Noncommutative Analogues of the Fejér-Riesz Theorem

Michael Dritschel

25 April 2011

Background

- Every nonnegative polynomial $q: \mathbb{R} \rightarrow \mathbb{R}$ is a sum of squares of polynomials.

Background

- Every nonnegative polynomial $q: \mathbb{R} \rightarrow \mathbb{R}$ is a sum of squares of polynomials.
- What about polynomials in more than one variable?

Background

- Every nonnegative polynomial $q: \mathbb{R} \rightarrow \mathbb{R}$ is a sum of squares of polynomials.
- What about polynomials in more than one variable?
- Motzkin's polynomial

$$
g\left(x_{1}, x_{2}\right)=x_{1}^{4} x_{2}^{2}+x_{1}^{2} x_{2}^{4}-x_{1}^{2} x_{2}^{2}+1
$$

is strictly positive, yet cannot be written as a sum of squares of polynomials.

Background

- Every nonnegative polynomial $q: \mathbb{R} \rightarrow \mathbb{R}$ is a sum of squares of polynomials.
- What about polynomials in more than one variable?
- Motzkin's polynomial

$$
g\left(x_{1}, x_{2}\right)=x_{1}^{4} x_{2}^{2}+x_{1}^{2} x_{2}^{4}-x_{1}^{2} x_{2}^{2}+1
$$

is strictly positive, yet cannot be written as a sum of squares of polynomials.

- Though he didn't have a concrete example, Hilbert realised this long ago.

Background

- Every nonnegative polynomial $q: \mathbb{R} \rightarrow \mathbb{R}$ is a sum of squares of polynomials.
- What about polynomials in more than one variable?
- Motzkin's polynomial

$$
g\left(x_{1}, x_{2}\right)=x_{1}^{4} x_{2}^{2}+x_{1}^{2} x_{2}^{4}-x_{1}^{2} x_{2}^{2}+1
$$

is strictly positive, yet cannot be written as a sum of squares of polynomials.

- Though he didn't have a concrete example, Hilbert realised this long ago.
- Hilbert's 17 th problem: Is every nonnegative polynomial $q: \mathbb{R}^{d} \rightarrow \mathbb{R}$ a sum of squares of rational functions?

Background

- Every nonnegative polynomial $q: \mathbb{R} \rightarrow \mathbb{R}$ is a sum of squares of polynomials.
- What about polynomials in more than one variable?
- Motzkin's polynomial

$$
g\left(x_{1}, x_{2}\right)=x_{1}^{4} x_{2}^{2}+x_{1}^{2} x_{2}^{4}-x_{1}^{2} x_{2}^{2}+1
$$

is strictly positive, yet cannot be written as a sum of squares of polynomials.

- Though he didn't have a concrete example, Hilbert realised this long ago.
- Hilbert's 17 th problem: Is every nonnegative polynomial $q: \mathbb{R}^{d} \rightarrow \mathbb{R}$ a sum of squares of rational functions?
- Yes (Artin 1927).

Some definitions

Let A be a unital commutative ring.

- $T \subset A$ is a prepositive cone if $T+T \subseteq T, T \cdot T \subseteq T, A^{2} \subseteq T,-1 \notin T$.

Some definitions

Let A be a unital commutative ring.

- $T \subset A$ is a prepositive cone if $T+T \subseteq T, T \cdot T \subseteq T, A^{2} \subseteq T,-1 \notin T$.
- Support: $\operatorname{supp} T=T \cap-T$.

Some definitions

Let A be a unital commutative ring.

- $T \subset A$ is a prepositive cone if $T+T \subseteq T, T \cdot T \subseteq T, A^{2} \subseteq T,-1 \notin T$.
- Support: $\operatorname{supp} T=T \cap-T$.
- T is a positive cone if it is prepositive, $T \cup-T=A$ and $\operatorname{supp} T$ is a prime ideal.

Some definitions

Let A be a unital commutative ring.

- $T \subset A$ is a prepositive cone if $T+T \subseteq T, T \cdot T \subseteq T, A^{2} \subseteq T,-1 \notin T$.
- Support: $\operatorname{supp} T=T \cap-T$.
- T is a positive cone if it is prepositive, $T \cup-T=A$ and $\operatorname{supp} T$ is a prime ideal.
- Theorem: Every prepositive cone is contained in a positive cone.

Some definitions

Let A be a unital commutative ring.

- $T \subset A$ is a prepositive cone if $T+T \subseteq T, T \cdot T \subseteq T, A^{2} \subseteq T,-1 \notin T$.
- Support: $\operatorname{supp} T=T \cap-T$.
- T is a positive cone if it is prepositive, $T \cup-T=A$ and $\operatorname{supp} T$ is a prime ideal.
- Theorem: Every prepositive cone is contained in a positive cone.
- Real spectrum: sper A is the set of all positive cones in A.

Some definitions

Let A be a unital commutative ring.

- $T \subset A$ is a prepositive cone if $T+T \subseteq T, T \cdot T \subseteq T, A^{2} \subseteq T,-1 \notin T$.
- Support: $\operatorname{supp} T=T \cap-T$.
- T is a positive cone if it is prepositive, $T \cup-T=A$ and $\operatorname{supp} T$ is a prime ideal.
- Theorem: Every prepositive cone is contained in a positive cone.
- Real spectrum: sper A is the set of all positive cones in A.
- If $h \in A, P \in \operatorname{sper} A$ we write $h(P) \geq 0$ to mean $h \in P$, and $h(P)>0$ to mean $h \geq 0$ and $h \notin \operatorname{supp} P$.

Some definitions

Let A be a unital commutative ring.

- $T \subset A$ is a prepositive cone if $T+T \subseteq T, T \cdot T \subseteq T, A^{2} \subseteq T,-1 \notin T$.
- Support: $\operatorname{supp} T=T \cap-T$.
- T is a positive cone if it is prepositive, $T \cup-T=A$ and $\operatorname{supp} T$ is a prime ideal.
- Theorem: Every prepositive cone is contained in a positive cone.
- Real spectrum: sper A is the set of all positive cones in A.
- If $h \in A, P \in \operatorname{sper} A$ we write $h(P) \geq 0$ to mean $h \in P$, and $h(P)>0$ to mean $h \geq 0$ and $h \notin \operatorname{supp} P$.
- Let $H \subset A . W(H):=\{P \in \operatorname{sper} A: \forall h \in H, h(P) \geq 0\}$ (an "abstract" basic semialgebraic set).

Some definitions

Let A be a unital commutative ring.

- $T \subset A$ is a prepositive cone if $T+T \subseteq T, T \cdot T \subseteq T, A^{2} \subseteq T,-1 \notin T$.
- Support: $\operatorname{supp} T=T \cap-T$.
- T is a positive cone if it is prepositive, $T \cup-T=A$ and $\operatorname{supp} T$ is a prime ideal.
- Theorem: Every prepositive cone is contained in a positive cone.
- Real spectrum: sper A is the set of all positive cones in A.
- If $h \in A, P \in \operatorname{sper} A$ we write $h(P) \geq 0$ to mean $h \in P$, and $h(P)>0$ to mean $h \geq 0$ and $h \notin \operatorname{supp} P$.
- Let $H \subset A . W(H):=\{P \in \operatorname{sper} A: \forall h \in H, h(P) \geq 0\}$ (an "abstract" basic semialgebraic set). (For example, take $H=\{1\}$. Then $W(H)=\operatorname{sper} A$.)

Some definitions

Let A be a unital commutative ring.

- $T \subset A$ is a prepositive cone if $T+T \subseteq T, T \cdot T \subseteq T, A^{2} \subseteq T,-1 \notin T$.
- Support: $\operatorname{supp} T=T \cap-T$.
- T is a positive cone if it is prepositive, $T \cup-T=A$ and $\operatorname{supp} T$ is a prime ideal.
- Theorem: Every prepositive cone is contained in a positive cone.
- Real spectrum: sper A is the set of all positive cones in A.
- If $h \in A, P \in \operatorname{sper} A$ we write $h(P) \geq 0$ to mean $h \in P$, and $h(P)>0$ to mean $h \geq 0$ and $h \notin \operatorname{supp} P$.
- Let $H \subset A . W(H):=\{P \in \operatorname{sper} A: \forall h \in H, h(P) \geq 0\}$ (an "abstract" basic semialgebraic set). (For example, take $H=\{1\}$. Then $W(H)=$ sper A.)
- Preordering: $T(H)=\sum_{h \in \prod_{H}} h \sum A^{2}$.

Some definitions

Let A be a unital commutative ring.

- $T \subset A$ is a prepositive cone if $T+T \subseteq T, T \cdot T \subseteq T, A^{2} \subseteq T,-1 \notin T$.
- Support: $\operatorname{supp} T=T \cap-T$.
- T is a positive cone if it is prepositive, $T \cup-T=A$ and $\operatorname{supp} T$ is a prime ideal.
- Theorem: Every prepositive cone is contained in a positive cone.
- Real spectrum: sper A is the set of all positive cones in A.
- If $h \in A, P \in \operatorname{sper} A$ we write $h(P) \geq 0$ to mean $h \in P$, and $h(P)>0$ to mean $h \geq 0$ and $h \notin \operatorname{supp} P$.
- Let $H \subset A . W(H):=\{P \in \operatorname{sper} A: \forall h \in H, h(P) \geq 0\}$ (an "abstract" basic semialgebraic set). (For example, take $H=\{1\}$. Then $W(H)=$ sper A.)
- Preordering: $T(H)=\sum_{h \in \prod_{H}} h \sum A^{2}$.
- Quadratic module: $Q(H)=\sum_{h \in H} h \sum A^{2}$. (Assume $1 \in H$.)

Some definitions

Let A be a unital commutative ring.

- $T \subset A$ is a prepositive cone if $T+T \subseteq T, T \cdot T \subseteq T, A^{2} \subseteq T,-1 \notin T$.
- Support: $\operatorname{supp} T=T \cap-T$.
- T is a positive cone if it is prepositive, $T \cup-T=A$ and $\operatorname{supp} T$ is a prime ideal.
- Theorem: Every prepositive cone is contained in a positive cone.
- Real spectrum: sper A is the set of all positive cones in A.
- If $h \in A, P \in \operatorname{sper} A$ we write $h(P) \geq 0$ to mean $h \in P$, and $h(P)>0$ to mean $h \geq 0$ and $h \notin \operatorname{supp} P$.
- Let $H \subset A . W(H):=\{P \in \operatorname{sper} A: \forall h \in H, h(P) \geq 0\}$ (an "abstract" basic semialgebraic set). (For example, take $H=\{1\}$. Then $W(H)=$ sper A.)
- Preordering: $T(H)=\sum_{h \in \prod_{H}} h \sum A^{2}$.
- Quadratic module: $Q(H)=\sum_{h \in H} h \sum A^{2}$. (Assume $1 \in H$.)
- $T(H), Q(H)$ are prepositive cones iff they do not contain -1 .

Some definitions

Let A be a unital commutative ring.

- $T \subset A$ is a prepositive cone if $T+T \subseteq T, T \cdot T \subseteq T, A^{2} \subseteq T,-1 \notin T$.
- Support: $\operatorname{supp} T=T \cap-T$.
- T is a positive cone if it is prepositive, $T \cup-T=A$ and $\operatorname{supp} T$ is a prime ideal.
- Theorem: Every prepositive cone is contained in a positive cone.
- Real spectrum: sper A is the set of all positive cones in A.
- If $h \in A, P \in \operatorname{sper} A$ we write $h(P) \geq 0$ to mean $h \in P$, and $h(P)>0$ to mean $h \geq 0$ and $h \notin \operatorname{supp} P$.
- Let $H \subset A . W(H):=\{P \in \operatorname{sper} A: \forall h \in H, h(P) \geq 0\}$ (an "abstract" basic semialgebraic set). (For example, take $H=\{1\}$. Then $W(H)=$ sper A.)
- Preordering: $T(H)=\sum_{h \in \prod_{H}} h \sum A^{2}$.
- Quadratic module: $Q(H)=\sum_{h \in H} h \sum A^{2}$. (Assume $1 \in H$.)
- $T(H), Q(H)$ are prepositive cones iff they do not contain -1 .
- If C is a convex set, $a \in C$ is in the algebraic interior of C if for all x there is a $t_{x} \in[0,1)$ such that $t a+(1-t) x \in C$ for all $t \in\left[t_{x}, 1\right]$.

Some definitions

Let A be a unital commutative ring.

- $T \subset A$ is a prepositive cone if $T+T \subseteq T, T \cdot T \subseteq T, A^{2} \subseteq T,-1 \notin T$.
- Support: $\operatorname{supp} T=T \cap-T$.
- T is a positive cone if it is prepositive, $T \cup-T=A$ and $\operatorname{supp} T$ is a prime ideal.
- Theorem: Every prepositive cone is contained in a positive cone.
- Real spectrum: sper A is the set of all positive cones in A.
- If $h \in A, P \in \operatorname{sper} A$ we write $h(P) \geq 0$ to mean $h \in P$, and $h(P)>0$ to mean $h \geq 0$ and $h \notin \operatorname{supp} P$.
- Let $H \subset A . W(H):=\{P \in \operatorname{sper} A: \forall h \in H, h(P) \geq 0\}$ (an "abstract" basic semialgebraic set). (For example, take $H=\{1\}$. Then $W(H)=$ sper A.)
- Preordering: $T(H)=\sum_{h \in \prod_{H}} h \sum A^{2}$.
- Quadratic module: $Q(H)=\sum_{h \in H} h \sum A^{2}$. (Assume $1 \in H$.)
- $T(H), Q(H)$ are prepositive cones iff they do not contain -1 .
- If C is a convex set, $a \in C$ is in the algebraic interior of C if for all x there is a $t_{x} \in[0,1)$ such that $t a+(1-t) x \in C$ for all $t \in\left[t_{x}, 1\right]$.
- A prepositive cone T is archimedean 1 is in the algebraic interior of T.

Krivine's Abstract Positivstellensatz

Abstract Positivstellensatz (Krivine):

1. $a>0$ on $W(H)$ iff there exists $t_{1}, t_{2} \in T(H)$ such that $t_{1} a=1+t_{2}$.
2. $a \geq 0$ on $W(H)$ iff there exists $t_{1}, t_{2} \in T(H), n \in \mathbb{N}$ such that $t_{1} a=a^{2 n}+t_{2}$.
3. $a=0$ on $W(H)$ iff there exists $t \in T(H)$ and $n \in \mathbb{N}$ such that $-f^{2 n}=t$.
4. $W(H)=\emptyset$ iff $-1 \in T(H)$.

Krivine's Abstract Positivstellensatz

Abstract Positivstellensatz (Krivine):

1. $a>0$ on $W(H)$ iff there exists $t_{1}, t_{2} \in T(H)$ such that $t_{1} a=1+t_{2}$.
2. $a \geq 0$ on $W(H)$ iff there exists $t_{1}, t_{2} \in T(H), n \in \mathbb{N}$ such that $t_{1} a=a^{2 n}+t_{2}$.
3. $a=0$ on $W(H)$ iff there exists $t \in T(H)$ and $n \in \mathbb{N}$ such that $-f^{2 n}=t$.
4. $W(H)=\emptyset$ iff $-1 \in T(H)$.

- The four statements are equivalent. For example, to get 2. from 1., replace A by $A[x]$ and add the polynomials $a x-1$ and $-a x+1$ to H. Then $a>0$ on $W(H)$. The rest is straightforward algebra.

Krivine's Abstract Positivstellensatz

Abstract Positivstellensatz (Krivine):

1. $a>0$ on $W(H)$ iff there exists $t_{1}, t_{2} \in T(H)$ such that $t_{1} a=1+t_{2}$.
2. $a \geq 0$ on $W(H)$ iff there exists $t_{1}, t_{2} \in T(H), n \in \mathbb{N}$ such that $t_{1} a=a^{2 n}+t_{2}$.
3. $a=0$ on $W(H)$ iff there exists $t \in T(H)$ and $n \in \mathbb{N}$ such that $-f^{2 n}=t$.
4. $W(H)=\emptyset$ iff $-1 \in T(H)$.

- The four statements are equivalent. For example, to get 2. from 1., replace A by $A[x]$ and add the polynomials $a x-1$ and $-a x+1$ to H. Then $a>0$ on $W(H)$. The rest is straightforward algebra.
- Prove 4.: Suppose $-1 \in T(H)$. Since for any $P \in W(H), h \in H$ implies $h \in P$, $\sum A^{2} \subset P$, and so $T(H) \subset P$. But $-1 \notin P$, so $W(H)=\emptyset$.

Krivine's Abstract Positivstellensatz

Abstract Positivstellensatz (Krivine):

1. $a>0$ on $W(H)$ iff there exists $t_{1}, t_{2} \in T(H)$ such that $t_{1} a=1+t_{2}$.
2. $a \geq 0$ on $W(H)$ iff there exists $t_{1}, t_{2} \in T(H), n \in \mathbb{N}$ such that $t_{1} a=a^{2 n}+t_{2}$.
3. $a=0$ on $W(H)$ iff there exists $t \in T(H)$ and $n \in \mathbb{N}$ such that $-f^{2 n}=t$.
4. $W(H)=\emptyset$ iff $-1 \in T(H)$.

- The four statements are equivalent. For example, to get 2. from 1., replace A by $A[x]$ and add the polynomials $a x-1$ and $-a x+1$ to H. Then $a>0$ on $W(H)$. The rest is straightforward algebra.
- Prove 4.: Suppose $-1 \in T(H)$. Since for any $P \in W(H), h \in H$ implies $h \in P$, $\sum A^{2} \subset P$, and so $T(H) \subset P$. But $-1 \notin P$, so $W(H)=\emptyset$.
- On the other hand, if $-1 \notin T(H)$, then $T(H)$ is a prepositive cone, and so extends to a positive cone P. So for each $h \in H, h \in T(H) \subset P$, and so $W(H) \neq \emptyset$.

A Concrete Positivstellensatz

Tarski Transfer Principle: Let (F, \leq) be an ordered field extension of \mathbb{R}. Then any finite system H of d-variable polynomial inequalities (with coefficients in \mathbb{R}) having a solution in F^{d} has a solution in \mathbb{R}^{d}.

A Concrete Positivstellensatz

Tarski Transfer Principle: Let (F, \leq) be an ordered field extension of \mathbb{R}. Then any finite system H of d-variable polynomial inequalities (with coefficients in \mathbb{R}) having a solution in F^{d} has a solution in \mathbb{R}^{d}.

Concrete Positivstellensatz: Let $A=\mathbb{R}\left[x_{1}, \ldots, x_{d}\right], H \subset A$ finite, $W_{\mathbb{R}}(H)=\left\{x \in \mathbb{R}^{d}: h(x) \geq 0 \forall h \in H\right\}$. Then $W_{\mathbb{R}}(H) \neq \emptyset$ iff $W(H) \neq \emptyset$.

A Concrete Positivstellensatz

Tarski Transfer Principle: Let (F, \leq) be an ordered field extension of \mathbb{R}. Then any finite system H of d-variable polynomial inequalities (with coefficients in \mathbb{R}) having a solution in F^{d} has a solution in \mathbb{R}^{d}.

Concrete Positivstellensatz: Let $A=\mathbb{R}\left[x_{1}, \ldots, x_{d}\right], H \subset A$ finite, $W_{\mathbb{R}}(H)=\left\{x \in \mathbb{R}^{d}: h(x) \geq 0 \forall h \in H\right\}$. Then $W_{\mathbb{R}}(H) \neq \emptyset$ iff $W(H) \neq \emptyset$.

Idea of the proof: Suppose $x \in W_{\mathbb{R}}(H) \neq \emptyset$. Then $P=\{a \in A: a(x) \geq 0\} \in \operatorname{sper} A$, and so clearly $P \in W(H)$.

A Concrete Positivstellensatz

Tarski Transfer Principle: Let (F, \leq) be an ordered field extension of \mathbb{R}. Then any finite system H of d-variable polynomial inequalities (with coefficients in \mathbb{R}) having a solution in F^{d} has a solution in \mathbb{R}^{d}.

Concrete Positivstellensatz: Let $A=\mathbb{R}\left[x_{1}, \ldots, x_{d}\right], H \subset A$ finite, $W_{\mathbb{R}}(H)=\left\{x \in \mathbb{R}^{d}: h(x) \geq 0 \forall h \in H\right\}$. Then $W_{\mathbb{R}}(H) \neq \emptyset$ iff $W(H) \neq \emptyset$.

Idea of the proof: Suppose $x \in W_{\mathbb{R}}(H) \neq \emptyset$. Then $P=\{a \in A: a(x) \geq 0\} \in$ sper A, and so clearly $P \in W(H)$.

Suppose $P \in W(H)$. Note that $P \supset T(H)$. Set $F=\operatorname{Quot}(A / \operatorname{supp} P)$ with the ordering induced by P. Note that \mathbb{R} sits inside of F as constant functions, and the ordering on F restricts to the unique ordering on \mathbb{R}. Find a solution inside of F and apply the Tarski Transfer Principle to get $x \in \mathbb{R}^{d}$ such that $h(x) \geq 0$ for all $h \in H$; that is, $W_{\mathbb{R}}(H) \neq \emptyset$.

A generalization of Artin's result

Argue as before that the following statements are equivalent for $A=\mathbb{R}\left[x_{1}, \ldots, x_{d}\right]$:

1. $a>0$ on $W_{\mathbb{R}}(H)$ iff there exists $t_{1}, t_{2} \in T(H)$ such that $t_{1} a=1+t_{2}$.
2. $a \geq 0$ on $W_{\mathbb{R}}(H)$ iff there exists $t_{1}, t_{2} \in T(H), n \in \mathbb{N}$ such that $t_{1} a=a^{2 n}+t_{2}$.
3. $a=0$ on $W_{\mathbb{R}}(H)$ iff there exists $t \in T(H)$ and $n \in \mathbb{N}$ such that $-f^{2 n}=t$.
4. $W_{\mathbb{R}}(H)=\emptyset$ iff $-1 \in T(H)$.

A generalization of Artin's result

Argue as before that the following statements are equivalent for $A=\mathbb{R}\left[x_{1}, \ldots, x_{d}\right]$:

1. $a>0$ on $W_{\mathbb{R}}(H)$ iff there exists $t_{1}, t_{2} \in T(H)$ such that $t_{1} a=1+t_{2}$.
2. $a \geq 0$ on $W_{\mathbb{R}}(H)$ iff there exists $t_{1}, t_{2} \in T(H), n \in \mathbb{N}$ such that $t_{1} a=a^{2 n}+t_{2}$.
3. $a=0$ on $W_{\mathbb{R}}(H)$ iff there exists $t \in T(H)$ and $n \in \mathbb{N}$ such that $-f^{2 n}=t$.
4. $W_{\mathbb{R}}(H)=\emptyset$ iff $-1 \in T(H)$.

Then when $H \subset A$ finite, Artin's result is just a corollary of the concrete Positivstellensatz along with 2. when $H=\{1\}$.

Putinar's Theorem and Schmüdgen's Theorem

Recall:

- Preordering: $T(H)=\sum_{h \in \prod_{H}} h \sum A^{2}$.
- Quadratic module: $Q(H)=\sum_{h \in H} h \sum A^{2}$. (Assume $1 \in H$.)
- $T(H), Q(H)$ are prepositive cones iff they do not contain -1 .
- A prepositive cone T is archimedean 1 is in the algebraic interior of T.

Putinar's Theorem and Schmüdgen's Theorem

Recall:

- Preordering: $T(H)=\sum_{h \in \prod_{H}} h \sum A^{2}$.
- Quadratic module: $Q(H)=\sum_{h \in H} h \sum A^{2}$. (Assume $1 \in H$.)
- $T(H), Q(H)$ are prepositive cones iff they do not contain -1 .
- A prepositive cone T is archimedean 1 is in the algebraic interior of T.

Putinar's Theorem: Let $A=\mathbb{R}\left[x_{1}, \ldots, x_{d}\right], H \subset A$ finite. Suppose that $Q(H)$ is archimedean. If $f>0$ on $W_{\mathbb{R}}(H)$, then $f \in Q(H)$.

Putinar's Theorem and Schmüdgen's Theorem

Recall:

- Preordering: $T(H)=\sum_{h \in \prod_{H}} h \sum A^{2}$.
- Quadratic module: $Q(H)=\sum_{h \in H} h \sum A^{2}$. (Assume $1 \in H$.)
- $T(H), Q(H)$ are prepositive cones iff they do not contain -1 .
- A prepositive cone T is archimedean 1 is in the algebraic interior of T.

Putinar's Theorem: Let $A=\mathbb{R}\left[x_{1}, \ldots, x_{d}\right], H \subset A$ finite. Suppose that $Q(H)$ is archimedean. If $f>0$ on $W_{\mathbb{R}}(H)$, then $f \in Q(H)$.

The proof uses a separating hyperplane (Hahn-Banach) argument.

Putinar's Theorem and Schmüdgen's Theorem

Recall:

- Preordering: $T(H)=\sum_{h \in \prod_{H}} h \sum A^{2}$.
- Quadratic module: $Q(H)=\sum_{h \in H} h \sum A^{2}$. (Assume $1 \in H$.)
- $T(H), Q(H)$ are prepositive cones iff they do not contain -1 .
- A prepositive cone T is archimedean 1 is in the algebraic interior of T.

Putinar's Theorem: Let $A=\mathbb{R}\left[x_{1}, \ldots, x_{d}\right], H \subset A$ finite. Suppose that $Q(H)$ is archimedean. If $f>0$ on $W_{\mathbb{R}}(H)$, then $f \in Q(H)$.

The proof uses a separating hyperplane (Hahn-Banach) argument.
Schmüdgen's Theorem: Let $A=\mathbb{R}\left[x_{1}, \ldots, x_{d}\right], H \subset A$ finite, and suppose that $W_{\mathbb{R}}(H)$ is bounded. If $f>0$ on $W_{\mathbb{R}}(H)$, then $f \in T(H)$.

Putinar's Theorem and Schmüdgen's Theorem

Recall:

- Preordering: $T(H)=\sum_{h \in \prod_{H}} h \sum A^{2}$.
- Quadratic module: $Q(H)=\sum_{h \in H} h \sum A^{2}$. (Assume $1 \in H$.)
- $T(H), Q(H)$ are prepositive cones iff they do not contain -1 .
- A prepositive cone T is archimedean 1 is in the algebraic interior of T.

Putinar's Theorem: Let $A=\mathbb{R}\left[x_{1}, \ldots, x_{d}\right], H \subset A$ finite. Suppose that $Q(H)$ is archimedean. If $f>0$ on $W_{\mathbb{R}}(H)$, then $f \in Q(H)$.

The proof uses a separating hyperplane (Hahn-Banach) argument.
Schmüdgen's Theorem: Let $A=\mathbb{R}\left[x_{1}, \ldots, x_{d}\right], H \subset A$ finite, and suppose that $W_{\mathbb{R}}(H)$ is bounded. If $f>0$ on $W_{\mathbb{R}}(H)$, then $f \in T(H)$.

The idea of the proof is to show that $T(H)$ (which is a quadratic module) is archimedean. This is done by using the concrete Positivstellensatz and the solution of a moment problem to prove that positive unital linear functionals (relative to $T(H))$ are norm continuous and so in the closed convex hull of states; ie, point evaluations at points in $W_{\mathbb{R}}(H)$.

Putinar's Theorem and Schmüdgen's Theorem

Recall:

- Preordering: $T(H)=\sum_{h \in \prod_{H}} h \sum A^{2}$.
- Quadratic module: $Q(H)=\sum_{h \in H} h \sum A^{2}$. (Assume $1 \in H$.)
- $T(H), Q(H)$ are prepositive cones iff they do not contain -1 .
- A prepositive cone T is archimedean 1 is in the algebraic interior of T.

Putinar's Theorem: Let $A=\mathbb{R}\left[x_{1}, \ldots, x_{d}\right], H \subset A$ finite. Suppose that $Q(H)$ is archimedean. If $f>0$ on $W_{\mathbb{R}}(H)$, then $f \in Q(H)$.

The proof uses a separating hyperplane (Hahn-Banach) argument.
Schmüdgen's Theorem: Let $A=\mathbb{R}\left[x_{1}, \ldots, x_{d}\right], H \subset A$ finite, and suppose that $W_{\mathbb{R}}(H)$ is bounded. If $f>0$ on $W_{\mathbb{R}}(H)$, then $f \in T(H)$.

The idea of the proof is to show that $T(H)$ (which is a quadratic module) is archimedean. This is done by using the concrete Positivstellensatz and the solution of a moment problem to prove that positive unital linear functionals (relative to $T(H))$ are norm continuous and so in the closed convex hull of states; ie, point evaluations at points in $W_{\mathbb{R}}(H)$.

Note that even if $T(H)$ is archimedean, $Q(H)$ need not be.

Putinar's Theorem and Schmüdgen's Theorem

Recall:

- Preordering: $T(H)=\sum_{h \in \prod_{H}} h \sum A^{2}$.
- Quadratic module: $Q(H)=\sum_{h \in H} h \sum A^{2}$. (Assume $1 \in H$.)
- $T(H), Q(H)$ are prepositive cones iff they do not contain -1 .
- A prepositive cone T is archimedean 1 is in the algebraic interior of T.

Putinar's Theorem: Let $A=\mathbb{R}\left[x_{1}, \ldots, x_{d}\right], H \subset A$ finite. Suppose that $Q(H)$ is archimedean. If $f>0$ on $W_{\mathbb{R}}(H)$, then $f \in Q(H)$.

The proof uses a separating hyperplane (Hahn-Banach) argument.
Schmüdgen's Theorem: Let $A=\mathbb{R}\left[x_{1}, \ldots, x_{d}\right], H \subset A$ finite, and suppose that $W_{\mathbb{R}}(H)$ is bounded. If $f>0$ on $W_{\mathbb{R}}(H)$, then $f \in T(H)$.

The idea of the proof is to show that $T(H)$ (which is a quadratic module) is archimedean. This is done by using the concrete Positivstellensatz and the solution of a moment problem to prove that positive unital linear functionals (relative to $T(H))$ are norm continuous and so in the closed convex hull of states; ie, point evaluations at points in $W_{\mathbb{R}}(H)$.

Note that even if $T(H)$ is archimedean, $Q(H)$ need not be.
Multivariable Fejér-Riesz Theorem: Let $Q(\theta)=\sum_{-n}^{n} Q_{k} e^{i k \theta}, k \in \mathbb{Z}^{d}$, with coefficients in \mathbb{C} such that $Q(\theta)>0$ for $\theta \in[0,2 \pi)^{d}$. Then $Q(\theta)=\sum_{j} F_{j}\left(e^{i \theta}\right)_{j}^{*}\left(e^{i \theta}\right)$ for all θ, where each $F_{j}(z)=\sum_{0}^{n_{j}} F_{k} z^{k}$ is an analytic polynomial.

Decomposition of trigonometric polynomials

Operator Fejér-Riesz Theorem: Let $Q(\theta)=\sum_{-n}^{n} Q_{k} e^{i k \theta}$ with coefficients in $\mathbf{L}(\mathscr{H})$ such that $Q(\theta) \geq 0$ for $\theta \in[0,2 \pi)$. Then $Q(\theta)=F\left(e^{i \theta}\right)^{*} F\left(e^{i \theta}\right)$ for all θ, where $F(z)=\sum_{0}^{n} F_{k} z^{k}$ is an operator-valued outer function on the unit disk with coefficients in $\mathbf{L}(\mathscr{H})$.

Decomposition of trigonometric polynomials

Operator Fejér-Riesz Theorem: Let $Q(\theta)=\sum_{-n}^{n} Q_{k} e^{i k \theta}$ with coefficients in $\mathbf{L}(\mathscr{H})$ such that $Q(\theta) \geq 0$ for $\theta \in[0,2 \pi)$. Then $Q(\theta)=F\left(e^{i \theta}\right)^{*} F\left(e^{i \theta}\right)$ for all θ, where $F(z)=\sum_{0}^{n} F_{k} z^{k}$ is an operator-valued outer function on the unit disk with coefficients in $\mathbf{L}(\mathscr{H})$.

Recall that a bounded analytic function F is outer if the closure of the range of F as a multiplication operator on $H_{\mathscr{H}}^{2}(\mathbb{D})$ is $H_{\mathscr{L}}^{2}(\mathbb{D})$ for some subspace \mathscr{L} of \mathscr{H}.

Decomposition of trigonometric polynomials

Operator Fejér-Riesz Theorem: Let $Q(\theta)=\sum_{-n}^{n} Q_{k} e^{i k \theta}$ with coefficients in $\mathbf{L}(\mathscr{H})$ such that $Q(\theta) \geq 0$ for $\theta \in[0,2 \pi)$. Then $Q(\theta)=F\left(e^{i \theta}\right)^{*} F\left(e^{i \theta}\right)$ for all θ, where $F(z)=\sum_{0}^{n} F_{k} z^{k}$ is an operator-valued outer function on the unit disk with coefficients in $\mathbf{L}(\mathscr{H})$.

Recall that a bounded analytic function F is outer if the closure of the range of F as a multiplication operator on $H_{\mathscr{H}}^{2}(\mathbb{D})$ is $H_{\mathscr{L}}^{2}(\mathbb{D})$ for some subspace \mathscr{L} of \mathscr{H}.

The theorem is proved, for example, in Rosenblum and Rovnyak's book Hardy Classes and Operator Theory as a corollary of an operator version of Szegő's theorem.

Decomposition of trigonometric polynomials

Operator Fejér-Riesz Theorem: Let $Q(\theta)=\sum_{-n}^{n} Q_{k} e^{i k \theta}$ with coefficients in $\mathbf{L}(\mathscr{H})$ such that $Q(\theta) \geq 0$ for $\theta \in[0,2 \pi)$. Then $Q(\theta)=F\left(e^{i \theta}\right)^{*} F\left(e^{i \theta}\right)$ for all θ, where $F(z)=\sum_{0}^{n} F_{k} z^{k}$ is an operator-valued outer function on the unit disk with coefficients in $\mathbf{L}(\mathscr{H})$.

Recall that a bounded analytic function F is outer if the closure of the range of F as a multiplication operator on $H_{\mathscr{H}}^{2}(\mathbb{D})$ is $H_{\mathscr{L}}^{2}(\mathbb{D})$ for some subspace \mathscr{L} of \mathscr{H}.

The theorem is proved, for example, in Rosenblum and Rovnyak's book Hardy Classes and Operator Theory as a corollary of an operator version of Szegő's theorem.

There is also a constructive proof using Schur complements. Schur complement techniques can also be used to (approximately) factor nonnegative trigonometric polynomials in several variables, with bounds on the number and degrees of the polynomials in the factorization.

Decomposition of trigonometric polynomials

Operator Fejér-Riesz Theorem: Let $Q(\theta)=\sum_{-n}^{n} Q_{k} e^{i k \theta}$ with coefficients in $\mathbf{L}(\mathscr{H})$ such that $Q(\theta) \geq 0$ for $\theta \in[0,2 \pi)$. Then $Q(\theta)=F\left(e^{i \theta}\right)^{*} F\left(e^{i \theta}\right)$ for all θ, where $F(z)=\sum_{0}^{n} F_{k} z^{k}$ is an operator-valued outer function on the unit disk with coefficients in $\mathbf{L}(\mathscr{H})$.

Recall that a bounded analytic function F is outer if the closure of the range of F as a multiplication operator on $H_{\mathscr{H}}^{2}(\mathbb{D})$ is $H_{\mathscr{L}}^{2}(\mathbb{D})$ for some subspace \mathscr{L} of \mathscr{H}.

The theorem is proved, for example, in Rosenblum and Rovnyak's book Hardy Classes and Operator Theory as a corollary of an operator version of Szegő's theorem.

There is also a constructive proof using Schur complements. Schur complement techniques can also be used to (approximately) factor nonnegative trigonometric polynomials in several variables, with bounds on the number and degrees of the polynomials in the factorization.

Multivariable Operator Fejér-Riesz Theorem: Let $Q(\theta)=\sum_{-n}^{n} Q_{k} e^{i k \theta}, k \in \mathbb{Z}^{d}$, with coefficients in $\mathbf{L}(\mathscr{H})$ such that $Q(\theta)>0$ for $\theta \in[0,2 \pi)^{d}$. Then $Q(\theta)=\sum_{j} F_{j}\left(e^{i \theta}\right)^{*} F_{j}\left(e^{i \theta}\right)$ for all θ, where each $F_{j}(z)=\sum_{0}^{n_{j}} F_{k} z^{k}$ is an operator-valued analytic polynomial.

Decomposition of trigonometric polynomials

Operator Fejér-Riesz Theorem: Let $Q(\theta)=\sum_{-n}^{n} Q_{k} e^{i k \theta}$ with coefficients in $\mathbf{L}(\mathscr{H})$ such that $Q(\theta) \geq 0$ for $\theta \in[0,2 \pi)$. Then $Q(\theta)=F\left(e^{i \theta}\right)^{*} F\left(e^{i \theta}\right)$ for all θ, where $F(z)=\sum_{0}^{n} F_{k} z^{k}$ is an operator-valued outer function on the unit disk with coefficients in $\mathbf{L}(\mathscr{H})$.

Recall that a bounded analytic function F is outer if the closure of the range of F as a multiplication operator on $H_{\mathscr{H}}^{2}(\mathbb{D})$ is $H_{\mathscr{L}}^{2}(\mathbb{D})$ for some subspace \mathscr{L} of \mathscr{H}.

The theorem is proved, for example, in Rosenblum and Rovnyak's book Hardy Classes and Operator Theory as a corollary of an operator version of Szegő's theorem.

There is also a constructive proof using Schur complements. Schur complement techniques can also be used to (approximately) factor nonnegative trigonometric polynomials in several variables, with bounds on the number and degrees of the polynomials in the factorization.

Multivariable Operator Fejér-Riesz Theorem: Let $Q(\theta)=\sum_{-n}^{n} Q_{k} e^{i k \theta}, k \in \mathbb{Z}^{d}$, with coefficients in $\mathbf{L}(\mathscr{H})$ such that $Q(\theta)>0$ for $\theta \in[0,2 \pi)^{d}$. Then $Q(\theta)=\sum_{j} F_{j}\left(e^{i \theta}\right)^{*} F_{j}\left(e^{i \theta}\right)$ for all θ, where each $F_{j}(z)=\sum_{0}^{n_{j}} F_{k} z^{k}$ is an operator-valued analytic polynomial.

In the single variable case, a more careful analysis can be used to get the outer factorization. Likewise in several variables, depending on how you define outer!

Another view

- The complex scalar valued trigonometric polynomials in d variables form a unital involutive algebra \mathscr{P}, the involution taking z^{n} to z^{-n}, where for $n=\left(n_{1}, \ldots, n_{d}\right),-n=\left(-n_{1}, \ldots,-n_{d}\right)$. This is the (algebraic) group algebra for $G=\mathbb{Z}^{d}$.

Another view

- The complex scalar valued trigonometric polynomials in d variables form a unital involutive algebra \mathscr{P}, the involution taking z^{n} to z^{-n}, where for $n=\left(n_{1}, \ldots, n_{d}\right),-n=\left(-n_{1}, \ldots,-n_{d}\right)$. This is the (algebraic) group algebra for $G=\mathbb{Z}^{d}$.
- If instead the coefficients are in the algebra $\mathscr{C}=\mathscr{L}(\mathscr{G})$ for some Hilbert space \mathscr{G}, then the unital involutive algebra of trigonometric polynomials with coefficients in \mathscr{C} is $\mathscr{P} \otimes \mathscr{C}$. The unit is $1 \otimes 1$.

Another view

- The complex scalar valued trigonometric polynomials in d variables form a unital involutive algebra \mathscr{P}, the involution taking z^{n} to z^{-n}, where for $n=\left(n_{1}, \ldots, n_{d}\right),-n=\left(-n_{1}, \ldots,-n_{d}\right)$. This is the (algebraic) group algebra for $G=\mathbb{Z}^{d}$.
- If instead the coefficients are in the algebra $\mathscr{C}=\mathscr{L}(\mathscr{G})$ for some Hilbert space \mathscr{G}, then the unital involutive algebra of trigonometric polynomials with coefficients in \mathscr{C} is $\mathscr{P} \otimes \mathscr{C}$. The unit is $1 \otimes 1$.
- A representation of the $\mathscr{P} \otimes \mathscr{C}$ is an unital algebra $*$-homomorphism from $\mathscr{P} \otimes \mathscr{C}$ into $\mathscr{L}(\mathscr{H})$ for a Hilbert space \mathscr{H}. We only consider representations which are of the form $\pi \otimes 1$.

Another view

- The complex scalar valued trigonometric polynomials in d variables form a unital involutive algebra \mathscr{P}, the involution taking z^{n} to z^{-n}, where for $n=\left(n_{1}, \ldots, n_{d}\right),-n=\left(-n_{1}, \ldots,-n_{d}\right)$. This is the (algebraic) group algebra for $G=\mathbb{Z}^{d}$.
- If instead the coefficients are in the algebra $\mathscr{C}=\mathscr{L}(\mathscr{G})$ for some Hilbert space \mathscr{G}, then the unital involutive algebra of trigonometric polynomials with coefficients in \mathscr{C} is $\mathscr{P} \otimes \mathscr{C}$. The unit is $1 \otimes 1$.
- A representation of the $\mathscr{P} \otimes \mathscr{C}$ is an unital algebra $*$-homomorphism from $\mathscr{P} \otimes \mathscr{C}$ into $\mathscr{L}(\mathscr{H})$ for a Hilbert space \mathscr{H}. We only consider representations which are of the form $\pi \otimes 1$.
- Involution preserving representations of G are unitary, and since the group is commutative, the irreducible representations are 1-dimensional. Group representations of locally compact groups extend naturally to the algebraic group algebra \mathscr{P}.

Another view, continued

Alternate definition: A (commutative) multivariable trigonometric polynomial P is positive / strictly positive if for each (topologically) irreducible (and hence 1-dimensional) unitary representation π of G, the extension of π to a unital *-representation of the algebra $\mathscr{P} \otimes \mathscr{C}$, has the property that $\pi(P) \geq 0 / \pi(P)>0$.

Another view, continued

Alternate definition: A (commutative) multivariable trigonometric polynomial P is positive / strictly positive if for each (topologically) irreducible (and hence 1-dimensional) unitary representation π of G, the extension of π to a unital *-representation of the algebra $\mathscr{P} \otimes \mathscr{C}$, has the property that $\pi(P) \geq 0 / \pi(P)>0$.

Since \mathbb{T}^{d} is compact, $\pi(P)>0$ implies the existence of some $\epsilon>0$ such that $\pi(P-\epsilon 1 \otimes 1)=\pi(P)-\epsilon 1 \geq 0$.

The noncommutative setting

- Assume G is a locally compact group (we are particularly interested in the case where G is discrete and finitely generated).

The noncommutative setting

- Assume G is a locally compact group (we are particularly interested in the case where G is discrete and finitely generated).
- (Noncommutative) trigonometric polynomials are the elements of the algebraic group algebra \mathscr{P} generated G; that is, formal complex linear combinations of elements of G endowed with pointwise addition and a convolution product.

The noncommutative setting

- Assume G is a locally compact group (we are particularly interested in the case where G is discrete and finitely generated).
- (Noncommutative) trigonometric polynomials are the elements of the algebraic group algebra \mathscr{P} generated G; that is, formal complex linear combinations of elements of G endowed with pointwise addition and a convolution product.
- We have an involution with $g^{*}=g^{-1}$ for $g \in G$.

The noncommutative setting

- Assume G is a locally compact group (we are particularly interested in the case where G is discrete and finitely generated).
- (Noncommutative) trigonometric polynomials are the elements of the algebraic group algebra \mathscr{P} generated G; that is, formal complex linear combinations of elements of G endowed with pointwise addition and a convolution product.
- We have an involution with $g^{*}=g^{-1}$ for $g \in G$.
- A polynomial is positive / strictly positive if for every irreducible unital *-representation π of G, the extension as above of π to the algebra $\mathscr{P} \otimes \mathscr{C}$ (tensoring the group algebra representation with the identity representation on \mathscr{C}, and again called π), satisfies $\pi(P) \geq 0 / \pi(P)>0$; where by $\pi(P)>0$ we mean that there exists some $\epsilon>0$ independent of π such that $\pi(P-\epsilon(1 \otimes 1)) \geq 0$.

The noncommutative setting

- Assume G is a locally compact group (we are particularly interested in the case where G is discrete and finitely generated).
- (Noncommutative) trigonometric polynomials are the elements of the algebraic group algebra \mathscr{P} generated G; that is, formal complex linear combinations of elements of G endowed with pointwise addition and a convolution product.
- We have an involution with $g^{*}=g^{-1}$ for $g \in G$.
- A polynomial is positive / strictly positive if for every irreducible unital *-representation π of G, the extension as above of π to the algebra $\mathscr{P} \otimes \mathscr{C}$ (tensoring the group algebra representation with the identity representation on \mathscr{C}, and again called π), satisfies $\pi(P) \geq 0 / \pi(P)>0$; where by $\pi(P)>0$ we mean that there exists some $\epsilon>0$ independent of π such that $\pi(P-\epsilon(1 \otimes 1)) \geq 0$.
- Let Ω represent the set of such irreducible representations, a sort of noncommutative basic semi-algebraic set on which our polynomials are defined.

The noncommutative setting

- Assume G is a locally compact group (we are particularly interested in the case where G is discrete and finitely generated).
- (Noncommutative) trigonometric polynomials are the elements of the algebraic group algebra \mathscr{P} generated G; that is, formal complex linear combinations of elements of G endowed with pointwise addition and a convolution product.
- We have an involution with $g^{*}=g^{-1}$ for $g \in G$.
- A polynomial is positive / strictly positive if for every irreducible unital *-representation π of G, the extension as above of π to the algebra $\mathscr{P} \otimes \mathscr{C}$ (tensoring the group algebra representation with the identity representation on \mathscr{C}, and again called π), satisfies $\pi(P) \geq 0 / \pi(P)>0$; where by $\pi(P)>0$ we mean that there exists some $\epsilon>0$ independent of π such that $\pi(P-\epsilon(1 \otimes 1)) \geq 0$.
- Let Ω represent the set of such irreducible representations, a sort of noncommutative basic semi-algebraic set on which our polynomials are defined.
- The Gel'fand-Raǐkov theorem ensures the existence of sufficiently many irreducible representations to separate G, so in particular, $\Omega \neq \emptyset$.

The noncommutative setting

- Assume G is a locally compact group (we are particularly interested in the case where G is discrete and finitely generated).
- (Noncommutative) trigonometric polynomials are the elements of the algebraic group algebra \mathscr{P} generated G; that is, formal complex linear combinations of elements of G endowed with pointwise addition and a convolution product.
- We have an involution with $g^{*}=g^{-1}$ for $g \in G$.
- A polynomial is positive / strictly positive if for every irreducible unital *-representation π of G, the extension as above of π to the algebra $\mathscr{P} \otimes \mathscr{C}$ (tensoring the group algebra representation with the identity representation on \mathscr{C}, and again called π), satisfies $\pi(P) \geq 0 / \pi(P)>0$; where by $\pi(P)>0$ we mean that there exists some $\epsilon>0$ independent of π such that $\pi(P-\epsilon(1 \otimes 1)) \geq 0$.
- Let Ω represent the set of such irreducible representations, a sort of noncommutative basic semi-algebraic set on which our polynomials are defined.
- The Gel'fand-Raǐkov theorem ensures the existence of sufficiently many irreducible representations to separate G, so in particular, $\Omega \neq \emptyset$.
- This (and what follows) also works if G is an inverse semigroup.

What can we hope to factor?

- Write G^{+}for a submonoid of G containing the generators of G.

What can we hope to factor?

- Write G^{+}for a submonoid of G containing the generators of G.
- The most interesting case is when G^{+}is the subsemigroup generated by 1 and the chosen generators of G.

What can we hope to factor?

- Write G^{+}for a submonoid of G containing the generators of G.
- The most interesting case is when G^{+}is the subsemigroup generated by 1 and the chosen generators of G.
- For example, if G is the noncommutative free group in d generators $\left\{z_{1}, \ldots, z_{d}\right\}$, then this would be group elements w of the form e (for the empty word) or those which are an arbitrary finite product of positive powers of the generators.

What can we hope to factor?

- Write G^{+}for a submonoid of G containing the generators of G.
- The most interesting case is when G^{+}is the subsemigroup generated by 1 and the chosen generators of G.
- For example, if G is the noncommutative free group in d generators $\left\{z_{1}, \ldots, z_{d}\right\}$, then this would be group elements w of the form e (for the empty word) or those which are an arbitrary finite product of positive powers of the generators.
- For fixed G^{+}, we say that a trigonometric polynomial is hereditary if it has the form $P=\sum_{j} P_{j} \otimes w_{j 1}^{*} w_{j 2}$, where $w_{j i}^{*}=z_{k_{m}}^{-n_{k m}} \cdots z_{k_{1}}^{-n_{k_{1}}}$ if $w_{j i}=z_{k_{1}}^{n_{k_{1}}} \cdots z_{k_{m}}^{n_{k_{m}}}$, and $e^{*}=e$.

What can we hope to factor?

- Write G^{+}for a submonoid of G containing the generators of G.
- The most interesting case is when G^{+}is the subsemigroup generated by 1 and the chosen generators of G.
- For example, if G is the noncommutative free group in d generators $\left\{z_{1}, \ldots, z_{d}\right\}$, then this would be group elements w of the form e (for the empty word) or those which are an arbitrary finite product of positive powers of the generators.
- For fixed G^{+}, we say that a trigonometric polynomial is hereditary if it has the form $P=\sum_{j} P_{j} \otimes w_{j 1}^{*} w_{j 2}$, where $w_{j i}^{*}=z_{k_{m}}^{-n_{k_{m}}} \cdots z_{k_{1}}^{-n_{k_{1}}}$ if $w_{j i}=z_{k_{1}}^{n_{k_{1}}} \cdots z_{k_{m}}^{n_{k_{m}}}$, and $e^{*}=e$.
- Those hereditary polynomials which are self adjoint are called real hereditary polynomials. Denote the set of such polynomials by H. Note that in general, H is not an algebra.

What can we hope to factor?

- Write G^{+}for a submonoid of G containing the generators of G.
- The most interesting case is when G^{+}is the subsemigroup generated by 1 and the chosen generators of G.
- For example, if G is the noncommutative free group in d generators $\left\{z_{1}, \ldots, z_{d}\right\}$, then this would be group elements w of the form e (for the empty word) or those which are an arbitrary finite product of positive powers of the generators.
- For fixed G^{+}, we say that a trigonometric polynomial is hereditary if it has the form $P=\sum_{j} P_{j} \otimes w_{j 1}^{*} w_{j 2}$, where $w_{j i}^{*}=z_{k_{m}}^{-n_{k_{m}}} \cdots z_{k_{1}}^{-n_{k_{1}}}$ if $w_{j i}=z_{k_{1}}^{n_{k_{1}}} \cdots z_{k_{m}}^{n_{k_{m}}}$, and $e^{*}=e$.
- Those hereditary polynomials which are self adjoint are called real hereditary polynomials. Denote the set of such polynomials by H. Note that in general, H is not an algebra.
- Trigonometric polynomials over G^{+}are referred to as analytic polynomials.

What can we hope to factor?

- Write G^{+}for a submonoid of G containing the generators of G.
- The most interesting case is when G^{+}is the subsemigroup generated by 1 and the chosen generators of G.
- For example, if G is the noncommutative free group in d generators $\left\{z_{1}, \ldots, z_{d}\right\}$, then this would be group elements w of the form e (for the empty word) or those which are an arbitrary finite product of positive powers of the generators.
- For fixed G^{+}, we say that a trigonometric polynomial is hereditary if it has the form $P=\sum_{j} P_{j} \otimes w_{j 1}^{*} w_{j 2}$, where $w_{j i}^{*}=z_{k_{m}}^{-n_{k_{m}}} \cdots z_{k_{1}}^{-n_{k_{1}}}$ if $w_{j i}=z_{k_{1}}^{n_{k_{1}}} \cdots z_{k_{m}}^{n_{k_{m}}}$, and $e^{*}=e$.
- Those hereditary polynomials which are self adjoint are called real hereditary polynomials. Denote the set of such polynomials by H. Note that in general, H is not an algebra.
- Trigonometric polynomials over G^{+}are referred to as analytic polynomials.
- Obviously, the square of an analytic polynomial Q is the real trigonometric polynomial $Q^{*} Q$. Squares are easily seen to be positive.

What can we hope to factor?

- Write G^{+}for a submonoid of G containing the generators of G.
- The most interesting case is when G^{+}is the subsemigroup generated by 1 and the chosen generators of G.
- For example, if G is the noncommutative free group in d generators $\left\{z_{1}, \ldots, z_{d}\right\}$, then this would be group elements w of the form e (for the empty word) or those which are an arbitrary finite product of positive powers of the generators.
- For fixed G^{+}, we say that a trigonometric polynomial is hereditary if it has the form $P=\sum_{j} P_{j} \otimes w_{j 1}^{*} w_{j 2}$, where $w_{j i}^{*}=z_{k_{m}}^{-n_{k_{m}}} \cdots z_{k_{1}}^{-n_{k_{1}}}$ if $w_{j i}=z_{k_{1}}^{n_{k_{1}}} \cdots z_{k_{m}}^{n_{k_{m}}}$, and $e^{*}=e$.
- Those hereditary polynomials which are self adjoint are called real hereditary polynomials. Denote the set of such polynomials by H. Note that in general, H is not an algebra.
- Trigonometric polynomials over G^{+}are referred to as analytic polynomials.
- Obviously, the square of an analytic polynomial Q is the real trigonometric polynomial $Q^{*} Q$. Squares are easily seen to be positive.
- We consider the problem of factorizing nonnegative / positive (real) trigonometric polynomials.

McCullough's Theorem

McCullough's noncommutative Fejér-Riesz theorem: Let G be the free group in d noncommuting letters, P a positive trigonometric polynomial of degree n over G with coefficients in $\mathscr{L}(\mathscr{G})$. Then there is a finite collection of analytic polynomials $\left\{Q_{1}, \ldots, Q_{m}\right\}$ of degree n or less such that $P=\sum_{k=1}^{m} Q_{k}^{*} Q_{k}$.

McCullough's Theorem

McCullough's noncommutative Fejér-Riesz theorem: Let G be the free group in d noncommuting letters, P a positive trigonometric polynomial of degree n over G with coefficients in $\mathscr{L}(\mathscr{G})$. Then there is a finite collection of analytic polynomials $\left\{Q_{1}, \ldots, Q_{m}\right\}$ of degree n or less such that $P=\sum_{k=1}^{m} Q_{k}^{*} Q_{k}$.

Scott gives an explicit upper bound for the number of polynomials m, and when $d=1$, he gets $m=1$. He then notes that Beurling's theorem can be used to obtain the operator Fejér-Riesz theorem. Further generalizations have been obtained by Helton, McCullough and Putinar.

McCullough's Theorem

McCullough's noncommutative Fejér-Riesz theorem: Let G be the free group in d noncommuting letters, P a positive trigonometric polynomial of degree n over G with coefficients in $\mathscr{L}(\mathscr{G})$. Then there is a finite collection of analytic polynomials $\left\{Q_{1}, \ldots, Q_{m}\right\}$ of degree n or less such that $P=\sum_{k=1}^{m} Q_{k}^{*} Q_{k}$.

Scott gives an explicit upper bound for the number of polynomials m, and when $d=1$, he gets $m=1$. He then notes that Beurling's theorem can be used to obtain the operator Fejér-Riesz theorem. Further generalizations have been obtained by Helton, McCullough and Putinar.

What happens for other groups? If G is the commutative free group and $d \geq 3$, the equivalent statement to McCullough's theorem is false (Scheiderer).

McCullough's Theorem

McCullough's noncommutative Fejér-Riesz theorem: Let G be the free group in d noncommuting letters, P a positive trigonometric polynomial of degree n over G with coefficients in $\mathscr{L}(\mathscr{G})$. Then there is a finite collection of analytic polynomials $\left\{Q_{1}, \ldots, Q_{m}\right\}$ of degree n or less such that $P=\sum_{k=1}^{m} Q_{k}^{*} Q_{k}$.

Scott gives an explicit upper bound for the number of polynomials m, and when $d=1$, he gets $m=1$. He then notes that Beurling's theorem can be used to obtain the operator Fejér-Riesz theorem. Further generalizations have been obtained by Helton, McCullough and Putinar.

What happens for other groups? If G is the commutative free group and $d \geq 3$, the equivalent statement to McCullough's theorem is false (Scheiderer).

What if we only consider strict positivity?

The cone

- Define a cone C in H as the set of nonnegative linear combinations of "squares" (sums of squares) of analytic polynomials.

The cone

- Define a cone C in H as the set of nonnegative linear combinations of "squares" (sums of squares) of analytic polynomials.
- Elements of H are sums of terms of the form $1 \otimes A$ or $w_{2}^{*} w_{1} \otimes B+w_{1}^{*} w_{2} \otimes B^{*}$, where $w_{1}, w_{2} \in S$ and A is selfadjoint.

The cone

- Define a cone C in H as the set of nonnegative linear combinations of "squares" (sums of squares) of analytic polynomials.
- Elements of H are sums of terms of the form $1 \otimes A$ or $w_{2}^{*} w_{1} \otimes B+w_{1}^{*} w_{2} \otimes B^{*}$, where $w_{1}, w_{2} \in S$ and A is selfadjoint.
- $1 \otimes A$ is obviously the difference of squares. Since $w^{*} w=1$ for any $w \in G$, we also have

$$
w_{2}^{*} w_{1} \otimes B+w_{1}^{*} w_{2} \otimes B^{*}=\left(w_{1} \otimes B+w_{2} \otimes 1\right)^{*}\left(w_{1} \otimes B+w_{2} \otimes 1\right)-1 \otimes\left(1+B^{*} B\right)
$$

So $H=C-C$.

The cone

- Define a cone C in H as the set of nonnegative linear combinations of "squares" (sums of squares) of analytic polynomials.
- Elements of H are sums of terms of the form $1 \otimes A$ or $w_{2}^{*} w_{1} \otimes B+w_{1}^{*} w_{2} \otimes B^{*}$, where $w_{1}, w_{2} \in S$ and A is selfadjoint.
- $1 \otimes A$ is obviously the difference of squares. Since $w^{*} w=1$ for any $w \in G$, we also have

$$
w_{2}^{*} w_{1} \otimes B+w_{1}^{*} w_{2} \otimes B^{*}=\left(w_{1} \otimes B+w_{2} \otimes 1\right)^{*}\left(w_{1} \otimes B+w_{2} \otimes 1\right)-1 \otimes\left(1+B^{*} B\right)
$$

So $H=C-C$.

- For $A, B \in \mathscr{L}(\mathscr{H})$ and $w_{1}, w_{2} \in S$,

$$
\begin{aligned}
0 \leq & \leq\left(w_{1} \otimes A+w_{2} \otimes B\right)^{*}\left(w_{1} \otimes A+w_{2} \otimes B\right) \\
\leq & \left(w_{1} \otimes A+w_{2} \otimes B\right)^{*}\left(w_{1} \otimes A+w_{2} \otimes B\right) \\
& \quad+\left(w_{1} \otimes A-w_{2} \otimes B\right)^{*}\left(w_{1} \otimes A-w_{2} \otimes B\right) \\
= & 2\left(1 \otimes A^{*} A+1 \otimes B^{*} B\right) \\
\leq & \left(\|A\|^{2}+\|B\|^{2}\right)(1 \otimes 1) .
\end{aligned}
$$

- Define a cone C in H as the set of nonnegative linear combinations of "squares" (sums of squares) of analytic polynomials.
- Elements of H are sums of terms of the form $1 \otimes A$ or $w_{2}^{*} w_{1} \otimes B+w_{1}^{*} w_{2} \otimes B^{*}$, where $w_{1}, w_{2} \in S$ and A is selfadjoint.
- $1 \otimes A$ is obviously the difference of squares. Since $w^{*} w=1$ for any $w \in G$, we also have

$$
w_{2}^{*} w_{1} \otimes B+w_{1}^{*} w_{2} \otimes B^{*}=\left(w_{1} \otimes B+w_{2} \otimes 1\right)^{*}\left(w_{1} \otimes B+w_{2} \otimes 1\right)-1 \otimes\left(1+B^{*} B\right)
$$

So $H=C-C$.

- For $A, B \in \mathscr{L}(\mathscr{H})$ and $w_{1}, w_{2} \in S$,

$$
\begin{aligned}
0 & \leq\left(w_{1} \otimes A+w_{2} \otimes B\right)^{*}\left(w_{1} \otimes A+w_{2} \otimes B\right) \\
\leq & \left(w_{1} \otimes A+w_{2} \otimes B\right)^{*}\left(w_{1} \otimes A+w_{2} \otimes B\right) \\
& \quad+\left(w_{1} \otimes A-w_{2} \otimes B\right)^{*}\left(w_{1} \otimes A-w_{2} \otimes B\right) \\
& =2\left(1 \otimes A^{*} A+1 \otimes B^{*} B\right) \\
\leq & \left(\|A\|^{2}+\|B\|^{2}\right)(1 \otimes 1) .
\end{aligned}
$$

- Iterating shows that C is archimedean: for any $P \in H$, there is some constant $0 \leq \alpha<\infty$ such that $\alpha 1 \pm P \in C$.

Another Positivstellensatz

Noncommutative Fejér-Riesz Theorem: Let G be a finitely generated discrete group, P a strictly positive trigonometric polynomial over G with coefficients in $\mathscr{L}(\mathscr{G})$. Then P is a sum of squares of analytic polynomials.

Another Positivstellensatz

Noncommutative Fejér-Riesz Theorem: Let G be a finitely generated discrete group, P a strictly positive trigonometric polynomial over G with coefficients in $\mathscr{L}(\mathscr{G})$. Then P is a sum of squares of analytic polynomials.

The proof uses a standard separation argument and GNS construction, as well as the correspondence between unitary representations of G and its group C^{*}-algebra, and the fact unitary representations of G are the direct integral of irreducible representations.

Another Positivstellensatz

Noncommutative Fejér-Riesz Theorem: Let G be a finitely generated discrete group, P a strictly positive trigonometric polynomial over G with coefficients in $\mathscr{L}(\mathscr{G})$. Then P is a sum of squares of analytic polynomials.

The proof uses a standard separation argument and GNS construction, as well as the correspondence between unitary representations of G and its group C^{*}-algebra, and the fact unitary representations of G are the direct integral of irreducible representations.

Examples and observations:

Another Positivstellensatz

Noncommutative Fejér-Riesz Theorem: Let G be a finitely generated discrete group, P a strictly positive trigonometric polynomial over G with coefficients in $\mathscr{L}(\mathscr{G})$. Then P is a sum of squares of analytic polynomials.

The proof uses a standard separation argument and GNS construction, as well as the correspondence between unitary representations of G and its group C^{*}-algebra, and the fact unitary representations of G are the direct integral of irreducible representations.

Examples and observations:

- Take G to be the noncommutative free group on d generators to get a weak form of McCullough's theorem.

Another Positivstellensatz

Noncommutative Fejér-Riesz Theorem: Let G be a finitely generated discrete group, P a strictly positive trigonometric polynomial over G with coefficients in $\mathscr{L}(\mathscr{G})$. Then P is a sum of squares of analytic polynomials.

The proof uses a standard separation argument and GNS construction, as well as the correspondence between unitary representations of G and its group C^{*}-algebra, and the fact unitary representations of G are the direct integral of irreducible representations.

Examples and observations:

- Take G to be the noncommutative free group on d generators to get a weak form of McCullough's theorem.
- Take G to be the commutative group of d generators to get the multivariable Fejér-Riesz theorem.

Another Positivstellensatz

Noncommutative Fejér-Riesz Theorem: Let G be a finitely generated discrete group, P a strictly positive trigonometric polynomial over G with coefficients in $\mathscr{L}(\mathscr{G})$. Then P is a sum of squares of analytic polynomials.

The proof uses a standard separation argument and GNS construction, as well as the correspondence between unitary representations of G and its group C^{*}-algebra, and the fact unitary representations of G are the direct integral of irreducible representations.

Examples and observations:

- Take G to be the noncommutative free group on d generators to get a weak form of McCullough's theorem.
- Take G to be the commutative group of d generators to get the multivariable Fejér-Riesz theorem.
- Still works if we replace groups by inverse semigroups, so in particular with the Cuntz inverse semigroup.

Another Positivstellensatz

Noncommutative Fejér-Riesz Theorem: Let G be a finitely generated discrete group, P a strictly positive trigonometric polynomial over G with coefficients in $\mathscr{L}(\mathscr{G})$. Then P is a sum of squares of analytic polynomials.

The proof uses a standard separation argument and GNS construction, as well as the correspondence between unitary representations of G and its group C^{*}-algebra, and the fact unitary representations of G are the direct integral of irreducible representations.

Examples and observations:

- Take G to be the noncommutative free group on d generators to get a weak form of McCullough's theorem.
- Take G to be the commutative group of d generators to get the multivariable Fejér-Riesz theorem.
- Still works if we replace groups by inverse semigroups, so in particular with the Cuntz inverse semigroup.
- Much as in the proof of Putinar's theorem, here we used the archimedean property to get the sum of squares decomposition.

Another Positivstellensatz

Noncommutative Fejér-Riesz Theorem: Let G be a finitely generated discrete group, P a strictly positive trigonometric polynomial over G with coefficients in $\mathscr{L}(\mathscr{G})$. Then P is a sum of squares of analytic polynomials.

The proof uses a standard separation argument and GNS construction, as well as the correspondence between unitary representations of G and its group C^{*}-algebra, and the fact unitary representations of G are the direct integral of irreducible representations.

Examples and observations:

- Take G to be the noncommutative free group on d generators to get a weak form of McCullough's theorem.
- Take G to be the commutative group of d generators to get the multivariable Fejér-Riesz theorem.
- Still works if we replace groups by inverse semigroups, so in particular with the Cuntz inverse semigroup.
- Much as in the proof of Putinar's theorem, here we used the archimedean property to get the sum of squares decomposition.
- Are there noncommutative analogues of Schmüdgen's theorem? All known proofs of Schmüdgen's theorem ultimately depend on the Tarski Transfer Principle. Is there a noncommutative analogue of this?

The End

