William Benjamin Grilliette

University of Nebraska - Lincoln

South Eastern Analysis Meeting XXVII

Scaled-Free Objects

Crutched Sets

Proposition (Failure of Freeness, [3])

Let $S \neq \emptyset$ and \mathscr{C} any subcategory of normed vector spaces with contractive maps. If $Ob(\mathscr{C})$ contains $V \not\cong \mathbb{O}$, then S has no associated free object in \mathscr{C} .

The classical notions can be recovered by replacing \mathbf{Set} , previously formulated by Gerbracht in [1].

Definition

A *crutched set* is a pair (S, f), where S is a set and f a function from S to $[0, \infty)$. The function f is called the *crutch function*.

Definition

Given two crutched sets (S, f) and (T, g), a function $\phi : S \to T$ is *constrictive* if $g(\phi(s)) \leq f(s)$ for all $s \in S$.

A New View of Presentation Theory for C*-algebras Scaled-Free Objects

Outline of Construction

Given a crutched set (S, f),

- Form the set $S_f := S \setminus f^{-1}(0)$.
- **2** Construct the free unital *-algebra $A_{S,f}$ over \mathbb{C} on S_f .
- **Output** Construct a C*-norm on $A_{S,f}$ from f.

Lemma (Universal C*-norm, [3])

For each $a \in A_{S,f}$, define

$$\mathscr{S}_{a} := \begin{cases} \mathcal{B} \text{ a unital } C^{*}\text{-algebra}, \\ \|\pi(a)\|_{\mathcal{B}} : & \pi : A_{\mathcal{S},f} \to \mathcal{B} \text{ a unital } *\text{-homomorphism}, \\ & \|\pi(s)\|_{\mathcal{B}} \leq f(s) \forall s \in S_{f} \end{cases}$$

and $\rho_{S,f} : A_{S,f} \to [0,\infty)$ by $\rho_{S,f}(a) := \sup \mathscr{S}_a$. Then, $\rho_{S,f}$ is a sub-multiplicative norm on $A_{S,f}$ satisfying the C*-property.

• Complete $A_{S,f}$ into a unital C*-algebra $\mathcal{A}_{S,f}$.

A New View

Definitions

Theorem (Universal Property, [3])

Let (S, f) be a crutched set, \mathcal{B} a unital C*-algebra, and $\phi : (S, f) \to \mathcal{B}$ a constriction. Then, there is a unique unital *-homomorphism $\hat{\phi} : \mathcal{A}_{S,f} \to \mathcal{B}$ such that $\hat{\phi}(s) = \phi(s)$ for all $s \in S$.

Definition

A C*-relation on (S, f) is an element of $\mathcal{A}_{S,f}$.

Definition

For a crutched set (S, f) and C*-relations $R \subseteq A_{S,f}$ on (S, f), let J_R be the two-sided, norm-closed ideal generated by R in $A_{S,f}$. Then, the *unital C*-algebra presented on* (S, f) *subject to* R is

$$\langle S, f | R \rangle_{\mathbf{1C}^*} := \mathcal{A}_{S,f} / J_R.$$

Note: There are *more* "relations" than just *-polynomials.

Tietze Transformations

The Transformations

For group theory, Tietze ([5], 1908) described canonical means of converting between presentations of the same group. These same transformations exist for this presentation theory for $1C^*$.

Adding/Removing C*-relations. (e.g. ⟨(x,λ) | x = x²⟩_{1C*} ↔ ⟨(x,λ) | x = x², x = x⁵⟩_{1C*})
Adding/Removing generators. (e.g. ⟨(x,λ) | x = x²⟩_{1C*} ↔ ⟨(x,λ), (y,λ²) | x = x², y = x^{*}x⟩_{1C*})
One of these transformations is *elementary* if only one generator or C*-relation is altered. Tietze Transformations

Main Theorem

Theorem (Tietze Theorem for **1C***, [2])

Given unital C*-algebras \mathcal{A} and \mathcal{B} , $\mathcal{A} \cong_{\mathbf{1C}^*} \mathcal{B}$ iff there is a sequence of four Tietze transformations changing the presentation of \mathcal{A} into the presentation for \mathcal{B} .

Corollary (Elementary Version, [2])

Given finitely presented unital C*-algebras \mathcal{A} and \mathcal{B} , $\mathcal{A} \cong_{\mathbf{1C}^*} \mathcal{B}$ iff there is a finite sequence of elementary Tietze transformations changing the presentation of \mathcal{A} into the presentation for \mathcal{B} .

Tietze Transformations

C*-algebra of an Invertible

Define
$$p : \mathbb{R} \to \mathbb{R}$$
 by $p(\mu) := \begin{cases} \mu, & \mu \ge 0, \\ 0, & \mu < 0. \end{cases}$

Proposition (C*-relation for Positivity, [2])

For a C*-algebra \mathcal{A} and $x \in \mathcal{A}$, $x \ge 0$ if and only if $x = p(\Re(x))$.

Corollary (C*-relations for Invertibility, [4])

Let \mathcal{A} be a unital C^* -algebra, $x \in \mathcal{A}$ and $\mu \in (0, \infty)$. Then, there is $y \in \mathcal{A}$ satisfying $\|y\|_{\mathcal{A}} \leq \mu$ and xy = yx = 1 if and only if $1 \leq \mu^2 x^* x$ and $1 \leq \mu^2 x x^*$. In this case, $y \in C^*(1, x)$.

Tietze Transformations

C*-algebra of an Invertible

Consider the C*-algebra of an invertible element.

$$\mathcal{I}_{\lambda,\mu} := \left\langle (x,\lambda) \left| \mu^2 x^* x \ge \mathbb{1}, \mu^2 x x^* \ge \mathbb{1} \right\rangle_{\mathbf{1C}^*}.$$
 If $\lambda \mu < 1$,

$$\|\mathbb{1}\|_{\mathcal{I}_{\lambda,\mu}} \leq \mu^2 \|x^* x\|_{\mathcal{I}_{\lambda,\mu}} = \mu^2 \|x\|_{\mathcal{I}_{\lambda,\mu}}^2 \leq (\lambda\mu)^2 < 1.$$

Thus $\mathbb{1} = 0$ so $\mathcal{I}_{\lambda,\mu} \cong \mathbf{1}_{\mathcal{I}_*} \mathbb{O}$

For
$$\lambda \mu \geq 1$$
,

$$\mathcal{I}_{\lambda,\mu} = \langle (x,\lambda) | \mu^2 x^* x \ge \mathbb{1}, \mu^2 x x^* \ge \mathbb{1} \rangle_{\mathbf{1C}^*}$$

$$\cong_{\mathbf{1C}^*} \left\langle \begin{array}{c} (x,\lambda), \\ (q,\lambda), (u,\lambda\mu) \end{array} \right| \left. \begin{array}{c} \mu^2 x^* x \ge \mathbb{1}, \mu^2 x x^* \ge \mathbb{1}, q = (x^* x)^{\frac{1}{2}}, \\ u = \mu x \left(p \left(\mu \left(x^* x \right)^{\frac{1}{2}} - \mathbb{1} \right) + \mathbb{1} \right)^{-1} \end{array} \right\rangle_{\mathbf{1C}^*}$$

1

$$\cong_{\mathbf{1}\mathbf{C}^{*}} \left\langle \begin{array}{c} (x,\lambda), \\ (q,\lambda), (u,\lambda\mu) \end{array} \right| \left| \begin{array}{c} \mu^{2}x^{*}x \geq \mathbb{1}, \mu^{2}xx^{*} \geq \mathbb{1}, q = (x^{*}x)^{\frac{1}{2}}, \\ u = \mu x \left(p \left(\mu \left(x^{*}x \right)^{\frac{1}{2}} - \mathbb{1} \right) + \mathbb{1} \right)^{-1}, \\ \mathbb{1} \leq \mu q, u^{*}u = uu^{*} = \mathbb{1}, x = uq \end{array} \right\rangle_{\mathbf{1}\mathbf{C}^{*}}$$

Tietze Transformations

C*-algebra of an Invertible

$$\begin{aligned} \mathcal{I}_{\lambda,\mu} \cong_{\mathbf{1}\mathbf{C}^*} & \left\langle \begin{array}{c} (\mathbf{x},\lambda), \\ (q,\lambda), (u,\lambda\mu) \end{array} \right| \ \mathbb{1} \leq \mu q, u^* u = uu^* = \mathbb{1}, \mathbf{x} = uq \\ \cong_{\mathbf{1}\mathbf{C}^*} & \left\langle (q,\lambda), (u,\lambda\mu) \right| \mathbb{1} \leq \mu q, u^* u = uu^* = \mathbb{1} \right\rangle_{\mathbf{1}\mathbf{C}^*} \\ \cong_{\mathbf{1}\mathbf{C}^*} & \left\langle (q,\lambda) \right| \mathbb{1} \leq \mu q \right\rangle_{\mathbf{1}\mathbf{C}^*} \ast_{\mathbb{C}} \left\langle (u,\lambda\mu) \right| u^* u = uu^* = \mathbb{1} \right\rangle_{\mathbf{1}\mathbf{C}^*} \\ \cong_{\mathbf{1}\mathbf{C}^*} & C \left[\frac{1}{\mu}, \lambda \right] \ast_{\mathbb{C}} C(\mathbb{T}) \end{aligned}$$

In summary,

$$\left\langle (x,\lambda) \left| \mu^2 x^* x \ge \mathbb{1}, \mu^2 x x^* \ge \mathbb{1} \right\rangle_{\mathbf{1C}^*} \cong_{\mathbf{1C}^*} \left\{ \begin{array}{cc} \mathbb{O}, & \lambda \mu < 1, \\ C(\mathbb{T}), & \lambda \mu = 1, \\ C[0,1] *_{\mathbb{C}} C(\mathbb{T}), & \lambda \mu > 1. \end{array} \right.$$

A New View of Presentation Theory for C*-algebras Tietze Transformations

C*-algebra of an Invertible

Bibliography I

Eberhard H.-A. Gerbracht.

Elemente einer kombinatorischen Theorie der C*-Algebren: Präsentationen von C*-Algebren mittels Erzeugender und Relationen.

PhD thesis, Technischen Universität Carolo-Wilhelmina zu Braunschweig, March 1998.

Will Grilliette.

Presentations and Tietze transformations of C*-algebras. 12 2010, arXiv:1012.1275v1.

Will Grilliette.

Scaled-free objects.

11 2010, arXiv:1011.0717v1.

Tietze Transformations

C*-algebra of an Invertible

Bibliography II

Will Grilliette.

The C*-algebra of a single invertible element. 01 2011, arXiv:1101.0286v1.

Heinrich Tietze.

Über die topologischen Invarianten mehrdimensionaler Mannigfaltigkeiten.

Monatsh. Math. Phys., 19(1):1–118, 1908.