Recent results on superoptimal approximation by meromorphic functions

Alberto A. Condori

Department of Mathematics
Florida Gulf Coast University
acondori@fgcu.edu

Saturday, March 19, 2011

27th South Eastern Analysis Meeting
University of Florida
1. \mathbb{D} is the open unit disk & \mathbb{T} is the unit circle.

2. \mathcal{M}_n denotes the space of $n \times n$ matrices equipped with the operator norm $\| \cdot \|_{\mathcal{M}_n}$.

3. For an operator T and $k \geq 0$, we define

$$s_k(T) = \inf \{ \| T - R \| : \text{rank} \, R \leq k \}$$

and

$$\| T \|_e = \inf \{ \| T - K \| : K \text{ is compact} \}.$$

4. $L^\infty(\mathcal{M}_n)$ is equipped with $\| \Phi \|_\infty = \text{ess sup}_{\zeta \in \mathbb{T}} \| \Phi(\zeta) \|_{\mathcal{M}_n}$.

Alberto A. Condori
Meromorphic approximation
Notation

1. \mathbb{D} is the open unit disk & \mathbb{T} is the unit circle.

2. \mathcal{M}_n denotes the space of $n \times n$ matrices equipped with the operator norm $\| \cdot \|_{\mathcal{M}_n}$.

3. For an operator T and $k \geq 0$, we define

$$s_k(T) = \inf\{ \| T - R \| : \text{rank } R \leq k \}$$

and

$$\| T \|_{e} = \inf\{ \| T - K \| : K \text{ is compact } \}.$$

4. $L^\infty(\mathcal{M}_n)$ is equipped with $\| \Phi \|_\infty = \esssup_{\zeta \in \mathbb{T}} \| \Phi(\zeta) \|_{\mathcal{M}_n}$.

Alberto A. Condori
Meromorphic approximation
\(\mathbb{D} \) is the open unit disk & \(\mathbb{T} \) is the unit circle.

\(\mathbb{M}_n \) denotes the space of \(n \times n \) matrices equipped with the operator norm \(\| \cdot \|_{\mathbb{M}_n} \).

For an operator \(T \) and \(k \geq 0 \), we define
\[
s_k(T) = \inf \{ \| T - R \| : \text{rank } R \leq k \}
\]
and
\[
\| T \|_e = \inf \{ \| T - K \| : K \text{ is compact } \}.
\]

\(L^\infty(\mathbb{M}_n) \) is equipped with \(\| \Phi \|_\infty = \text{ess sup}_{\zeta \in \mathbb{T}} \| \Phi(\zeta) \|_{\mathbb{M}_n} \).
Notation

1. \(\mathbb{D} \) is the open unit disk & \(\mathbb{T} \) is the unit circle.

2. \(\mathbb{M}_n \) denotes the space of \(n \times n \) matrices equipped with the operator norm \(\| \cdot \|_{\mathbb{M}_n} \).

3. For an operator \(T \) and \(k \geq 0 \), we define

 \[s_k(T) = \inf \{ \| T - R \| : \text{rank} \ R \leq k \} \]

 and

 \[\| T \|_e = \inf \{ \| T - K \| : K \text{ is compact} \} \].

4. \(L^\infty(\mathbb{M}_n) \) is equipped with \(\| \Phi \|_\infty = \text{ess sup} \| \Phi(\zeta) \|_{\mathbb{M}_n} \) for \(\zeta \in \mathbb{T} \).
Notation

1. \(\mathbb{D} \) is the open unit disk & \(\mathbb{T} \) is the unit circle.

2. \(\mathbb{M}_n \) denotes the space of \(n \times n \) matrices equipped with the operator norm \(\| \cdot \|_{\mathbb{M}_n} \).

3. For an operator \(T \) and \(k \geq 0 \), we define

\[
 s_k(T) = \inf \{ \| T - R \| : \text{rank } R \leq k \}
\]

and

\[
 \| T \|_e = \inf \{ \| T - K \| : K \text{ is compact } \}.
\]

4. \(L^\infty(\mathbb{M}_n) \) is equipped with

\[
 \| \Phi \|_\infty = \text{ess sup } \| \Phi(\zeta) \|_{\mathbb{M}_n}, \quad \zeta \in \mathbb{T}.
\]
A finite **Blaschke-Potapov product** of degree k is an $n \times n$ matrix-valued function of the form

$$B(z) = U_0 \left(\begin{array}{cc} \frac{z-a_1}{1-\overline{a_1}z} & \mathbf{0} \\ \mathbf{0} & I_{n-1} \end{array} \right) U_1 \ldots U_{k-1} \left(\begin{array}{cc} \frac{z-a_k}{1-\overline{a_k}z} & \mathbf{0} \\ \mathbf{0} & I_{n-1} \end{array} \right) U_k,$$

where $a_1, \ldots, a_k \in \mathbb{D}$ and U_0, U_1, \ldots, U_k are constant $n \times n$ unitary matrices.

A matrix-valued function $Q \in L^\infty(\mathbb{M}_n)$ is said to have **at most** k **poles** in \mathbb{D} if there is a Blaschke-Potapov product B of degree k such that $QB \in H^\infty(\mathbb{M}_n)$.

$H^\infty_{(k)}(\mathbb{M}_n)$ consists of matrix-valued functions Q with at most k poles in \mathbb{D}.
A finite **Blaschke-Potapov product** of degree k is an $n \times n$ matrix-valued function of the form

$$B(z) = U_0 \left(\begin{array}{cc} z-a_1 & 0 \\ \frac{1}{1-ar{a}_1 z} & I_{n-1} \end{array} \right) U_1 \cdots U_{k-1} \left(\begin{array}{cc} z-a_k & 0 \\ \frac{1}{1-ar{a}_k z} & I_{n-1} \end{array} \right) U_k,$$

where $a_1, \ldots, a_k \in \mathbb{D}$ and U_0, U_1, \ldots, U_k are constant $n \times n$ unitary matrices.

A matrix-valued function $Q \in L^\infty(\mathbb{M}_n)$ is said to have **at most k poles in \mathbb{D}** if there is a Blaschke-Potapov product B of degree k such that $QB \in H^\infty(\mathbb{M}_n)$.

$H^\infty_{(k)}(\mathbb{M}_n)$ consists of matrix-valued functions Q with at most k poles in \mathbb{D}.
A finite **Blaschke-Potapov product** of degree k is an $n \times n$ matrix-valued function of the form

$$B(z) = U_0 \left(\begin{array}{cc} \frac{z-a_1}{1-\overline{a}_1 z} & 0 \\ 0 & I_{n-1} \end{array} \right) U_1 \ldots U_{k-1} \left(\begin{array}{cc} \frac{z-a_k}{1-\overline{a}_k z} & 0 \\ 0 & I_{n-1} \end{array} \right) U_k,$$

where $a_1, \ldots, a_k \in \mathbb{D}$ and U_0, U_1, \ldots, U_k are constant $n \times n$ unitary matrices.

A matrix-valued function $Q \in L^\infty(\mathbb{M}_n)$ is said to have at most k poles in \mathbb{D} if there is a Blaschke-Potapov product B of degree k such that $QB \in H^\infty(\mathbb{M}_n)$.

$H^\infty_{(k)}(\mathbb{M}_n)$ consists of matrix-valued functions Q with at most k poles in \mathbb{D}.
Nehari-Takagi problem

Definition

Let $k \geq 0$. Given $\Phi \in L^\infty(\mathbb{M}_n)$, we say that Q is a **best approximation** in $H^\infty_{(k)}(\mathbb{M}_n)$ to Φ if Q has at most k poles and

$$\|\Phi - Q\|_{L^\infty(\mathbb{M}_n)} = \text{dist}_{L^\infty(\mathbb{M}_n)}(\Phi, H^\infty_{(k)}(\mathbb{M}_n)).$$

How can we define “very best” approximation in order to obtain uniqueness?
Definition

Let $k \geq 0$. Given $\Phi \in L^\infty(\mathbb{M}_n)$, we say that Q is a **best approximation** in $H^\infty_{(k)}(\mathbb{M}_n)$ to Φ if Q has at most k poles and

$$\|\Phi - Q\|_{L^\infty(\mathbb{M}_n)} = \text{dist}_{L^\infty(\mathbb{M}_n)}(\Phi, H^\infty_{(k)}(\mathbb{M}_n)).$$

How can we define “very best” approximation in order to obtain uniqueness?
Superoptimal meromorphic approximation in $H^\infty_k(\mathbb{M}_n)$

Definition (Young)

Let $k \geq 0$ and $\Phi \in L^\infty(\mathbb{M}_n)$. We say that Q is a superoptimal meromorphic approximant of Φ in $H^\infty_k(\mathbb{M}_n)$ if Q has at most k poles in \mathbb{D} and minimizes the essential suprema of singular values $s_j((\Phi - Q)(\zeta)), j \geq 0$, with respect to the lexicographic ordering:

$$Q \text{ minimizes } \sup_{\zeta \in \mathbb{T}} s_0(\Phi(\zeta) - Q(\zeta)) \text{ on } H^\infty_k(\mathbb{M}_n)$$

then... minimize $\sup_{\zeta \in \mathbb{T}} s_1(\Phi(\zeta) - Q(\zeta))$

then... minimize $\sup_{\zeta \in \mathbb{T}} s_2(\Phi(\zeta) - Q(\zeta))$... and so on.

For $j \geq 0$, the number $t_j^{(k)} \overset{\text{def}}{=} \sup_{\zeta \in \mathbb{T}} s_j(\Phi(\zeta) - Q(\zeta))$ is called the jth superoptimal singular value of Φ of degree k.
Definition (Young)

Let \(k \geq 0 \) and \(\Phi \in L^\infty(\mathbb{M}_n) \). We say that \(Q \) is a superoptimal meromorphic approximant of \(\Phi \) in \(H^\infty(\mathbb{M}_n) \) if \(Q \) has at most \(k \) poles in \(\mathbb{D} \) and minimizes the essential suprema of singular values \(s_j((\Phi - Q)(\zeta)), j \geq 0 \), with respect to the lexicographic ordering:

\[
Q \text{ minimizes } \text{ess sup}_{\zeta \in \mathbb{T}} s_0(\Phi(\zeta) - Q(\zeta)) \text{ on } H^\infty(\mathbb{M}_n)
\]

then... minimize \(\text{ess sup}_{\zeta \in \mathbb{T}} s_1(\Phi(\zeta) - Q(\zeta)) \)

then... minimize \(\text{ess sup}_{\zeta \in \mathbb{T}} s_2(\Phi(\zeta) - Q(\zeta)) \ldots \) and so on.

For \(j \geq 0 \), the number \(t_j^{(k)} \overset{\text{def}}{=} \text{ess sup}_{\zeta \in \mathbb{T}} s_j(\Phi(\zeta) - Q(\zeta)) \) is called the \(j \text{th superoptimal singular value of } \Phi \text{ of degree } k \).
Definition (Young)

Let \(k \geq 0 \) and \(\Phi \in L^\infty(\mathbb{M}_n) \). We say that \(Q \) is a superoptimal meromorphic approximant of \(\Phi \) in \(H^\infty_{(k)}(\mathbb{M}_n) \) if \(Q \) has at most \(k \) poles in \(\mathbb{D} \) and minimizes the essential suprema of singular values \(s_j(\Phi - Q)(\zeta) \), \(j \geq 0 \), with respect to the lexicographic ordering:

\[
Q \text{ minimizes } \quad \text{ess sup}_{\zeta \in \mathbb{T}} s_0(\Phi(\zeta) - Q(\zeta)) \quad \text{on } H^\infty_{(k)}(\mathbb{M}_n) \\
\text{then... minimize } \quad \text{ess sup}_{\zeta \in \mathbb{T}} s_1(\Phi(\zeta) - Q(\zeta)) \\
\text{then... minimize } \quad \text{ess sup}_{\zeta \in \mathbb{T}} s_2(\Phi(\zeta) - Q(\zeta)) \ldots \text{ and so on.}
\]

For \(j \geq 0 \), the number \(t_j^{(k)} \triangleq \text{ess sup}_{\zeta \in \mathbb{T}} s_j(\Phi(\zeta) - Q(\zeta)) \) is called the \(j \)th superoptimal singular value of \(\Phi \) of degree \(k \).
Let P_+ and $P_- := I - P_+$ denote the orthogonal projections from $L^2(\mathbb{C}^n)$ onto $H^2(\mathbb{C}^n)$ and $H^2_-(\mathbb{C}^n) = L^2(\mathbb{C}^n) \ominus H^2(\mathbb{C}^n)$, respectively.

Given $\Phi \in L^\infty(\mathbb{M}_n)$, we define

1. the **Toeplitz operator** $T_\Phi : H^2(\mathbb{C}^n) \to H^2(\mathbb{C}^n)$ by

 $$T_\Phi f = P_+ \Phi f \quad \text{for } f \in H^2(\mathbb{C}^n),$$

 and

2. **Hankel operator** $H_\Phi : H^2(\mathbb{C}^n) \to H^2_-(\mathbb{C}^n)$ by

 $$H_\Phi f = P_- \Phi f \quad \text{for } f \in H^2(\mathbb{C}^n).$$
Let \mathbb{P}_+ and $\mathbb{P}_- := I - \mathbb{P}_+$ denote the orthogonal projections from $L^2(\mathbb{C}^n)$ onto $H^2(\mathbb{C}^n)$ and $H^2_-(\mathbb{C}^n) = L^2(\mathbb{C}^n) \ominus H^2(\mathbb{C}^n)$, respectively.

Given $\Phi \in L^\infty(\mathbb{M}_n)$, we define

1. the **Toeplitz operator** $T_\Phi : H^2(\mathbb{C}^n) \to H^2(\mathbb{C}^n)$ by

$$T_\Phi f = \mathbb{P}_+ \Phi f \text{ for } f \in H^2(\mathbb{C}^n),$$

and

2. Hankel operator $H_\Phi : H^2(\mathbb{C}^n) \to H^2_-(\mathbb{C}^n)$ by

$$H_\Phi f = \mathbb{P}_- \Phi f \text{ for } f \in H^2(\mathbb{C}^n).$$
Let \mathbb{P}_+ and $\mathbb{P}_- := I - \mathbb{P}_+$ denote the orthogonal projections from $L^2(\mathbb{C}^n)$ onto $H^2(\mathbb{C}^n)$ and $H^2_-(\mathbb{C}^n) = L^2(\mathbb{C}^n) \ominus H^2(\mathbb{C}^n)$, respectively.

Given $\Phi \in L^\infty(M_n)$, we define

1. the **Toeplitz operator** $T_\Phi : H^2(\mathbb{C}^n) \rightarrow H^2(\mathbb{C}^n)$ by

 \[
 T_\Phi f = \mathbb{P}_+ \Phi f \quad \text{for } f \in H^2(\mathbb{C}^n),
 \]

 and

2. **Hankel operator** $H_\Phi : H^2(\mathbb{C}^n) \rightarrow H^2_-(\mathbb{C}^n)$ by

 \[
 H_\Phi f = \mathbb{P}_- \Phi f \quad \text{for } f \in H^2(\mathbb{C}^n).
 \]
Why are these operators useful?

Theorem (AAK-Treil)

For $\Phi \in L^\infty(\mathbb{M}_n)$, $s_k(H_\Phi) = \text{dist}_{L^\infty(\mathbb{M}_n)}(\Phi, H^\infty_{(k)}(\mathbb{M}_n))$

$= \min \left\{ \text{ess sup}_{\zeta \in \mathbb{T}} s_0(\Phi(\zeta) - Q(\zeta)) : Q \in H^\infty_{(k)}(\mathbb{M}_n) \right\}.$

How about *uniqueness* of superoptimal approximant?

We say that Φ is *k-admissible* if $\|H_\Phi\|_e$ is less than the smallest non-zero superoptimal singular value of Φ of degree k.

Theorem (Peller-Young, Treil)

If Φ is k-admissible and $s_k(H_\Phi) < s_{k-1}(H_\Phi)$, then Φ has a unique superoptimal meromorphic approximant in $H^\infty_{(k)}(\mathbb{M}_n)$ and $s_j(\Phi(\zeta) - Q(\zeta)) = t_j^{(k)}$ for a.e. $\zeta \in \mathbb{T}$, $j \geq 0$.

Alberto A. Condori | Meromorphic approximation
Why are these operators useful?

Theorem (AAK-Treil)

For $\Phi \in L^\infty(M_n)$, $s_k(H_\Phi) = \text{dist}_{L^\infty(M_n)}(\Phi, H^\infty_{(k)}(M_n))$

$$= \min \left\{ \text{ess sup}_{\zeta \in \mathbb{T}} s_0(\Phi(\zeta) - Q(\zeta)) : Q \in H^\infty_{(k)}(M_n) \right\}.$$

How about uniqueness of superoptimal approximant?

We say that Φ is k-admissible if $\|H_\Phi\|_e$ is less than the smallest non-zero superoptimal singular value of Φ of degree k.

Theorem (Peller-Young, Treil)

If Φ is k-admissible and $s_k(H_\Phi) < s_{k-1}(H_\Phi)$, then Φ has a unique superoptimal meromorphic approximant in $H^\infty_{(k)}(M_n)$ and

$$s_j(\Phi(\zeta) - Q(\zeta)) = t^{(k)}_j \text{ for a.e. } \zeta \in \mathbb{T}, j \geq 0.$$
Why are these operators useful?

Theorem (AAK-Treil)

For \(\Phi \in L^\infty(M_n) \), \(s_k(H_\Phi) = \text{dist}_{L^\infty(M_n)}(\Phi, H^\infty_{(k)}(M_n)) \)

\[
= \min \left\{ \text{ess sup}_{\zeta \in \mathbb{T}} s_0(\Phi(\zeta) - Q(\zeta)) : Q \in H^\infty_{(k)}(M_n) \right\}.
\]

How about uniqueness of superoptimal approximant?

We say that \(\Phi \) is \(k \)-admissible if \(\|H_\Phi\|_e \) is less than the smallest non-zero superoptimal singular value of \(\Phi \) of degree \(k \).

Theorem (Peller-Young, Treil)

If \(\Phi \) is \(k \)-admissible and \(s_k(H_\Phi) < s_{k-1}(H_\Phi) \), then \(\Phi \) has a unique superoptimal meromorphic approximant in \(H^\infty_{(k)}(M_n) \) and

\[
s_j(\Phi(\zeta) - Q(\zeta)) = t_j^{(k)} \quad \text{for a.e. } \zeta \in \mathbb{T}, \ j \geq 0.
\]
Why are these operators useful?

Theorem (AAK-Treil)

For $\Phi \in L^\infty(\mathbb{M}_n)$, $s_k(H_\Phi) = \text{dist}_{L^\infty(\mathbb{M}_n)}(\Phi, H_{(k)}^\infty(\mathbb{M}_n))$

$$= \min \left\{ \text{ess sup}_{\zeta \in \mathbb{T}} s_0(\Phi(\zeta) - Q(\zeta)) : Q \in H_{(k)}^\infty(\mathbb{M}_n) \right\}.$$

How about uniqueness of superoptimal approximant?

We say that Φ is k-admissible if $\|H_\Phi\|_e$ is less than the smallest non-zero superoptimal singular value of Φ of degree k.

Theorem (Peller-Young, Treil)

If Φ is k-admissible and $s_k(H_\Phi) < s_{k-1}(H_\Phi)$, then Φ has a unique superoptimal meromorphic approximant in $H_{(k)}^\infty(\mathbb{M}_n)$ and

$$s_j(\Phi(\zeta) - Q(\zeta)) = t_j^{(k)} \text{ for a.e. } \zeta \in \mathbb{T}, j \geq 0.$$
Why are these operators useful?

Theorem (AAK-Treil)

For \(\Phi \in L^\infty(\mathbb{M}_n) \),

\[
s_k(H_\Phi) = \text{dist}_{L^\infty(\mathbb{M}_n)}(\Phi, H^\infty_{(k)}(\mathbb{M}_n)) = \min \left\{ \text{ess sup}_{\zeta \in \mathbb{T}} s_0(\Phi(\zeta) - Q(\zeta)) : Q \in H^\infty_{(k)}(\mathbb{M}_n) \right\}.
\]

How about *uniqueness* of superoptimal approximant?

We say that \(\Phi \) is *k-admissible* if \(\|H_\Phi\|_e \) is less than the smallest non-zero superoptimal singular value of \(\Phi \) of degree \(k \).

Theorem (Peller-Young, Treil)

If \(\Phi \) is k-admissible and \(s_k(H_\Phi) < s_{k-1}(H_\Phi) \), then \(\Phi \) has a unique superoptimal meromorphic approximant in \(H^\infty_{(k)}(\mathbb{M}_n) \) and

\[
s_j(\Phi(\zeta) - Q(\zeta)) = t_j^{(k)} \text{ for a.e. } \zeta \in \mathbb{T}, j \geq 0.
\]
The Toeplitz operator with symbol $\Phi - Q$

Theorem

Suppose

1. Φ is k-admissible,
2. $s_k(H_{\Phi}) < s_{k-1}(H_{\Phi})$, and
3. Φ has n non-zero superoptimal singular values of degree k.

Then the Toeplitz operator $T_{\Phi - Q}$ is Fredholm and

$$\text{ind } T_{\Phi - Q} = \dim \ker T_{\Phi - Q}.$$

Alberto A. Condori

Meromorphic approximation
The Toeplitz operator with symbol $\Phi - Q$

Theorem

Suppose

1. Φ is k-admissible,
2. $s_k(H_\Phi) < s_{k-1}(H_\Phi)$, and
3. Φ has n non-zero superoptimal singular values of degree k.

Then the Toeplitz operator $T_{\Phi - Q}$ is Fredholm and

$$\text{ind } T_{\Phi - Q} = \dim \ker T_{\Phi - Q}.$$
The Toeplitz operator with symbol $\Phi - Q$

Theorem

Suppose

1. Φ is k-admissible,
2. $s_k(H_\Phi) < s_{k-1}(H_\Phi)$, and
3. Φ has n non-zero superoptimal singular values of degree k.

Then the Toeplitz operator $T_{\Phi - Q}$ is Fredholm and

$$\text{ind } T_{\Phi - Q} = \dim \ker T_{\Phi - Q}.$$
The Toeplitz operator with symbol $\Phi - Q$

Theorem

Suppose

1. Φ is k-admissible,
2. $s_k(H_\Phi) < s_{k-1}(H_\Phi)$, and
3. Φ has n non-zero superoptimal singular values of degree k.

Then the Toeplitz operator $T_{\Phi - Q}$ is Fredholm and

$$\text{ind } T_{\Phi - Q} = \dim \ker T_{\Phi - Q}.$$
Can we compute the index of \(T_{\Phi - Q} \)?

Question: \(\text{ind } T_{\Phi - Q} = 2k + \mu \)?

Let \(\Phi = \frac{1}{\sqrt{2}} \begin{pmatrix} \bar{z}^5 + \frac{1}{3} \bar{z} & -\frac{1}{3} \bar{z}^2 \\ \bar{z}^4 & \frac{1}{3} \bar{z} \end{pmatrix} \). Then

\[
\begin{align*}
s_0(H_\Phi) &= \frac{\sqrt{10}}{3}, \\
s_1(H_\Phi) &= s_2(H_\Phi) = s_3(H_\Phi) = 1, \\
s_4(H_\Phi) &= \frac{1}{\sqrt{2}}, \quad \text{and} \quad s_5(H_\Phi) = \frac{1}{3},
\end{align*}
\]

and so \(2k + \mu = 5 \), where \(\mu \) is the multiplicity of \(s_1(H_\Phi) \).

The superoptimal approximant of \(\Phi \) with at most 1 pole is

\[
Q = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{1}{3} \bar{z} & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}.
\]

However, \(\text{ind } T_{\Phi - Q} = \text{dim ker } T_{\Phi - Q} = 4 \) even though \(2k + \mu = 5 \)!
Can we compute the index of $T_{\Phi - Q}$?

Question: $\text{ind } T_{\Phi - Q} = 2k + \mu$?

Let $\Phi = \frac{1}{\sqrt{2}} \left(\begin{array}{cc} \bar{z}^5 + \frac{1}{3} \bar{z} & -\frac{1}{3} \bar{z}^2 \\ \bar{z}^4 & \frac{1}{3} \bar{z} \end{array} \right)$. Then

$$s_0(H_{\Phi}) = \frac{\sqrt{10}}{3}, \ s_1(H_{\Phi}) = s_2(H_{\Phi}) = s_3(H_{\Phi}) = 1,$$

$$s_4(H_{\Phi}) = \frac{1}{\sqrt{2}}, \ \text{and } s_5(H_{\Phi}) = \frac{1}{3},$$

and so $2k + \mu = 5$, where μ is the multiplicity of $s_1(H_{\Phi})$.

The superoptimal approximant of Φ with at most 1 pole is

$$Q = \frac{1}{\sqrt{2}} \left(\begin{array}{cc} \frac{1}{3} \bar{z} & 0 \\ 0 & 0 \end{array} \right).$$

However, $\text{ind } T_{\Phi - Q} = \dim \ker T_{\Phi - Q} = 4$ even though $2k + \mu = 5$!
Can we compute the index of $T_{\Phi - Q}$?

Question: $\text{ind } T_{\Phi - Q} = 2k + \mu$?

Let $\Phi = \frac{1}{\sqrt{2}} \left(\begin{array}{cc} \bar{z}^5 + \frac{1}{3}\bar{z} & -\frac{1}{3}\bar{z}^2 \\ \bar{z}^4 & \frac{1}{3}\bar{z} \end{array} \right)$. Then

$$s_0(H_\Phi) = \frac{\sqrt{10}}{3}, \quad s_1(H_\Phi) = s_2(H_\Phi) = s_3(H_\Phi) = 1,$$

$$s_4(H_\Phi) = \frac{1}{\sqrt{2}}, \quad \text{and } s_5(H_\Phi) = \frac{1}{3},$$

and so $2k + \mu = 5$, where μ is the multiplicity of $s_1(H_\Phi)$.

The superoptimal approximant of Φ with at most 1 pole is

$$Q = \frac{1}{\sqrt{2}} \left(\begin{array}{cc} \frac{1}{3}\bar{z} & 0 \\ 0 & 0 \end{array} \right).$$

However, $\text{ind } T_{\Phi - Q} = \dim \ker T_{\Phi - Q} = 4$ even though $2k + \mu = 5$!
Can we compute the index of $T_{\Phi - Q}$?

Question: $\text{ind } T_{\Phi - Q} = 2k + \mu$?

Let $\Phi = \frac{1}{\sqrt{2}} \left(\begin{array}{cc} \bar{z}^5 + \frac{1}{3} \bar{z} & -\frac{1}{3} \bar{z}^2 \\ \bar{z}^4 & \frac{1}{3} \bar{z} \end{array} \right)$. Then

$$s_0(H_\Phi) = \frac{\sqrt{10}}{3}, \ s_1(H_\Phi) = s_2(H_\Phi) = s_3(H_\Phi) = 1,$$

$$s_4(H_\Phi) = \frac{1}{\sqrt{2}}, \ \text{and } s_5(H_\Phi) = \frac{1}{3},$$

and so $2k + \mu = 5$, where μ is the multiplicity of $s_1(H_\Phi)$.

The superoptimal approximant of Φ with at most 1 pole is

$$Q = \frac{1}{\sqrt{2}} \left(\begin{array}{cc} \frac{1}{3} \bar{z} & \emptyset \\ \emptyset & \emptyset \end{array} \right).$$

However, $\text{ind } T_{\Phi - Q} = \dim \ker T_{\Phi - Q} = 4$ even though $2k + \mu = 5$!
Let B and Λ be Blaschke-Potapov products such that

$$\ker H_Q = BH^2(\mathbb{C}^n) \text{ and } \ker H_{Qt} = \Lambda H^2(\mathbb{C}^n).$$

Let

$$\mathcal{E} = \{ \xi \in \ker H_Q : \|H\Phi\xi\|_2 = \|(\Phi - Q)\xi\|_2 \}$$

and

$$U = \Lambda^t(\Phi - Q)B.$$

Theorem

If the number of superoptimal singular values of Φ of degree k equals n, then

1. $\mathcal{E} = B \ker T_U$
2. *the Toeplitz operator T_U is Fredholm and*
3. $\text{ind } T_U = \dim \ker T_U \geq n.$
A special subspace

Let B and Λ be Blaschke-Potapov products such that

$$\ker H_Q = BH^2(\mathbb{C}^n) \text{ and } \ker H_{Q^t} = \Lambda H^2(\mathbb{C}^n).$$

Let

$$E = \{ \xi \in \ker H_Q : \|H\phi\xi\|_2 = \| (\phi - Q)\xi \|_2 \}$$

and

$$U = \Lambda^t(\Phi - Q)B.$$

Theorem

If the number of superoptimal singular values of Φ of degree k equals n, then

1. $E = B \ker T_U$
2. the Toeplitz operator T_U is Fredholm and
3. $\text{ind } T_U = \dim \ker T_U \geq n$.

Alberto A. Condori
Meromorphic approximation
A special subspace

Let B and Λ be Blaschke-Potapov products such that

$$\ker H_Q = BH^2(\mathbb{C}^n) \quad \text{and} \quad \ker H_{Q^t} = \Lambda H^2(\mathbb{C}^n).$$

Let

$$E = \{ \xi \in \ker H_Q : \|H_\Phi \xi\|_2 = \|(\Phi - Q)\xi\|_2 \}$$

and

$$U = \Lambda^t(\Phi - Q)B.$$

Theorem

If the number of superoptimal singular values of Φ of degree k equals n, then

1. $E = B \ker T_U$
2. *the Toeplitz operator T_U is Fredholm and*
3. $\text{ind } T_U = \dim \ker T_U \geq n.$
A special subspace

Let B and Λ be Blaschke-Potapov products such that

$$\ker H_Q = BH^2(\mathbb{C}^n) \text{ and } \ker H_{Qt} = \Lambda H^2(\mathbb{C}^n).$$

Let

$$\mathcal{E} = \{ \xi \in \ker H_Q : \| H_\Phi \xi \|_2 = \| (\Phi - Q) \xi \|_2 \}$$

and

$$U = \Lambda^t (\Phi - Q) B.$$

Theorem

If the number of superoptimal singular values of Φ of degree k equals n, then

1. $\mathcal{E} = B \ker T_U$
2. the Toeplitz operator T_U is Fredholm and
3. $\text{ind } T_U = \dim \ker T_U \geq n.$
A special subspace

Let B and Λ be Blaschke-Potapov products such that

$$ \ker H_Q = BH^2(\mathbb{C}^n) \quad \text{and} \quad \ker H_{Q^t} = \Lambda H^2(\mathbb{C}^n). $$

Let

$$ \mathcal{E} = \{ \xi \in \ker H_Q : \|H\Phi\xi\|_2 = \|(\Phi - Q)\xi\|_2 \} $$

and

$$ U = \Lambda^t(\Phi - Q)B. $$

Theorem

If the number of superoptimal singular values of Φ of degree k equals n, then

1. $\mathcal{E} = B \ker T_U$
2. the Toeplitz operator T_U is Fredholm and
3. $\text{ind } T_U = \dim \ker T_U \geq n$.

Alberto A. Condori
Meromorphic approximation
Theorem

Let $\mathcal{E} = \{ \xi \in \ker H_Q : \| H_\Phi \xi \|_2 = \| (\Phi - Q) \xi \|_2 \}$. Then the Toeplitz operator $T_{\Phi - Q}$ is Fredholm and has index

$$\text{ind } T_{\Phi - Q} = 2k + \dim \mathcal{E}.$$

In particular, $\dim \ker T_{\Phi - Q} \geq 2k + n$.

Corollary

If all superoptimal singular values of degree k of Φ are equal, then

$$\text{ind } T_{\Phi - Q} = \dim \ker T_{\Phi - Q} = 2k + \mu$$

holds, where μ denotes the multiplicity of the singular value $s_k(H_\Phi)$.
The index formula

Theorem

Let \(\mathcal{E} = \{ \xi \in \text{ker } H_Q : \| H_{\Phi} \xi \|_2 = \| (\Phi - Q) \xi \|_2 \} \). Then the Toeplitz operator \(T_{\Phi - Q} \) is Fredholm and has index

\[
\text{ind } T_{\Phi - Q} = 2k + \text{dim } \mathcal{E}.
\]

In particular, \(\text{dim ker } T_{\Phi - Q} \geq 2k + n \).

Corollary

If all superoptimal singular values of degree \(k \) of \(\Phi \) are equal, then

\[
\text{ind } T_{\Phi - Q} = \text{dim ker } T_{\Phi - Q} = 2k + \mu
\]

holds, where \(\mu \) denotes the multiplicity of the singular value \(s_k(H_{\Phi}) \).
Open problem #1

Sharp estimates on the “degree” of Q:

Theorem (Peller-Vasyunin)

*If Φ is a rational function 2×2 with poles off \mathbb{T}, then “generically” the best analytic approximant Q to φ is a rational function and

$$\deg Q \leq \deg \Phi - 2 \quad \text{unless} \quad \Phi \in H^\infty(\mathbb{M}_2).$$

In general, one has

$$\deg Q \leq 2 \deg \Phi - 3$$

and this inequality is sharp!*

#1. What can be said for matrix-valued functions of arbitrary size?
Sharp estimates on the “degree” of Q:

Theorem (Peller-Vasyunin)

*If Φ is a rational function 2×2 with poles off \mathbb{T}, then “generically” the best analytic approximant Q to φ is a rational function and

\[
\deg Q \leq \deg \Phi - 2 \quad \text{unless } \Phi \in H^\infty(\mathbb{M}_2).
\]

In general, one has

\[
\deg Q \leq 2 \deg \Phi - 3
\]

and this inequality is sharp!

#1. What can be said for matrix-valued functions of arbitrary size?
Sharp estimates on the “degree” of Q:

Theorem (Peller-Vasyunin)

If Φ is a rational function 2×2 with poles off \mathbb{T}, then “generically” the best analytic approximant Q to φ is a rational function and

$$\deg Q \leq \deg \Phi - 2 \quad \text{unless } \Phi \in H^\infty(\mathbb{M}_2).$$

In general, one has

$$\deg Q \leq 2 \deg \Phi - 3$$

and this inequality is sharp!

#1. What can be said for matrix-valued functions of arbitrary size?
Sharp estimates on the “degree” of Q:

Theorem (Peller-Vasyunin)

If Φ is a rational function 2×2 with poles off \mathbb{T}, then “generically” the best analytic approximant Q to φ is a rational function and

$$\text{deg } Q \leq \text{deg } \Phi - 2 \quad \text{unless } \Phi \in H^\infty(\mathbb{M}_2).$$

In general, one has

$$\text{deg } Q \leq 2 \text{deg } \Phi - 3$$

and this inequality is sharp!

#1. What can be said for matrix-valued functions of arbitrary size?
Open problem #2 & # 3

#2. How can we verify that a matrix-valued function \(\Phi \in L^{\infty} \) has \(n \) non-zero superoptimal singular values?

#3. Find a characterization for the superoptimal approximant.

Thank you!
Open problem #2 & # 3

#2. How can we verify that a matrix-valued function $\Phi \in L^\infty$ has n non-zero superoptimal singular values?

#3. Find a characterization for the superoptimal approximant.

Thank you!
Open problem #2 & #3

#2. How can we verify that a matrix-valued function $\Phi \in L^\infty$ has n non-zero superoptimal singular values?

#3. Find a characterization for the superoptimal approximant.

Thank you!