Algebraic Elements and Invariant Subspaces.

Yun-Su Kim

27th SEAM
1. Algebraic Elements.

Definition. Let H be a Hilbert space.

A contraction $T \in L(H)$ is said to be *completely nonunitary* if there is no (non-zero) reducing subspace M for T such that the restriction $T|M$ of T to the space M is a unitary operator.
Theorem. (Functional Calculus) Let $T \in L(H)$ be a completely nonunitary contraction. Then there is a unique algebra representation

$$
\Psi_T : H^\infty \to L(H)
$$

such that:

(i) $\Psi_T(1) = I_H$, where $I_H \in L(H)$ is the identity operator.

(ii) $\Psi_T(I_D) = T$, where D is the open unit disc and $I_D(z) = z \forall z \in D$.

(iii) Ψ_T is continuous when H^∞ and $L(H)$ are given the weak*—topology.

(iv) Ψ_T is contractive, that is, $\|\Psi_T(f)\| \leq \|f\|$ for all $f \in H^\infty$.

• From now on we will denote $\Psi_T(f)$ by $f(T)$ for all $f \in H^\infty$.

3
Definition

(a) A completely nonunitary contraction \(T \in L(H) \) is said to be of \textbf{class} \(C_0 \) if \(\ker \Psi_T \neq \{0\} \).

(b) If a completely nonunitary contraction \(T \in L(H) \) is of class \(C_0 \), then
\[
\ker \Psi_T = m_T H^\infty, \quad \text{and} \quad m_T \text{ is called the } \textbf{minimal function} \text{ of } T.
\]

(c) Let \(T \in L(H) \) be a completely non-unitary contraction. An element \(h \) of \(H \) is said to be \textit{algebraic with respect to} \(T \) provided that
\[
\theta(T)h = 0 \text{ for some } \theta \in H^\infty \setminus \{0\}.
\]
If \(h \neq 0 \), then \(h \) is said to be a **non-trivial algebraic element** with respect to \(T \).

(d) If \(h \) is not algebraic with respect to \(T \), then \(h \) is said to be **transcendental with respect to \(T \)**.

(e) If \(T \) is a completely non-unitary contraction without a non-trivial algebraic element; that is, every non-zero element in \(H \) is transcendental with respect to \(T \), then \(T \) is said to be a **transcendental operator**.
2. Algebraic Elements and Invariant Subspaces

• H denotes a separable Hilbert space whose dim is infinite.

• If T is a contraction, then

(Case 1) T is a completely non-unitary contraction with a non-trivial algebraic element, or
(Case 2) T is a transcendental operator, or

(Case 3) T is not completely non-unitary. (It is clear for (Case 3).)

Lemma 1. If $T : H \to H$ is a transcendental operator, then, for any $\theta \in H^\infty \setminus \{0\}$, $\theta(T)$ is one-to-one.

Proposition 1. If $T : H \to H$ is a transcendental operator, then, for any non-zero element h in H, $M = \{T^n h : n = 0, 1, 2, \ldots\}$ is linearly independent.
Corollary 1. Under the same assumption as Proposition 1, for a given function $\theta \in H^\infty \setminus \{0\}$, $M' = \{\theta(T)^n h : n = 0, 1, 2, \cdots\}$ is linearly independent.

Proposition 2. Let $T : H \to H$ be a multiplicity-free operator of class C_0 and ϕ be an inner divisor of the minimal function m_T of T.

If ϕ is not a trivial inner divisor, then $\ker \phi(T)$ is a non-trivial invariant subspace for T.
Theorem 1. Let $T \in L(H)$ be a completely non-unitary contraction.

If T has a non-trivial algebraic element h, then T has a non-trivial invariant subspace.

Corollary 2. Every C_0-operator has a non-trivial invariant subspace.