Fourier Integral Operators with singularities

Raluca Felea¹ Todd Quinto²

¹Rochester Institute of Technology

²Tufts University

Motivation: Slant-Hole Single Photon Emission Computed Tomography (SPECT)

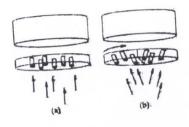
• Detect metabolic processes or body structure

Backprojection is used

• Understand the added singularities

Decrease their strength

Standard SPECT versus Slant Hole SPECT



- (a) detector moves around the body
- ullet lines ot to axis of rotation
- (b) detector moves about its center
- lines at angle $\phi \in (0, \frac{\pi}{2})$
- local algorithm by Quinto, Bakhos and Chung

Geometry of SPECT

- S a simple curve $\theta: I \to S^2$
- $\theta^{\perp} = \{x \in R^3 | x \cdot \theta = 0\}$
- $Y_S = \{(y, \theta) | \theta \in S, y \in \theta^{\perp}\}$
- $L(y,\theta) = \{y + t\theta | t \in R\}$
- $P_m f(y, \theta) = \int_{x \in L(y, \theta)} f(x) m(y, \theta, x) dx$
- $P_m^*g(x) = \int_{a \in I} g(x (x \cdot \theta)\theta, \theta) m da$
- Study $P_m^*P_m$

Assumptions

- (1) $\theta'' \cdot \theta \neq 0$
- (2) $\beta' = \theta \times \theta'' \neq 0$, $\beta = \theta \times \theta'$
- $(3) \beta$ is a simple regular curve
- $(1) \Rightarrow P_m = \mathsf{FIO}$
- $(2) + (3) \Rightarrow P_m = \mathsf{FIO}$ with singularities
- $\phi = \frac{\pi}{2} \Rightarrow \beta = e_3 \Rightarrow (2) + (3)$ fail

Fourier Integral Operators

- $Ff(x) = \int e^{i\phi(x,y,\theta)} a(x,y,\theta) f(y) d\theta dy$
- $F: \mathcal{E}'(Y) \to \mathcal{D}'(X)$
- ullet ϕ is a nondegenerate **phase function**
- a is a symbol S^M : $|\partial_{x,y}^{\alpha}\partial_{\theta}^{\beta}a| < c(1+|\theta|)^{M-|\beta|}$
- C is a canonical relation in $T^*X \setminus 0 \times T^*Y \setminus 0$
- $C = \{(x, d_x \phi; y, -d_y \phi); d_\theta \phi = 0\}$
- $I^m(X,Y,C)$, $m = M \frac{N}{2} + \frac{n_X + n_Y}{4}$
- Adjoint F^* : $Ff(y) = \int e^{-i\phi(x,y,\theta)} \bar{a}(x,y,\theta) f(x) d\theta dx$
- If $F \in I^m(X, Y, C)$ then $F^* \in I^m(Y, X, C^t)$.

Composition of FIOs

• If $F_1 \in I^{m_1}(X,Y,C_1)$ and $F_2 \in I^{m_2}(Y,Z,C_2)$ then $F_1 \circ F_2 \longrightarrow C_1 \circ C_2$?

Duistermaat- Guillemin: clean intersection condition

• $C_1 \times C_2$ intersects $T^*X \times \Delta_{T^*Y} \times T^*Z$ cleanly with excess e, then $F_1 \circ F_2 \in I^{m_1+m_2+\frac{e}{2}}(X,Z;C_1 \circ C_2)$

• $e = 0 \Rightarrow$ Hormander: transverse intersection condition

Nondegenerate versus degenerate geometry

• Geometry of
$$C \in T^*X \setminus 0 \times T^*Y \setminus 0$$

$$\pi_L \qquad \pi_R$$

$$\swarrow \qquad \searrow$$

$$T^*X \setminus 0 \qquad T^*Y \setminus 0$$

- π_L , π_R are local diffeomeorphisms:
- $F_1 \circ F_2 \longrightarrow$ transverse intersection condition
- degenerate : have singularities; Examples: folds; blowdowns
- Bolker condition (π_L is an injective immersion and π_R is an submersion) then F^*F is covered by the clean intersection condition and $F^*F = \Psi \mathsf{DO}$

Singularities

Whitney Folds

 $f:N\to M$ has a fold singularity along $\Sigma=\{x:det\ df=0\}$ if Σ is smooth and if Ker $df\nsubseteq T\Sigma$.

- Ex: $f(x_1, x_2) = (x_1, x_2^2)$
- $\Sigma = \{x_2 = 0\}$; Ker $df = \frac{\partial}{\partial x_2}$

Blowdown

 $f:N\to M$ has a blowdown singularity along $\Sigma=\{x:det\ df=0\}$ if Σ is smooth, if Ker $df\subset T\Sigma.$

- Ex: $f(x_1, x_2) = (x_1, x_1x_2)$
- $\Sigma = \{x_1 = 0\}$; Ker $df = \frac{\partial}{\partial x_2}$

Canonical relation of P_m

- $C = \{(r, s, a, \eta_r, \eta_s, x \cdot (\eta_r \alpha'(a) + \eta_s \beta'(a)) ;$ $x, \eta_r \alpha(a) + \eta_s \beta(a)r) | (\eta_r, \eta_s) \neq 0, x \cdot \alpha(a) = r, x \cdot \beta(a) = s \}$
- π_R and π_L drop rank by 1 at $\Sigma = \{\eta_r = 0\}$
- Ker $d\pi_R = \partial_a c\eta_s \partial_{\eta_r} \Rightarrow \pi_R$ is a fold
- Ker $d\pi_L = \theta \cdot (\partial_{x_1}, \partial_{x_2}, \partial_{x_3}) \Rightarrow \pi_L$ is a blowdown
- *C* = fibered folding canonical relation
- A. Greenleaf & G. Uhlmann
- $F \in I^m(C) \Rightarrow F^*F \in I^{2m,0}(\Delta, \Lambda_{\pi_R(\Sigma)})$
- $\Lambda_{\Gamma} = \{(x, \xi; y, \eta) | (x, \xi) \in \Gamma = \{p = 0\}, (y, \eta) = \exp(tH_p)(x, \xi), t \in R\}$

$I^{p,l}(C_0, C_1)$

- C_0, C_1 intersect cleanly.
- $\bullet \ u$ has an oscillatory representation of certain type with a product type symbol
- $WF(u) \subset C_0 \cup C_1$
- $u \in I^{p,l}(C_0,C_1)$ then $u \in I^{p+l}(C_0 \setminus C_1)$ and $u \in I^p(C_1 \setminus C_0)$
- Ex: $\tilde{C}_0 = \Delta, \tilde{C}_1 = N^* \{ x' y' = 0 \}$
- $u(x,y) = \int e^{i(x'-y')\cdot\xi'+(x''-y'')\cdot\xi'')} a(x,\xi)d\xi'd\xi''$ where
- $|\partial_x^{\alpha} \partial_{\xi'}^{\beta} \partial_{\xi''}^{\gamma} a| < c(1+|\xi|)^{m-|\beta|} (1+|\xi''|)^{m'-|\gamma|}$ $|\xi''| < |\xi'|$

Backprojection

•
$$P_m \in I^{-\frac{1}{2}}(C)$$

$$\bullet \ P_m^*P_m \in I^{-1,0}(\Delta,\Lambda_{\pi_R(\Sigma)})$$

•
$$P_m^* P_m \in I^{-1}(\Delta \setminus \Lambda_{\pi_R(\Sigma)})$$

•
$$P_m^* P_m \in I^{-1}(\Lambda_{\pi_R(\Sigma)} \setminus \Delta)$$

De-emphasis of added singularities

- $\mathbf{L} = P_{\frac{1}{m}}^* DP_m \in I^{1,0}(\Delta, \Lambda_{\pi_R(\Sigma)})$
- Theorem (RF, T. Quinto) If D has $\sigma(D)$ vanishing on $\pi_L(\Sigma)$ then $\mathsf{L} \in I^{0,1}(\Delta, \Lambda_{\pi_D(\Sigma)})$
- $D = \partial_{y_1}^2 (\partial_{y_2} c(y_3)y_1\partial_{y_3})^2$
- $\mathsf{L} \in I^1(\Delta \setminus \Lambda_{\pi_R(\Sigma)})$
- $\mathbf{t} \in I^0(\Lambda_{\pi_P(\Sigma)} \setminus \Delta)$

- $\phi = \frac{\pi}{2}$; π_L and π_R have blowdown singularities
- Marhuenda Ł $\in I^{1,0}(\Delta, \Lambda_{\pi_R(\Sigma)})$

