MF C*-algebras, MF Traces and Lower Bounds for Topological Free Entropy Dimension

Joint with: Qihui Li, Weihua Li, Junhao Shen

1 Let's take a moment

 (\mathcal{M}, τ) von Neumann algebra with a faithful trace τ $\mathcal{M} = W^*(x_1, \ldots, x_n), \vec{x} = (x_1, \ldots, x_n)$ $m = m(t_1, \ldots, t_n)$ *-monomial in n free variables $\tau(m(x_1, \ldots, x_n)) = m^{th}$ moment of \vec{x} . Suppose (\mathcal{N}, ρ) and $\mathcal{N} = W^*(y_1, \ldots, y_n)$. **THM** $\tau(m(\vec{x})) = \rho(m(\vec{y}))$ for all *-monomials m $\Leftrightarrow \exists$ normal *-isomorphism $\pi : \mathcal{M} \to \mathcal{N}$ such that $\rho \circ \pi = \tau$.

If $N \in \mathbb{N}$ and $\varepsilon > 0$, we say that (\vec{x}, τ) and (\vec{y}, ρ) are $(\mathbf{N}, \varepsilon)$ -close if

$$\left| \tau\left(m\left(\vec{x}
ight)
ight) -
ho\left(m\left(\vec{y}
ight)
ight) \right| < \varepsilon$$

for all *-monomials m with deg $m \leq N$.

Given $\mathcal{M} = W^*(x_1, \ldots, x_n)$ and faithful trace τ .

Let $R > \max \{ \|x_1\|, \dots, \|x_n\| \} = \|\vec{x}\|$

 $\mathcal{M}_k\left(\mathbb{C}\right) = k \times k$ complex matrices, $\tau_k = \frac{1}{k}Tr$

For $\varepsilon > 0, N \in \mathbb{N}$ and $k \in \mathbb{N}$ define

$$egin{aligned} & \mathsf{\Gamma}_R\left(ec{x},N,arepsilon,k
ight) \subseteq \left\{ec{A} \in \mathcal{M}_k\left(\mathbb{C}
ight)^n : \left\|ec{A}
ight\| < R
ight\} \ ext{by:} \ & ec{A} \in \mathsf{\Gamma}_R\left(ec{x},N,arepsilon,k
ight) \Leftrightarrow \left(ec{x}, au
ight), \left(ec{A}, au_k
ight) \ ext{are} \ \left(N,arepsilon
ight) ext{-close} \end{aligned}$$

We want to "measure" the sets $\Gamma_R(\vec{x}, N, \varepsilon, k)$.

COVERING NUMBERS

(X, d) is a totally bounded metric space,

 $\omega > 0$

 $\nu_d(X, \omega) = \text{minimal number of } \omega\text{-balls needed to cover} X.$

Ex:
$$(1/\omega)^m \leq \nu_{\parallel\parallel}$$
 $(ball \mathbb{R}^m, \omega) \leq (3/\omega)^m$

 $\mathcal{A} \text{ C*-algebra dim}_{\mathbb{C}} \mathcal{A} = d < \infty \Longrightarrow$ $(1/\omega)^{d^2} \leq \nu_{\parallel\parallel} \left(\mathcal{U} \left(\mathcal{A}
ight), \omega
ight) \leq (9\pi e/\omega)^{d^2}$

BOX DIMENSION

The **Box Dimension** (**Minkowski Dimension**) is defined as

$$\dim_{\mathsf{box}}(X) = \limsup_{\omega \to 0^+} \frac{\log \nu_d(X, \omega)}{-\log \omega}.$$

If $X \subseteq \mathbb{R}^n$, X bounded with positive Lebesgue measure, then

$$\dim_{\mathsf{box}}\left(X\right) = n$$

$$\delta_0(x_1, \dots, x_n) = \frac{\log \left(v(\Gamma_R(\vec{x}; N, \varepsilon, , k), \omega) - \log \omega \right)}$$

$$\delta_0(x_1, \dots, x_n) = \frac{\log \left(v(\Gamma_R(\vec{x}; N, \varepsilon, , k), \omega) - k^2 \log \omega \right)}$$

$$\begin{split} \delta_0(x_1, \dots, x_n) &= \\ \limsup_{k \to \infty} \frac{\log \left(v(\Gamma_R(\vec{x}; N, \varepsilon, , k), \omega) - k^2 \log \omega \right)}{-k^2 \log \omega} \end{split}$$

$$\begin{split} \delta_0(x_1, \dots, x_n) &= \\ \inf_{N \in \mathbb{N}, \varepsilon > 0} \limsup_{k \to \infty} \frac{\log \left(v(\Gamma_R(\vec{x}; N, \varepsilon, , k), \omega) - k^2 \log \omega \right)}{-k^2 \log \omega} \end{split}$$

Define for $\vec{x} = (x_1, \ldots, x_n)$

$$\delta_0(x_1,\ldots,x_n) =$$

$$\limsup_{\omega \to 0^+} \inf_{N \in \mathbb{N}, \varepsilon > 0} \limsup_{k \to \infty} \frac{\log \left(v(\Gamma_R(\vec{x}; N, \varepsilon, , k), \omega) - k^2 \log \omega \right)}{-k^2 \log \omega}$$

This is independent of $R > \|\vec{x}\|$.

Szarek: δ_0 unchanged if we use the covering numbers with respect to $||||_2$.

APPLICATIONS

Many results of the form: If $\mathcal{M} = W^*(x_1, \ldots, x_n)$ has some particular property, then $\delta_0(\vec{x}) \leq 1$.

conclusion: If $\delta_0(\vec{x}) > 1$ (e.g., $\mathcal{L}_{\mathbb{F}_n}$, $n \geq 2$), then \mathcal{M} does not have the property.

Voiculescu: Cartan subalgebra

Ge: Prime Factors, Simple Masas

Ge, Shen: Deep results absorbing all previous results

Shen, H: New invariant \Re_2 involving covering by unitary orbits of ω -balls that gives elementary proofs of extended Ge-Shen results.

Many exciting recent results: Jung, Dykema, Shlyakhtenko, etc. Thm (H 1998: Shanghai Theorem) Suppose $\mathcal{M} = W^*(x_1, \ldots, x_n)$ is hyperfinite with a faithful normal trace τ and suppose $\omega > 0$ and $R > \max_{1 \le j \le n} ||x_j||$. Then there are $\varepsilon > 0$ and $N \in \mathbb{N}$ such that, for every finite factor (\mathbb{N}, ρ) and every $\vec{A}, \vec{B} \in \mathcal{N}^n$ with $||\vec{A}|| \le R$, if (\vec{A}, ρ) and (\vec{B}, ρ) are both (N, ε) -close to (\vec{x}, τ) , then there is a unitary $U \in \mathcal{N}$ such that

$$\sum_{j=1}^{n} \left\| B_j - UA_j U^* \right\|_2 < \omega.$$

Note: R is unnecessary.

COR. $W^*(x_1, \ldots, x_n)$ hyperfinite \Longrightarrow

 $\delta_0(x_1,\ldots,x_n)\leq 1.$

Note: If you find a nice A then any B is almost unitarily equivalent to A

The proof is based on tracial ultraproducts.

Sakai An ultraproduct of finite factors is a factor von Neumann algebra

Weihua Li & H: A tracial ultraproduct of C*-algebras is a von Neumann algebra.

Sample application:

For every $\varepsilon > 0$ and every $n \in \mathbb{N}$, there is a $\delta > 0$ such that, for every tracial C*-algebra (\mathcal{A}, τ) and every $T \in \mathcal{M}_n(\mathcal{A})$, if $||T|| \leq 1$ and $||T^*T - TT^*||_2 < \delta$, then there are normal contractions $A_1, \ldots, A_n \in \mathcal{A}$ and a unitary $U \in \mathcal{M}_n(\mathcal{A})$ such that

$$\left\| T - U \begin{pmatrix} A_1 & & \\ & A_2 & \\ & & \ddots & \\ & & & A_n \end{pmatrix} U^* \right\|_2 < \varepsilon.$$

C*-algebra Version

$$\mathcal{A} = \mathcal{C}^*(x_1, \ldots, x_n), \, \mathcal{B} = \mathcal{C}^*(y_1, \ldots, y_n)$$

 $\{p_1(t_1,\ldots,t_n), p_2(t_1,\ldots,t_n), p_2(t_1,\ldots,t_n),\ldots\} = \text{all}$ *-polynomials over $\mathbb{Q} + i\mathbb{Q}$.

THM There is a unital *-isomorphism $\pi : \mathcal{A} \to \mathcal{B}$ sending each x_j to y_j iff

$$\left\| p_{m}\left(ec{x}
ight)
ight\| =\left\| p_{m}\left(ec{y}
ight)
ight\|$$

for all $m \geq 1$.

 \vec{x}, \vec{y} are **topologically** (N, ε) -close \Leftrightarrow top- (N, ε) -close \Leftrightarrow

$$\left\| \left\| p_{j}\left(ec{x}
ight) \right\| - \left\| p_{j}\left(ec{y}
ight) \right\| \right\| < arepsilon$$
 for $1 \leq j \leq N.$

Voiculescu's Topological Free Entropy Dimension

Given $\mathcal{A} = C^*(x_1, \ldots, x_n)$.

For $\varepsilon > \mathbf{0}, \, N \in \mathbb{N}$ and $k \in \mathbb{N}$ define

$$\Gamma^{\text{top}}(\vec{x}, N, \varepsilon, k) \subseteq \mathcal{M}_k(\mathbb{C})^n$$
 by:
 $\vec{A} \in \Gamma^{\text{top}}(\vec{x}, N, \varepsilon, k) \Leftrightarrow \vec{x}, \vec{A} \text{ are top-}(N, \varepsilon) \text{-close}$

$$\begin{split} \delta_{\text{top}}(x_1, \dots, x_n) &= \\ \limsup_{\omega \to 0^+} \inf_{N \in \mathbb{N}, \varepsilon > 0} \limsup_{k \to \infty} \frac{\log \left(v(\Gamma_R(\vec{x}; N, \varepsilon, , k), \omega) - k^2 \log \omega \right)}{-k^2 \log \omega} \end{split}$$

Szarek: δ_{top} unchanged if we use the covering numbers with respect to $|||_2$.

Junhao Shen & H: $\mathcal{A} = C^*(\vec{x})$ commutative or finitedimensional \Longrightarrow

$$\delta_{\mathsf{top}}(x_1,\ldots,x_n) = 1 - rac{1}{\mathsf{dim}\,\mathcal{A}}$$

Shen & H: Formula for direct sums

Shen, Qihui Li & H: δ_{top} additive for full free products Shen, Qihui Li & H:

 \mathcal{A} nuclear $\Longrightarrow \delta_{top}(x_1, \ldots, x_n) \leq 1.$

Domain of δ_0

 $\delta_0(x_1, \ldots, x_n; \tau)$ defined $\Leftrightarrow \forall \varepsilon > 0, N \in \mathbb{N} \exists k \in \mathbb{N}$ such that $\Gamma(\vec{x}, N, \varepsilon, k) \neq \emptyset$

 \iff

 $W^*(x_1, \ldots, x_n)$ embeddable in a tracial ultrapower of the hyperfinite II_1 factor (Connes' embedding problem)

 \iff

 $W^*(x_1, \ldots, x_n)$ embeddable in a tracial ultraproduct $\prod_{k \in \mathbb{N}}^{\alpha} (\mathcal{M}_k(\mathbb{C}), \tau_k)$

Domain of δ_{top}

 $\delta_{top}(x_1, \ldots, x_n)$ defined $\Leftrightarrow \forall \varepsilon > 0, N \in \mathbb{N} \exists k \in \mathbb{N}$ such that $\Gamma(\vec{x}, N, \varepsilon, k) \neq \emptyset$.

 \Leftrightarrow

 $C^{*}(\vec{x})$ is an **MF algebra** (Blackadar-Kirchberg), i.e.,

 $C^{*}\left(ec{x}
ight)$ can be embedded in

$$\prod_{1\leq s<\infty}\mathcal{M}_{k_{s}}\left(\mathbb{C}
ight)/\sum_{1\leq s<\infty}\mathcal{M}_{k_{s}}\left(\mathbb{C}
ight)$$

for some increasing sequence $\{k_s\}$ of positive integers

 \iff

 $C^{*}(\vec{x})$ can be embedded in a C*-ultraproduct $\prod_{k\in\mathbb{N}}^{\alpha}\mathcal{M}_{k}(\mathbb{C})$.

 $C^*(x_1, \ldots, x_n)$ is an MF-algebra if there are sequences $\{k_s\}$ of positive integers and $\vec{A_s} = (A_{1s}, \ldots, A_{ns}) \in \mathcal{M}_{k_s}(\mathbb{C})^n$ such that, for every *-polynomial p,

$$\lim_{s\to\infty} \left\| p\left(A_{1s},\ldots,A_{ns}\right) \right\| = \left\| p\left(x_1,\ldots,x_n\right) \right\|.$$

We call this **convergence in topological distribution**, and write

$$\vec{A_s} \xrightarrow{\mathsf{top}} \vec{x}.$$

In the tracial von Neumann algebra case, we write

$$\left(ec{A_s}, { au}_{k_s}
ight) \stackrel{\mathsf{dist}}{\longrightarrow} \left(ec{x}, { au}
ight)$$

if $\lim_{s\to\infty} \tau_{k_s} \left(m\left(\vec{A_s} \right) \right) = \tau \left(m\left(\vec{x} \right) \right)$ for every *-monomial m.

2 MF-traces

Definition 1 Suppose $\mathcal{A} = \mathcal{C}^*(x_1, \ldots, x_n)$ is an MF *C*algebra.* A tracial state τ on \mathcal{A} is an MF-trace if there are sequences $\{k_s\}$ in \mathbb{N} and \vec{A}_s in $\mathcal{M}_{k_s}(\mathbb{C})^n$ such that, for every *-polynomial p,

1.
$$\lim_{k\to\infty} \|p(A_{1k},\ldots,A_{nk})\| = \|p(x_1,\ldots,x_n)\|$$
, and

2.
$$\lim_{k\to\infty} \tau_{m_k} (p(A_{1k}, \dots, A_{nk})) = \tau (p(x_1, \dots, x_n)).$$

 $\mathcal{T}\left(\mathcal{A}
ight)=$ the set of all tracial states on \mathcal{A}

 $\mathcal{T}_{MF}(\mathcal{A}) =$ the set of all MF-traces on \mathcal{A} .

Notation: τ a tracial state, $\tau(a) = (\pi_{\tau}(a)e, e) =$ GNS representation for τ , $\hat{\tau} : \pi_{\tau}(\mathcal{A})'' \to \mathbb{C}$, $\hat{\tau}(T) = (Te, e)$ faithful normal trace

 τ is **finite-dimensional** if dim $\pi_{\tau}(\mathcal{A}) < \infty$.

Proposition 2 If $\mathcal{A} = \mathcal{C}^*(x_1, \ldots, x_n)$ is MF, then

- 1. $\mathcal{T}_{MF}(\mathcal{A})$ is a nonempty weak*-compact convex set.
- 2. Every finite-dimensional tracial state on \mathcal{A} is in $\mathcal{T}_{MF}(\mathcal{A})$,
- 3. If π is a unital *-homomorphism on \mathcal{A} and $\pi(\mathcal{A})$ is an MF-algebra, then

$$\left\{\varphi\circ\pi:\varphi\in\mathcal{T}_{MF}\left(\pi\left(\mathcal{A}\right)\right)\right\}\subseteq\mathcal{T}_{MF}\left(\mathcal{A}\right).$$

4. $\tau \in \mathcal{T}_{MF}(\mathcal{A}) \iff$ there is a free ultrafilter on \mathbb{N} , and embedding $\pi : \mathcal{A} \to \prod_{k \in \mathbb{N}}^{\alpha} \mathcal{M}_k(\mathbb{C})$ such that for every $a \in \mathcal{A}$,

$$\tau(a) = \lim_{k \to \alpha} \tau_k(A_k),$$

where $\pi(a) = \{A_k\}_{\alpha}$.

3 MF-nuclear C*-algebras

 $\mathcal{A} = \mathcal{C}^*(x_1, \dots, x_n)$ is **nuclear** if, for every representation $\pi : \mathcal{A} \to B(H)$ we have $\pi(\mathcal{A})''$ is hyperfinite.

 \mathcal{A} is **MF-nuclear** if \mathcal{A} is MF and, for every $\tau \in \mathcal{T}_{MF}(\mathcal{A})$, we have $\pi_{\tau}(\mathcal{A})''$ is hyperfinite.

The class of MF-nuclear C*-algebras is **closed under**: **direct sums**, **nice tensor products**, **direct limits**, and **MF-representations**.

THM If
$$\mathcal{A} = \mathcal{C}^*(x_1, \dots, x_n)$$
 is MF and $\{x_1, \dots, x_n\} = \bigcup_{j=1}^m E_j,$

and $C^*(E_j)$ is MF-nuclear for $1 \le j \le m$, then $\delta_{top}(x_1, \ldots, x_n) \le m$.

Lower Bounds

If $A = (A_1, \ldots, A_n) \in \mathcal{M}_k^n(\mathbb{C})$, we define the *unitary* orbit of \vec{A} by

$$\mathcal{U}\left(\vec{A}\right) = \left\{ \left(UA_1U, UA_2U^*, \dots, UA_nU^*\right) : U \in \mathcal{U}_k \right\}.$$

THM (Dostal, H.) If $W^*(x_1, \ldots, x_n)$ is hyperfinite and if there are sequences $\{k_s\}$ in \mathbb{N} and \vec{A}_s in $\mathcal{M}_{k_s}(\mathbb{C})^n$ such that $\vec{A}_s \vec{x}$ and $\{\|\vec{A}_s\|\}$ is bounded, then

$$\delta_{0}\left(\vec{x}\right) = \limsup_{\omega \to 0^{+}} \sup_{s \to \infty} \frac{\log\left(v\left(\mathcal{U}\left(\vec{A}_{s}\right),\omega\right)\right)}{-k_{s}^{2}\log\omega}$$

. THM (Li,Li,Shen,H.) If $\mathcal{A} = C^*(\vec{x})$ is MF-nuclear, then, for every $\tau \in \mathcal{T}_{MF}$

$$\delta_{top}(x_1,\ldots,x_n) \geq \delta_0(x_1\ldots,x_n;\tau).$$

Theorem 3 Suppose $\mathcal{A} = C^*(x_1, \ldots, x_n)$ is a unital MF-algebra and $\tau \in \mathcal{T}_{MF}(\mathcal{A})$. Suppose $b = b^* \in \pi_{\tau}(\mathcal{A})''$. Then

$$\delta_{top}(x_1,\ldots,x_n) \geq \delta_0(b,\tau).$$

Voiculescu: $x = x^* \Longrightarrow$

$$\delta_0(x; \tau) = 1 - \sum_{\lambda \in \sigma_p(x)} \tau \left(\chi_{\{\lambda\}}(x) \right)^2.$$

so $\delta_0(x;\tau) = 1 \Leftrightarrow x$ has no eigenvalues.

In a finite von Neumann algebra every selfadjoint element has an eigenvalue ⇔

it has a normal finite-dimensional representation \iff

it has no minimal projection \Longleftrightarrow

it is **diffuse**.

We call a unital C*-algebra **C*-diffuse** if it has no finitedimensional representations. **Theorem 4** Suppose $\mathcal{A} = \mathcal{C}^*(x_1, \ldots, x_n)$ is an MF-algebra and either

- 1. \mathcal{A} C*-diffuse, or
- 2. *A* has infinitely many non-unitarily equivalent finite-dimensional representations.

Then $\delta_{top}(x_1,\ldots,x_n) \geq 1$.

Corollary 5 If \mathcal{A} is a unital residually finite-dimensional C^* -algebra, then, for any generating set $\{x_1, \ldots, x_n\}$ of \mathcal{A} , we have

$$\delta_{top}(x_1, \dots, x_n) \ge 1 - \frac{1}{\dim \mathcal{A}}.$$

If, in addition, \mathcal{A} is MF-nuclear, then equality holds.

Corollary 6 Suppose \mathcal{A} is a unital finitely generated MFC*-algebra and G is a finitely generated infinite abelian group and $\alpha : G \to Aut(\mathcal{A})$ is a group homomorphism. If $\mathcal{A} \rtimes_{\alpha} G$ is MF, then, for every set $\{x_1, \ldots, x_n\}$ of generators for $\mathcal{A} \rtimes_{\alpha} G$, we have

 $\delta_{top}(x_1,\ldots,x_n) \geq 1.$

If, in addition, A is MF-nuclear, then

$$\delta_{top}\left(x_{1},\ldots,x_{n}\right)=1.$$

Corollary 7 If A is a simple, MF-nuclear C*algebra, then, for any generating set $\{x_1, \ldots, x_n\}$ of A, we have

$$\delta_{top}(x_1,\ldots,x_n) = 1 - \frac{1}{\dim \mathcal{A}}.$$

The MF-Ideal

$$I_{MF}(\mathcal{A}) = \{a \in \mathcal{A} : \tau(a^*a) = \mathsf{0} \forall \tau \in \mathcal{T}_{MF}(\mathcal{A})\}$$

Theorem 8 Suppose $\mathcal{A} = \mathcal{C}^*(x_1, \ldots, x_n)$ is an MFalgebra and dim $\mathcal{A}/\mathcal{J}_{MF}(\mathcal{A}) = d < \infty$. Then

$$\delta_{top}(x_1,\ldots,x_n) = 1 - \frac{1}{d}$$

Theorem 9 If $\mathcal{A} = C^*(x_1, \ldots, x_n)$ is an MF-nuclear and $\mathcal{A}/\mathcal{J}_{MF}(\mathcal{A})$ is RFD algebra, then

$$\delta_{top}(x_1,\ldots,x_n) = 1 - rac{1}{\dim \mathcal{A}/\mathcal{I}_{MF}}$$

Example 10 Suppose \mathcal{B} is a unital separable MF- C^* algebra that is not nuclear, e.g., $\mathcal{B} = C_r^*(\mathbb{F}_2)$, and let $\mathcal{D} = \mathcal{B} \otimes \mathcal{K}(\ell^2)$. Then \mathcal{D} is singly generated, and every tracial state vanishes on \mathcal{D} . Let \mathcal{D}^+ be the C*-algebra obtained by adjoining the identity to \mathcal{D} and suppose \mathcal{N} is a finitely generated nuclear MF C*-algebra. Then $\mathcal{A} =$ $\mathcal{N} \otimes \mathcal{D}^+$ is finitely generated and MF, but not nuclear. However, $\mathbf{1} \otimes \mathcal{D}^+ \subseteq \mathcal{I}_{MF}(\mathcal{A})$, so

 $\mathcal{I}_{MF}(\mathcal{A}) = \mathcal{I}_{MF}(\mathcal{N}) \otimes \mathcal{D}.$

Thus $\mathcal{A}/\mathcal{I}_{MF}(\mathcal{A})$ is isomorphic to $\mathcal{N}/\mathcal{I}_{MF}(\mathcal{N})$, which is nuclear. Hence, for every set $\{x_1, \ldots, x_n\}$ of generators of \mathcal{A} , we have

$$\delta_{top}(x_1,\ldots,x_n) \leq 1.$$

We now consider the class S of separable MF C*-algebras for which every trace is an MF-trace, i.e., $\mathcal{TS}(\mathcal{A}) = \mathcal{T}_M(\mathcal{A})$.

Lemma 11 The following are true.

- 1. If $\mathcal{A}, \mathcal{B} \in \mathcal{S}$, then $\mathcal{A} \oplus \mathcal{B} \in \mathcal{S}$.
- 2. If $\mathcal{A} \in \mathcal{S}$, then $\mathcal{A} \otimes \mathcal{M}_n(\mathbb{C}) \in \mathcal{S}$ for every $n \geq 1$.
- 3. S is closed under direct (inductive) limits.
- 4. Every separable commutative C^* -algebra is in S.
- 5. Every AH C*-algebra is in S.

6. $A \in S \Leftrightarrow$ every factor tracial state on A is in $\mathcal{T}_{MF}(A)$

- 7. If $\mathcal{A}, \mathcal{B} \in \mathcal{S}$, then $\mathcal{A} \otimes_{\min} \mathcal{B} \in \mathcal{S}$.
- 8. Connes' embedding counterexample \implies There is MF $\mathcal{A} \notin \mathcal{S}$

Theorem 12 Suppose $\mathcal{A} = C^*(x_1, \ldots, x_n) \in \mathcal{S}$. Then either

- 1. There is a $\tau \in \mathcal{T}_{MF}(\mathcal{A})$ and an $A \in \pi_{\tau}(\mathcal{A})''$ such that $\delta_0(A) = 1$, or
- 2. $\mathcal{A}/\mathcal{I}_{MF}(\mathcal{A})$ is RFD.

Therefore, either $\delta_{top}(x_1, \ldots, x_n) \ge 1$ or dim $\mathcal{A}/\mathcal{I}_{MF}(\mathcal{A}) < \infty$.

Corollary 13 If $\mathcal{A} = C^*(x_1, \ldots, x_n)$ is MF-nuclear and $\mathcal{A} \in S$, then

$$\delta_{top}(x_1,\ldots,x_n) = 1 - \frac{1}{\dim \mathcal{A}}$$

We now want to focus on the class \mathcal{W} of all separable MF C*-algebras \mathcal{A} such that $\mathcal{I}_{MF}(\mathcal{A}) = \{0\}$. The main reason is the following.

Proposition 14 Suppose $\mathcal{A} = C^*(x_1, \ldots, x_n)$ is MFnuclear and $\mathcal{A} \in S \cap W$. Then

$$\delta_{top}(x_1,\ldots,x_n) = 1 - \frac{1}{\dim \mathcal{A}}.$$

Theorem 15 The following are true.

- 1. If $\{A_i : i \in I\} \subseteq W$, and A is a separable unital subalgebra of the C*-direct product $\prod_{i \in I} A_i$, then $A \in W$.
- 2. If $\mathcal{A}, \mathcal{B} \in \mathcal{W}$, then $\mathcal{A} \otimes_{\min} \mathcal{B} \in \mathcal{W}$.
- 3. Every separable unital simple MF C*-algebra is in \mathcal{W} .

- 4. Every separable unital RFD C*-algebra is in \mathcal{W} .
- 5. \mathcal{W} is not closed under direct limits.