Hermitian Weighted Composition Operators and Bergman Extremal Functions

Carl C. Cowen

IUPUI

(Indiana University Purdue University Indianapolis)

SEAM – University of Florida

March 18, 2011

Hermitian Weighted Composition Operators and Bergman Extremal Functions

Carl C. Cowen

IUPUI

(Indiana University Purdue University Indianapolis)

SEAM – University of Florida

March 18, 2011

Joint work with Gajath Gunatillake, Univ. Sharjah and with Eungil Ko, Ewha Women's University We consider Hilbert spaces of functions analytic on \mathbb{D} , the unit disk in \mathbb{C} .

For a weight sequence, $\beta(j) > 0$ with $\beta(0) = 1$, let

$$H^{2}(\beta) = \{f(z) = \sum_{0}^{\infty} a_{n} z^{n} : \sum_{0}^{\infty} |a_{n}|^{2} \beta(j)^{2} < \infty\}$$

For example, the usual Hardy Hilbert space is the case $\beta(j) \equiv 1$ which is also described as $H^2(\mathbb{D}) = \{f \text{ analytic in } \mathbb{D} : \sup_{0 < r < 1} \int_0^{2\pi} |f_r|^2 \frac{d\theta}{2\pi} < \infty \}.$

Also, for $\kappa > 1$, the standard weight Bergman spaces are

$$A_{\kappa-2}^2 = \{f \text{ analytic in } \mathbb{D} : \int_{\mathbb{D}} |f(z)|^2 (\kappa-1)(1-|z|^2)^{\kappa-2} \frac{dA}{\pi} < \infty \}$$

For example, the usual Bergman Hilbert space is the case $\kappa = 2$, which is $A^2(\mathbb{D}) = \{f \text{ analytic in } \mathbb{D} : \int_D |f(z)|^2 \frac{dA}{\pi} < \infty\}.$ If \mathcal{H} is a Hilbert space of analytic functions, for each α in the disk, the reproducing kernel function K_{α} satisfies $\langle f, K_{\alpha} \rangle = f(\alpha)$ for all f in \mathcal{H} .

In this talk, we will restrict attention to the weighted Hardy spaces $H^2(\beta_{\kappa})$ for which $\kappa \geq 1$ and the kernels are given by

$$K_{\alpha}(z) = (1 - \overline{\alpha}z)^{-\kappa}$$

This includes the usual Hardy ($\kappa = 1$) and Bergman ($\kappa = 2$) spaces and the standard weight Bergman spaces because $A^2_{\kappa-2}(\mathbb{D})$ and $H^2(\beta_{\kappa})$ consist of the same functions.

Let φ and ψ be analytic maps on \mathbb{D} such that $\varphi(\mathbb{D}) \subset \mathbb{D}$.

The composition operator C_{φ} is the operator on $H^2(\beta_{\kappa})$ given by

$$(C_{\varphi}f)(z) = f(\varphi(z))$$

for z in \mathbb{D} and the weighted composition operator $W_{\psi,\varphi}$ is the operator on $H^2(\beta_{\kappa})$ given by

$$(W_{\psi,\varphi}f)(z) = \psi(z)f(\varphi(z))$$

for z in \mathbb{D} .

Goal: relate the function-theoretic properties of φ and ψ to the operator-theoretic properties of $W_{\psi,\varphi}$

Further Goal: use results from the function–theoretic realm to enhance operator–theoretic understanding and vice versa Since $H^2(\beta_{\kappa})$ contains the constants,

if $W_{\psi,\varphi}$ is bounded, then $\psi = W_{\psi,\varphi}(1)$ is in $H^2(\beta_{\kappa})$. Clearly, if ψ is in $H^{\infty}(\mathbb{D})$, then for any φ mapping the unit disk into itself, $W_{\psi,\varphi}$ is bounded on $H^2(\beta_{\kappa})$ and

$$\|W_{\psi,\varphi}\| \le \|\psi\|_{\infty} \|C_{\varphi}\|$$

BUT, it is not necessary for ψ to be bounded for $W_{\psi,\varphi}$ to be bounded.

As usual, we have a simple formula for $W^*_{\psi,\varphi}$ acting on kernel functions:

$$\langle f, W_{\psi,\varphi}^* K_\alpha \rangle = \langle W_{\psi,\varphi} f, K_\alpha \rangle = \psi(\alpha) f(\varphi(\alpha)) = \langle f, \overline{\psi(\alpha)} K_{\varphi(\alpha)} \rangle$$

so $W^*_{\psi,\varphi}K_{\alpha} = \overline{\psi(\alpha)}K_{\varphi(\alpha)}$

For $\kappa \geq 1$, $W_{\psi,\varphi}$ is a bounded Hermitian weighted composition operator on $H^2(\beta_{\kappa})$, if and only if

$$\psi(z) = c(1 - \overline{a_0}z)^{-\kappa}$$
 and $\varphi(z) = a_0 + \frac{a_1z}{1 - \overline{a_0}z}$

where $c = \psi(0)$ and $a_1 = \varphi'(0)$ are real numbers

and a_1 and $a_0 = \varphi(0)$ are such that φ maps the unit disk into itself.

For $\kappa \geq 1$, $W_{\psi,\varphi}$ is a bounded Hermitian weighted composition operator on $H^2(\beta_{\kappa})$, if and only if

$$\psi(z) = c(1 - \overline{a_0}z)^{-\kappa}$$
 and $\varphi(z) = a_0 + \frac{a_1z}{1 - \overline{a_0}z}$

where $c = \psi(0)$ and $a_1 = \varphi'(0)$ are real numbers

and a_1 and $a_0 = \varphi(0)$ are such that φ maps the unit disk into itself.

Proposition. Let a_1 be real.

 $\varphi(z) = a_0 + a_1 z / (1 - \overline{a_0}z)$ maps the unit disk into itself if and only if

$$|a_0| < 1$$
 and $-1 + |a_0|^2 \le a_1 \le (1 - |a_0|)^2$

Proposition. Let a_1 be real.

 $\varphi(z) = a_0 + a_1 z / (1 - \overline{a_0} z)$ maps the unit disk into itself if and only if $|a_0| < 1$ and $-1 + |a_0|^2 \le a_1 \le (1 - |a_0|)^2$

The three cases,

$$a_1 = -1 + |a_0|^2$$
, $-1 + |a_0|^2 < a_1 < (1 - |a_0|)^2$, and $a_1 = (1 - |a_0|)^2$

are quite different from each other.

Cases 1 & 2:

If $|a_0| < 1$ and $a_1 < (1 - |a_0|)^2$, then φ has a fixed point in \mathbb{D} and the analysis and the spectral theory follow directly from consideration of the point spectra of these operators.

Case 3:

When $a_1 = (1 - |a_0|)^2$, $a_0 \neq 0$,

the map φ has a fixed point on the unit circle, (none in the disk),

but is not an automorphism of the disk, and $W_{\psi,\varphi}$ is not compact.

By normalizing, WLOG, we may assume $0 < a_0 < 1$.

Writing $t = a_0/(1 - a_0)$, each such $W_{\psi,\varphi}$ is a multiple of $A_t = W_{\psi_t,\varphi_t}$ where

$$\psi_t = (1 + t - tz)^{-\kappa}$$

and

$$\varphi_t = (t + (1-t)z)/(1+t-tz)$$

Then for $0 \le t < \infty$, A_t is a semigroup of Hermitian weighted composition operators. (And(!!) for Re t > 0, A_t is a semigroup of normal operators.)

For
$$\kappa \ge 1$$
 and $0 \le t < \infty$, let $A_t = W_{\psi_t,\varphi_t}$ where
 $\psi_t = (1+t-tz)^{-\kappa}$ and $\varphi_t = (t+(1-t)z)/(1+t-tz)$

The A_t form a strongly continuous semigroup of Hermitian weighted composition operators on $H^2(\beta_{\kappa})$. If Δ is the infinitesimal generator of this semigroup, $\mathcal{D}_A = \{f \in H^2(\beta_{\kappa}) : (z-1)^2 f' \in H^2(\beta_{\kappa})\}$ is the domain of Δ and $\Delta(f)(z) = (z-1)^2 f'(z) + \kappa(z-1)f(z)$ for f in \mathcal{D}_A .

For
$$\kappa \geq 1$$
 and $0 \leq t < \infty$, let $A_t = W_{\psi_t,\varphi_t}$ where
 $\psi_t = (1 + t - tz)^{-\kappa}$ and $\varphi_t = (t + (1 - t)z)/(1 + t - tz)$
The A_t form a strongly continuous semigroup of Hermitian weighted
composition operators on $H^2(\beta_{\kappa})$. If Δ is the infinitesimal generator of
this semigroup, $\mathcal{D}_A = \{f \in H^2(\beta_{\kappa}) : (z - 1)^2 f' \in H^2(\beta_{\kappa})\}$ is the domain

of
$$\Delta$$
 and $\Delta(f)(z) = (z-1)^2 f'(z) + \kappa(z-1)f(z)$ for f in \mathcal{D}_A .

Corollary.

For $\kappa \geq 1$ and for t > 0, the operator A_t on $H^2(\beta_{\kappa})$ has no eigenvalues.

Proof: There are no non-zero functions in $H^2(\beta_{\kappa})$ that satisfy

$$(z-1)^2 f' + \kappa (z-1)f = \lambda f(z)$$

For
$$\kappa \ge 1$$
 and $0 \le t < \infty$, let $A_t = W_{\psi_t,\varphi_t}$ where
 $\psi_t = (1+t-tz)^{-\kappa}$ and $\varphi_t = (t+(1-t)z)/(1+t-tz)$

For each t, the operator A_t is a cyclic Hermitian weighted composition operator on $H^2(\beta_{\kappa})$. Indeed, the vector 1 is a cyclic vector for A_t .

If μ is the absolutely continuous probability measure given by

$$d\mu = \frac{(\ln(1/x))^{\kappa-1}}{\Gamma(\kappa)} dx$$

the operator U given by $U(\psi_t) = x^t$ for $0 \le t < \infty$, is a unitary map of $H^2(\beta_{\kappa})$ onto $L^2([0,1],\mu)$ and satisfies $UA_t = M_{x^t}U$.

In particular, for each t > 0, these operators satisfy $||A_t|| = 1$ and have spectrum $\sigma(A_t) = [0, 1]$. We define subspaces H_c of $H^2(\beta_{\kappa}) = A_{\kappa-2}^2$ as follows:

Let
$$H_0 = H^2(\beta_{\kappa})$$
. For $c < 0$, define the subspace H_c by
 $H_c = \text{closure } \{e^{c\frac{1+z}{1-z}}f : f \in H^2(\beta_{\kappa})\}$

For $0 \leq t$ and $c \leq 0$, the subspace H_c is invariant for A_t .

We define subspaces H_c of $H^2(\beta_{\kappa}) = A_{\kappa-2}^2$ as follows:

Let
$$H_0 = H^2(\beta_{\kappa})$$
. For $c < 0$, define the subspace H_c by
 $H_c = \text{closure } \{e^{c\frac{1+z}{1-z}}f : f \in H^2(\beta_{\kappa})\}$

For $0 \leq t$ and $c \leq 0$, the subspace H_c is invariant for A_t .

For
$$0 \le \delta \le 1$$
 define the subspace L_{δ} of $L^2([0,1],\mu)$ by
 $L_{\delta} = \{f \in L^2([0,1],\mu) : f(x) = 0 \text{ for } \delta < x \le 1\}$

These are spectral subspaces of the multiplication operators M_{x^t}

We define subspaces H_c of $H^2(\beta_{\kappa}) = A_{\kappa-2}^2$ as follows:

Let
$$H_0 = H^2(\beta_{\kappa})$$
. For $c < 0$, define the subspace H_c by
 $H_c = \text{closure } \{e^{c\frac{1+z}{1-z}}f : f \in H^2(\beta_{\kappa})\}$

For $0 \leq t$ and $c \leq 0$, the subspace H_c is invariant for A_t .

For
$$0 \le \delta \le 1$$
 define the subspace L_{δ} of $L^2([0, 1], \mu)$ by
 $L_{\delta} = \{f \in L^2([0, 1], \mu) : f(x) = 0 \text{ for } \delta < x \le 1\}$

These are spectral subspaces of the multiplication operators M_{x^t}

Theorem.

If U gives unitary equivalence from A_t on $H^2(\beta_{\kappa})$ to M_{x^t} on $L^2([0, 1], \mu)$, then $U^*L_{\delta} = H_{(\ln \delta)/2}$ or equivalently $UH_c = L_{e^{2c}}$ Suppose N is a subspace of $H^2(\beta_{\kappa})$ that is invariant for the operator of multiplication by z.

If there is f in N with $f(0) \neq 0$ and G is a function of N so that

$$||G|| = 1$$
 and $G(0) = \sup\{\operatorname{Re} f(0) : f \in N \text{ and } ||f|| = 1\}$

then we say G solves the extremal problem for the invariant subspace N.

Suppose N is a subspace of $H^2(\beta_{\kappa})$ that is invariant for the operator of multiplication by z.

If there is f in N with $f(0) \neq 0$ and G is a function of N so that $\|G\| = 1$ and $G(0) = \sup\{\operatorname{Re} f(0) : f \in N \text{ and } \|f\| = 1\}$

then we say G solves the extremal problem for the invariant subspace N.

Subspaces H_c are spectral subspaces for A_t , but more interestingly, they are invariant subspaces for M_z on $H^2(\beta_{\kappa})$ generated by atomic inner functions!

The unitary equivalence between the subspaces H_c in $H^2(\beta_{\kappa})$ and L_{δ} in $L^2([0,1],\mu)$ gives an opportunity to compute the extremal functions for L_{δ} and translate the answer back to H_c !!

Our computation requires the use of the *incomplete Gamma function*

$$\Gamma(a,w) = \int_w^\infty t^{a-1} e^{-t} \, dt$$

where a is a complex parameter and w is a real parameter. An alternate

definition in which both a and w are complex parameters is

$$\Gamma(a, w) = e^{-w} w^a \int_0^\infty e^{-wu} (1+u)^{a-1} \, du$$

Theorem.

For c < 0, if H_c is the invariant subspace of $H^2(\beta_{\kappa})$ defined by $H_c = \operatorname{closure} \{ e^{c\frac{1+z}{1-z}} f : f \in H^2(\beta_{\kappa}) \}$

then the extremal function for H_c is

$$G_c(z) = \frac{\Gamma(\kappa, -2c/(1-z))}{\sqrt{\Gamma(\kappa)}\sqrt{\Gamma(\kappa, -2c)}}$$

For 0 < r < 1, let P_r be the orthogonal projection onto the subspace $H_{(\ln r)/2}$ in $H^2(\beta_{\kappa})$. If u is any point of the open unit disk, then for $K_u(z) = (1 - \overline{u}z)^{-\kappa}$ $(P_r K_u)(z) = \frac{1}{\Gamma(\kappa)(1 - \overline{u}z)^{\kappa}} \Gamma\left(\kappa, -\frac{(\ln r)(1 - \overline{u}z)}{(1 - \overline{u})(1 - z)}\right)$

This gives the kernel functions for the invariant subspaces H_c in $H^2(\beta_{\kappa})$, including for the usual Bergman space ($\kappa = 2$). This result generalizes the formula for the usual Bergman space computed in a different way by W. Yang in his thesis. http://www.math.iupui.edu/~ccowen/Downloads.html