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Some History

1950: Paul Halmos introduces subnormal operators.

1955: J. Bram: Theorem: Nµ = Mz on L2(µ) is cyclic.
Corollary: Normal ops are cyclic ⇔ they are ∗-cyclic.
Corollary: If S = Mz on H ⊆ L2(µ), then S∗ is cyclic.

19??: D. Sarason: Pure Isometries have cyclic adjoints.

1976: J. Deddens & W. Wogen:
Q: Does every pure subnormal operator have a cyclic adjoint?
Test Q: If S = Mz on L2

a(D)⊥, then is (S ⊕ S)∗ cyclic?

1978: W. Wogen: M∗f on H2(D) is cyclic ∀ f ∈ H∞(D).
There are common cyclic vectors for {M∗f : f ∈ H∞(D) \ C}.
1978: Clancey & Rogers
span{ker(T − λ)∗ : λ ∈ σ(T ) \ σap(T )} = H ⇒ T ∗ is cyclic.

1988: K. Chan - 1990 P. Bourdon & J. Shapiro
∃ Common cyclic vectors for {M∗f : f ∈ H∞(G ) \ C} on H
where H ⊆ Hol(G ) & G ⊆ Cn.

1998: Feldman: All pure SNOs have cyclic adjoints!
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Proof

Theorem (Feldman ’98) Every Pure SNO has a cyclic adjoint.

Strategy of Proof:

Show ∃ a one-to-one linear map

A : H → L2(µ) s.t.

AS = NµA

then
S∗A∗ = A∗N∗µ

&

A∗ maps cyclic vectors for N∗µ to cyclic vectors for S∗.
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The Proof: How do we find A : H → L2(µ)?

If S is a pure SNO on H ⇒ ∃ pure SNOs Sn = Mz on Hn ⊆ L2(µn)

and one-to-one intertwining maps A1 and A2 s.t.

H A1−−→
1−1

∞⊕
n=1

Hn
A2−−→

1−1
L2(µ)

S
A1−−→

1−1

∞⊕
n=1

Mz
A2−−→

1−1
Nµ

A Model Theory for Subnormal Operators?

Is every pure SNO quasi-similar to

(
N⊕

n=1

Mz

)
on

(
N⊕

n=1

Hn

)
?

A Multiplicity Theory? If S is a pure SNO, does ∃ a 1-1 map A s.t.

(S ,H)
A−−→

1−1
(Mz ,H1 ⊆

pure
L2(µ1))?
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Non Pure SNOs

What if S is not pure?

Theorem: If S = Sp ⊕ N, then S∗ is cyclic if and only if N is
cyclic.

Corollary: If S = SNO, then S∗ is cyclic ⇔ S∗ is ∗-cyclic.

Some Open Questions

1 If S is a pure SNO, is there a common cyclic vector for the
pure operators in P∞(S∗)?

2 If S = (S1,S2, . . . ,Sn) is a pure subnormal tuple, then is
S∗ = (S∗1 ,S

∗
2 , . . . ,S

∗
n ) cyclic?

3 If T is a pure hyponormal operator, then is T ∗ cyclic?
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Non Pure SNOs

What if S is not pure?

Theorem: If S = Sp ⊕ N, then S∗ is cyclic if and only if N is
cyclic.

Corollary: If S = SNO, then S∗ is cyclic ⇔ S∗ is ∗-cyclic.
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Stronger Forms of Cyclicity

Definition

If x ∈ H and T ∈ B(H), then the orbit of x under T is

Orb(x ,T ) = {T nx : n ≥ 0} = {x ,Tx ,T 2x , . . .}.

Definition

1 Let T ∈ B(H), then T is (weakly) hypercyclic if there is an
x ∈ H such that Orb(x ,T ) is (weakly) dense in H.

2 T is (weakly) supercyclic if there is an x ∈ H such that
C · Orb(x ,T ) is (weakly) dense in H.
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Some Hypercyclic Operators

Theorem (G. Godefrey & J. Shapiro (1991))

If G is a bounded region in C, then M∗z is hypercyclic on H2(G ) or
L2

a(G ) if and only if G ∩ ∂D 6= ∅.

Corollary

If G is any bounded region in C, then M∗z is supercyclic on H2(G )
or L2

a(G ).
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Weakly Hypercyclic Operators

Theorem (K. Chan & R. Sanders (2002))

If G = {z ∈ C : 1 < |z | < r}, then M∗z on H2(G ) is weakly
hypercyclic, but not norm hypercyclic.
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Weakly Hypercyclic Operators

Corollary

If {z ∈ C : 1 < |z | < r} ⊆ G and G ∩D = ∅, then M∗z on H2(G ) is
weakly hypercyclic, but not norm hypercyclic.

Open Question

For which open sets G is M∗z weakly hypercyclic on H2(G )?
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Weakly Hypercyclic?

What if...

Open Question

Is M∗z weakly hypercyclic on H2(G )?
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The Weak Topology

X = Banach Space

A basis for the weak topology on X

N(x0,F , ε) = {x ∈ X : |f (x − x0)| < ε for all f ∈ F}

where F ⊆ X ∗ is a finite set

A set E ⊆ X is n-weakly dense in X if E ∩ N(x0,F , ε) 6= ∅

∀x0 ∈ X , ε > 0, and all finite sets F ⊆ X ∗ with |F| ≤ n
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n-Weakly Dense Sets

Theorem

If H is a Hilbert space and E ⊆ H, then the following are
equivalent:

1 E is n-weakly dense in H.

2 F (E ) is dense in Cn for every onto continuous linear map
F : H → Cn.

3 E has a dense orthogonal projection onto every subspace with
dimension at most n.

Definition

1 An operator T is n-weakly hypercyclic if ∃ x ∈ H such that
Orb(x ,T ) is n-weakly dense in H.

2 T is n-weakly supercyclic if ∃ x ∈ H such that C · Orb(x ,T )
is n-weakly dense in H.
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Backward Unilateral Weighted Shifts

Theorem (Feldman 2010)

Suppose that B1,B2, . . . ,Bm are each hypercyclic backward
weighted shifts and 1 ≤ n ≤ m.

Then B =
⊕m

k=1 Bk is n-weakly hypercyclic if and only if the
direct sum of any n of the operators {B1, . . . ,Bm} is hypercyclic.

Corollary (Feldman 2010)

There exist operators that are n-weakly hypercyclic, but not
(n + 1)-weakly hypercyclic, for any n ≥ 1.
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The Matrix Case

Theorem (Feldman 2010)

There are matrices that are 2-weakly supercyclic on Rn if and only
if n is even.

Theorem (Feldman 2010)

If {π, θ1, θ2, . . . , θn} are linearly independent over Q, then
T = R(θ1)⊕ R(θ2)⊕ · · · ⊕ R(θn) is 2-weakly supercyclic on R2n,
where R(θ) is the 2× 2 matrix that rotates by θ.
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1-Weakly Hypercyclic?

Open Question

Is M∗z 1-weakly hypercyclic on H2(G )?
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Thanks for your Time!
Nathan Feldman

Best wishes to John!
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