On a problem of Halmos: Unitary equivalence of a matrix to its transpose

Stephan Ramon Garcia

Pomona College Claremont, California

March 18, 2011

Abstract

Halmos asked whether every square complex matrix is unitarily equivalent to its transpose (UET). Ad hoc examples indicate that the answer is no. In this talk, we give a complete characterization of matrices which are UET. Surprisingly, the naïve conjecture that a matrix is UET if and only if it is unitarily equivalent to a complex symmetric (i.e., self-transpose) matrix is true in dimensions $n \leq 7$ but false for $n \geq 8$. In particular, unexpected building blocks begin to appear in dimensions 6 and 8. This is joint work with James E. There (UC Berkeley).

Partially supported by NSF Grant DMS-1001614 (SRG) and a NSF Graduate Research Fellowship (JET).

A "Halmos Problem"

Problem (Halmos, LAPB - Problem 159)

Is every square matrix unitarily equivalent to its transpose (UET)?

(ロ) (同) (E) (E) (E)

Stephan.Garcia@pomona.edu http://pages.pomona.edu/~sg064747

A "Halmos Problem"

Problem (Halmos, LAPB - Problem 159)

Is every square matrix unitarily equivalent to its transpose (UET)?

Solution (Halmos)

Ad-hoc methods show that

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

is not UET.

A "Halmos Problem"

Problem (Halmos, LAPB - Problem 159)

Is every square matrix unitarily equivalent to its transpose (UET)?

Solution (Halmos)

Ad-hoc methods show that

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

is not UET. Can we characterize those matrices which are UET?

Stephan.Garcia@pomona.edu http://pages.pomona.edu/~sg064747

(ロ) (部) (注) (注) [

• It's technically a "Halmos Problem"

・ロン ・回と ・ヨン ・ヨン

크

- It's technically a "Halmos Problem"
- Every square matrix is *similar* to its transpose, making the problem somewhat difficult.

・ 同 ・ ・ ヨ ・ ・ ヨ ・

- It's technically a "Halmos Problem"
- Every square matrix is *similar* to its transpose, making the problem somewhat difficult.
- Linear preservers of the numerical range are of the form X → UXU* or X → UX^tU* (where U is unitary). Thus we characterize the fixed points of linear preservers in the <u>nontrivial</u> case.

向下 イヨト イヨト

- It's technically a "Halmos Problem"
- Every square matrix is *similar* to its transpose, making the problem somewhat difficult.
- Linear preservers of the numerical range are of the form X → UXU* or X → UX^tU* (where U is unitary). Thus we characterize the fixed points of linear preservers in the <u>nontrivial</u> case.
- It has an obvious "answer," which is totally wrong.

(4月) (4日) (4日)

- It's technically a "Halmos Problem"
- Every square matrix is *similar* to its transpose, making the problem somewhat difficult.
- Linear preservers of the numerical range are of the form X → UXU* or X → UX^tU* (where U is unitary). Thus we characterize the fixed points of linear preservers in the <u>nontrivial</u> case.
- It has an obvious "answer," which is totally wrong.
- Funny things happen once you hit dimensions 6 and 8.

A näive conjecture

Definition

If T is unitarily equivalent to a complex symmetric (i.e., self-transpose) matrix, then T is UECSM.

・ロン ・回 と ・ヨン ・ヨン

크

Definition

If T is unitarily equivalent to a complex symmetric (i.e., self-transpose) matrix, then T is UECSM.

A Coincidence?

Halmos' matrix

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

is the "simplest" example of a matrix which is not UECSM.

▲□→ < □→ < □→</p>

Definition

If T is unitarily equivalent to a complex symmetric (i.e., self-transpose) matrix, then T is UECSM.

A Coincidence?

Halmos' matrix

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

is the "simplest" example of a matrix which is not UECSM.

UECSMs are Tricky

Exactly one of the following is UECSM:

$$\begin{pmatrix} 0 & 7 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 6 \end{pmatrix} \quad \begin{pmatrix} 0 & 7 & 0 \\ 0 & 1 & 3 \\ 0 & 0 & 6 \end{pmatrix} \quad \begin{pmatrix} 0 & 7 & 0 \\ 0 & 1 & 4 \\ 0 & 0 & 6 \end{pmatrix} \quad \begin{pmatrix} 0 & 7 & 0 \\ 0 & 1 & 5 \\ 0 & 0 & 6 \end{pmatrix} \quad \begin{pmatrix} 0 & 7 & 0 \\ 0 & 1 & 6 \\ 0 & 0 & 6 \end{pmatrix}$$

UECSMs are Tricky

Exactly one of the following is UECSM:

$$\begin{pmatrix} 0 & 7 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 6 \end{pmatrix} \quad \begin{pmatrix} 0 & 7 & 0 \\ 0 & 1 & 3 \\ 0 & 0 & 6 \end{pmatrix} \quad \begin{pmatrix} 0 & 7 & 0 \\ 0 & 1 & 4 \\ 0 & 0 & 6 \end{pmatrix} \quad \begin{pmatrix} 0 & 7 & 0 \\ 0 & 1 & 5 \\ 0 & 0 & 6 \end{pmatrix} \quad \begin{pmatrix} 0 & 7 & 0 \\ 0 & 1 & 6 \\ 0 & 0 & 6 \end{pmatrix}$$

Which one is UECSM?

UECSMs are Tricky

Exactly one of the following is UECSM:

$$\begin{pmatrix} 0 & 7 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 6 \end{pmatrix} \quad \begin{pmatrix} 0 & 7 & 0 \\ 0 & 1 & 3 \\ 0 & 0 & 6 \end{pmatrix} \quad \begin{pmatrix} 0 & 7 & 0 \\ 0 & 1 & 4 \\ 0 & 0 & 6 \end{pmatrix} \quad \begin{pmatrix} 0 & 7 & 0 \\ 0 & 1 & 5 \\ 0 & 0 & 6 \end{pmatrix} \quad \begin{pmatrix} 0 & 7 & 0 \\ 0 & 1 & 5 \\ 0 & 0 & 6 \end{pmatrix}$$

Which one is UECSM?

The fourth matrix is unitarily equivalent to

$$\begin{pmatrix} 2+\sqrt{\frac{57}{2}} & 0 & -\frac{1}{2}i\sqrt{37-73\sqrt{\frac{2}{57}}} \\ 0 & 2-\sqrt{\frac{57}{2}} & -\frac{1}{2}i\sqrt{37+73\sqrt{\frac{2}{57}}} \\ -\frac{1}{2}i\sqrt{37-73\sqrt{\frac{2}{57}}} & -\frac{1}{2}i\sqrt{37+73\sqrt{\frac{2}{57}}} & 3 \end{pmatrix}$$

▲御▶ ★注▶ ★注▶

A Gallery of UECSMs

$$\begin{pmatrix} 3 & 6 & 6 \\ 0 & 4 & 1 \\ 0 & 0 & 3 \end{pmatrix} \cong \begin{pmatrix} \frac{1}{2} \left(7 - \sqrt{74}\right) & 3i\sqrt{\frac{2}{169} \left(74 - \sqrt{74}\right)} & \frac{1}{2}i\sqrt{\frac{1}{169} \left(2629 + 72\sqrt{74}\right)} \\ 3i\sqrt{\frac{2}{169} \left(74 - \sqrt{74}\right)} & 3 + \frac{36\sqrt{74}}{109} & \frac{3}{109}\sqrt{5476 + 218\sqrt{74}} \\ \frac{1}{2}i\sqrt{\frac{1}{169} \left(2629 + 72\sqrt{74}\right)} & \frac{3}{109}\sqrt{5476 + 218\sqrt{74}} & \frac{1}{218} \left(763 + 37\sqrt{74}\right) \end{pmatrix} \\ \begin{pmatrix} 3 & 5 & 4 \\ 0 & 8 & 4 \\ 0 & 0 & 3 \end{pmatrix} \cong \begin{pmatrix} \frac{1}{2} \left(11 - \sqrt{82}\right) & 2i\sqrt{\frac{2}{73} \left(82 - 5\sqrt{82}\right)} & \frac{1}{2}i\sqrt{\frac{1}{73} \left(1537 + 160\sqrt{82}\right)} \\ \frac{2i\sqrt{\frac{2}{73} \left(82 - 5\sqrt{82}\right)} & 3 + \frac{16\sqrt{82}}{73} & \frac{2}{73}\sqrt{6724 + 730\sqrt{82}} \\ \frac{1}{2}i\sqrt{\frac{1}{73} \left(1537 + 160\sqrt{82}\right)} & \frac{2}{73}\sqrt{6724 + 730\sqrt{82}} & \frac{1}{146} \left(803 + 41\sqrt{82}\right) \end{pmatrix} \\ \begin{pmatrix} 5 & 2 & 2 \\ 7 & 0 & 0 \\ 7 & 0 & 0 \end{pmatrix} \cong \begin{pmatrix} \frac{1}{2} \left(5 - \sqrt{187}\right) & -5i\sqrt{\frac{561+5\sqrt{187}}{1658}} & -i\sqrt{\frac{3250}{1658}} & \frac{1}{146} \left(803 + 41\sqrt{82}\right) \end{pmatrix} \\ \begin{pmatrix} 9 & 8 & 9 \\ 0 & 7 & 0 \\ 0 & 0 & 7 \end{pmatrix} \cong \begin{pmatrix} 8 - \frac{\sqrt{149}}{13093} & \frac{9}{125\sqrt{187}} & \frac{9}{12}i\sqrt{\frac{16837+64\sqrt{149}}{13093}} & i\sqrt{\frac{133672}{13093} - \frac{129\sqrt{149}}{13093}} \\ \frac{9i\sqrt{\frac{133672}{13093} - \frac{129\sqrt{149}}{13093}} & \frac{18\sqrt{3978002+8232\sqrt{149}}}{13093} \end{pmatrix} \\ \end{pmatrix}$$

(□) (□) (Ξ) (Ξ) (Ξ) (Ξ)

Another Contender?

Stephan.Garcia@pomona.edu http://pages.pomona.edu/~sg064747

Skew-Hamiltonian Matrices

Definition

If $B^t = -B$ and $D^t = -D$, then

$$T = \begin{pmatrix} A & B \\ D & A^t \end{pmatrix}$$

is a *skew-Hamiltonian* matrix (SHM).

(ロ) (同) (E) (E) (E)

Skew-Hamiltonian Matrices

Definition

If $B^t = -B$ and $D^t = -D$, then

$$T = \begin{pmatrix} A & B \\ D & A^t \end{pmatrix}$$

is a *skew-Hamiltonian* matrix (SHM). If T is unitarily equivalent to a SHM, then T is *UESHM*.

・ロト ・日ト ・ヨト ・ヨト

Skew-Hamiltonian Matrices

Definition

If $B^t = -B$ and $D^t = -D$, then

$$T = \begin{pmatrix} A & B \\ D & A^t \end{pmatrix}$$

is a *skew-Hamiltonian* matrix (SHM). If T is unitarily equivalent to a SHM, then T is *UESHM*.

$\mathsf{UESHM} \Rightarrow \mathsf{UET}$

If T is skew-Hamiltonian, then $T = JT^t J^*$ where

$$J = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}.$$

・ 母 ・ ・ ヨ ・ ・ ヨ ・

Theorem (Waterhouse, 2004)

If T is skew-Hamiltonian, then T is similar to $A \oplus A^t$ for some A.

크

Theorem (Waterhouse, 2004)

If T is skew-Hamiltonian, then T is similar to $A \oplus A^t$ for some A.

Proposition

If T is skew-Hamiltonian and 6×6 or smaller, then T is reducible.

・ 回 と ・ ヨ と ・ ヨ と

Theorem (Waterhouse, 2004)

If T is skew-Hamiltonian, then T is similar to $A \oplus A^t$ for some A.

Proposition

If T is skew-Hamiltonian and 6×6 or smaller, then T is reducible.

Pf. Sketch, 6×6 case.

• QT = TQ and $Q = Q^*$ lead to a 72 × 36 real linear system, which is too large to consider symbolically.

A (1) > A (2) > A (2) >

Theorem (Waterhouse, 2004)

If T is skew-Hamiltonian, then T is similar to $A \oplus A^t$ for some A.

Proposition

If T is skew-Hamiltonian and 6×6 or smaller, then T is reducible.

Pf. Sketch, 6×6 case.

- QT = TQ and $Q = Q^*$ lead to a 72 × 36 real linear system, which is too large to consider symbolically.
- Exploiting symmetries and using various reductions, one obtains an equivalent 30×21 real linear system.

Theorem (Waterhouse, 2004)

If T is skew-Hamiltonian, then T is similar to $A \oplus A^t$ for some A.

Proposition

If T is skew-Hamiltonian and 6×6 or smaller, then T is reducible.

Pf. Sketch, 6×6 case.

- QT = TQ and $Q = Q^*$ lead to a 72 × 36 real linear system, which is too large to consider symbolically.
- Exploiting symmetries and using various reductions, one obtains an equivalent 30×21 real linear system.
- Mathematica's symbolic MatrixRank command shows that the rank is ≤ 20, whence a nonscalar Q exists.

Numerical Evidence

Computation indicates that generic 8×8 SHMs are irreducible. Finding a <u>scalable</u> family of provably irreducible SHMs is difficult.

・ 回 ト ・ ヨ ト ・ ヨ ト

Numerical Evidence

Computation indicates that generic 8×8 SHMs are irreducible. Finding a <u>scalable</u> family of provably irreducible SHMs is difficult.

Proposition

For
$$d \ge 4$$
, the matrix $T = \begin{pmatrix} A & B \\ 0 & A \end{pmatrix}$, where

$$A = \begin{pmatrix} 1 & & & \\ & 2 & & \\ & & \ddots & \\ & & & \cdot & \cdot \\ & & & & d \end{pmatrix}, \qquad B = \begin{pmatrix} 0 & 1 & 1 & \cdots & 1 & 1 \\ -1 & 0 & 1 & \ddots & 1 & 1 \\ -1 & -1 & 0 & \ddots & 1 & 1 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ -1 & -1 & -1 & \cdots & -1 & 0 \end{pmatrix},$$

is skew-Hamiltonian and irreducible.

Putting It All Together

(ロ) (同) (E) (E) (E)

A Potential Pitfall

$$T = \begin{pmatrix} \begin{array}{c|c} 0 & 1 & 0 \\ 0 & 0 & 2 \\ \hline 0 & 0 & 0 \\ \hline & & 0 & 0 \\ \hline & & 1 & 0 & 0 \\ 0 & 2 & 0 \\ \end{pmatrix}$$

is UET, UECSM, and UESHM.

(日) (日) (日)

臣

A Potential Pitfall

$$\mathcal{T} = \begin{pmatrix} \begin{array}{c|c} 0 & 1 & 0 \\ 0 & 0 & 2 \\ \hline 0 & 0 & 0 \\ \hline & & 0 & 0 \\ \hline & & 1 & 0 & 0 \\ 0 & 2 & 0 \\ \end{pmatrix}$$

is UET, UECSM, and UESHM. However, $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$ itself has <u>none</u> of these properties.

・ 通 > ・ 目 > ・ 目 > ・

A Potential Pitfall

$$T = \begin{pmatrix} \begin{array}{c|c} 0 & 1 & 0 \\ 0 & 0 & 2 \\ \hline 0 & 0 & 0 \\ \hline & & 0 & 0 \\ \hline & & 1 & 0 & 0 \\ & & 0 & 2 & 0 \\ \end{pmatrix}$$

is UET, UECSM, and UESHM. However, $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$ itself has <u>none</u> of these properties.

Remarks

• If $T = A \oplus A^t$, then T is UECSM, UESHM, and UET.

・ロン ・回と ・ヨン ・ヨン

Э

A Potential Pitfall

$$T = \begin{pmatrix} \begin{array}{c|c} 0 & 1 & 0 \\ 0 & 0 & 2 \\ \hline 0 & 0 & 0 \\ \hline & & 0 & 0 \\ \hline & & 1 & 0 & 0 \\ & & 0 & 2 & 0 \\ \end{pmatrix}$$

is UET, UECSM, and UESHM. However, $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$ itself has <u>none</u> of these properties.

Remarks

- If $T = A \oplus A^t$, then T is UECSM, UESHM, and UET.
- Neither class UECSM nor UESHM is closed under restriction to direct summands.

・ロン ・回と ・ヨン・

A Potential Pitfall

$$T = \begin{pmatrix} \begin{array}{c|c} 0 & 1 & 0 \\ 0 & 0 & 2 \\ \hline 0 & 0 & 0 \\ \hline & & 0 & 0 \\ \hline & & 1 & 0 & 0 \\ 0 & 2 & 0 \\ \end{pmatrix}$$

is UET, UECSM, and UESHM. However, $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$ itself has <u>none</u> of these properties.

Remarks

- If $T = A \oplus A^t$, then T is UECSM, UESHM, and UET.
- Neither class UECSM nor UESHM is closed under restriction to direct summands.
- This issue is important only in dimensions ≥ 6

・ロン ・回と ・ヨン・

T is UET if and only if T is unitarily equivalent to a direct sum of:

Stephan.Garcia@pomona.edu http://pages.pomona.edu/~sg064747

・ロン ・回と ・ヨン ・ヨン

크

T is UET if and only if T is unitarily equivalent to a direct sum of:

• irreducible CSMs

▲日> ▲圖> ▲国> ▲国>

크

T is UET if and only if T is unitarily equivalent to a direct sum of:

• irreducible CSMs

2 irreducible SHMs (automatically 8×8 or larger),

T is UET if and only if T is unitarily equivalent to a direct sum of:

- **1** irreducible CSMs
- **2** irreducible SHMs (automatically 8×8 or larger),
- matrices of the form $A \oplus A^t$ where A is irreducible and neither UECSM nor UESHM (automatically 6×6 or larger).

・ 同 ト ・ ヨ ト ・ ヨ ト ・

T is UET if and only if T is unitarily equivalent to a direct sum of:

- **1** irreducible CSMs
- **2** irreducible SHMs (automatically 8×8 or larger),
- matrices of the form A ⊕ A^t where A is irreducible and neither UECSM nor UESHM (automatically 6 × 6 or larger).

・ 同 ト ・ ヨ ト ・ ヨ ト

T is UET if and only if T is unitarily equivalent to a direct sum of:

- irreducible CSMs
- **2** irreducible SHMs (automatically 8×8 or larger),
- matrices of the form A ⊕ A^t where A is irreducible and neither UECSM nor UESHM (automatically 6 × 6 or larger).

Moreover, the unitary orbits of these classes are pairwise disjoint.

▲ 圖 ▶ ▲ 国 ▶ ▲ 国 ▶ →

T is UET if and only if T is unitarily equivalent to a direct sum of:

- irreducible CSMs
- **2** irreducible SHMs (automatically 8×8 or larger),
- matrices of the form A ⊕ A^t where A is irreducible and neither UECSM nor UESHM (automatically 6 × 6 or larger).

Moreover, the unitary orbits of these classes are pairwise disjoint.

Corollary

If $T \in M_n(\mathbb{C})$ is UET and $n \leq 7$, then T is UECSM.

() < </p>

T is UET if and only if T is unitarily equivalent to a direct sum of:

- irreducible CSMs
- **2** irreducible SHMs (automatically 8×8 or larger),

 matrices of the form A ⊕ A^t where A is irreducible and neither UECSM nor UESHM (automatically 6 × 6 or larger).

Moreover, the unitary orbits of these classes are pairwise disjoint.

Corollary

If $T \in M_n(\mathbb{C})$ is UET and $n \le 7$, then T is UECSM. If $n \le 5$, then T is unitarily equivalent to a direct sum of irreducible CSMs.

Theorem (Pearcy, 1962 + Sibirskiĭ, 1968)

For 3×3 matrices, $A \cong B$ if and only if the traces of

 $X, X^2, X^3, X^*X, X^*X^2, X^{*2}X^2, X^*X^2X^{*2}X$

agree for X = A and X = B.

(ロ) (同) (E) (E) (E)

Theorem (Pearcy, 1962 + Sibirskiĭ, 1968)

For 3×3 matrices, $A \cong B$ if and only if the traces of

 $X, X^2, X^3, X^*X, X^*X^2, X^{*2}X^2, X^*X^2X^{*2}X$

agree for X = A and X = B.

Proposition (SRG, JET)

If T is 3×3 , then T is UECSM if and only if

$$tr[T^*T(T^*T - TT^*)TT^*] = 0.$$

(日) (同) (E) (E) (E)

Theorem (Pearcy, 1962 + Sibirskiĭ, 1968)

For 3×3 matrices, $A \cong B$ if and only if the traces of

 $X, X^2, X^3, X^*X, X^*X^2, X^{*2}X^2, X^*X^2X^{*2}X$

agree for X = A and X = B.

Proposition (SRG, JET)

If T is 3×3 , then T is UECSM if and only if

$$tr[T^*T(T^*T - TT^*)TT^*] = 0.$$

Proof.

Check if $T \cong T^t$. Only the final word is not satisfied trivially.

Bibliography

- BALAYAN, L., GARCIA, S.R., Unitary equivalence to a complex symmetric matrix: geometric criteria, Oper. Matrices 4 (2010), No. 1, 53–76.
- **2** GARCIA, S.R., POORE, D.E., WYSE, M.K., Unitary equivalent to a complex symmetric matrix: a modulus criterion, Oper. Matrices (to appear).
- GARCIA, S.R., TENER, J.E., Unitary equivalence of a matrix to its transpose, J. Operator Theory (to appear).
- GARCIA, S.R., WOGEN, W., Complex symmetric partial isometries, J. Funct. Analysis 257 (2009), 1251-1260.
- GARCIA, S.R., WOGEN, W., Some new classes of complex symmetric operators, Trans. Amer. Math. Soc. **362** (2010), 6065-6077.
- HALMOS, P.R., *Linear algebra problem book*, The Dolciani Mathematical Expositions, 16. Mathematical Association of America, Washington, DC, 1995.
- PEARCY, C., A complete set of unitary invariants for 3 × 3 complex matrices, Trans. Amer. Math. Soc. 104 (1962), 425429.
- **8** SIBIRSKIĬ, K.S., A minimal polynomial basis of unitary invariants of a square matrix of order three (Russian), Mat. Zametki **3** (1968), 291295.
- **9** TENER, J.E., Unitary equivalence to a complex symmetric matrix: an algorithm, J. Math. Anal. Appl. **341** (2008), 640–648.
- WATERHOUSE, WILLIAM C., *The structure of alternating-Hamiltonian matrices*, Linear Algebra Appl. **396** (2005), 385390.

・ロト ・日ト ・ヨト ・ヨト