{\psi,\varphi}:H^\infty\to\mathcal{B}$

For $w, z \in \mathbb{D}$, define

$$g_w(z) = \frac{1 - |\varphi(w)|^2}{1 - \overline{\varphi(w)}z}.$$

Theorem (New Characterizations of Compactness, C.)

(a)
$$W_{\psi,\varphi}$$
 is compact.

(b)
$$\lim_{n\to\infty} \|\psi\varphi^n\|_{\mathcal{B}} = 0 \text{ and } \lim_{|\varphi(w)|\to 1} (1-|w|^2)|\psi'(w)| = 0.$$

(c)
$$\lim_{n\to\infty} \|\psi\varphi^n\|_{\mathcal{B}} = 0$$
 and $\lim_{|\varphi(w)|\to 1} \|W_{\psi,\varphi}g_w\|_{\mathcal{B}} = 0.$

Case $W_{\psi,\varphi}:\mathcal{B}\to\mathcal{B}$

Ohno-Zhao (2001)

(a) $W_{\psi,\varphi}:\mathcal{B}\to\mathcal{B}$ is bounded iff

$$\sup_{z\in\mathbb{D}}\frac{(1-|z|^2)|\psi(z)\varphi'(z)|}{1-|\varphi(z)|^2}<\infty \text{ and }$$

$$\sup_{z\in\mathbb{D}}(1-|z|^2)|\psi'(z)|\log\left(\frac{2}{1-|\varphi(z)|^2}\right)<\infty.$$

(b) If $W_{\psi,\varphi}$ is bounded on \mathcal{B} , then $W_{\psi,\varphi}$ is compact iff

$$\lim_{|\varphi(z)|\to 1}\frac{(1-|z|^2)|\psi(z)\varphi'(z)|}{1-|\varphi(z)|^2}=0 \ \ \text{and} \ \ \ \ \label{eq:poisson}$$

$$\lim_{|\varphi(z)| \to 1} (1 - |z|^2) |\psi'(z)| \log \left(\frac{2}{1 - |\varphi(z)|^2}\right) = 0.$$

Case $W_{\psi,\varphi}:\mathcal{B}\to\mathcal{B}$

For $w, z \in \mathbb{D}$, with $\varphi(w) \neq 0$, define

$$g_w(z) = \left(\log \frac{1 + \overline{\varphi(w)}z}{1 - \overline{\varphi(w)}z}\right)^2 \left(\log \frac{1 + |\varphi(w)|}{1 - |\varphi(w)|}\right)^{-1}.$$

Then $||g_w||_{\mathcal{B}}$ is bounded and h_w approaches 0 as $|\varphi(w)| \to 1$.

Characterization of Boundedness (C.)

The following are equivalent:

- (a) $W_{\psi,\varphi}$ is bounded.
- (b) $\sup_{w\in\mathbb{D}, \varphi(w)\neq 0}\|W_{\psi,\varphi}g_w\|_{\mathcal{B}}<\infty, \text{ and } \sup_{n\geq 0}\|\psi\varphi^n\|_{\mathcal{B}}<\infty.$

Characterization of Compactness (C.)

- (a) $W_{\psi,\varphi}$ is compact.
- (b) $\lim_{\|\varphi(w)\|\to 1} \|W_{\psi,\varphi}g_w\|_{\mathcal{B}} = 0, \text{ and } \lim_{n\to\infty} \|\psi\varphi^n\|_{\mathcal{B}} = 0.$

The Dirichlet Space

Recall that

$$f \in \mathcal{D} \ \ \text{iff} \ \ \int_{\mathbb{D}} |f'(z)|^2 \, dA(z) < \infty,$$

where $dA(z) = \frac{1}{\pi} r \, dr \, d\theta$.

 ${\cal D}$ is a Hilbert space with inner product

$$\langle f,g\rangle = f(0)\overline{g(0)} + \int_{\mathbb{D}} f'(z)\overline{g'(z)} dA(z) = a_0\overline{b_0} + \sum_{n=1}^{\infty} na_n\overline{b_n},$$

where
$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$
, $g(z) = \sum_{n=0}^{\infty} b_n z^n$.

The Dirichlet Space

Dirichlet kernel

For $z, w \in \mathbb{D}$, define

$$K_z(w) = 1 + \log \frac{1}{1 - \overline{z}w}.$$

Then for $f \in \mathcal{D}$, $z \in \mathbb{D}$, $f(z) = \langle f, K_z \rangle$. Moreover,

$$\|K_z\|_{\mathcal{D}}^2 = 1 + \sum_{n=1}^{\infty} \frac{|z|^{2n}}{n} = 1 + \log \frac{1}{1 - |z|^2}.$$

Thus, by the Cauchy-Schwarz inequality,

$$|f(z)| = |\langle f, K_z \rangle| \le ||f||_{\mathcal{D}} ||K_z||_{\mathcal{D}} = ||f||_{\mathcal{D}} \left(1 + \log \frac{1}{1 - |z|^2}\right)^{1/2}.$$

Case $W_{\psi,\varphi}:\mathcal{D} o\mathcal{B}$

Boundedness (Ohno-Stroethoff (2011))

 $W_{\psi,\varphi}:\mathcal{D} o\mathcal{B}$ is bounded iff

$$\sup_{z\in\mathbb{D}}\frac{(1-|z|^2)|\psi(z)\varphi'(z)|}{1-|\varphi(z)|^2}<\infty \text{ and }$$

$$\sup_{z\in\mathbb{D}}(1-|z|^2)|\psi'(z)|\left(1+\log\frac{1}{1-|\varphi(z)|^2}\right)^{1/2}<\infty.$$

Case $W_{\psi,\varphi}:\mathcal{D} o\mathcal{B}$

For $w, z \in \mathbb{D}$, define

$$F_w(z) = \frac{1 + K_{\varphi(w)}(z) - \frac{1 - |\varphi(w)|^2}{1 - \overline{\varphi(w)}z}}{K_{\varphi(w)}(\varphi(w))^{1/2}}.$$

Then $F_w \in \mathcal{D}$ and has bounded Dirichlet norm.

New Characterization of Boundedness (C.)

- (a) $W_{\psi,\varphi}$ is bounded.
- $(b) \quad \sup_{w \in \mathbb{D}} \|W_{\psi,\varphi} F_w\|_{\mathcal{B}} < \infty, \ \ \text{and} \ \ \sup_{n \geq 0} \|\psi \varphi^n\|_{\mathcal{B}} < \infty.$

Case $W_{\psi,\varphi}:\mathcal{D}\to\mathcal{B}$

Compactness (C.)

- (a) $W_{\psi,\varphi}$ is compact.
- (b) $\lim_{|\varphi(w)|\to 1} \|W_{\psi,\varphi}F_w\|_{\mathcal{B}} = 0$ and $\lim_{n\to\infty} \|\psi\varphi^n\|_{\mathcal{B}} = 0$.

$$(c) \quad \lim_{|\varphi(w)|\to 1} \frac{(1-|w|^2)|\psi(w)\varphi'(w)|}{1-|\varphi(w)|^2} = 0, \text{ and }$$

$$\lim_{|\varphi(w)|\to 1} (1-|w|^2)|\psi'(w)| \left(1+\log\frac{1}{1-|\varphi(w)|^2}\right)^{1/2} = 0.$$

Case $W_{\psi, \varphi}: A^p_{lpha} o \mathcal{B}$

Fix $\alpha > -1$ and 1 .

Boundedness (Ohno-Stroethoff (2011))

$$W_{\psi,\varphi}:A^p_{\alpha}\to\mathcal{B}$$
 is bounded iff

$$\begin{split} \sup_{z\in\mathbb{D}} \frac{(1-|z|^2)|\psi(z)\varphi'(z)|}{(1-|\varphi(z)|^2)^{1+(2+\alpha)/p}} < \infty \quad \text{and} \\ \sup_{z\in\mathbb{D}} \frac{(1-|z|^2)|\psi'(z)|}{(1-|\varphi(z)|^2)^{(2+\alpha)/p}} < \infty. \end{split}$$

Case $W_{\psi,\varphi}:A^p_{\alpha}\to \mathcal{B}$

Fix $\alpha > -1$, $1 \le p < \infty$, and $w \in \mathbb{D}$. For $z \in \mathbb{D}$, define the functions

$$f_w(z) = rac{(1 - |arphi(w)|^2)^{1 + (2 + lpha)(1 - 1/p)}}{(1 - \overline{arphi(w)}z)^{3 + lpha}}, ext{ and }$$
 $g_w(z) = \left(rac{1 - |arphi(w)|^2}{1 - \overline{arphi(w)}z}
ight)^{1/p} f_w(z).$

New Characterization of Boundedness (C.)

The following are equivalent:

- (a) $W_{\psi,\varphi}$ is bounded.
- $(b) \quad \sup_{w \in \mathbb{D}} \|W_{\psi,\varphi} f_w\|_{\mathcal{B}} < \infty, \ \ \text{and} \ \ \sup_{w \in \mathbb{D}} \|W_{\psi,\varphi} g_w\|_{\mathcal{B}} < \infty.$

Furthermore, Ohno-Stroethoff's theorem holds also for p = 1.

Case $W_{\psi,\varphi}:A^p_{lpha} o \mathcal{B}$

Compactness (C.)

- (a) $W_{\psi,\varphi}$ is compact.
- $(b) \quad \lim_{|\varphi(w)| \to 1} \|W_{\psi,\varphi} f_w\|_{\mathcal{B}} = 0 \ \ \text{and} \ \ \lim_{|\varphi(w)| \to 1} \|W_{\psi,\varphi} g_w\|_{\mathcal{B}} = 0.$

(c)
$$\lim_{|\varphi(w)| \to 1} \frac{(1-|w|^2)|\psi(w)\varphi'(w)|}{(1-|\varphi(w)|^2)^{1+(2+\alpha)/p}} = 0$$
, and

$$\lim_{|\varphi(w)| \to 1} \frac{(1-|w|^2)|\psi'(w)|}{(1-|\varphi(w)|^2)^{(2+\alpha)/p}} = 0.$$

Case $W_{\psi,\varphi}: \underline{H^p} o \underline{\mathcal{B}}$

The above results hold also for the cases p = 1 and $\alpha = -1$, yielding characterizations of boundedness and compactness for H^p .

BMOA is the space of $f \in H(\mathbb{D})$ such that

$$\|f\|_* = \sup_{a \in \mathbb{D}} \|f \circ L_a - f(a)\|_{H^2} < \infty,$$

where

$$L_a(z) = rac{a-z}{1-\overline{a}z}, \ z \in \mathbb{D}.$$

BMOA is a Banach space with norm

$$||f||_{BMOA} = |f(0)| + ||f||_*.$$

Boundedness of $W_{\psi,\varphi}$: BMOA \rightarrow BMOA (Laitila (2009))

- (a) $W_{\psi,\varphi}$ is bounded.
- (b) $\sup_{a\in\mathbb{D}} \alpha(\psi,\varphi,a) < \infty$ and $\sup_{a\in\mathbb{D}} \beta(\psi,\varphi,a) < \infty$, where

$$\begin{array}{lcl} \alpha(\psi,\varphi,\mathsf{a}) & = & |\psi(\mathsf{a})| \|L_{\varphi(\mathsf{a})} \circ \varphi \circ L_{\mathsf{a}}\|_{H^2}, \\ \\ \beta(\psi,\varphi,\mathsf{a}) & = & \left(\log\frac{2}{1-|\varphi(\mathsf{a})|^2}\right) \|\psi \circ L_{\mathsf{a}} - \psi(\mathsf{a})\|_{H^2}. \end{array}$$

Compactness of $W_{\psi,\varphi}:\mathsf{BMOA}\to\mathsf{BMOA}$ (Laitila (2009))

Assume $W_{\psi,\varphi}$ is bounded. The following are equivalent:

- (a) $W_{\psi,\varphi}$ is compact.
- $\lim_{|\varphi(a)|\to 1}\alpha(\psi,\varphi,a)=0,\ \lim_{|\varphi(a)|\to 1}\beta(\psi,\varphi,a)=0,\ \text{and}$

for all $R \in (0,1)$,

$$\lim_{t\to 1}\sup_{|\varphi(a)|\leq R}\int_{E(\varphi,a,t)}|(\psi\circ L_a)(\zeta)|^2\,dm(\zeta)=0,$$

where $E(\varphi, a, t) = \{ \zeta \in \partial \mathbb{D} : |(L_{\varphi(a)} \circ \varphi \circ L_a)(\zeta)| > t \}$ and m is the Lebesgue measure on the circle.

Boundedness of $W_{\psi,\varphi}$: BMOA \rightarrow BMOA (C.)

The following are equivalent:

- (a) $W_{\psi,\varphi}$ is bounded.
- (b) $\sup_{n\geq 0} \|\psi\varphi^n\|_{\mathsf{BMOA}} < \infty \text{ and } \sup_{\mathsf{a}\in\mathbb{D}} \beta(\psi,\varphi,\mathsf{a}) < \infty.$

Compactness of $W_{\psi,\varphi}$: BMOA \rightarrow BMOA (C.)

Suppose $W_{\psi,\varphi}$ is bounded. The following are equivalent:

- (a) $W_{\psi,\varphi}$ is compact.
- (b) $\lim_{n\to\infty} \|\psi\varphi^n\|_{\mathsf{BMOA}} = 0$ and $\lim_{|\varphi(a)|\to 1} \beta(\psi,\varphi,a) = 0$.

Future Research

- Find countable collections for the cases of the Hardy and the Bergman spaces.
- Study the problem for weighted composition operators mapping into other function spaces.