Composition Operators on $S^2(\mathbb{D})$

Katherine Heller kheller@noctrl.edu

North Central College

March 18, 2011

Composition Operators Weighted Hardy spaces $S^2(\mathbb{D})$

Composition Operators

• Let ${\mathcal H}$ be a Hilbert space of analytic functions on the unit disc ${\mathbb D}$ in ${\mathbb C}.$

Composition Operators Weighted Hardy spaces $S^2(\mathbb{D})$

Composition Operators

- Let \mathcal{H} be a Hilbert space of analytic functions on the unit disc \mathbb{D} in \mathbb{C} .
- For $\varphi:\mathbb{D}\to\mathbb{D},$ analytic, we define the composition operator on $\mathcal H$ by

$$C_{\varphi}(f) = f \circ \varphi$$

for $f \in \mathcal{H}$.

Composition Operators Weighted Hardy spaces $S^2(\mathbb{D})$

Weighted Hardy spaces

Weighted Hardy spaces

$$H^{2}(\beta) = \left\{ f(z) = \sum_{n=0}^{\infty} a_{n} z^{n} : ||f||^{2} = \sum_{n=0}^{\infty} |a_{n}|^{2} \beta(n)^{2} < \infty \right\}$$

where $\{\beta(n)\}\$ is a sequence with $\beta(0) = 1$, $\beta(n) > 0$ for all *n*, and $\liminf \beta(n)^{1/n} \ge 1$.

Composition Operators Weighted Hardy spaces $S^2(\mathbb{D})$

Weighted Hardy spaces

For
$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$
,

$$H^2(\mathbb{D})$$
 : $||f||^2_{H^2} = \sum_{n=1}^{\infty} |a_n|^2$

Composition Operators Weighted Hardy spaces

n

Weighted Hardy spaces

For

$$f(z) = \sum_{n=0}^{\infty} a_n z^n,$$

$$A^2(\mathbb{D}) : ||f||_{A^2}^2 = |a_0|^2 + \sum_{n=1}^{\infty} \frac{|a_n|^2}{n}$$

$$H^2(\mathbb{D}) : ||f||_{H^2}^2 = \sum_{n=1}^{\infty} |a_n|^2$$

Composition Operators Weighted Hardy spaces $S^2(\mathbb{D})$

Weighted Hardy spaces

For

$$f(z) = \sum_{n=0}^{\infty} a_n z^n,$$

$$A^2(\mathbb{D}) : ||f||_{A^2}^2 = |a_0|^2 + \sum_{n=1}^{\infty} \frac{|a_n|^2}{n}$$

$$H^2(\mathbb{D}) : ||f||_{H^2}^2 = \sum_{n=1}^{\infty} |a_n|^2$$

$$\mathcal{D}(\mathbb{D}) : ||f||_{\mathcal{D}}^2 = |a_0|^2 + \sum_{n=1}^{\infty} n|a_n|^2$$

Composition Operators Weighted Hardy spaces $S^2(\mathbb{D})$

Weighted Hardy spaces

For

$$f(z) = \sum_{n=0}^{\infty} a_n z^n,$$

$$A^2(\mathbb{D}) : ||f||_{A^2}^2 = |a_0|^2 + \sum_{n=1}^{\infty} \frac{|a_n|^2}{n}$$

$$H^2(\mathbb{D}) : ||f||_{H^2}^2 = \sum_{n=1}^{\infty} |a_n|^2 n^0$$

$$\mathcal{D}(\mathbb{D}) : ||f||_{\mathcal{D}}^2 = |a_0|^2 + \sum_{n=1}^{\infty} n|a_n|^2$$

Composition Operators Weighted Hardy spaces $S^2(\mathbb{D})$

Weighted Hardy spaces

For
$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$
,
 $A^2(\mathbb{D}) : ||f||_{A^2}^2 = |a_0|^2 + \sum_{n=1}^{\infty} \frac{|a_n|^2}{n}$
 $H^2(\mathbb{D}) : ||f||_{H^2}^2 = \sum_{n=1}^{\infty} |a_n|^2 n^0$
 $\mathcal{D}(\mathbb{D}) : ||f||_{\mathcal{D}}^2 = |a_0|^2 + \sum_{n=1}^{\infty} n|a_n|^2$
 $H^2(\beta) : ||f||_{H^2(\beta)}^2 = |a_0|^2 + \sum_{n=1}^{\infty} n^2|a_n|^2$

Composition Operators Weighted Hardy spaces $S^2(\mathbb{D})$

Weighted Hardy spaces

For
$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$
,
 $A^2(\mathbb{D}) : ||f||_{A^2}^2 = |a_0|^2 + \sum_{n=1}^{\infty} \frac{|a_n|^2}{n}$
 $H^2(\mathbb{D}) : ||f||_{H^2}^2 = \sum_{n=1}^{\infty} |a_n|^2$
 $\mathcal{D}(\mathbb{D}) : ||f||_{\mathcal{D}}^2 = |a_0|^2 + \sum_{n=1}^{\infty} n|a_n|^2$
 $S^2(\mathbb{D}) : ||f||_{H^2(\beta)}^2 = |a_0|^2 + \sum_{n=1}^{\infty} n^2|a_n|^2$

The space, $S^2(\mathbb{D})$, consists of analytic functions in the disc whose power series

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$

satisfies

 $S^2(\mathbb{D})$

$$||f||_{S^2}^2 = |a_0|^2 + \sum_{n=1}^{\infty} n^2 |a_n|^2 < \infty.$$

The space, $S^2(\mathbb{D})$, consists of analytic functions in the disc whose power series

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$

satisfies

 $S^2(\mathbb{D})$

$$||f||_{S^2}^2 = |a_0|^2 + \sum_{n=1}^{\infty} n^2 |a_n|^2 < \infty.$$

We can also define the norm on $S^2(\mathbb{D})$ in terms of an integral:

$$||f||^2_{\mathcal{S}^2} = |f(0)|^2 + \int_0^{2\pi} |f'(e^{i heta})|^2 rac{d heta}{2\pi}$$

The space, $S^2(\mathbb{D})$, consists of analytic functions in the disc whose power series

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$

satisfies

 $S^2(\mathbb{D})$

$$||f||_{S^2}^2 = |a_0|^2 + \sum_{n=1}^{\infty} n^2 |a_n|^2 < \infty.$$

We can also define the norm on $S^2(\mathbb{D})$ in terms of an integral:

$$||f||_{\mathcal{S}^2}^2 = |f(0)|^2 + \int_0^{2\pi} |f'(e^{i\theta})|^2 rac{d heta}{2\pi}$$

The space, $S^2(\mathbb{D})$, consists of analytic functions in the disc whose power series

$$f(z)=\sum_{n=0}^{\infty}a_nz^n$$

satisfies

 $S^2(\mathbb{D})$

$$||f||_{S^2}^2 = |a_0|^2 + \sum_{n=1}^{\infty} n^2 |a_n|^2 < \infty.$$

We can also define the norm on $S^2(\mathbb{D})$ in terms of an integral:

$$||f||_{S^2}^2 = |f(0)|^2 + ||f'||_{H^2}^2$$

The space, $S^2(\mathbb{D})$, consists of analytic functions in the disc whose power series

$$f(z)=\sum_{n=0}^{\infty}a_nz^n$$

satisfies

 $\underline{S}^{2}(\mathbb{D})$

$$||f||_{S^2}^2 = |a_0|^2 + \sum_{n=1}^{\infty} n^2 |a_n|^2 < \infty.$$

We can also define the norm on $S^2(\mathbb{D})$ in terms of an integral:

 $||f||_{S^2}^2 = |f(0)|^2 + ||f'||_{H^2}^2$

$$S^2(\mathbb{D}) = \{ f ext{ analytic in } \mathbb{D} : f' \in H^2(\mathbb{D}) \}$$

Interesting Observations about $S^2(\mathbb{D})$

• $S^2(\mathbb{D})$ is a weighted Hardy space with $\beta^2(n) = n^2$

Interesting Observations about $S^2(\mathbb{D})$

- $S^2(\mathbb{D})$ is a weighted Hardy space with $\beta^2(n) = n^2$
- Self-maps of the disc need not give rise to bounded composition operators on S²(D)

Interesting Observations about $S^2(\mathbb{D})$

- $S^2(\mathbb{D})$ is a weighted Hardy space with $\beta^2(n) = n^2$
- Self-maps of the disc need not give rise to bounded composition operators on S²(D)
- No nice closed form exists for the reproducing kernel functions, K_z , on $S^2(\mathbb{D})$

$$f(z) = \langle f, K_z \rangle$$
 for $f \in \mathcal{H}$

Composition Operators Weighted Hardy spaces $S^2(\mathbb{D})$

Previous Results on $S^2(\mathbb{D})$

 B. MacCluer (1987) gave conditions for boundedness and compactness on S²(D) using Carleson measure techniques.

Composition Operators Weighted Hardy spaces $S^2(\mathbb{D})$

Previous Results on $S^2(\mathbb{D})$

- B. MacCluer (1987) gave conditions for boundedness and compactness on S²(D) using Carleson measure techniques.
- J. Shapiro (1987) showed C_{φ} is compact on $S^2(\mathbb{D})$ if and only if $||\varphi||_{\infty} < 1$.

Composition Operators Weighted Hardy spaces $S^2(\mathbb{D})$

Previous Results on $S^2(\mathbb{D})$

- B. MacCluer (1987) gave conditions for boundedness and compactness on S²(D) using Carleson measure techniques.
- J. Shapiro (1987) showed C_{φ} is compact on $S^2(\mathbb{D})$ if and only if $||\varphi||_{\infty} < 1$.
- M. Contreras and A. Hernández-Díaz (2004) showed W_{ψ,φ} is bounded (respectively, compact) on S²(D) if and only if W_{ψφ',φ} is bounded (respectively, compact) on H²(D).

Definition Previous Adjoint Results $S^2(\mathbb{D})$ Results

Definition

We define the adjoint of $C_{\!\varphi}$, denoted $C_{\!\varphi}^*$, as the unique operator on ${\mathcal H}$ satisfying

$$\langle C_{\varphi}f,g\rangle = \langle f,C_{\varphi}^{*}g\rangle$$

for all $f, g \in \mathcal{H}$.

Definition Previous Adjoint Results $S^2(\mathbb{D})$ **Results**

Previous Adjoint Results

Let
$$\varphi(z) = \frac{az+b}{cz+d}$$
 be a linear fractional self-map of \mathbb{D} .
• On $H^2(\mathbb{D})$ (Cowen, 1988) and $A^2(\mathbb{D})$ (Hurst, 1997):
 $C_{\varphi}^* = M_g C_{\sigma} M_h^*$

with $g(z) = (-\overline{b}z + \overline{d})^{-p}$ and $h(z) = (cz + d)^{p}$, p = 1 or 2,

 $\begin{array}{l} \text{Definition} \\ \text{Previous Adjoint Results} \\ S^2(\mathbb{D}) \text{ Results} \end{array}$

Previous Adjoint Results

Let
$$\varphi(z) = \frac{az+b}{cz+d}$$
 be a linear fractional self-map of \mathbb{D} .
• On $H^2(\mathbb{D})$ (Cowen, 1988) and $A^2(\mathbb{D})$ (Hurst, 1997):
 $C_{\varphi}^* = M_g C_{\sigma} M_h^*$
with $g(z) = (-\overline{b}z + \overline{d})^{-p}$ and $h(z) = (cz+d)^p$, $p = 1$ or 2,
where $\sigma(z) = \frac{\overline{a}z - \overline{c}}{-\overline{b}z + \overline{d}}$ is the Krein adjoint of φ

 $\begin{array}{l} \text{Definition} \\ \text{Previous Adjoint Results} \\ S^2(\mathbb{D}) \text{ Results} \end{array}$

Previous Adjoint Results

Let
$$\varphi(z) = \frac{az+b}{cz+d}$$
 be a linear fractional self-map of \mathbb{D} .
• On $H^2(\mathbb{D})$ (Cowen, 1988) and $A^2(\mathbb{D})$ (Hurst, 1997):
 $C_{\varphi}^* = M_g C_{\sigma} M_h^*$
with $g(z) = (-\overline{b}z + \overline{d})^{-p}$ and $h(z) = (cz+d)^p$, $p = 1$ or 2,
where $\sigma(z) = \frac{\overline{a}z - \overline{c}}{-\overline{b}z + \overline{d}}$ is the Krein adjoint of φ
• Proof uses that $K_w(z) = \frac{1}{(1 - \overline{w}z)^p}$, $p = 1$ or 2

Definition Previous Adjoint Results $S^2(\mathbb{D})$ Results

Previous Adjoint Results

Let $\varphi(z) = \frac{az+b}{cz+d}$ be a linear fractional self-map of \mathbb{D} . • On $H^2(\mathbb{D})$ (Cowen, 1988) and $A^2(\mathbb{D})$ (Hurst, 1997):

 $C_{\varphi}^* = M_g C_{\sigma} M_h^*$

• On $\mathcal{D}(\mathbb{D})$ (Gallardo-Gutiérrez and Montes-Rodríguez, 2003):

$$egin{array}{rcl} \mathcal{C}^*_arphi &=& \mathcal{C}_\sigma \ (\operatorname{\mathsf{mod}}\ \mathcal{K}) \ &=& \mathcal{C}_\sigma + \mathcal{K}, \end{array}$$

where $\sigma(z) = \frac{\overline{a}z - \overline{c}}{-\overline{b}z + \overline{d}}$ is the Krein adjoint of φ

IntroductionDefinitionThe AdjointPrevious Adjoint ResultsCommutators $S^2(\mathbb{D})$ Results

Theorem

 $S^{2}(\mathbb{D})$ Results

If
$$\varphi(z) = \frac{az+b}{cz+d}$$
, then on $S^2(\mathbb{D})$,
 $C^*_{\varphi} = M^*_G C_{\psi} M_{1/H} M^*_h C_{\eta} \pmod{\mathcal{K}}$

IntroductionDefinitionThe AdjointPrevious Adjoint ResultsCommutators $S^2(\mathbb{D})$ Results

Theorem

 $S^{2}(\mathbb{D})$ Results

If
$$\varphi(z) = rac{az+b}{cz+d}$$
, then on $S^2(\mathbb{D})$,
 $C^*_{\varphi} = M^*_G C_{\psi} M_{1/H} M^*_h C_{\eta} \pmod{\mathcal{K}}$

where

$$\begin{split} \psi(z) &= \frac{\varphi(0) - z}{1 - \overline{\varphi(0)}z}, \\ G(z) &= -(\overline{b}/\overline{d})z + 1 = H(z), \\ h(z) &= -(\gamma/\alpha)z + 1, \\ \eta(z) &= (\sigma \circ \psi)(z), \end{split}$$

with $\gamma = (c\overline{d} - \overline{b}a)d$ and $\alpha = (bc - ad)\overline{d}$.

IntroductionDefinitionThe AdjointPrevious Adjoint ResCommutators $S^2(\mathbb{D})$ Results

A Word on the Proof

Let $\varphi(z) = \frac{az+b}{cz+d}$ be a self-map of the disc. We can write

 $\varphi = \psi \circ \phi.$

IntroductionDefinitionThe AdjointPrevious Adjoint ResultsCommutators $S^2(\mathbb{D})$ Results

A Word on the Proof

Let $\varphi(z) = \frac{az+b}{cz+d}$ be a self-map of the disc. We can write

 $\varphi = \psi \circ \phi.$

• Step 1. Let $\phi(z) = rac{lpha z}{\gamma z + \delta}$ be a self-map of the disc. Then

 $C_{\phi}^* = M_h^* C_{\eta} + K_1$

where $h(z) = (-\gamma/\alpha)z + 1$ and $\eta(z) = (\overline{\alpha}/\overline{\delta})z - \overline{\gamma}/\overline{\delta}$.

IntroductionDefinitionThe AdjointPrevious Adjoint ResultsCommutators $S^2(\mathbb{D})$ Results

A Word on the Proof

Let $\varphi(z) = \frac{az+b}{cz+d}$ be a self-map of the disc. We can write

$$\varphi = \psi \circ \phi.$$

• Step 1. Let $\phi(z) = rac{lpha z}{\gamma z + \delta}$ be a self-map of the disc. Then

 $C_{\phi}^* = M_h^* C_{\eta} + K_1$

where $h(z) = (-\gamma/\alpha)z + 1$ and $\eta(z) = (\overline{\alpha}/\overline{\delta})z - \overline{\gamma}/\overline{\delta}$.

• Step 2. Let $\psi = \frac{\lambda(z+u)}{1+\overline{u}z}$ be an automorphism of the disc. Then

$$C_{\psi}^* = M_G^* C_{\psi^{-1}} M_{1/H} + K_2$$

where $G(z) = -\overline{\lambda u}z + 1$ and $H(z) = \overline{u}z + 1$.

Definition Previous Adjoint Results $S^2(\mathbb{D})$ Results

A Word on the Proof

• Step 3. Let $\varphi = \psi \circ \phi$ where

$$\psi(z) = rac{arphi(0)-z}{1-\overline{arphi(0)}z} ext{ and } \phi(z) = rac{lpha z}{\gamma z + \delta}.$$

Definition Previous Adjoint Results $S^{2}(\mathbb{D})$ Results

A Word on the Proof

• Step 3. Let $\varphi = \psi \circ \phi$ where

$$\psi(z) = rac{arphi(0)-z}{1-\overline{arphi(0)}z} ext{ and } \phi(z) = rac{lpha z}{\gamma z + \delta}.$$

Then

$$C^*_arphi = C^*_\psi C^*_\phi$$

Definition Previous Adjoint Results $S^{2}(\mathbb{D})$ Results

A Word on the Proof

• Step 3. Let $\varphi = \psi \circ \phi$ where

$$\psi(z) = rac{arphi(0)-z}{1-\overline{arphi(0)}z} ext{ and } \phi(z) = rac{lpha z}{\gamma z + \delta}.$$

Then

$$C_{\varphi}^{*} = C_{\psi}^{*}C_{\phi}^{*}$$

= $(M_{h}^{*}C_{\eta} + K_{1})(M_{G}^{*}C_{\psi^{-1}}M_{1/H} + K_{2})$

Definition Previous Adjoint Results $S^{2}(\mathbb{D})$ Results

A Word on the Proof

• Step 3. Let $\varphi = \psi \circ \phi$ where

$$\psi(z) = rac{arphi(0)-z}{1-\overline{arphi(0)}z} ext{ and } \phi(z) = rac{lpha z}{\gamma z+\delta}.$$

Then

$$C_{\varphi}^{*} = C_{\psi}^{*}C_{\phi}^{*}$$

= $(M_{h}^{*}C_{\eta} + K_{1})(M_{G}^{*}C_{\psi^{-1}}M_{1/H} + K_{2})$
= $M_{G}^{*}C_{\psi}M_{1/H}M_{h}^{*}C_{\eta} + K$

IntroductionDefinitionThe AdjointPrevious Adjoint ResultsCommutators $S^2(\mathbb{D})$ Results

A Word on the Proof

• Step 1. Let $\phi(z) = \frac{\alpha z}{\gamma z + \delta}$ be a self-map of the disc. Then $C_{\phi}^* = M_h^* C_n + K_1$ where $h(z) = (-\gamma/\alpha)z + 1$ and $\eta(z) = (\overline{\alpha}/\overline{\delta})z - \overline{\gamma}/\overline{\delta}$. • Step 2. Let $\psi = \frac{\lambda(z+u)}{1+\overline{u}z}$ be an automorphism of the disc. Then $C_{a,b}^* = M_C^* C_{a,b-1} M_{1/H} + K_2$ where $G(z) = -\overline{\lambda u}z + 1$ and $H(z) = \overline{u}z + 1$.

IntroductionDefinitionThe AdjointPrevious Adjoint ResCommutators $S^2(\mathbb{D})$ Results

A Word on the Proof

• Step 1. Let $\phi(z) = \frac{\alpha z}{\gamma z + \delta}$ be a self-map of the disc. Then $C_{\phi}^* = M_h^* C_{\eta} + K_1$

where
$$h(z) = (-\gamma/\alpha)z + 1$$
 and $\eta(z) = (\overline{\alpha}/\overline{\delta})z - \overline{\gamma}/\overline{\delta}$.

IntroductionDefinitionThe AdjointPrevious Adjoint ResCommutators $S^2(\mathbb{D})$ Results

A Word on the Proof

• Step 1. Let $\phi(z) = rac{lpha z}{\gamma z + \delta}$ be a self-map of the disc. Then $C_{\phi}^* = M_h^* C_\eta + K_1$

where $h(z) = (-\gamma/\alpha)z + 1$ and $\eta(z) = (\overline{\alpha}/\overline{\delta})z - \overline{\gamma}/\overline{\delta}$.

IntroductionDefinitionThe AdjointPrevious Adjoint ResCommutators $S^2(\mathbb{D})$ Results

A Word on the Proof

• Step 1. Let $\phi(z) = \frac{\alpha z}{\gamma z + \delta}$ be a self-map of the disc. Then $C_{\phi}^* = M_h^* C_{\eta} + K_1$ where $h(z) = (-\gamma/\alpha)z + 1$ and $\eta(z) = Az - B$. IntroductionDefinitionThe AdjointPrevious Adjoint RCommutators $S^2(\mathbb{D})$ Results

A Word on the Proof

• Step 1. Let $\psi(z) = \frac{\overline{A}z}{\overline{B}z+1}$ be a self-map of the disc. Then $C_{\psi}^* = M_H^* C_{\eta} + K_1$

where $H(z) = -(\overline{B}/\overline{A})z + 1$ and $\eta(z) = Az - B$.

IntroductionDefinitionThe AdjointPrevious AdjoinCommutators $S^2(\mathbb{D})$ Results

A Word on the Proof

• Step 1. Let $\psi(z) = \frac{\overline{A}z}{\overline{B}z+1}$ be a self-map of the disc. Then

$$C_{\psi}^* = M_H^* C_{\eta} + K_1$$

where $H(z) = -(\overline{B}/\overline{A})z + 1$ and $\eta(z) = Az - B$.

IntroductionDefinitionThe AdjointPrevious AdjointCommutators $S^2(\mathbb{D})$ Results

A Word on the Proof

• Step 1. Let $\psi(z) = \frac{\overline{A}z}{\overline{B}z+1}$ be a self-map of the disc. Then

$$C_{\psi}^* = M_H^* C_{\eta} + K_1$$

where
$$H(z) = -(\overline{B}/\overline{A})z + 1$$
 and $\eta(z) = Az - B$.

Formal calculation:

$$C_{\eta} = M_{1/H}^* C_{\psi}^* + K$$

IntroductionDefinitionThe AdjointPrevious AdjointCommutators $S^2(\mathbb{D})$ Results

A Word on the Proof

• Step 1. Let $\psi(z) = \frac{\overline{A}z}{\overline{B}z+1}$ be a self-map of the disc. Then

$$C_{\psi}^* = M_H^* C_{\eta} + K_1$$

where
$$H(z) = -(\overline{B}/\overline{A})z + 1$$
 and $\eta(z) = Az - B$.

Formal calculation:

$$C_{\eta} = M_{1/H}^* C_{\psi}^* + K$$

And

$$C_{\eta}^* = C_{\psi} M_{1/H} + K$$

Introduction Definition The Adjoint Previous Adjoint Commutators $S^2(\mathbb{D})$ Results

A Word on the Proof

An automorphism of the disc $\varphi(z)=rac{\lambda(z+u)}{1+\overline{u}z}$ can be written as

 $\varphi=\phi\circ\eta$

where $\phi(z) = \frac{\lambda z}{\overline{u}z + 1 - |u|^2}$ and $\eta(z) = z + u$.

Introduction Definition The Adjoint Previous Adjoi Commutators $S^2(\mathbb{D})$ Results

A Word on the Proof

An automorphism of the disc $\varphi(z) = \frac{\lambda(z+u)}{1+\overline{u}z}$ can be written as

 $\varphi=\phi\circ\eta$

where
$$\phi(z) = \frac{\lambda z}{\overline{u}z+1-|u|^2}$$
 and $\eta(z) = z + u$.
Then

$$C_{\varphi}^* = C_{\phi}^* C_{\eta}^*$$

Introduction Definition The Adjoint Previous Adjoi Commutators $S^2(\mathbb{D})$ Results

A Word on the Proof

An automorphism of the disc $\varphi(z) = \frac{\lambda(z+u)}{1+\overline{u}z}$ can be written as

 $\varphi=\phi\circ\eta$

where
$$\phi(z) = \frac{\lambda z}{\overline{u}z+1-|u|^2}$$
 and $\eta(z) = z+u$.
Then

$$C_{\varphi}^{*} = C_{\phi}^{*}C_{\eta}^{*}$$

= $(M_{G}^{*}C_{\mu} + K)(C_{\psi}M_{1/H} + K)$

Introduction Definition The Adjoint Commutators $S^2(\mathbb{D})$ Results

A Word on the Proof

An automorphism of the disc $\varphi(z) = \frac{\lambda(z+u)}{1+\overline{u}z}$ can be written as

$$\varphi = \phi \circ \eta$$

where
$$\phi(z) = \frac{\lambda z}{\overline{u}z+1-|u|^2}$$
 and $\eta(z) = z+u$.
Then

$$C_{\varphi}^{*} = C_{\phi}^{*}C_{\eta}^{*} \\ = (M_{G}^{*}C_{\mu} + K)(C_{\psi}M_{1/H} + K) \\ = M_{G}^{*}C_{\mu}C_{\psi}M_{1/H} + K$$

Introduction Definition The Adjoint Commutators $S^2(\mathbb{D})$ Results

A Word on the Proof

An automorphism of the disc $\varphi(z) = \frac{\lambda(z+u)}{1+\overline{u}z}$ can be written as

$$\varphi = \phi \circ \eta$$

where
$$\phi(z) = \frac{\lambda z}{\overline{u}z+1-|u|^2}$$
 and $\eta(z) = z + u$.
Then

$$C_{\varphi}^{*} = C_{\phi}^{*}C_{\eta}^{*}$$

= $(M_{G}^{*}C_{\mu} + K)(C_{\psi}M_{1/H} + K)$
= $M_{G}^{*}C_{\mu}C_{\psi}M_{1/H} + K$
= $M_{G}^{*}C_{\varphi-1}M_{1/H} + K.$

Introduction Def The Adjoint Pre Commutators S²(

Definition Previous Adjoint Results $S^2(\mathbb{D})$ Results

A Word on the Proof

An automorphism of the disc $\varphi(z) = \frac{\lambda(z+u)}{1+\overline{u}z}$ can be written as

$$\varphi = \phi \circ \eta$$

where
$$\phi(z) = \frac{\lambda z}{\overline{u}z + 1 - |u|^2}$$
 and $\eta(z) = z + u$.
Then

$$C_{\varphi}^{*} = C_{\phi}^{*}C_{\eta}^{*}$$

= $(M_{G}^{*}C_{\mu} + K)(C_{\psi}M_{1/H} + K)$
= $M_{G}^{*}C_{\mu}C_{\psi}M_{1/H} + K$
= $M_{G}^{*}C_{\varphi-1}M_{1/H} + K.$

Finally, showed that $C_{\varphi}^* - M_G^* C_{\varphi-1} M_{1/H}$ is compact.

Definition Previous Adjoint Results $S^2(\mathbb{D})$ Results

Theorem

 $S^2(\mathbb{D})$ Results

If
$$arphi(z)=rac{az+b}{cz+d}$$
, then on $S^2(\mathbb{D})$,

$$C^*_{arphi} = M^*_G C_{\psi} M_{1/H} M^*_h C_{\eta} \pmod{\mathcal{K}}$$

Definition Previous Adjoint Results $S^2(\mathbb{D})$ Results

Theorem

 $S^2(\mathbb{D})$ Results

$$\begin{aligned} & f \varphi(z) = \frac{az+b}{cz+d}, \text{ then on } S^2(\mathbb{D}), \\ & C_{\varphi}^* = M_G^* C_{\psi} M_{1/H} M_h^* C_{\eta} \pmod{\mathcal{K}} \\ & = k_1 C_{\psi} M_z^* C_{\eta} + k_2 M_z^* C_{\psi} M_z^* C_{\eta} + k_3 M_z C_{\psi} M_z^* C_{\eta} \\ & + k_4 C_{\sigma} + k_5 M_z^* C_{\sigma} + k_6 M_z C_{\sigma} \pmod{\mathcal{K}} \end{aligned}$$

Definition Previous Adjoint Results $S^2(\mathbb{D})$ Results

Theorem

 $S^2(\mathbb{D})$ Results

If
$$\varphi(z) = \frac{az+b}{cz+d}$$
, then on $S^2(\mathbb{D})$,

$$C_{\varphi}^* = M_G^* C_{\psi} M_{1/H} M_h^* C_{\eta} \pmod{\mathcal{K}}$$

$$= k_1 C_{\psi} M_z^* C_{\eta} + k_2 M_z^* C_{\psi} M_z^* C_{\eta} + k_3 M_z C_{\psi} M_z^* C_{\eta}$$

$$+ k_4 C_{\sigma} + k_5 M_z^* C_{\sigma} + k_6 M_z C_{\sigma} \pmod{\mathcal{K}}$$

where
$$\psi(z) = \frac{\varphi(0)-z}{1-\overline{\varphi}(0)z}$$
, $\sigma(z) = \frac{\overline{a}z-\overline{c}}{-\overline{b}z+\overline{d}}$ and $\eta = \sigma \circ \psi$.

Definition Previous Adjoint Results $S^2(\mathbb{D})$ Results

Theorem

 $S^{2}(\mathbb{D})$ Results

If $\varphi(z) = \frac{az+b}{cz+d}$ is nonautomorphic with $\varphi(\zeta) = \omega$ for some $\zeta, \omega \in \partial \mathbb{D}$, then on $S^2(\mathbb{D})$,

$$C^*_{arphi} = M^*_G C_{\psi} M_{1/H} M^*_h C_{\eta} \pmod{\mathcal{K}}$$

Definition Previous Adjoint Results $S^2(\mathbb{D})$ Results

Theorem

<u> $S^2(\mathbb{D})$ Results</u>

If $\varphi(z) = \frac{az+b}{cz+d}$ is nonautomorphic with $\varphi(\zeta) = \omega$ for some $\zeta, \omega \in \partial \mathbb{D}$, then on $S^2(\mathbb{D})$,

$$C_{\varphi}^{*} = M_{G}^{*}C_{\psi}M_{1/H}M_{h}^{*}C_{\eta} \pmod{\mathcal{K}}$$

= $k_{1}M_{z}^{*}C_{\sigma} + k_{2}M_{z}^{*}C_{\sigma}M_{z}^{*} + k_{3}C_{\sigma} + k_{4}M_{z}C_{\sigma}(\mod{\mathcal{K}})$

where $\sigma(z) = \frac{\overline{a}z - \overline{c}}{-\overline{b}z + \overline{d}}$.

Definition Previous Adjoint Results $S^2(\mathbb{D})$ Results

Theorem

 $S^2(\mathbb{D})$ Results

If $\varphi(z) = \frac{az+b}{cz+d}$ is nonautomorphic with $\varphi(\zeta) = \omega$ for some $\zeta, \omega \in \partial \mathbb{D}$, then on $S^2(\mathbb{D})$,

$$C_{\varphi}^{*} = M_{G}^{*}C_{\psi}M_{1/H}M_{h}^{*}C_{\eta} \pmod{\mathcal{K}}$$

= $k_{1}M_{z}^{*}C_{\sigma} + k_{2}M_{z}^{*}C_{\sigma}M_{z}^{*} + k_{3}C_{\sigma} + k_{4}M_{z}C_{\sigma} \pmod{\mathcal{K}}$

where $\sigma(z) = \frac{\overline{a}z - \overline{c}}{-\overline{b}z + \overline{d}}$.

If $||\varphi||_{\infty} < 1$, then C_{φ} is compact on $S^2(\mathbb{D})$.

Introduction Def The Adjoint Con Commutators Fut

Definition Commutator Results on $S^2(\mathbb{D})$ Future Research

Definition

We use our formula for the adjoint, \mathcal{C}^*_{ω} , to study the commutator

$$[C_{\varphi}^*,C_{\psi}]:=C_{\varphi}^*C_{\psi}-C_{\psi}C_{\varphi}^*$$

for analytic self-maps of the disc, φ and $\psi.$

Introduction	Definition
The Adjoint	Commutator Results on $S^2(\mathbb{D})$
Commutators	Future Research

In $H^2(\mathbb{D})$, if φ is a non-automorphic, linear fractional self-map of the disc with $\varphi(\zeta) = \omega$ for some $\zeta, \omega \in \partial \mathbb{D}$, then

$$C_{\varphi}^* = kC_{\sigma} + K$$

where σ is the Krein adjoint of φ .

Introduction	Definition
The Adjoint	Commutator Results on $S^2(\mathbb{D})$
Commutators	Future Research

In $H^2(\mathbb{D})$, if φ is a non-automorphic, linear fractional self-map of the disc with $\varphi(\zeta) = \omega$ for some $\zeta, \omega \in \partial \mathbb{D}$, then

$$C_{\varphi}^* = kC_{\sigma} + K$$

where σ is the Krein adjoint of φ .

Recall, on $S^2(\mathbb{D})$,

$$C_{\varphi}^{*} = k_{1}M_{z}^{*}C_{\sigma} + k_{2}M_{z}^{*}C_{\sigma}M_{z}^{*} + k_{3}C_{\sigma} + k_{4}M_{z}C_{\sigma} + K$$

Definition Commutator Results on $S^2(\mathbb{D})$ Future Research

Commutator Results on $S^2(\mathbb{D})$

Theorem

Let φ and ψ be automorphisms of the disc such that neither is the identity. Then on $S^2(\mathbb{D})$, the commutator $[C^*_{\varphi}, C_{\psi}]$ is compact if and only if $\varphi(z) = \lambda z$, $\psi(z) = \gamma z$, $|\lambda| = |\gamma| = 1$.

Commutator Results on $S^2(\mathbb{D})$

• We say that the commutator

$$[C_{\varphi}^*, C_{\psi}] = C_{\varphi}^* C_{\psi} - C_{\psi} C_{\varphi}^*$$

is non-trivially compact if it is compact, but neither of the operators $C_{\varphi}^* C_{\psi}$ or $C_{\psi} C_{\varphi}^*$ is individually compact.

Commutator Results on $S^2(\mathbb{D})$

• We say that the commutator

$$[C_{\varphi}^*, C_{\psi}] = C_{\varphi}^* C_{\psi} - C_{\psi} C_{\varphi}^*$$

is non-trivially compact if it is compact, but neither of the operators $C_{\varphi}^* C_{\psi}$ or $C_{\psi} C_{\varphi}^*$ is individually compact.

• If $||\varphi||_{\infty} < 1$, then C_{φ} is compact on $S^{2}(\mathbb{D})$ and the commutator is trivially compact.

Definition Commutator Results on $S^2(\mathbb{D})$ Future Research

Commutator Results on $S^2(\mathbb{D})$

Lemma

Let φ and ψ be non-automorphic, linear fractional self-maps of the disc. If the commutator $[C_{\varphi}^*, C_{\psi}]$ is non-trivially compact on $S^2(\mathbb{D})$ then $\varphi(\zeta) = \psi(\zeta) = \zeta$ for some $\zeta \in \partial \mathbb{D}$.

Definition Commutator Results on $S^2(\mathbb{D})$ Future Research

Commutator Results on $S^2(\mathbb{D})$

Theorem

Let φ and ψ be non-automorphic, linear fractional self-maps of the disc. Then $[C_{\varphi}^*, C_{\psi}]$ is non-trivially compact on $S^2(\mathbb{D})$ if and only if one of the following hold:

Definition Commutator Results on $S^2(\mathbb{D})$ Future Research

Commutator Results on $S^2(\mathbb{D})$

Theorem

Let φ and ψ be non-automorphic, linear fractional self-maps of the disc. Then $[C_{\varphi}^*, C_{\psi}]$ is non-trivially compact on $S^2(\mathbb{D})$ if and only if one of the following hold:

() If φ and ψ are parabolic with the same boundary fixed point, or

Definition Commutator Results on $S^2(\mathbb{D})$ Future Research

Commutator Results on $S^2(\mathbb{D})$

Theorem

Let φ and ψ be non-automorphic, linear fractional self-maps of the disc. Then $[C_{\varphi}^*, C_{\psi}]$ is non-trivially compact on $S^2(\mathbb{D})$ if and only if one of the following hold:

- If φ and ψ are parabolic with the same boundary fixed point, or
- **2** If φ and ψ are hyperbolic with fixed points (ζ, \mathbf{a}) and $(\zeta, 1/\overline{\mathbf{a}})$, respectively, for $\zeta \in \partial \mathbb{D}$ and \mathbf{a} in the complement of the unit circle.

A Word on the Proof

The argument was based on two main steps:

A Word on the Proof

The argument was based on two main steps:

 If φ and γ are linear fractional self-maps of the disc, then C_φ − C_γ is compact on S²(D) if and only if C_φ, C_γ are individually compact or φ = γ.

A Word on the Proof

The argument was based on two main steps:

- If φ and γ are linear fractional self-maps of the disc, then C_φ − C_γ is compact on S²(D) if and only if C_φ, C_γ are individually compact or φ = γ.
- Let σ be the Krein adjoint of φ. [C^{*}_φ, C_ψ] is compact if and only if [C_σ, C_ψ] is compact.

A Word on the Proof

The argument was based on two main steps:

- If φ and γ are linear fractional self-maps of the disc, then C_φ − C_γ is compact on S²(D) if and only if C_φ, C_γ are individually compact or φ = γ.
- Let σ be the Krein adjoint of φ. [C^{*}_φ, C_ψ] is compact if and only if [C_σ, C_ψ] is compact.

Now,

$$[C_{\sigma}, C_{\psi}] = C_{\sigma}C_{\psi} - C_{\psi}C_{\sigma}$$

A Word on the Proof

The argument was based on two main steps:

- If φ and γ are linear fractional self-maps of the disc, then C_φ − C_γ is compact on S²(D) if and only if C_φ, C_γ are individually compact or φ = γ.
- Let σ be the Krein adjoint of φ. [C^{*}_φ, C_ψ] is compact if and only if [C_σ, C_ψ] is compact.

Now,

$$\begin{bmatrix} C_{\sigma}, C_{\psi} \end{bmatrix} = C_{\sigma} C_{\psi} - C_{\psi} C_{\sigma} \\ = C_{\psi \circ \sigma} - C_{\sigma \circ \psi}$$

A Word on the Proof

The argument was based on two main steps:

- If φ and γ are linear fractional self-maps of the disc, then C_φ − C_γ is compact on S²(D) if and only if C_φ, C_γ are individually compact or φ = γ.
- Let σ be the Krein adjoint of φ. [C^{*}_φ, C_ψ] is compact if and only if [C_σ, C_ψ] is compact.

Now,

$$\begin{bmatrix} C_{\sigma}, C_{\psi} \end{bmatrix} = C_{\sigma} C_{\psi} - C_{\psi} C_{\sigma} \\ = C_{\psi \circ \sigma} - C_{\sigma \circ \psi}$$

Therefore, ψ and σ commute and so they must have the same fixed point sets.

Definition Commutator Results on $S^2(\mathbb{D})$ Future Research

Commutator Results on $S^2(\mathbb{D})$

Theorem

Let φ and ψ be non-automorphic, linear fractional self-maps of the disc. Then $[C_{\varphi}^*, C_{\psi}]$ is non-trivially compact on $S^2(\mathbb{D})$ if and only if one of the following hold:

- () If φ and ψ are parabolic with the same boundary fixed point, or
- **2** If φ and ψ are hyperbolic with fixed points (ζ, a) and $(\zeta, 1/\overline{a})$, respectively, for $\zeta \in \partial \mathbb{D}$ and a in the complement of the unit circle.

Future Research

Use the techniques developed for working on $S^2(\mathbb{D})$ to study:

• composition operators on other weighted Hardy spaces, and

Future Research

Use the techniques developed for working on $S^2(\mathbb{D})$ to study:

- composition operators on other weighted Hardy spaces, and
- weighted composition operators,

$$(W_{\psi,\varphi}f)(z) = \psi(z)f(\varphi(z))$$

for $f \in \mathcal{H}$.