Recent results on superoptimal approximation by meromorphic functions

Alberto A. Condori

Department of Mathematics Florida Gulf Coast University acondori@fgcu.edu

Saturday, March 19, 2011

27th South Eastern Analysis Meeting University of Florida

${\rm I}\!{\rm D}$ is the open unit disk & ${\rm T}$ is the unit circle.

- 2 M_n denotes the space of n × n matrices equipped with the operator norm || · ||_{M_n}.
- **(3)** For an operator T and $k \ge 0$, we define

$$s_k(T) = \inf\{\|T - R\| : \operatorname{rank} R \le k\}$$

and

$$||T||_{e} = \inf\{||T - K|| : K \text{ is compact }\}.$$

• $L^{\infty}(\mathbb{M}_n)$ is equipped with $\|\Phi\|_{\infty} = \operatorname{ess\,sup}_{\zeta \in \mathbb{T}} \|\Phi(\zeta)\|_{\mathbb{M}_n}$.

- $\textcircled{0} \mathbb{D} \text{ is the open unit disk \& } \mathbb{T} \text{ is the unit circle.}$
- ② M_n denotes the space of n × n matrices equipped with the operator norm || · ||_{M_n}.
- **(3)** For an operator T and $k \ge 0$, we define

$$s_k(T) = \inf\{\|T - R\| : \operatorname{rank} R \le k\}$$

and

$$||T||_{e} = \inf\{||T - K|| : K \text{ is compact }\}.$$

• $L^{\infty}(\mathbb{M}_n)$ is equipped with $\|\Phi\|_{\infty} = \operatorname{ess\,sup}_{\zeta \in \mathbb{T}} \|\Phi(\zeta)\|_{\mathbb{M}_n}$.

- ${\rm I}\!{\rm D}$ is the open unit disk & ${\rm T}$ is the unit circle.
- ② M_n denotes the space of n × n matrices equipped with the operator norm || · ||_{M_n}.
- **③** For an operator T and $k \ge 0$, we define

$$s_k(T) = \inf\{\|T - R\| : \operatorname{rank} R \le k\}$$

and

$$||T||_{e} = \inf\{||T - K|| : K \text{ is compact }\}.$$

• $L^{\infty}(\mathbb{M}_n)$ is equipped with $\|\Phi\|_{\infty} = \operatorname{ess\,sup}_{\zeta \in \mathbb{T}} \|\Phi(\zeta)\|_{\mathbb{M}_n}$.

- ${\rm I}\!{\rm D}$ is the open unit disk & ${\rm T}$ is the unit circle.
- ② M_n denotes the space of n × n matrices equipped with the operator norm || · ||_{M_n}.
- **③** For an operator T and $k \ge 0$, we define

$$s_k(T) = \inf\{\|T - R\| : \operatorname{rank} R \le k\}$$

and

$$\|T\|_{e} = \inf\{\|T - K\| : K \text{ is compact } \}.$$

• $L^{\infty}(\mathbb{M}_n)$ is equipped with $\|\Phi\|_{\infty} = \operatorname{ess\,sup}_{\zeta \in \mathbb{T}} \|\Phi(\zeta)\|_{\mathbb{M}_n}$.

► < Ξ > <</p>

- $\textcircled{0} \mathbb{D} \text{ is the open unit disk \& } \mathbb{T} \text{ is the unit circle.}$
- ② M_n denotes the space of n × n matrices equipped with the operator norm || · ||_{M_n}.
- **③** For an operator T and $k \ge 0$, we define

$$s_k(T) = \inf\{\|T - R\| : \operatorname{rank} R \le k\}$$

and

$$\|T\|_{e} = \inf\{\|T - K\| : K \text{ is compact } \}.$$

•
$$L^{\infty}(\mathbb{M}_n)$$
 is equipped with $\|\Phi\|_{\infty} = \operatorname{ess\,sup}_{\zeta \in \mathbb{T}} \|\Phi(\zeta)\|_{\mathbb{M}_n}$.

- ₹ 🖹 🕨

A finite **Blaschke-Potapov product** of degree k is an $n \times n$ matrix-valued function of the form

$$B(z) = U_0 \begin{pmatrix} \frac{z-a_1}{1-\bar{a}_1 z} & \mathbb{O} \\ \mathbb{O} & I_{n-1} \end{pmatrix} U_1 \dots U_{k-1} \begin{pmatrix} \frac{z-a_k}{1-\bar{a}_k z} & \mathbb{O} \\ \mathbb{O} & I_{n-1} \end{pmatrix} U_k,$$

where $a_1, \ldots, a_k \in \mathbb{D}$ and U_0, U_1, \ldots, U_k are constant $n \times n$ unitary matrices.

A matrix-valued function $Q \in L^{\infty}(\mathbb{M}_n)$ is said to have **at most** k**poles in** \mathbb{D} if there is a Blaschke-Potapov product B of degree ksuch that $QB \in H^{\infty}(\mathbb{M}_n)$.

 $H^{\infty}_{(k)}(\mathbb{M}_n)$ consists of matrix-valued functions Q with at most k poles in \mathbb{D} .

A finite **Blaschke-Potapov product** of degree k is an $n \times n$ matrix-valued function of the form

$$B(z) = U_0 \begin{pmatrix} \frac{z-a_1}{1-\bar{a}_1 z} & \mathbb{O} \\ \mathbb{O} & I_{n-1} \end{pmatrix} U_1 \dots U_{k-1} \begin{pmatrix} \frac{z-a_k}{1-\bar{a}_k z} & \mathbb{O} \\ \mathbb{O} & I_{n-1} \end{pmatrix} U_k,$$

where $a_1, \ldots, a_k \in \mathbb{D}$ and U_0, U_1, \ldots, U_k are constant $n \times n$ unitary matrices.

A matrix-valued function $Q \in L^{\infty}(\mathbb{M}_n)$ is said to have **at most** k**poles in** \mathbb{D} if there is a Blaschke-Potapov product B of degree ksuch that $QB \in H^{\infty}(\mathbb{M}_n)$.

 $H^{\infty}_{(k)}(\mathbb{M}_n)$ consists of matrix-valued functions Q with at most k poles in \mathbb{D} .

(< ∃) < ∃)</p>

A finite **Blaschke-Potapov product** of degree k is an $n \times n$ matrix-valued function of the form

$$B(z) = U_0 \begin{pmatrix} \frac{z-a_1}{1-\bar{a}_1 z} & \mathbb{O} \\ \mathbb{O} & I_{n-1} \end{pmatrix} U_1 \dots U_{k-1} \begin{pmatrix} \frac{z-a_k}{1-\bar{a}_k z} & \mathbb{O} \\ \mathbb{O} & I_{n-1} \end{pmatrix} U_k,$$

where $a_1, \ldots, a_k \in \mathbb{D}$ and U_0, U_1, \ldots, U_k are constant $n \times n$ unitary matrices.

A matrix-valued function $Q \in L^{\infty}(\mathbb{M}_n)$ is said to have **at most** k**poles in** \mathbb{D} if there is a Blaschke-Potapov product B of degree ksuch that $QB \in H^{\infty}(\mathbb{M}_n)$.

 $H^{\infty}_{(k)}(\mathbb{M}_n)$ consists of matrix-valued functions Q with at most k poles in \mathbb{D} .

Definition

Let $k \ge 0$. Given $\Phi \in L^{\infty}(\mathbb{M}_n)$, we say that Q is a **best** approximation in $H^{\infty}_{(k)}(\mathbb{M}_n)$ to Φ if Q has at most k poles and

$$\|\Phi - Q\|_{L^{\infty}(\mathbb{M}_n)} = \operatorname{dist}_{L^{\infty}(\mathbb{M}_n)}(\Phi, H^{\infty}_{(k)}(\mathbb{M}_n)).$$

How can we define "very best" approximation in order to obtain uniqueness?

→ Ξ →

Definition

Let $k \ge 0$. Given $\Phi \in L^{\infty}(\mathbb{M}_n)$, we say that Q is a **best** approximation in $H^{\infty}_{(k)}(\mathbb{M}_n)$ to Φ if Q has at most k poles and

$$\|\Phi - Q\|_{L^{\infty}(\mathbb{M}_n)} = \operatorname{dist}_{L^{\infty}(\mathbb{M}_n)}(\Phi, H^{\infty}_{(k)}(\mathbb{M}_n)).$$

How can we define "very best" approximation in order to obtain uniqueness?

Definition (Young)

Let $k \ge 0$ and $\Phi \in L^{\infty}(\mathbb{M}_n)$. We say that Q is a superoptimal meromorphic approximant of Φ in $H^{\infty}_{(k)}(\mathbb{M}_n)$ if Q has at most k poles in \mathbb{D} and minimizes the essential suprema of singular values $s_j((\Phi - Q)(\zeta)), j \ge 0$, with respect to the *lexicographic* ordering:

 $Q \text{ minimizes } \operatorname{ess sup}_{\zeta \in \mathbb{T}} s_0(\Phi(\zeta) - Q(\zeta)) \text{ on } H^{\infty}_{(k)}(\mathbb{M}_n)$ then... minimize $\operatorname{ess sup}_{\zeta \in \mathbb{T}} s_1(\Phi(\zeta) - Q(\zeta))$ then... minimize $\operatorname{ess sup}_{\zeta \in \mathbb{T}} s_2(\Phi(\zeta) - Q(\zeta)) \dots$ and so on.

For $j \ge 0$, the number $t_j^{(k)} \stackrel{\text{def}}{=} \operatorname{ess\,sup}_{\zeta \in \mathbb{T}} s_j(\Phi(\zeta) - Q(\zeta))$ is called the *j*th superoptimal singular value of Φ of degree k.

Definition (Young)

Let $k \ge 0$ and $\Phi \in L^{\infty}(\mathbb{M}_n)$. We say that Q is a superoptimal meromorphic approximant of Φ in $H^{\infty}_{(k)}(\mathbb{M}_n)$ if Q has at most k poles in \mathbb{D} and minimizes the essential suprema of singular values $s_j((\Phi - Q)(\zeta)), j \ge 0$, with respect to the *lexicographic* ordering:

$$\begin{aligned} & Q \text{ minimizes } ess \sup_{\zeta \in \mathbb{T}} s_0(\Phi(\zeta) - Q(\zeta)) \text{ on } H^{\infty}_{(k)}(\mathbb{M}_n) \\ & \text{then... minimize } ess \sup_{\zeta \in \mathbb{T}} s_1(\Phi(\zeta) - Q(\zeta)) \\ & \text{then... minimize } ess \sup_{\zeta \in \mathbb{T}} s_2(\Phi(\zeta) - Q(\zeta)) \dots \text{ and so on.} \end{aligned}$$

For $j \ge 0$, the number $t_j^{(k)} \stackrel{\text{def}}{=} \operatorname{ess} \sup_{\zeta \in \mathbb{T}} s_j(\Phi(\zeta) - Q(\zeta))$ is called the *jth superoptimal singular value of* Φ *of degree k*.

Definition (Young)

Let $k \ge 0$ and $\Phi \in L^{\infty}(\mathbb{M}_n)$. We say that Q is a superoptimal meromorphic approximant of Φ in $H^{\infty}_{(k)}(\mathbb{M}_n)$ if Q has at most k poles in \mathbb{D} and minimizes the essential suprema of singular values $s_j((\Phi - Q)(\zeta)), j \ge 0$, with respect to the *lexicographic* ordering:

$$Q \text{ minimizes } \operatorname{ess sup}_{\zeta \in \mathbb{T}} s_0(\Phi(\zeta) - Q(\zeta)) \text{ on } H^{\infty}_{(k)}(\mathbb{M}_n)$$

then... minimize $\operatorname{ess sup}_{\zeta \in \mathbb{T}} s_1(\Phi(\zeta) - Q(\zeta))$
then... minimize $\operatorname{ess sup}_{\zeta \in \mathbb{T}} s_2(\Phi(\zeta) - Q(\zeta)) \dots$ and so on.

For $j \ge 0$, the number $t_j^{(k)} \stackrel{\text{def}}{=} \operatorname{ess sup}_{\zeta \in \mathbb{T}} s_j(\Phi(\zeta) - Q(\zeta))$ is called the *j*th superoptimal singular value of Φ of degree k.

Let \mathbb{P}_+ and $\mathbb{P}_- := I - \mathbb{P}_+$ denote the orthogonal projections from $L^2(\mathbb{C}^n)$ onto $H^2(\mathbb{C}^n)$ and $H^2_-(\mathbb{C}^n) = L^2(\mathbb{C}^n) \ominus H^2(\mathbb{C}^n)$, respectively.

Given $\Phi \in L^{\infty}(\mathbb{M}_n)$, we define

() the **Toeplitz operator** $T_{\Phi} : H^2(\mathbb{C}^n) \to H^2(\mathbb{C}^n)$ by

$$T_{\Phi}f = \mathbb{P}_{+}\Phi f$$
 for $f \in H^{2}(\mathbb{C}^{n})$,

and

(2) Hankel operator $H_{\Phi}: H^2(\mathbb{C}^n) \to H^2_{-}(\mathbb{C}^n)$ by

$$H_{\Phi}f = \mathbb{P}_{-}\Phi f$$
 for $f \in H^{2}(\mathbb{C}^{n})$.

Let \mathbb{P}_+ and $\mathbb{P}_- := I - \mathbb{P}_+$ denote the orthogonal projections from $L^2(\mathbb{C}^n)$ onto $H^2(\mathbb{C}^n)$ and $H^2_-(\mathbb{C}^n) = L^2(\mathbb{C}^n) \ominus H^2(\mathbb{C}^n)$, respectively.

Given $\Phi \in L^{\infty}(\mathbb{M}_n)$, we define

() the **Toeplitz operator** $T_{\Phi}: H^2(\mathbb{C}^n) \to H^2(\mathbb{C}^n)$ by

$$T_{\Phi}f = \mathbb{P}_+ \Phi f$$
 for $f \in H^2(\mathbb{C}^n)$,

and

(2) Hankel operator $H_{\Phi}: H^2(\mathbb{C}^n) \to H^2_{-}(\mathbb{C}^n)$ by

 $H_{\Phi}f = \mathbb{P}_{-}\Phi f$ for $f \in H^{2}(\mathbb{C}^{n})$.

Let \mathbb{P}_+ and $\mathbb{P}_- := I - \mathbb{P}_+$ denote the orthogonal projections from $L^2(\mathbb{C}^n)$ onto $H^2(\mathbb{C}^n)$ and $H^2_-(\mathbb{C}^n) = L^2(\mathbb{C}^n) \ominus H^2(\mathbb{C}^n)$, respectively.

Given $\Phi \in L^{\infty}(\mathbb{M}_n)$, we define

() the **Toeplitz operator** $T_{\Phi}: H^2(\mathbb{C}^n) \to H^2(\mathbb{C}^n)$ by

$$T_{\Phi}f = \mathbb{P}_+ \Phi f$$
 for $f \in H^2(\mathbb{C}^n)$,

and

2 Hankel operator $H_{\Phi} : H^2(\mathbb{C}^n) \to H^2_{-}(\mathbb{C}^n)$ by

$$H_{\Phi}f = \mathbb{P}_{-}\Phi f$$
 for $f \in H^{2}(\mathbb{C}^{n})$.

For
$$\Phi \in L^{\infty}(\mathbb{M}_n)$$
, $s_k(H_{\Phi}) = \operatorname{dist}_{L^{\infty}(\mathbb{M}_n)}(\Phi, H^{\infty}_{(k)}(\mathbb{M}_n))$

$$= \min \left\{ \operatorname{ess\,sup\,} s_0(\Phi(\zeta) - Q(\zeta)) : Q \in H^{\infty}_{(k)}(\mathbb{M}_n) \right\}.$$

How about *uniqueness* of superoptimal approximant?

We say that Φ is *k*-admissible if $||H_{\Phi}||_{e}$ is less than the smallest non-zero superoptimal singular value of Φ of degree *k*.

Theorem (Peller-Young, Treil)

If Φ is k-admissible and $s_k(H_{\Phi}) < s_{k-1}(H_{\Phi})$, then Φ has a unique superoptimal meromorphic approximant in $H^{\infty}_{(k)}(\mathbb{M}_n)$ and $s_j(\Phi(\zeta) - Q(\zeta)) = t_j^{(k)}$ for a.e. $\zeta \in \mathbb{T}, j \ge 0$.

For
$$\Phi \in L^{\infty}(\mathbb{M}_n)$$
, $s_k(H_{\Phi}) = \operatorname{dist}_{L^{\infty}(\mathbb{M}_n)}(\Phi, H^{\infty}_{(k)}(\mathbb{M}_n))$
= $\min \left\{ \operatorname{ess\,sup}_{\zeta \in \mathbb{T}} s_0(\Phi(\zeta) - Q(\zeta)) : Q \in H^{\infty}_{(k)}(\mathbb{M}_n) \right\}.$

How about *uniqueness* of superoptimal approximant?

We say that Φ is *k*-admissible if $||H_{\Phi}||_{e}$ is less than the smallest non-zero superoptimal singular value of Φ of degree *k*.

Theorem (Peller-Young, Treil)

If Φ is k-admissible and $s_k(H_{\Phi}) < s_{k-1}(H_{\Phi})$, then Φ has a unique superoptimal meromorphic approximant in $H^{\infty}_{(k)}(\mathbb{M}_n)$ and $s_j(\Phi(\zeta) - Q(\zeta)) = t_j^{(k)}$ for a.e. $\zeta \in \mathbb{T}, j \ge 0$.

For
$$\Phi \in L^{\infty}(\mathbb{M}_n)$$
, $s_k(H_{\Phi}) = \operatorname{dist}_{L^{\infty}(\mathbb{M}_n)}(\Phi, H^{\infty}_{(k)}(\mathbb{M}_n))$
= $\min \left\{ \operatorname{ess\,sup}_{\zeta \in \mathbb{T}} s_0(\Phi(\zeta) - Q(\zeta)) : Q \in H^{\infty}_{(k)}(\mathbb{M}_n) \right\}.$

How about uniqueness of superoptimal approximant?

We say that Φ is *k*-admissible if $||H_{\Phi}||_{e}$ is less than the smallest non-zero superoptimal singular value of Φ of degree *k*.

Theorem (Peller-Young, Treil)

If Φ is k-admissible and $s_k(H_{\Phi}) < s_{k-1}(H_{\Phi})$, then Φ has a unique superoptimal meromorphic approximant in $H^{\infty}_{(k)}(\mathbb{M}_n)$ and $s_j(\Phi(\zeta) - Q(\zeta)) = t_j^{(k)}$ for a.e. $\zeta \in \mathbb{T}, j \ge 0$.

For
$$\Phi \in L^{\infty}(\mathbb{M}_n)$$
, $s_k(H_{\Phi}) = \operatorname{dist}_{L^{\infty}(\mathbb{M}_n)}(\Phi, H^{\infty}_{(k)}(\mathbb{M}_n))$
= $\min \left\{ \operatorname{ess sup}_{\zeta \in \mathbb{T}} s_0(\Phi(\zeta) - Q(\zeta)) : Q \in H^{\infty}_{(k)}(\mathbb{M}_n) \right\}.$

How about *uniqueness* of superoptimal approximant?

We say that Φ is *k*-admissible if $||H_{\Phi}||_{e}$ is less than the smallest non-zero superoptimal singular value of Φ of degree *k*.

Theorem (Peller-Young, Treil)

If Φ is k-admissible and $s_k(H_{\Phi}) < s_{k-1}(H_{\Phi})$, then Φ has a unique superoptimal meromorphic approximant in $H^{\infty}_{(k)}(\mathbb{M}_n)$ and

 $s_j(\Phi(\zeta)-Q(\zeta))=t_j^{(k)}$ for a.e. $\zeta\in\mathbb{T},\,j\geq 0.$

For
$$\Phi \in L^{\infty}(\mathbb{M}_n)$$
, $s_k(H_{\Phi}) = \operatorname{dist}_{L^{\infty}(\mathbb{M}_n)}(\Phi, H^{\infty}_{(k)}(\mathbb{M}_n))$
= $\min \left\{ \operatorname{ess sup}_{\zeta \in \mathbb{T}} s_0(\Phi(\zeta) - Q(\zeta)) : Q \in H^{\infty}_{(k)}(\mathbb{M}_n) \right\}.$

How about uniqueness of superoptimal approximant?

We say that Φ is *k*-admissible if $||H_{\Phi}||_{e}$ is less than the smallest non-zero superoptimal singular value of Φ of degree *k*.

Theorem (Peller-Young, Treil)

If Φ is k-admissible and $s_k(H_{\Phi}) < s_{k-1}(H_{\Phi})$, then Φ has a unique superoptimal meromorphic approximant in $H_{(k)}^{\infty}(\mathbb{M}_n)$ and $s_j(\Phi(\zeta) - Q(\zeta)) = t_j^{(k)}$ for a.e. $\zeta \in \mathbb{T}$, $j \ge 0$.

Theorem

Suppose

• Φ is k-admissible,

3) $s_k(H_\Phi) < s_{k-1}(H_\Phi)$, and

④ Φ has n non-zero superoptimal singular values of degree k.

Then the Toeplitz operator $T_{\Phi-Q}$ is Fredholm and

ind $T_{\Phi-Q} = \dim \ker T_{\Phi-Q}$.

Theorem

Suppose

- Φ is k-admissible,
- 2 $s_k(H_{\Phi}) < s_{k-1}(H_{\Phi})$, and

Φ has n non-zero superoptimal singular values of degree k.

Then the Toeplitz operator $\mathsf{T}_{\Phi-\mathsf{Q}}$ is Fredholm and

ind $T_{\Phi-Q} = \dim \ker T_{\Phi-Q}$.

Theorem

Suppose

- Φ is k-admissible,

Φ has n non-zero superoptimal singular values of degree k.

Then the Toeplitz operator $T_{\Phi-Q}$ is Fredholm and

ind $T_{\Phi-Q} = \dim \ker T_{\Phi-Q}$.

<u>Question</u>: ind $T_{\Phi-Q} = 2k + \mu$? Let $\Phi = \frac{1}{\sqrt{2}} \begin{pmatrix} \overline{z}^5 + \frac{1}{3}\overline{z} & -\frac{1}{3}\overline{z}^2 \\ \overline{z}^4 & \frac{1}{3}\overline{z} \end{pmatrix}$. Then $s_0(H_{\Phi}) = \frac{\sqrt{10}}{3}, s_1(H_{\Phi}) = s_2(H_{\Phi}) = s_3(H_{\Phi}) = 1,$ $s_4(H_{\Phi}) = \frac{1}{\sqrt{2}}, \text{ and } s_5(H_{\Phi}) = \frac{1}{3},$

and so $2k + \mu = 5$, where μ is the multiplicity of $s_1(H_{\Phi})$.

The superoptimal approximant of Φ with at most 1 pole is $Q = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{1}{3}\bar{z} & \mathbb{O} \\ \mathbb{O} & \mathbb{O} \end{pmatrix}.$

Can we compute the index of $T_{\Phi-Q}$?

Question: ind
$$T_{\Phi-Q} = 2k + \mu$$
?
Let $\Phi = \frac{1}{\sqrt{2}} \begin{pmatrix} \overline{z}^5 + \frac{1}{3}\overline{z} & -\frac{1}{3}\overline{z}^2 \\ \overline{z}^4 & \frac{1}{3}\overline{z} \end{pmatrix}$. Then
 $s_0(H_{\Phi}) = \frac{\sqrt{10}}{3}, \ s_1(H_{\Phi}) = s_2(H_{\Phi}) = s_3(H_{\Phi}) = 1,$ $s_4(H_{\Phi}) = \frac{1}{\sqrt{2}}, \ \text{and} \ s_5(H_{\Phi}) = \frac{1}{3},$

and so $2k + \mu = 5$, where μ is the multiplicity of $s_1(H_{\Phi})$.

The superoptimal approximant of Φ with at most 1 pole is $Q = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{1}{3}\bar{z} & \mathbb{O} \\ \mathbb{O} & \mathbb{O} \end{pmatrix}.$

Can we compute the index of $T_{\Phi-Q}$?

Question: ind
$$T_{\Phi-Q} = 2k + \mu$$
?
Let $\Phi = \frac{1}{\sqrt{2}} \begin{pmatrix} \bar{z}^5 + \frac{1}{3}\bar{z} & -\frac{1}{3}\bar{z}^2 \\ \bar{z}^4 & \frac{1}{3}\bar{z} \end{pmatrix}$. Then
 $s_0(H_{\Phi}) = \frac{\sqrt{10}}{3}, \ s_1(H_{\Phi}) = s_2(H_{\Phi}) = s_3(H_{\Phi}) = 1,$
 $s_4(H_{\Phi}) = \frac{1}{\sqrt{2}}, \ \text{and} \ s_5(H_{\Phi}) = \frac{1}{3},$

and so $2k + \mu = 5$, where μ is the multiplicity of $s_1(H_{\Phi})$.

The superoptimal approximant of Φ with at most 1 pole is $Q = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{1}{3}\bar{z} & \mathbb{O} \\ \mathbb{O} & \mathbb{O} \end{pmatrix}.$

Can we compute the index of $T_{\Phi-Q}$?

Question: ind
$$T_{\Phi-Q} = 2k + \mu$$
?
Let $\Phi = \frac{1}{\sqrt{2}} \begin{pmatrix} \bar{z}^5 + \frac{1}{3}\bar{z} & -\frac{1}{3}\bar{z}^2 \\ \bar{z}^4 & \frac{1}{3}\bar{z} \end{pmatrix}$. Then
 $s_0(H_{\Phi}) = \frac{\sqrt{10}}{3}, \ s_1(H_{\Phi}) = s_2(H_{\Phi}) = s_3(H_{\Phi}) = 1,$
 $s_4(H_{\Phi}) = \frac{1}{\sqrt{2}}, \ \text{and} \ s_5(H_{\Phi}) = \frac{1}{3},$

and so $2k + \mu = 5$, where μ is the multiplicity of $s_1(H_{\Phi})$.

The superoptimal approximant of Φ with at most 1 pole is $Q = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{1}{3}\overline{z} & \mathbb{O} \\ \mathbb{O} & \mathbb{O} \end{pmatrix}.$

Let B and Λ be Blaschke-Potapov products such that

ker
$$H_Q = BH^2(\mathbb{C}^n)$$
 and ker $H_{Q^t} = \Lambda H^2(\mathbb{C}^n)$.

Let

$$\mathcal{E} = \{\xi \in \ker H_Q : \|H_{\Phi}\xi\|_2 = \|(\Phi - Q)\xi\|_2\}$$

and

$$U = \Lambda^t (\Phi - Q) B.$$

Theorem

If the number of superoptimal singular values of Φ of degree k equals n, then

- O the Toeplitz operator T_U is Fredholm and
- (a) ind $T_U = \dim \ker T_U \ge n$.

Let B and Λ be Blaschke-Potapov products such that

ker
$$H_Q = BH^2(\mathbb{C}^n)$$
 and ker $H_{Q^t} = \Lambda H^2(\mathbb{C}^n)$.

Let

$$\mathcal{E} = \{\xi \in \ker H_Q : \|H_\Phi \xi\|_2 = \|(\Phi - Q)\xi\|_2\}$$

and

 $U = \Lambda^t (\Phi - Q) B.$

Theorem

If the number of superoptimal singular values of Φ of degree k equals n, then

- \bigcirc the Toeplitz operator T_U is Fredholm and
- (a) ind $T_U = \dim \ker T_U \ge n$.

Let B and Λ be Blaschke-Potapov products such that

ker
$$H_Q = BH^2(\mathbb{C}^n)$$
 and ker $H_{Q^t} = \Lambda H^2(\mathbb{C}^n)$.

Let

$$\mathcal{E} = \{\xi \in \ker H_Q : \|H_{\Phi}\xi\|_2 = \|(\Phi - Q)\xi\|_2\}$$

and

$$U=\Lambda^t(\Phi-Q)B.$$

Theorem

If the number of superoptimal singular values of Φ of degree k equals n, then

 $D \mathcal{E} = B \ker T_U$

- \bigcirc the Toeplitz operator T_U is Fredholm and
- (a) ind $T_U = \dim \ker T_U \ge n$.

Let B and Λ be Blaschke-Potapov products such that

ker
$$H_Q = BH^2(\mathbb{C}^n)$$
 and ker $H_{Q^t} = \Lambda H^2(\mathbb{C}^n)$.

Let

$$\mathcal{E} = \{\xi \in \ker H_Q : \|H_{\Phi}\xi\|_2 = \|(\Phi - Q)\xi\|_2\}$$

and

$$U=\Lambda^t(\Phi-Q)B.$$

Theorem

If the number of superoptimal singular values of Φ of degree k equals n, then

- $\mathcal{E} = B \ker T_U$
- 2 the Toeplitz operator T_U is Fredholm and
- \bigcirc ind $T_U = \dim \ker T_U \ge n$.

Let B and Λ be Blaschke-Potapov products such that

ker
$$H_Q = BH^2(\mathbb{C}^n)$$
 and ker $H_{Q^t} = \Lambda H^2(\mathbb{C}^n)$.

Let

$$\mathcal{E} = \{\xi \in \ker H_Q : \|H_{\Phi}\xi\|_2 = \|(\Phi - Q)\xi\|_2\}$$

and

$$U=\Lambda^t(\Phi-Q)B.$$

Theorem

If the number of superoptimal singular values of Φ of degree k equals n, then

$$D \mathcal{E} = B \ker T_U$$

2 the Toeplitz operator T_U is Fredholm and

3 ind
$$T_U = \dim \ker T_U \ge n$$
.

The index formula

Theorem

Let $\mathcal{E} = \{\xi \in \ker H_Q : ||H_{\Phi}\xi||_2 = ||(\Phi - Q)\xi||_2\}$. Then the Toeplitz operator $T_{\Phi-Q}$ is Fredholm and has index

ind
$$T_{\Phi-Q} = 2k + \dim \mathcal{E}$$
.

In particular, dim ker $T_{\Phi-Q} \ge 2k + n$.

Corollary

If all superoptimal singular values of degree k of Φ are equal, then

ind
$$T_{\Phi-Q} = \dim \ker T_{\Phi-Q} = 2k + \mu$$

holds, where μ denotes the multiplicity of the singular value $s_k(H_{\Phi})$.

The index formula

Theorem

Let $\mathcal{E} = \{\xi \in \ker H_Q : ||H_{\Phi}\xi||_2 = ||(\Phi - Q)\xi||_2\}$. Then the Toeplitz operator $T_{\Phi-Q}$ is Fredholm and has index

ind
$$T_{\Phi-Q} = 2k + \dim \mathcal{E}$$
.

In particular, dim ker $T_{\Phi-Q} \ge 2k + n$.

Corollary

If all superoptimal singular values of degree k of Φ are equal, then

ind
$$T_{\Phi-Q} = \dim \ker T_{\Phi-Q} = 2k + \mu$$

holds, where μ denotes the multiplicity of the singular value $s_k(H_{\Phi})$.

Theorem (Peller-Vasyunin)

If Φ is a rational function 2 × 2 with poles off \mathbb{T} , then "generically" the best analytic approximant Q to φ is a rational function and

 $\deg Q \leq \deg \Phi - 2 \quad unless \Phi \in H^{\infty}(\mathbb{M}_2).$

In general, one has

```
\deg Q \le 2\deg \Phi - 3
```

and this inequality is sharp!

#1. What can be said for matrix-valued functions of arbitrary size?

Theorem (Peller-Vasyunin)

If Φ is a rational function 2×2 with poles off \mathbb{T} , then "generically" the best analytic approximant Q to φ is a rational function and

 $\deg Q \leq \deg \Phi - 2 \quad unless \ \Phi \in H^{\infty}(\mathbb{M}_2).$

In general, one has

```
\deg Q \leq 2 \deg \Phi - 3
```

and this inequality is sharp!

#1. What can be said for matrix-valued functions of arbitrary size?

► < Ξ > <</p>

Theorem (Peller-Vasyunin)

If Φ is a rational function 2 × 2 with poles off \mathbb{T} , then "generically" the best analytic approximant Q to φ is a rational function and

 $\deg Q \leq \deg \Phi - 2 \quad unless \ \Phi \in H^{\infty}(\mathbb{M}_2).$

In general, one has

```
\deg Q \leq 2 \deg \Phi - 3
```

and this inequality is sharp!

#1. What can be said for matrix-valued functions of arbitrary size?

Theorem (Peller-Vasyunin)

If Φ is a rational function 2×2 with poles off \mathbb{T} , then "generically" the best analytic approximant Q to φ is a rational function and

 $\deg Q \leq \deg \Phi - 2 \quad unless \ \Phi \in H^{\infty}(\mathbb{M}_2).$

In general, one has

```
\deg Q \leq 2 \deg \Phi - 3
```

and this inequality is sharp!

#1. What can be said for matrix-valued functions of arbitrary size?

#2. How can we verify that a matrix-valued function $\Phi \in L^{\infty}$ has *n* non-zero superoptimal singular values?

#3. Find a characterization for the superoptimal approximant.

Thank you!

#2. How can we verify that a matrix-valued function $\Phi \in L^{\infty}$ has *n* non-zero superoptimal singular values?

#3. Find a characterization for the superoptimal approximant.

Thank you!

#2. How can we verify that a matrix-valued function $\Phi \in L^{\infty}$ has *n* non-zero superoptimal singular values?

#3. Find a characterization for the superoptimal approximant.

Thank you!