The Cyclic Behavior of Cosubnormal Operators

Nathan S. Feldman Washington & Lee University Lexington, VA

> John Conway Day SEAM 27 University of Florida March 17, 2011

• 1950: Paul Halmos introduces subnormal operators.

- 1950: Paul Halmos introduces subnormal operators.
- 1955: J. Bram: Theorem: $N_{\mu} = M_z$ on $L^2(\mu)$ is cyclic.

- 1950: Paul Halmos introduces subnormal operators.
- 1955: J. Bram: Theorem: $N_{\mu} = M_z$ on $L^2(\mu)$ is cyclic. Corollary: Normal ops are cyclic \Leftrightarrow they are *-cyclic.

- 1950: Paul Halmos introduces subnormal operators.
- 1955: J. Bram: Theorem: $N_{\mu} = M_z$ on $L^2(\mu)$ is cyclic. Corollary: Normal ops are cyclic \Leftrightarrow they are *-cyclic. Corollary: If $S = M_z$ on $\mathcal{H} \subseteq L^2(\mu)$, then S^* is cyclic.

- 1950: Paul Halmos introduces subnormal operators.
- 1955: J. Bram: Theorem: $N_{\mu} = M_z$ on $L^2(\mu)$ is cyclic. Corollary: Normal ops are cyclic \Leftrightarrow they are *-cyclic. Corollary: If $S = M_z$ on $\mathcal{H} \subseteq L^2(\mu)$, then S^* is cyclic.
- 19??: D. Sarason: Pure Isometries have cyclic adjoints.

- 1950: Paul Halmos introduces subnormal operators.
- 1955: J. Bram: Theorem: $N_{\mu} = M_z$ on $L^2(\mu)$ is cyclic. Corollary: Normal ops are cyclic \Leftrightarrow they are *-cyclic. Corollary: If $S = M_z$ on $\mathcal{H} \subseteq L^2(\mu)$, then S^* is cyclic.
- 19??: D. Sarason: Pure Isometries have cyclic adjoints.
- 1976: J. Deddens & W. Wogen:
 Q: Does every pure subnormal operator have a cyclic adjoint?

- 1950: Paul Halmos introduces subnormal operators.
- 1955: J. Bram: Theorem: $N_{\mu} = M_z$ on $L^2(\mu)$ is cyclic. Corollary: Normal ops are cyclic \Leftrightarrow they are *-cyclic. Corollary: If $S = M_z$ on $\mathcal{H} \subseteq L^2(\mu)$, then S^* is cyclic.
- 19??: D. Sarason: Pure Isometries have cyclic adjoints.
- 1976: J. Deddens & W. Wogen:
 Q: Does every pure subnormal operator have a cyclic adjoint?
 Test Q: If S = M_z on L²_a(D)[⊥], then is (S ⊕ S)* cyclic?

- 1950: Paul Halmos introduces subnormal operators.
- 1955: J. Bram: Theorem: $N_{\mu} = M_z$ on $L^2(\mu)$ is cyclic. Corollary: Normal ops are cyclic \Leftrightarrow they are *-cyclic. Corollary: If $S = M_z$ on $\mathcal{H} \subseteq L^2(\mu)$, then S^* is cyclic.
- 19??: D. Sarason: Pure Isometries have cyclic adjoints.
- 1976: J. Deddens & W. Wogen:
 Q: Does every pure subnormal operator have a cyclic adjoint?
 Test Q: If S = M_{z̄} on L²_a(D)[⊥], then is (S ⊕ S)* cyclic?
- 1978: W. Wogen: M^{*}_f on H²(D) is cyclic ∀ f ∈ H[∞](D).
 There are common cyclic vectors for {M^{*}_f : f ∈ H[∞](D) \ C}.

- 1950: Paul Halmos introduces subnormal operators.
- 1955: J. Bram: Theorem: $N_{\mu} = M_z$ on $L^2(\mu)$ is cyclic. Corollary: Normal ops are cyclic \Leftrightarrow they are *-cyclic. Corollary: If $S = M_z$ on $\mathcal{H} \subseteq L^2(\mu)$, then S^* is cyclic.
- 19??: D. Sarason: Pure Isometries have cyclic adjoints.
- 1976: J. Deddens & W. Wogen:
 Q: Does every pure subnormal operator have a cyclic adjoint?
 Test Q: If S = M_{z̄} on L²_a(D)[⊥], then is (S ⊕ S)* cyclic?
- 1978: W. Wogen: M^{*}_f on H²(D) is cyclic ∀ f ∈ H[∞](D). There are common cyclic vectors for {M^{*}_f : f ∈ H[∞](D) \ C}.
- 1978: Clancey & Rogers
 span{ker(T − λ)* : λ ∈ σ(T) \ σ_{ap}(T)} = H ⇒ T* is cyclic.

伺 ト く ヨ ト く ヨ ト

- 1950: Paul Halmos introduces subnormal operators.
- 1955: J. Bram: Theorem: $N_{\mu} = M_z$ on $L^2(\mu)$ is cyclic. Corollary: Normal ops are cyclic \Leftrightarrow they are *-cyclic. Corollary: If $S = M_z$ on $\mathcal{H} \subseteq L^2(\mu)$, then S^* is cyclic.
- 19??: D. Sarason: Pure Isometries have cyclic adjoints.
- 1976: J. Deddens & W. Wogen:
 Q: Does every pure subnormal operator have a cyclic adjoint?
 Test Q: If S = M_{z̄} on L²_a(D)[⊥], then is (S ⊕ S)* cyclic?
- 1978: W. Wogen: M^{*}_f on H²(D) is cyclic ∀ f ∈ H[∞](D). There are common cyclic vectors for {M^{*}_f : f ∈ H[∞](D) \ C}.
- 1978: Clancey & Rogers span{ $ker(T - \lambda)^* : \lambda \in \sigma(T) \setminus \sigma_{ap}(T)$ } = $\mathcal{H} \Rightarrow T^*$ is cyclic.
- 1988: K. Chan 1990 P. Bourdon & J. Shapiro
 ∃ Common cyclic vectors for {M^{*}_f : f ∈ H[∞](G) \ C} on H where H ⊆ Hol(G) & G ⊆ Cⁿ.

- 1950: Paul Halmos introduces subnormal operators.
- 1955: J. Bram: Theorem: $N_{\mu} = M_z$ on $L^2(\mu)$ is cyclic. Corollary: Normal ops are cyclic \Leftrightarrow they are *-cyclic. Corollary: If $S = M_z$ on $\mathcal{H} \subseteq L^2(\mu)$, then S^* is cyclic.
- 19??: D. Sarason: Pure Isometries have cyclic adjoints.
- 1976: J. Deddens & W. Wogen:
 Q: Does every pure subnormal operator have a cyclic adjoint?
 Test Q: If S = M_{z̄} on L²_a(D)[⊥], then is (S ⊕ S)* cyclic?
- 1978: W. Wogen: M^{*}_f on H²(D) is cyclic ∀ f ∈ H[∞](D). There are common cyclic vectors for {M^{*}_f : f ∈ H[∞](D) \ C}.
- 1978: Clancey & Rogers span{ $ker(T - \lambda)^* : \lambda \in \sigma(T) \setminus \sigma_{ap}(T)$ } = $\mathcal{H} \Rightarrow T^*$ is cyclic.
- 1988: K. Chan 1990 P. Bourdon & J. Shapiro \exists Common cyclic vectors for $\{M_f^* : f \in H^{\infty}(G) \setminus \mathbb{C}\}$ on \mathcal{H} where $\mathcal{H} \subseteq Hol(G) \& G \subseteq \mathbb{C}^n$.
- 1998: Feldman: All pure SNOs have cyclic adjoints!

Strategy of Proof:

- **→** → **→**

Strategy of Proof: Show ∃ a one-to-one linear map

$${\mathcal A}: {\mathcal H} o L^2(\mu)$$
 s.t.

 $AS = N_{\mu}A$

Strategy of Proof: Show ∃ a one-to-one linear map

$${\mathcal A}: {\mathcal H} o L^2(\mu)$$
 s.t.

$$AS = N_{\mu}A$$

then

$$S^*A^* = A^*N^*_\mu$$

Strategy of Proof: Show ∃ a one-to-one linear map

$${\mathcal A}: {\mathcal H} o L^2(\mu)$$
 s.t.

$$AS = N_{\mu}A$$

then

$$S^*A^* = A^*N^*_\mu$$
 &

 A^* maps cyclic vectors for N^*_μ to cyclic vectors for S^* .

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

э

If S is a pure SNO on $\mathcal{H} \Rightarrow \exists$ pure SNOs $S_n = M_z$ on $\mathcal{H}_n \subseteq L^2(\mu_n)$

and one-to-one intertwining maps A_1 and A_2 s.t.

If S is a pure SNO on $\mathcal{H} \Rightarrow \exists$ pure SNOs $S_n = M_z$ on $\mathcal{H}_n \subseteq L^2(\mu_n)$

and one-to-one intertwining maps A_1 and A_2 s.t.

$$\mathcal{H} \xrightarrow[1-1]{A_1} \bigoplus_{n=1}^{\infty} \mathcal{H}_n \xrightarrow[1-1]{A_2} L^2(\mu)$$

$$S \xrightarrow[1-1]{A_1} \bigoplus_{n=1}^{\infty} M_z \xrightarrow[1-1]{A_2} N_\mu$$

-

If S is a pure SNO on $\mathcal{H} \Rightarrow \exists$ pure SNOs $S_n = M_z$ on $\mathcal{H}_n \subseteq L^2(\mu_n)$

and one-to-one intertwining maps A_1 and A_2 s.t.

$$\mathcal{H} \xrightarrow[1-1]{A_1} \bigoplus_{n=1}^{\infty} \mathcal{H}_n \xrightarrow[1-1]{A_2} L^2(\mu)$$

$$S \xrightarrow[1-1]{A_1} \bigoplus_{n=1}^{\infty} M_z \xrightarrow[1-1]{A_2} N_\mu$$

-

If S is a pure SNO on $\mathcal{H} \Rightarrow \exists$ pure SNOs $S_n = M_z$ on $\mathcal{H}_n \subseteq L^2(\mu_n)$

and one-to-one intertwining maps A_1 and A_2 s.t.

$$\mathcal{H} \xrightarrow[1-1]{A_1} \bigoplus_{n=1}^{\infty} \mathcal{H}_n \xrightarrow[1-1]{A_2} L^2(\mu)$$

$$S \xrightarrow[1-1]{A_1} \bigoplus_{n=1}^{\infty} M_z \xrightarrow[1-1]{A_2} N_\mu$$

~~

A Model Theory for Subnormal Operators?

If S is a pure SNO on $\mathcal{H} \Rightarrow \exists$ pure SNOs $S_n = M_z$ on $\mathcal{H}_n \subseteq L^2(\mu_n)$

and one-to-one intertwining maps A_1 and A_2 s.t.

$$\mathcal{H} \xrightarrow[1-1]{A_1} \bigoplus_{n=1}^{\infty} \mathcal{H}_n \xrightarrow[1-1]{A_2} L^2(\mu)$$

$$S \xrightarrow[1-1]{A_1} \bigoplus_{n=1}^{\infty} M_z \xrightarrow[1-1]{A_2} N_\mu$$

A Model Theory for Subnormal Operators? Is every pure SNO quasi-similar to $\left(\bigoplus_{n=1}^{N} M_{z}\right)$ on $\left(\bigoplus_{n=1}^{N} \mathcal{H}_{n}\right)$?

If S is a pure SNO on $\mathcal{H} \Rightarrow \exists$ pure SNOs $S_n = M_z$ on $\mathcal{H}_n \subseteq L^2(\mu_n)$

and one-to-one intertwining maps A_1 and A_2 s.t.

$$\mathcal{H} \xrightarrow[1-1]{A_1} \bigoplus_{n=1}^{\infty} \mathcal{H}_n \xrightarrow[1-1]{A_2} L^2(\mu)$$

$$S \xrightarrow[1-1]{A_1} \bigoplus_{n=1}^{\infty} M_z \xrightarrow[1-1]{A_2} N_\mu$$

A Model Theory for Subnormal Operators? Is every pure SNO quasi-similar to $\left(\bigoplus_{n=1}^{N} M_{z}\right)$ on $\left(\bigoplus_{n=1}^{N} \mathcal{H}_{n}\right)$?

A Multiplicity Theory?

If S is a pure SNO on $\mathcal{H} \Rightarrow \exists$ pure SNOs $S_n = M_z$ on $\mathcal{H}_n \subseteq L^2(\mu_n)$

and one-to-one intertwining maps A_1 and A_2 s.t.

$$\mathcal{H} \xrightarrow[1-1]{A_1} \bigoplus_{n=1}^{\infty} \mathcal{H}_n \xrightarrow[1-1]{A_2} L^2(\mu)$$

$$S \xrightarrow[1-1]{A_1} \bigoplus_{n=1}^{\infty} M_z \xrightarrow[1-1]{A_2} N_\mu$$

A Model Theory for Subnormal Operators? Is every pure SNO quasi-similar to $\left(\bigoplus_{n=1}^{N} M_{z}\right)$ on $\left(\bigoplus_{n=1}^{N} \mathcal{H}_{n}\right)$?

A Multiplicity Theory? If S is a pure SNO, does \exists a 1-1 map A s.t. $(S, \mathcal{H}) \xrightarrow[1-1]{A} (M_z, \mathcal{H}_1 \subseteq_{pure} L^2(\mu_1))?$

- **→** → **→**

э

э

Theorem: If $S = S_p \oplus N$, then S^* is cyclic if and only if N is cyclic.

- ● ● ●

Theorem: If $S = S_p \oplus N$, then S^* is cyclic if and only if N is cyclic.

Corollary: If S = SNO, then S^* is cyclic $\Leftrightarrow S^*$ is *-cyclic.

Theorem: If $S = S_p \oplus N$, then S^* is cyclic if and only if N is cyclic.

Corollary: If S = SNO, then S^* is cyclic $\Leftrightarrow S^*$ is *-cyclic.

Some Open Questions

If S is a pure SNO, is there a common cyclic vector for the pure operators in P[∞](S^{*})?

Theorem: If $S = S_p \oplus N$, then S^* is cyclic if and only if N is cyclic.

Corollary: If S = SNO, then S^* is cyclic $\Leftrightarrow S^*$ is *-cyclic.

Some Open Questions

- If S is a pure SNO, is there a common cyclic vector for the pure operators in P[∞](S^{*})?
- If $S = (S_1, S_2, ..., S_n)$ is a pure subnormal tuple, then is $S^* = (S_1^*, S_2^*, ..., S_n^*)$ cyclic?

Theorem: If $S = S_p \oplus N$, then S^* is cyclic if and only if N is cyclic.

Corollary: If S = SNO, then S^* is cyclic $\Leftrightarrow S^*$ is *-cyclic.

Some Open Questions

- If S is a pure SNO, is there a common cyclic vector for the pure operators in P[∞](S^{*})?
- If $S = (S_1, S_2, ..., S_n)$ is a pure subnormal tuple, then is $S^* = (S_1^*, S_2^*, ..., S_n^*)$ cyclic?
- If T is a pure hyponormal operator, then is T^* cyclic?

Definition

If $x \in \mathcal{H}$ and $T \in \mathcal{B}(\mathcal{H})$, then the orbit of x under T is

$$Orb(x, T) = \{T^n x : n \ge 0\} = \{x, Tx, T^2 x, \ldots\}.$$

→ < ∃→

Definition

If $x \in \mathcal{H}$ and $T \in \mathcal{B}(\mathcal{H})$, then the orbit of x under T is

$$Orb(x, T) = \{T^n x : n \ge 0\} = \{x, Tx, T^2 x, \ldots\}.$$

Definition

• Let $T \in \mathcal{B}(\mathcal{H})$, then T is (weakly) hypercyclic if there is an $x \in \mathcal{H}$ such that Orb(x, T) is (weakly) dense in \mathcal{H} .

Definition

If $x \in \mathcal{H}$ and $T \in \mathcal{B}(\mathcal{H})$, then the orbit of x under T is

$$Orb(x, T) = \{T^n x : n \ge 0\} = \{x, Tx, T^2 x, \ldots\}.$$

Definition

- Let $T \in \mathcal{B}(\mathcal{H})$, then T is (weakly) hypercyclic if there is an $x \in \mathcal{H}$ such that Orb(x, T) is (weakly) dense in \mathcal{H} .
- **2** T is (weakly) supercyclic if there is an $x \in \mathcal{H}$ such that $\mathbb{C} \cdot Orb(x, T)$ is (weakly) dense in \mathcal{H} .

Some Hypercyclic Operators

Theorem (G. Godefrey & J. Shapiro (1991))

If G is a bounded region in \mathbb{C} , then M_z^* is hypercyclic on $H^2(G)$ or $L^2_a(G)$ if and only if $G \cap \partial \mathbb{D} \neq \emptyset$.

Some Hypercyclic Operators

Theorem (G. Godefrey & J. Shapiro (1991))

If G is a bounded region in \mathbb{C} , then M_z^* is hypercyclic on $H^2(G)$ or $L^2_a(G)$ if and only if $G \cap \partial \mathbb{D} \neq \emptyset$.

Corollary

If G is any bounded region in \mathbb{C} , then M_z^* is supercyclic on $H^2(G)$ or $L^2_a(G)$.

Theorem (K. Chan & R. Sanders (2002))

If $G = \{z \in \mathbb{C} : 1 < |z| < r\}$, then M_z^* on $H^2(G)$ is weakly hypercyclic, but not norm hypercyclic.

Weakly Hypercyclic Operators

Corollary

If $\{z \in \mathbb{C} : 1 < |z| < r\} \subseteq G$ and $G \cap \mathbb{D} = \emptyset$, then M_z^* on $H^2(G)$ is weakly hypercyclic, but not norm hypercyclic.

Weakly Hypercyclic Operators

Corollary

If $\{z \in \mathbb{C} : 1 < |z| < r\} \subseteq G$ and $G \cap \mathbb{D} = \emptyset$, then M_z^* on $H^2(G)$ is weakly hypercyclic, but not norm hypercyclic.

Open Question For which open sets G is M_z^* weakly hypercyclic on $H^2(G)$?

Weakly Hypercyclic?

What if...

Open Question Is M_z^* weakly hypercyclic on $H^2(G)$? Nathan S. Feldman Washington & Lee University

The Weak Topology

X = Banach Space

A basis for the weak topology on X $N(x_0, \mathcal{F}, \epsilon) = \{x \in X : |f(x - x_0)| < \epsilon \text{ for all } f \in \mathcal{F}\}$ where $\mathcal{F} \subseteq X^*$ is a finite set

The Weak Topology

X = Banach Space

A basis for the weak topology on X $N(x_0, \mathcal{F}, \epsilon) = \{x \in X : |f(x - x_0)| < \epsilon \text{ for all } f \in \mathcal{F}\}$ where $\mathcal{F} \subseteq X^*$ is a finite set

A set $E \subseteq X$ is *n*-weakly dense in X if $E \cap N(x_0, \mathcal{F}, \epsilon) \neq \emptyset$

 $\forall x_0 \in X, \epsilon > 0$, and all finite sets $\mathcal{F} \subseteq X^*$ with $|\mathcal{F}| \leq n$

n-Weakly Dense Sets

Theorem

If \mathcal{H} is a Hilbert space and $E \subseteq \mathcal{H}$, then the following are equivalent:

• E is n-weakly dense in H.

Theorem

If \mathcal{H} is a Hilbert space and $E \subseteq \mathcal{H}$, then the following are equivalent:

- E is n-weakly dense in \mathcal{H} .
- F(E) is dense in Cⁿ for every onto continuous linear map F : H → Cⁿ.

Theorem

If \mathcal{H} is a Hilbert space and $E \subseteq \mathcal{H}$, then the following are equivalent:

- E is n-weakly dense in \mathcal{H} .
- F(E) is dense in Cⁿ for every onto continuous linear map F : H → Cⁿ.
- E has a dense orthogonal projection onto every subspace with dimension at most n.

Theorem

If \mathcal{H} is a Hilbert space and $E \subseteq \mathcal{H}$, then the following are equivalent:

- E is n-weakly dense in \mathcal{H} .
- F(E) is dense in Cⁿ for every onto continuous linear map F : H → Cⁿ.
- E has a dense orthogonal projection onto every subspace with dimension at most n.

Definition

- An operator T is *n*-weakly hypercyclic if ∃ x ∈ H such that Orb(x, T) is *n*-weakly dense in H.
- **2** T is *n*-weakly supercyclic if $\exists x \in \mathcal{H}$ such that $\mathbb{C} \cdot Orb(x, T)$ is *n*-weakly dense in \mathcal{H} .

▲□ ▶ ▲ □ ▶ ▲ □

-

Suppose that B_1, B_2, \ldots, B_m are each hypercyclic backward weighted shifts and $1 \le n \le m$.

Suppose that $B_1, B_2, ..., B_m$ are each hypercyclic backward weighted shifts and $1 \le n \le m$. Then $B = \bigoplus_{k=1}^{m} B_k$ is n-weakly hypercyclic if and only if

Suppose that $B_1, B_2, ..., B_m$ are each hypercyclic backward weighted shifts and $1 \le n \le m$. Then $B = \bigoplus_{k=1}^{m} B_k$ is n-weakly hypercyclic if and only if the direct sum of any n of the operators $\{B_1, ..., B_m\}$ is hypercyclic.

Suppose that $B_1, B_2, ..., B_m$ are each hypercyclic backward weighted shifts and $1 \le n \le m$. Then $B = \bigoplus_{k=1}^{m} B_k$ is n-weakly hypercyclic if and only if the direct sum of any n of the operators $\{B_1, ..., B_m\}$ is hypercyclic.

Corollary (Feldman 2010)

There exist operators that are n-weakly hypercyclic, but not (n + 1)-weakly hypercyclic, for any $n \ge 1$.

There are matrices that are 2-weakly supercyclic on \mathbb{R}^n if and only if n is even.

There are matrices that are 2-weakly supercyclic on \mathbb{R}^n if and only if n is even.

Theorem (Feldman 2010)

If $\{\pi, \theta_1, \theta_2, \ldots, \theta_n\}$ are linearly independent over \mathbb{Q} , then $T = R(\theta_1) \oplus R(\theta_2) \oplus \cdots \oplus R(\theta_n)$ is 2-weakly supercyclic on \mathbb{R}^{2n} , where $R(\theta)$ is the 2 × 2 matrix that rotates by θ .

1-Weakly Hypercyclic?

Open Question

Is M_z^* 1-weakly hypercyclic on $H^2(G)$?

Thanks for your Time! Nathan Feldman

Best wishes to John!