TOEPLITZ OPERATORS ON BERGMAN SPACES OF POLYANALYTIC FUNCTIONS

Željko Čučković and Trieu Le

$$
\text { Let } \mathbb{D}=\{z \in \mathbb{C}|\quad| z \mid<1\} .
$$

For $n \geq 1$, a function h is called n-analytic (or polyanalytic of order n) on \mathbb{D} if it satisfies the generalized Cauchy-Riemann equation

$$
\frac{\partial^{n} h}{\partial \bar{z}^{n}}=0 \text { on } \mathbb{D} .
$$

It is clear that h is n-analytic if and only if there are analytic functions h_{0}, \ldots, h_{n-1} on \mathbb{D} such that

$$
\begin{aligned}
& h(z)=h_{0}(z)+h_{1}(z) \bar{z}+\cdots+h_{n-1}(z) \bar{z}^{n-1} \\
& \text { for all } z \in \mathbb{D}
\end{aligned}
$$

Let $d A$ denote the normalized Lebesgue area measure on \mathbb{D}. The n-analytic Bergman space $A_{n}^{2}(\mathbb{D})$ consists of all n-analytic functions which also satisfy
$\|h\|=\langle h, h\rangle^{1 / 2}=\left(\int_{\mathbb{D}}|h(z)|^{2} d A(z)\right)^{1 / 2}<\infty$.
The space A_{1}^{2} is the familiar Bergman space of the unit disk.

The functional $h \mapsto h(z)$ is bounded on $A_{n}^{2}(\mathbb{D})$ for any $z \in \mathbb{D}$. Therefore there is a function K_{z} in $A_{n}^{2}(\mathbb{D})$ such that $h(z)=\left\langle h, K_{z}\right\rangle$ for all $h \in A_{n}^{2}(\mathbb{D})$ and $z \in \mathbb{D}$. The function $K_{z}(w)$ is called the kernel function for $A_{n}^{2}(\mathbb{D})$.

One of the first studies of $A_{n}^{2}(\mathbb{D})$ appeared in a paper by Koselev in 1977.

He discovered

$$
\begin{aligned}
K_{z}(w) & \left.=\frac{n}{(1-w \bar{z})^{2 n}} \sum_{j=0}^{n-1}(-1)^{j}{ }^{(} \begin{array}{c}
n \\
j+1
\end{array}\right)\binom{n+j}{n}\left|1-w \overline{\left.\right|^{2(n-1-j)} \mid} w-z\right|^{2 j} \\
& =\frac{n|1-w \bar{z}|^{2(n-1)}}{(1-w \bar{z})^{2 n}} \sum_{j=0}^{n-1}(-1)^{j}\binom{n}{j+1}\binom{n+j}{n}\left|\varphi_{z}(w)\right|^{2 j} .
\end{aligned}
$$

Then $\left\|K_{z}\right\|=n /\left(1-|z|^{2}\right)$.
The normalized reproducing kernel at z is defined by

$$
\left.k_{z}(w)=\frac{\left(1-|z|^{2}\right)|1-w \bar{z}|^{(n-1)}}{(1-w \bar{z})^{2 n}} \sum_{j=0}^{n-1}(-1)^{j}{ }^{i}\binom{n}{j+1}\binom{n+j}{n} \right\rvert\, \varphi_{z}(w)^{2 j} .
$$

Since $A_{n}^{2}(\mathbb{D})$ is a closed subspace of $L^{2}(\mathbb{D}, d A)$, there exists the orthogonal projection $P: L^{2}(\mathbb{D}, d A) \rightarrow A_{n}^{2}(\mathbb{D})$. For $f \in L^{\infty}(\mathbb{D})$ we define the Toeplitz operator $T_{f}: A_{n}^{2}(\mathbb{D}) \rightarrow$ $A_{n}^{2}(\mathbb{D})$ by

$$
T_{f} h=P(f h), h \in A_{n}^{2}(\mathbb{D})
$$

We can express T_{f} as an integral operator

$$
T_{f} h(z)=\int_{\mathbb{D}} f(w) h(w) \overline{K_{z}(w)} d A(w)
$$

for all $h \in A_{n}^{2}(\mathbb{D})$.

This formula can be used to define T_{f} for $f \in L^{1}(\mathbb{D})$ as a densely defined operator.

Let Δ denote the Laplacian and let $\tilde{\Delta}$ denote the invariant Laplacian. Then $(\tilde{\Delta} u)(z)=$ $\left(1-|z|^{2}\right)^{2}(\Delta u)(z)$ for any twice differentiable function u on \mathbb{D}.

For any real number $\alpha \geq 0$, the weighted Berezin transform B_{α} is defined by

$$
B_{\alpha} u(z)=(\alpha+1) \int_{\mathbb{D}} u\left(\varphi_{z}(w)\right)\left(1-|w|^{2}\right)^{\alpha} d A(w)
$$

for u in $L^{1}(\mathbb{D})$ and z in \mathbb{D}. Note that B_{0} is just the standard unweighted Berezin transform.

Theorem A (Ahern-Flores-Rudin). If $u \in$ $L^{1}(\mathbb{D})$, then

$$
\tilde{\Delta}\left(B_{\alpha} u\right)=4(\alpha+1)(\alpha+2)\left(B_{\alpha} u-B_{\alpha+1} u\right) .
$$

This shows that for such u,

$$
B_{\alpha+1} u=\left(1-\frac{\tilde{\Delta}}{4(\alpha+1)(\alpha+2)}\right) B_{\alpha} u .
$$

Theorem A implies that for any integer $k \geq$ 1 , we have $B_{k} u=q_{k}(\tilde{\Delta})\left(B_{0} u\right)$ for $u \in L^{1}(\mathbb{D})$, where $q_{k}(\lambda)=\prod_{j=1}^{k}\left(1-\frac{\lambda}{4 j(j+1)}\right)$.

We now define the Berezin transform of a bounded operator T on $A_{n}^{2}(\mathbb{D})$ as

$$
B(T)(z)=\left\langle T k_{z}, k_{z}\right\rangle \text { for } z \in \mathbb{D} .
$$

For $f \in L^{1}(\mathbb{D})$ we define the Berezin transform $B f(z)$ by

$$
\begin{aligned}
B f(z)= & \int_{\mathbb{D}} f(w)\left|k_{z}(w)\right|^{2} d A(w) \\
= & \int_{\mathbb{D}} f(w) \frac{\left(1-|z|^{2}\right)^{2}}{|1-w \bar{z}|^{4}}\left\{\sum_{j=0}^{n-1}(-1)^{j} \times\right. \\
& \left.\binom{n}{j+1}\binom{n+j}{n}\left|\varphi_{z}(w)\right|^{2 j}\right\}^{2} d A(w) .
\end{aligned}
$$

Theorem 1. Let $f \in L^{1}(\mathbb{D})$ be a nonnegative function. Then T_{f} is compact on $A_{n}^{2}(\mathbb{D})$ if and only if $B f(z) \rightarrow 0$ as $|z| \uparrow 1$.

For the usual Bergman space $A_{1}^{2}(\mathbb{D})$, Axler and Zheng showed that for $f \in L^{\infty}(\mathbb{D}), T_{f}$ is compact if and only if $B_{0} f(z) \rightarrow 0$ as $|z| \rightarrow 1$. Their proof faces many difficulties on $A_{n}^{2}(\mathbb{D})$.

For two non-zero functions x and y in $A_{n}^{2}(\mathbb{D})$, the rank-one operator $x \otimes y$ is defined by $(x \otimes y)(f)=\langle f, y\rangle x$ for $f \in A_{n}^{2}(\mathbb{D})$. For z in \mathbb{D}, we have

$$
B(x \otimes y)(z)=\frac{\left(1-|z|^{2}\right)^{2}}{n^{2}} x(z) \bar{y}(z)
$$

The Berezin transform is injective on the space of bounded linear operators on $A_{1}^{2}(\mathbb{D})$.

It turns out that this is not the case on $A_{n}^{2}(\mathbb{D})$ when $n \geq 2$. In fact, if $f(z)=z$, then f and \bar{f} belong to $A_{n}^{2}(\mathbb{D})$ and $B(f \otimes 1)=$ $B(1 \otimes \bar{f})$ but it is clear that $f \otimes 1 \neq 1 \otimes \bar{f}$.

Recall that for $f \in L^{1}$ and $z \in \mathbb{D}$, the formula for $B f(z)$ has the form

$$
\begin{aligned}
B f(z) & \left.=\int_{\mathbb{D}} f(w) \frac{\left(1-|z|^{2}\right)^{2}}{|1-w \bar{z}|^{2}}\left\{\sum_{j=0}^{n-1}(-1)^{i}{ }^{n} \begin{array}{c}
n \\
j+1
\end{array}\right)\binom{n+j}{n}\left|\varphi_{z}(w)\right|^{2 j}\right\}^{2} d A(w) \\
& \left.=\int_{\mathbb{D}} f\left(\varphi_{z}(\zeta)\right)\left\{\sum_{j=0}^{n-1}(-1)^{i}{ }^{(} \begin{array}{c}
n \\
j+1
\end{array}\right)\binom{n+j}{n}|\zeta|^{2 j}\right\}^{2} d A(\zeta),
\end{aligned}
$$

by the change of variable $w=\varphi_{z}(\zeta)$. Let μ be the polynomial of degree $2 n-2$ defined by

$$
\mu(t)=\left\{\sum_{j=0}^{n-1}(-1)^{j}\binom{n}{j+1}\binom{n+j}{n} t^{j}\right\}^{2} .
$$

Rewriting $\mu(t)=b_{0}+b_{1}(1-t)+\cdots+b_{2 n-2}(1-$ $t)^{2 n-2}$ we see that $B f$ can be written as

$$
\begin{aligned}
B f & =b_{0} B_{0}(f)+\frac{b_{1}}{2} B_{1}(f)+\cdots+\frac{b_{2 n-2}}{2 n-1} B_{2 n-2}(f) \\
& =b_{0} B_{0}(f)+\frac{b_{1}}{2} q_{1}(\tilde{\Delta}) B_{0}(f)+\cdots+\frac{b_{2 n-2}}{2 n-1} q_{2 n-2}(\tilde{\Delta}) B_{0}(f) \\
& =Q(\tilde{\Delta}) B_{0}(f),
\end{aligned}
$$

where $Q(t)=b_{0}+\frac{b_{1}}{2} q_{1}(t)+\cdots+\frac{b_{2 n-2}}{2 n-1} q_{2 n-2}(t)$ and $q_{k}(t)=\prod_{j=1}^{k}\left(1-\frac{t}{4 j(j+1)}\right)$ for $1 \leq k \leq$ $2 n-2$.

The formula $B f=Q(\tilde{\Delta}) B_{0} f$ implies that in order to understand B, we need to understand $Q(\widetilde{\Delta})$ and B_{0}.

For any complex number λ, let X_{λ} denote the linear space of all twice differentiable functions u on \mathbb{D} such that $\tilde{\Delta} u=\lambda u$.

A theorem by Ahern, Flores and Rudin shows that $X_{\lambda} \cap L^{\infty}(\mathbb{D}) \neq \emptyset$ if and only if λ belongs to the set

$$
\Omega_{\infty}=\left\{\lambda \in \mathbb{C}: 4 \operatorname{Re} \lambda+(\operatorname{Im} \lambda)^{2} \leq 0\right\}
$$

This shows that if $u \in C^{2}(\mathbb{D}) \cap L^{\infty}(\mathbb{D}), \lambda \notin$ Ω_{∞} and $\tilde{\Delta} u=\lambda u$, then $u=0$. As a consequence, we obtain

Lemma 2. Let q be a polynomial of degree $s \geq 0$ whose roots lie outside Ω_{∞}. Suppose u is a function which is $2 s$ times continuously differentiable on \mathbb{D} such that $q(\tilde{\Delta}) u=$ 0 and $(\tilde{\triangle})^{j} u$ is bounded for all $1 \leq j \leq s$. Then $u=0$.

We now need to study the locations of the roots of the polynomial $Q(t)$. Because of the complexity of Q, we have not fully understood the locations of its roots for all $n \geq 2$.

With the help of Maple, we are able to show that for $2 \leq n \leq 25$, all roots of Q lie outside Ω_{∞}. When $n=2$, we have

$$
\mu(t)=(2-3 t)^{2}=1-6(1-t)+9(1-t)^{2}
$$

and hence

$$
Q(t)=1-3 q_{1}(t)+3 q_{2}(t)=1-\frac{t}{8}+\frac{t^{2}}{64} .
$$

Since the roots of Q are $t=4 \pm 4 \sqrt{-3}$, they lie outside Ω_{∞}.

The following theorem is a generalization of Ahern's Theorem on the range of Berezin transform.

Theorem B (Rao). Suppose u is a bounded function on \mathbb{D} such that

$$
B_{0}(u)=f_{1} \bar{g}_{1}+\cdots+f_{m} \bar{g}_{m}
$$

for some positive integer m, where f_{1}, \ldots, f_{m} and g_{1}, \ldots, g_{m} are analytic on \mathbb{D}. Then u is harmonic and we have $u=f_{1} \bar{g}_{1}+\cdots+f_{m} \bar{g}_{m}$.

We use Lemma 2 and Theorem B to prove the following results for the case $n \leq 25$.

Proposition 3. If u and v are bounded harmonic functions on \mathbb{D} such that $T_{u} T_{v}$ is of finite rank, then either u or v is the zero function.

Proposition 4. If u and v are non-constant bounded harmonic functions on \mathbb{D} such that $\left[T_{u}, T_{v}\right]=T_{u} T_{v}-T_{v} T_{u}$ is of finite rank, then either both u and v are analytic, or both \bar{u} and \bar{v} are analytic, or $u=\alpha v+\beta$ for some complex numbers α and β.

Proposition 5. If u and v are bounded harmonic functions on \mathbb{D} such that the semicommutator $\left[T_{u}, T_{v}\right)=T_{u} T_{v}-T_{u v}$ is of finite rank, then either \bar{u} or v is analytic.

Question 1. Is it true that all roots of Q lie outside Ω_{∞} for all $n \geq 2$?

Question 2. Let f be bounded on \mathbb{D}. If $B\left(T_{f}\right)(z) \rightarrow 0$ as $|z| \uparrow 1$, does it follow that T_{f} is compact on $A_{n}^{2}(\mathbb{D})$ for $n \geq 2$?

