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Abstract

Halmos asked whether every square complex matrix is unitarily equivalent to its transpose (UET).
Ad hoc examples indicate that the answer is no. In this talk, we give a complete characterization
of matrices which are UET. Surprisingly, the näıve conjecture that a matrix is UET if and only if it
is unitarily equivalent to a complex symmetric (i.e., self-transpose) matrix is true in dimensions
n ≤ 7 but false for n ≥ 8. In particular, unexpected building blocks begin to appear in dimensions
6 and 8. This is joint work with James E. Tener (UC Berkeley).
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A “Halmos Problem”

Problem (Halmos, LAPB - Problem 159)

Is every square matrix
unitarily equivalent to its
transpose (UET)?

Solution (Halmos)

Ad-hoc methods show that0 1 0
0 0 2
0 0 0


is not UET. Can we characterize those matrices which are UET?
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Who Cares?

Why is this interesting?

It’s technically a “Halmos Problem”

Every square matrix is similar to its transpose, making the
problem somewhat difficult.

Linear preservers of the numerical range are of the form
X 7→ UXU∗ or X 7→ UX tU∗ (where U is unitary). Thus we
characterize the fixed points of linear preservers in the
nontrivial case.

It has an obvious “answer,” which is totally wrong.

Funny things happen once you hit dimensions 6 and 8.
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A näive conjecture

Definition

If T is unitarily equivalent to a complex symmetric (i.e., self-
transpose) matrix, then T is UECSM.

A Coincidence?

Halmos’ matrix 0 1 0
0 0 2
0 0 0


is the “simplest” example of a matrix which is not UECSM.

Näive Conjecture

UET ⇐⇒ UECSM (⇐ trivial)
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Näive Conjecture

UET ⇐⇒ UECSM (⇐ trivial)

Stephan.Garcia@pomona.edu http://pages.pomona.edu/~sg064747
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UECSMs are Tricky

Exactly one of the following is UECSM:

(
0 7 0
0 1 2
0 0 6

) (
0 7 0
0 1 3
0 0 6

) (
0 7 0
0 1 4
0 0 6

) (
0 7 0
0 1 5
0 0 6

) (
0 7 0
0 1 6
0 0 6

)

Which one is UECSM?

The fourth matrix is unitarily equivalent to
2 +

√
57
2

0 − 1
2
i

√
37− 73

√
2

57

0 2−
√

57
2

− 1
2
i

√
37 + 73

√
2

57

− 1
2
i

√
37− 73

√
2

57
− 1

2
i

√
37 + 73

√
2

57
3
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A Gallery of UECSMs

3 6 6
0 4 1
0 0 3
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Another Contender?
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Skew-Hamiltonian Matrices

Definition

If Bt = −B and Dt = −D, then

T =

(
A B
D At

)
is a skew-Hamiltonian matrix (SHM).

If T is unitarily equivalent to
a SHM, then T is UESHM.

UESHM ⇒ UET

If T is skew-Hamiltonian, then T = JT tJ∗ where

J =

(
0 I
−I 0

)
.
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Reducibility of Skew-Hamiltonian Matrices

Theorem (Waterhouse, 2004)

If T is skew-Hamiltonian, then T is similar to A⊕ At for some A.

Proposition

If T is skew-Hamiltonian and 6× 6 or smaller, then T is reducible.

Pf. Sketch, 6× 6 case.

QT = TQ and Q = Q∗ lead to a 72× 36 real linear system,
which is too large to consider symbolically.

Exploiting symmetries and using various reductions, one
obtains an equivalent 30× 21 real linear system.

Mathematica’s symbolic MatrixRank command shows that
the rank is ≤ 20, whence a nonscalar Q exists.
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Irreducible skew-Hamiltonians exist if n ≥ 8

Numerical Evidence

Computation indicates that generic 8× 8 SHMs are irreducible.
Finding a scalable family of provably irreducible SHMs is difficult.

Proposition

For d ≥ 4, the matrix T =

(
A B
0 A

)
, where

A =


1

2
. . .

d

 , B =


0 1 1 · · · 1 1

−1 0 1
. . . 1 1

−1 −1 0
. . . 1 1

...
. . .

. . .
. . .

. . .
...

−1 −1 −1
. . . 0 1

−1 −1 −1 · · · −1 0

 ,

is skew-Hamiltonian and irreducible.
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Putting It All

Together
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An Instructive Example

A Potential Pitfall

T =


0 1 0
0 0 2
0 0 0

0 0 0
1 0 0
0 2 0


is UET, UECSM, and UESHM.

However, A =
(

0 1 0
0 0 2
0 0 0

)
itself has

none of these properties.

Remarks

If T = A⊕ At , then T is UECSM, UESHM, and UET.

Neither class UECSM nor UESHM is closed under restriction
to direct summands.

This issue is important only in dimensions ≥ 6
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Final Answer

Theorem (SRG, JET)

T is UET if and only if T is unitarily equivalent to a direct sum of:

1 irreducible CSMs

2 irreducible SHMs (automatically 8× 8 or larger),

3 matrices of the form A⊕ At where A is irreducible and neither
UECSM nor UESHM (automatically 6× 6 or larger).

Moreover, the unitary orbits of these classes are pairwise disjoint.

Corollary

If T ∈ Mn(C) is UET and n ≤ 7, then T is UECSM. If n ≤ 5, then
T is unitarily equivalent to a direct sum of irreducible CSMs.
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A Trace Criterion

Theorem (Pearcy, 1962 + Sibirskĭı, 1968)

For 3× 3 matrices, A ∼= B if and only if the traces of

X , X 2, X 3, X ∗X , X ∗X 2, X ∗2X 2, X ∗X 2X ∗2X

agree for X = A and X = B.

Proposition (SRG, JET)

If T is 3× 3, then T is UECSM if and only if

tr[T ∗T (T ∗T − TT ∗)TT ∗] = 0.

Proof.

Check if T ∼= T t . Only the final word is not satisfied trivially.
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