
On a problem of Halmos:
Unitary equivalence of a matrix to its transpose

Stephan Ramon Garcia

Pomona College
Claremont, California

March 18, 2011

Abstract

Halmos asked whether every square complex matrix is unitarily equivalent to its transpose (UET).
Ad hoc examples indicate that the answer is no. In this talk, we give a complete characterization
of matrices which are UET. Surprisingly, the näıve conjecture that a matrix is UET if and only if it
is unitarily equivalent to a complex symmetric (i.e., self-transpose) matrix is true in dimensions
n ≤ 7 but false for n ≥ 8. In particular, unexpected building blocks begin to appear in dimensions
6 and 8. This is joint work with James E. Tener (UC Berkeley).
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A “Halmos Problem”

Problem (Halmos, LAPB - Problem 159)

Is every square matrix
unitarily equivalent to its
transpose (UET)?

Solution (Halmos)

Ad-hoc methods show that0 1 0
0 0 2
0 0 0


is not UET. Can we characterize those matrices which are UET?
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Who Cares?

Why is this interesting?

It’s technically a “Halmos Problem”

Every square matrix is similar to its transpose, making the
problem somewhat difficult.

Linear preservers of the numerical range are of the form
X 7→ UXU∗ or X 7→ UX tU∗ (where U is unitary). Thus we
characterize the fixed points of linear preservers in the
nontrivial case.

It has an obvious “answer,” which is totally wrong.

Funny things happen once you hit dimensions 6 and 8.
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A näive conjecture

Definition

If T is unitarily equivalent to a complex symmetric (i.e., self-
transpose) matrix, then T is UECSM.

A Coincidence?

Halmos’ matrix 0 1 0
0 0 2
0 0 0


is the “simplest” example of a matrix which is not UECSM.

Näive Conjecture

UET ⇐⇒ UECSM (⇐ trivial)
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Näive Conjecture

UET ⇐⇒ UECSM (⇐ trivial)

Stephan.Garcia@pomona.edu http://pages.pomona.edu/~sg064747
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UECSMs are Tricky

Exactly one of the following is UECSM:

(
0 7 0
0 1 2
0 0 6

) (
0 7 0
0 1 3
0 0 6

) (
0 7 0
0 1 4
0 0 6

) (
0 7 0
0 1 5
0 0 6

) (
0 7 0
0 1 6
0 0 6

)

Which one is UECSM?

The fourth matrix is unitarily equivalent to
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A Gallery of UECSMs
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Another Contender?
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Skew-Hamiltonian Matrices

Definition

If Bt = −B and Dt = −D, then

T =

(
A B
D At

)
is a skew-Hamiltonian matrix (SHM).

If T is unitarily equivalent to
a SHM, then T is UESHM.

UESHM ⇒ UET

If T is skew-Hamiltonian, then T = JT tJ∗ where

J =

(
0 I
−I 0

)
.
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Reducibility of Skew-Hamiltonian Matrices

Theorem (Waterhouse, 2004)

If T is skew-Hamiltonian, then T is similar to A⊕ At for some A.

Proposition

If T is skew-Hamiltonian and 6× 6 or smaller, then T is reducible.

Pf. Sketch, 6× 6 case.

QT = TQ and Q = Q∗ lead to a 72× 36 real linear system,
which is too large to consider symbolically.

Exploiting symmetries and using various reductions, one
obtains an equivalent 30× 21 real linear system.

Mathematica’s symbolic MatrixRank command shows that
the rank is ≤ 20, whence a nonscalar Q exists.
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Irreducible skew-Hamiltonians exist if n ≥ 8

Numerical Evidence

Computation indicates that generic 8× 8 SHMs are irreducible.
Finding a scalable family of provably irreducible SHMs is difficult.

Proposition

For d ≥ 4, the matrix T =

(
A B
0 A

)
, where

A =


1

2
. . .

d

 , B =


0 1 1 · · · 1 1

−1 0 1
. . . 1 1

−1 −1 0
. . . 1 1

...
. . .

. . .
. . .

. . .
...

−1 −1 −1
. . . 0 1

−1 −1 −1 · · · −1 0

 ,

is skew-Hamiltonian and irreducible.
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Putting It All

Together
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An Instructive Example

A Potential Pitfall

T =


0 1 0
0 0 2
0 0 0

0 0 0
1 0 0
0 2 0


is UET, UECSM, and UESHM.

However, A =
(

0 1 0
0 0 2
0 0 0

)
itself has

none of these properties.

Remarks

If T = A⊕ At , then T is UECSM, UESHM, and UET.

Neither class UECSM nor UESHM is closed under restriction
to direct summands.

This issue is important only in dimensions ≥ 6
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Final Answer

Theorem (SRG, JET)

T is UET if and only if T is unitarily equivalent to a direct sum of:

1 irreducible CSMs

2 irreducible SHMs (automatically 8× 8 or larger),

3 matrices of the form A⊕ At where A is irreducible and neither
UECSM nor UESHM (automatically 6× 6 or larger).

Moreover, the unitary orbits of these classes are pairwise disjoint.

Corollary

If T ∈ Mn(C) is UET and n ≤ 7, then T is UECSM. If n ≤ 5, then
T is unitarily equivalent to a direct sum of irreducible CSMs.
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Corollary

If T ∈ Mn(C) is UET and n ≤ 7, then T is UECSM. If n ≤ 5, then
T is unitarily equivalent to a direct sum of irreducible CSMs.
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A Trace Criterion

Theorem (Pearcy, 1962 + Sibirskĭı, 1968)

For 3× 3 matrices, A ∼= B if and only if the traces of

X , X 2, X 3, X ∗X , X ∗X 2, X ∗2X 2, X ∗X 2X ∗2X

agree for X = A and X = B.

Proposition (SRG, JET)

If T is 3× 3, then T is UECSM if and only if

tr[T ∗T (T ∗T − TT ∗)TT ∗] = 0.

Proof.

Check if T ∼= T t . Only the final word is not satisfied trivially.
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