A Brief Survey of Closed-Range Composition Operators on Bergman and Bloch Spaces

Pratibha Ghatage, Department of Mathematics, Cleveland State University

Based on joint work with: John Akeroyd, Maria Tjani, Dechao Zheng and Nina Zorboska

This is a more detailed version of the talk I presented at the Gainesville SEAM. I have learnt a lot from all my co-authors. When it comes to interesting examples, the lion's share belongs to J. Akeroyd. I will always be grateful to Wayne Smith for his kind and consistent interest.

1 Notation

The spaces of analytic functions of interest to us are the classical Bloch, Bergman and Hardy spaces.

 \mathbb{D} is the open unit disk whose area measure is assumed to be 1.

 \mathcal{B} is the classical Bloch space and it is a Banach space under the norm,

 $||f|| = \sup\left\{ (1 - |z|^2) |f'(z)|, z \in \mathbb{D} \right\} + |f(0)|.$

The little Bloch space \mathcal{B}_0 consisting of the closure of polynomials in the Bloch-norm can be described as $\{f \in \mathcal{B}, (1-|z|^2) | f'(z) | \to 0 \text{ as } |z| \to 1\}$.

It is easy to see that \mathcal{B} is contained in the Bergman space $\mathcal{A}^2 = \left\{ f, \int_D |f(z)|^2 dA(z) < \infty \right\}.$

The pseudo-hyperbolic metric ρ on \mathbb{D} is defined by $\rho(z, w) = |\sigma_z(w)|$, where σ_z is the automorphism of \mathbb{D} , which interchanges z with 0.

D(w,r) is the pseudo-hyperbolic disk $\{z, \rho(z,w) < r\}$, and its area $|D(w,r)| \sim (1-|w|)^2$. If φ is an analytic self-map of \mathbb{D} and $a \in \mathbb{D}$, then $h_a = \sigma_{\varphi(a)} \circ \varphi \circ \sigma_a$, is an analytic self-map of

$$\mathbb{D}, h_a(0) = 0 \text{ and } h'_a(0) = \frac{(1 - |a|^2)\varphi'(a)}{1 - |\varphi(a)|^2}.$$

We write $\tau_{\varphi}(z) = \frac{(1 - |z|^2)\varphi'(z)}{1 - |\varphi(z)|^2}$ and observe that by the Schwarz-Pick lemma, $|\tau_{\varphi}(z)| \le 1.$
 $|\tau_{\varphi}(z)| = 1 \forall z \text{ if } \varphi \text{ is an automorphism.}$

It has been shown that τ_{φ} is Lipschitz, with respect to the pseudo-hyperbolic metric on the domain and Euclidean one on the range.

2 Regarding the Bloch space

Theorem 2.0.1. *The following are equivalent:*

(a) C_{φ} has closed-range on \mathcal{B} .

(b) Given $w \in \mathbb{D}, \varphi^{-1}(D(w,s))$ contains D(z,s), and $|\varphi((D(z,s))| \sim |D(w,s)|$ for some $s \in (0,1)$.

(c) $\exists t \in (0,s)$ so that, given $w \in \mathbb{D}$, $D(z,t) \subseteq \varphi^{-1}(D(w,r))$, $|\varphi(D(z,t)| \sim |D(w,r)|$ and φ is univalent on D(z,t).

The above result is natural in view of the fact that the Bloch norm is often defined in terms of Schlicht disks.

<u>Application</u>: If φ is a univalent self-map of \mathbb{D} , and C_{φ} has closed-range on \mathcal{B}_0 , then C_{φ} is Fredholm on \mathcal{B}_0 .

- 1. A univalent self-map of \mathbb{D} belongs to the Dirichlet space \mathcal{D} , where $\mathcal{D} = \left\{ f, \int |f'(z)|^2 dA(z) < \infty \right\}$.
- 2. $\mathcal{D} \subset \mathcal{B}_0$, is well-known.
- 3. B₁ = {∑ a_nσ_{w_n}, ∑ |a_n| < ∞, w_n ∈ D̄} is called the Besov space.
 If < f, g >= ∫ f'(z)g'(z)dA(z), B₁ is the dual space of B₀.
 Now if φ is a univalent self-map of D, then C_φ maps B₀1 into itself and hence C_φ* maps B₁.
 Moreover, C_φ*(σ_w) = τ_φ(w)σ_{φ(w)} if w ∈ D and 0 if w ∈ D̄.
 In particular, C_φ*(σ_w) ≠ 0 if w ∈ D̄. It is now easy to see that ker C_φ* is one-dimensional if φ is univalent.
- 4. The Riemann map of \mathbb{D} onto $\mathbb{D} \setminus (0,1)$ gives a closed-range composition operator on \mathcal{B}_0 .

Thus there are non-automorphic univalent self-maps of \mathbb{D} which induce Fredholm composition operators on \mathcal{B}_0 . By P. Bourdon's result, this does not happen when \mathcal{B}_0 is replaced by a Hilbert space of analytic functions.

3 Regarding the Bergman space

Suppose $K = \overline{K} \subseteq \partial \mathbb{D}$ and $M \in (0, \infty)$ and assume that $\forall \zeta \in K, |\varphi'(\zeta)| \leq M$. Let $W = \bigcup S(\zeta, \pi/2), \zeta \in K$ where $\Gamma(\zeta, \pi/2)$ is a Stolz angle at ζ and $\varphi(\zeta) = \omega \in \partial \mathbb{D}$ and $W_s = W \cap \{z, |z| > s\}$.

The following result seems strong, but is a consequence of the following facts.

- 1. By the Julia-Caratheòdory theorem, the rate at which $(1 |\varphi(z)|) \div (1 |z|)$ converges to $|\varphi'(\zeta)|$ is dependent on $|\varphi'(\zeta)|$, rather than the location of ζ .
- By a result of Pommerenke, if |φ'(ζ)| = M < ∞ and φ(ζ) = η where |ζ| = |η| = 1, then ∃θ, r, s, depending on M, satisfying the following: If |w| > r and w ∈ Γ(η, θ) then ∃z ∈ Γ(ζ, π/2) satisfying φ(z) = w.

Theorem 3.0.2. If φ is a holomorphic self-map of \mathbb{D} , the following are equivalent:

- 1. C_{φ} is closed-range on \mathcal{A}^2 .
- 2. $\exists K = \overline{K} \subseteq \partial \mathbb{D}$ such that φ has uniformly bounded angular derivatives at every point of K, φ extends continuously to K and $\varphi(K) = \partial \mathbb{D}$.
- 3. $\exists r \in (0,1)$ and $M \in (0,\infty)$ such that, $\mathbb{D} \setminus r\mathbb{D}$ is contained in $\varphi(W_r) \subseteq \varphi(\mathbb{D})$ and $\forall z \in W_r, M(1 |\varphi(z)|) \ge (1 |z|)$ and $|\tau_{\varphi}(z)| \ge 1/2$.

Corollary 3.0.3. No univalent self-map of \mathbb{D} induces a closed-range composition operator on $\mathcal{A}^2 \Leftrightarrow \mathcal{H}^2$) unless it is automorphic.

It is a fact that in the univalent case, extension of φ to K is one-to-one. This makes K homeomorphic to $\partial \mathbb{D}$ and hence $K = \partial \mathbb{D}$.

Corollary 3.0.4. C_{φ} is closed-range on \mathcal{A}^2 , then C_{φ} is closed-range on \mathcal{B} .

3.1 Examples

Example 1: J. Shapiro describes a Blaschke product B whose zeros are given by $a_n = r_n e^{i\omega_n}$ where $r_n = 1 - \frac{1}{n^2}$ and ω_n is the mid-point of an arc of length $\frac{1}{n}$. By dropping the zeros in a well-defined manner, one ensures that the resulting product is thin and has no angular derivatives. So, C_B is compact on \mathcal{A}^2 , which is as far as one can get from having a closed range. It is known that if B is a thin Blaschke product, (i.e. if $|\tau_{(z_n)}| \to 1$ whenever $|z_n| \to 1$) then $\mathbb{D} \subseteq B(\Omega_{1/2})$.

Example 2: There exists h, a conformal mapping of \mathbb{D} onto an infinite ribbon G, which spirals to $\overline{\partial \mathbb{D}}$ in such a way that C_h has closed range on \mathcal{B} , but $h(\partial \mathbb{D})$ does not intersect $\partial \mathbb{D}$.

On the positive side, we have the following:

Example 3: If B is a Blaschke product whose spectrum skips an arc of the unit circle, then $\exists n$ so that $z^n B(z)$ induces a closed-range composition operator on \mathcal{A}^2 .

Example 4: There exists a Blaschke product B^* , for which C_{B^*} does not have a closed range on \mathcal{A}^2 , but $zB^*(z)$ does.

Corollary 3.1.1. If C_{φ} is bounded below on \mathcal{A}^2 , then C_{φ} is bounded below on \mathcal{H}^2 . Let $\nu(A) = m(\varphi^{-1}(A))$, a measure defined on $\partial \mathbb{D}$. Then $\nu \leq m$. By a well-known result, C_{φ} is bounded below on \mathcal{H}^2 if and only if $m \leq \nu$. This holds since $\varphi(K) = \partial \mathbb{D}$ and φ has uniformly bounded angular derivatives at every point of K.

If N_{φ} is the Nevalinna counting function and $\varphi(0) = 0$, then $N_{\varphi}(w) \le c(1 - |w|^2)$. By Zorboska's theorem, if C_{φ} is bounded below on \mathcal{H}^2 , and $G_c = \{w \in \mathbb{D}, N_{\varphi}(w) \ge c(1 - |w|^2)\}$, then G_c satisfies the reverse Carleson condition for some c. i.e. $|D(w,r) \cap G_c| \ge \delta |D(w,r)|$ for some r and $\forall w \in \mathbb{D}$.

Thus, we only need to consider "inner-like" functions, when dealing with \mathcal{A}^2 .

As shown in the examples above, not all inner functions give rise to closed-range composition operators on \mathcal{A}^2 .