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Background

É Every nonnegative polynomial q :R→R is a sum of squares of polynomials.

É What about polynomials in more than one variable?

É Motzkin’s polynomial

g(x1, x2) = x4
1x2

2 +x2
1x4

2 −x2
1x2

2 +1,

is strictly positive, yet cannot be written as a sum of squares of polynomials.
É Though he didn’t have a concrete example, Hilbert realised this long ago.

É Hilbert’s 17th problem: Is every nonnegative polynomial q :Rd→R a sum of
squares of rational functions?

É Yes (Artin 1927).
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Some definitions

Let A be a unital commutative ring.

É T ⊂ A is a prepositive cone if T +T ⊆ T , T ·T ⊆ T , A2 ⊆ T , −1 /∈ T .

É Support: supp T = T ∩−T .
É T is a positive cone if it is prepositive, T ∪−T = A and supp T is a prime ideal.
É Theorem: Every prepositive cone is contained in a positive cone.
É Real spectrum: sper A is the set of all positive cones in A.
É If h∈ A, P ∈ sper A we write h(P)≥ 0 to mean h∈ P, and h(P)> 0 to mean h≥ 0
and h /∈ supp P.

É Let H ⊂ A. W (H) := {P ∈ sper A :∀h∈H , h(P)≥ 0} (an “abstract” basic
semialgebraic set).

(For example, take H = {1}. Then W (H) = sper A.)

É Preordering: T (H) =
∑

h∈
∏

H h
∑

A2.

É Quadratic module: Q(H) =
∑

h∈H h
∑

A2. (Assume 1∈H.)
É T (H), Q(H) are prepositive cones iff they do not contain −1.
É If C is a convex set, a∈C is in the algebraic interior of C if for all x there is a

tx ∈ [0, 1) such that ta+(1− t)x ∈C for all t ∈ [tx, 1].
É A prepositive cone T is archimedean 1 is in the algebraic interior of T .
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Krivine’s Abstract Positivstellensatz

Abstract Positivstellensatz (Krivine):
1. a> 0 on W (H) iff there exists t1, t2 ∈ T (H) such that t1a= 1+ t2.
2. a≥ 0 on W (H) iff there exists t1, t2 ∈ T (H), n∈N such that t1a= a2n+ t2.
3. a= 0 on W (H) iff there exists t ∈ T (H) and n∈N such that −f 2n = t.
4. W (H) = ; iff −1∈ T (H).

É The four statements are equivalent. For example, to get 2. from 1., replace A
by A[x] and add the polynomials ax−1 and −ax+1 to H. Then a> 0 on W (H).
The rest is straightforward algebra.

É Prove 4.: Suppose −1∈ T (H). Since for any P ∈W (H), h∈H implies h∈ P,
∑

A2 ⊂ P, and so T (H)⊂ P. But −1 /∈ P, so W (H) = ;.
É On the other hand, if −1 /∈ T (H), then T (H) is a prepositive cone, and so
extends to a positive cone P. So for each h∈H, h∈ T (H)⊂ P, and so W (H) 6= ;.
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A Concrete Positivstellensatz

Tarski Transfer Principle: Let (F ,≤) be an ordered field extension of R. Then any
finite system H of d-variable polynomial inequalities (with coefficients in R) having
a solution in Fd has a solution in Rd.

Concrete Positivstellensatz: Let A=R[x1, . . . , xd], H ⊂ A finite,
WR(H) = {x ∈Rd : h(x)≥ 0 ∀h∈H}. Then WR(H) 6= ; iff W (H) 6= ;.

Idea of the proof: Suppose x ∈WR(H) 6= ;. Then P= {a∈ A : a(x)≥ 0} ∈ sper A, and
so clearly P ∈W (H).

Suppose P ∈W (H). Note that P⊃ T (H). Set F =Quot (A/supp P) with the ordering
induced by P. Note that R sits inside of F as constant functions, and the ordering
on F restricts to the unique ordering on R. Find a solution inside of F and apply the
Tarski Transfer Principle to get x ∈Rd such that h(x)≥ 0 for all h∈H; that is,
WR(H) 6= ;.
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A generalization of Artin’s result

Argue as before that the following statements are equivalent for A=R[x1, . . . , xd]:

1. a> 0 on WR(H) iff there exists t1, t2 ∈ T (H) such that t1a= 1+ t2.
2. a≥ 0 on WR(H) iff there exists t1, t2 ∈ T (H), n∈N such that t1a= a2n+ t2.
3. a= 0 on WR(H) iff there exists t ∈ T (H) and n∈N such that −f 2n = t.
4. WR(H) = ; iff −1∈ T (H).

Then when H ⊂ A finite, Artin’s result is just a corollary of the concrete
Positivstellensatz along with 2. when H = {1}.
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Putinar’s Theorem and Schmüdgen’s Theorem

Recall:
É Preordering: T (H) =

∑

h∈
∏

H h
∑

A2.
É Quadratic module: Q(H) =

∑

h∈H h
∑

A2. (Assume 1∈H.)
É T (H), Q(H) are prepositive cones iff they do not contain −1.
É A prepositive cone T is archimedean 1 is in the algebraic interior of T .

Putinar’s Theorem: Let A=R[x1, . . . , xd], H ⊂ A finite. Suppose that Q(H) is
archimedean. If f > 0 on WR(H), then f ∈Q(H).

The proof uses a separating hyperplane (Hahn-Banach) argument.
Schmüdgen’s Theorem: Let A=R[x1, . . . , xd], H ⊂ A finite, and suppose that WR(H)

is bounded. If f > 0 on WR(H), then f ∈ T (H).
The idea of the proof is to show that T (H) (which is a quadratic module) is

archimedean. This is done by using the concrete Positivstellensatz and the solution
of a moment problem to prove that positive unital linear functionals (relative to
T (H)) are norm continuous and so in the closed convex hull of states; ie, point
evaluations at points in WR(H).

Note that even if T (H) is archimedean, Q(H) need not be.
Multivariable Fejér-Riesz Theorem: Let Q(θ ) =

∑n
−n Qk eikθ , k ∈Zd, with

coefficients in C such that Q(θ )> 0 for θ ∈ [0, 2π)d. Then Q(θ ) =
∑

j Fj(eiθ )∗j (eiθ ) for all
θ , where each Fj(z) =

∑nj

0 Fkzk is an analytic polynomial.
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Decomposition of trigonometric polynomials

Operator Fejér-Riesz Theorem: Let Q(θ ) =
∑n
−n Qk eikθ with coefficients in L(H )

such that Q(θ )≥ 0 for θ ∈ [0, 2π). Then Q(θ ) = F(eiθ )∗F(eiθ ) for all θ , where
F(z) =
∑n

0 Fkzk is an operator-valued outer function on the unit disk with coefficients
in L(H ).

Recall that a bounded analytic function F is outer if the closure of the range of F
as a multiplication operator on H2

H (D) is H2
L (D) for some subspace L of H .

The theorem is proved, for example, in Rosenblum and Rovnyak’s book Hardy
Classes and Operator Theory as a corollary of an operator version of Szegő’s
theorem.

There is also a constructive proof using Schur complements. Schur complement
techniques can also be used to (approximately) factor nonnegative trigonometric
polynomials in several variables, with bounds on the number and degrees of the
polynomials in the factorization.

Multivariable Operator Fejér-Riesz Theorem: Let Q(θ ) =
∑n
−n Qk eikθ , k ∈Zd, with

coefficients in L(H ) such that Q(θ )> 0 for θ ∈ [0, 2π)d. Then Q(θ ) =
∑

j Fj(eiθ )∗Fj(eiθ )
for all θ , where each Fj(z) =

∑nj

0 Fkzk is an operator-valued analytic polynomial.

In the single variable case, a more careful analysis can be used to get the outer
factorization. Likewise in several variables, depending on how you define outer!
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Another view

É The complex scalar valued trigonometric polynomials in d variables form a
unital involutive algebra P , the involution taking zn to z−n, where for
n= (n1, . . . , nd), −n= (−n1, . . . ,−nd). This is the (algebraic) group algebra for
G=Zd.

É If instead the coefficients are in the algebra C =L (G ) for some Hilbert space
G , then the unital involutive algebra of trigonometric polynomials with
coefficients in C is P ⊗C . The unit is 1⊗1.

É A representation of the P ⊗C is an unital algebra ∗-homomorphism from
P ⊗C into L (H ) for a Hilbert space H . We only consider representations
which are of the form π⊗1.

É Involution preserving representations of G are unitary, and since the group is
commutative, the irreducible representations are 1-dimensional. Group
representations of locally compact groups extend naturally to the algebraic
group algebra P .
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Another view, continued

Alternate definition: A (commutative) multivariable trigonometric polynomial P
is positive / strictly positive if for each (topologically) irreducible (and hence
1-dimensional) unitary representation π of G, the extension of π to a unital
∗-representation of the algebra P ⊗C , has the property that π(P)≥ 0 / π(P)> 0.

Since Td is compact, π(P)> 0 implies the existence of some ε> 0 such that
π(P−ε1⊗1) =π(P)−ε1≥ 0.
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The noncommutative setting

É Assume G is a locally compact group (we are particularly interested in the case
where G is discrete and finitely generated).

É (Noncommutative) trigonometric polynomials are the elements of the algebraic
group algebra P generated G; that is, formal complex linear combinations of
elements of G endowed with pointwise addition and a convolution product.

É We have an involution with g∗ = g−1 for g ∈G.
É A polynomial is positive / strictly positive if for every irreducible unital
∗-representation π of G, the extension as above of π to the algebra P ⊗C
(tensoring the group algebra representation with the identity representation on
C , and again called π), satisfies π(P)≥ 0 / π(P)> 0; where by π(P)> 0 we mean
that there exists some ε> 0 independent of π such that π(P−ε(1⊗1))≥ 0.

É Let Ω represent the set of such irreducible representations, a sort of
noncommutative basic semi-algebraic set on which our polynomials are defined.

É The Gel’fand-Răıkov theorem ensures the existence of sufficiently many
irreducible representations to separate G, so in particular, Ω 6= ;.

É This (and what follows) also works if G is an inverse semigroup.
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What can we hope to factor?

É Write G+ for a submonoid of G containing the generators of G.

É The most interesting case is when G+ is the subsemigroup generated by 1 and
the chosen generators of G.

É For example, if G is the noncommutative free group in d generators {z1, . . . , zd},
then this would be group elements w of the form e (for the empty word) or
those which are an arbitrary finite product of positive powers of the generators.

É For fixed G+, we say that a trigonometric polynomial is hereditary if it has the
form P=
∑

j Pj⊗w∗j1wj2, where w∗ji = z
−nkm
km

· · ·z
−nk1
k1

if wji = z
nk1
k1
· · ·znkm

km
, and e∗ = e.

É Those hereditary polynomials which are self adjoint are called real hereditary
polynomials. Denote the set of such polynomials by H. Note that in general, H
is not an algebra.

É Trigonometric polynomials over G+ are referred to as analytic polynomials.
É Obviously, the square of an analytic polynomial Q is the real trigonometric
polynomial Q∗Q. Squares are easily seen to be positive.

É We consider the problem of factorizing nonnegative / positive (real)
trigonometric polynomials.
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McCullough’s Theorem

McCullough’s noncommutative Fejér-Riesz theorem: Let G be the free group in d
noncommuting letters, P a positive trigonometric polynomial of degree n over G
with coefficients in L (G ). Then there is a finite collection of analytic polynomials
{Q1, . . . , Qm} of degree n or less such that P=

∑m
k=1 Q∗kQk.

Scott gives an explicit upper bound for the number of polynomials m, and when
d= 1, he gets m= 1. He then notes that Beurling’s theorem can be used to obtain
the operator Fejér-Riesz theorem. Further generalizations have been obtained by
Helton, McCullough and Putinar.

What happens for other groups? If G is the commutative free group and d≥ 3,
the equivalent statement to McCullough’s theorem is false (Scheiderer).

What if we only consider strict positivity?
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The cone

É Define a cone C in H as the set of nonnegative linear combinations of “squares”
(sums of squares) of analytic polynomials.

É Elements of H are sums of terms of the form 1⊗A or w∗2w1⊗B+w∗1w2⊗B∗,
where w1, w2 ∈ S and A is selfadjoint.

É 1⊗A is obviously the difference of squares. Since w∗w= 1 for any w ∈G, we also
have

w∗2w1⊗B+w∗1w2⊗B∗ = (w1⊗B+w2⊗1)∗(w1⊗B+w2⊗1)−1⊗ (1+B∗B).

So H =C−C.
É For A, B ∈L (H ) and w1, w2 ∈ S,

0≤ (w1⊗A+w2⊗B)∗(w1⊗A+w2⊗B)

≤ (w1⊗A+w2⊗B)∗(w1⊗A+w2⊗B)

+ (w1⊗A−w2⊗B)∗(w1⊗A−w2⊗B)

= 2(1⊗A∗A+1⊗B∗B)

≤ (‖A‖2+ ‖B‖2)(1⊗1).

É Iterating shows that C is archimedean: for any P ∈H, there is some constant
0≤α<∞ such that α1±P ∈C.
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Another Positivstellensatz

Noncommutative Fejér-Riesz Theorem: Let G be a finitely generated discrete
group, P a strictly positive trigonometric polynomial over G with coefficients in
L (G ). Then P is a sum of squares of analytic polynomials.

The proof uses a standard separation argument and GNS construction, as well as
the correspondence between unitary representations of G and its group C∗-algebra,
and the fact unitary representations of G are the direct integral of irreducible
representations.

Examples and observations:

É Take G to be the noncommutative free group on d generators to get a weak
form of McCullough’s theorem.

É Take G to be the commutative group of d generators to get the multivariable
Fejér-Riesz theorem.

É Still works if we replace groups by inverse semigroups, so in particular with the
Cuntz inverse semigroup.

É Much as in the proof of Putinar’s theorem, here we used the archimedean
property to get the sum of squares decomposition.

É Are there noncommutative analogues of Schmüdgen’s theorem? All known
proofs of Schmüdgen’s theorem ultimately depend on the Tarski Transfer
Principle. Is there a noncommutative analogue of this?
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The End


