Algebraic Elements and Invariant Subspaces.

Yun-Su Kim

27th SEAM

1

1. Algebraic Elements.

Definition. Let H be a Hilbert space.

A contraction $T \in L(H)$ is said to be **completely nonunitary** if there is no (non-zero) reducing subspace M for T such that the restriction T|M of T to the space M is a unitary operator. **Theorem.** (Functional Calculus) Let $T \in L(H)$ be a completely nonunitary contraction. Then there is a unique algebra representation

 $\Psi_{\mathrm{T}}:\,\mathrm{H}^{\infty}\!\!\rightarrow\mathrm{L}(\mathrm{H})$

such that : (i) $\Psi_T(1) = I_H$, where $I_H \in L(H)$ is the identity operator.

(ii) $\Psi_T(I_{\mathbf{D}}) = T$, where **D** is the open unit disc and $I_{\mathbf{D}}(z) = z \ \forall z \in \mathbf{D}$.

(iii) Ψ_T is continuous when H^{∞} and L(H) are given the $weak^*$ -topology.

(iv) Ψ_T is contractive, that is, $\|\Psi_T(f)\| \leq \|f\|$ for all $f \in H^{\infty}$.

• From now on we will denote $\Psi_T(f)$ by $\mathbf{f}(\mathbf{T})$ for all $f \in H^{\infty}$.

Definition

(a) A completely nonunitary contraction $T \in L(H)$ is said to be

of **class** $\mathbf{C}_{\mathbf{0}}$ if ker $\Psi_T \neq \{0\}$.

- (b) If a completely nonunitary contraction $T \in L(H)$ is of class C_0 , then ker $\Psi_T = m_T H^{\infty}$, and m_T is called the *minimal function* of T.
- (c) Let $T \in L(H)$ be a completely non-unitary contraction. An element *h* of *H* is said to be **algebraic with respect to** *T* provided that

 $\theta(T)h = 0$ for some $\theta \in H^{\infty} \setminus \{0\}.$

If $h \neq 0$, then h is said to be a **non-trivial algebraic element** with respect to T.

(d) If h is not algebraic with respect to T, then h is said to be transcendental with respect to T.

(e) If T is a completely non-unitary contraction without a non-trivial algebraic element; that is, every non-zero element in H is transcendental with respect to T, then T is said to be a

transcendental operator.

2. Algebraic Elements and Invariant Subspaces

- H denotes a separable Hilbert space whose dim is infinite.
- If T is a contraction, then

(Case 1) T is a completely non-unitary contraction with a non-trivial

algebraic element, or

(Case 2) T is a transcendental operator, or

(Case 3) T is not completely non-unitary. (It is clear for (Case 3).)

Lemma 1. If $T : H \to H$ is a transcendental operator, then, for any $\theta \in H^{\infty} \setminus \{0\}, \theta(T)$ is one-to-one.

Proposition 1. If $T: H \to H$ is a transcendental operator, then, for any non-zero element h in H, $M = \{T^n h : n = 0, 1, 2, \dots\}$ is linearly independent. **Corollary 1.** Under the same assumption as Proposition 1, for a given function $\theta \in H^{\infty} \setminus \{0\}, M' = \{\theta(T)^n h : n = 0, 1, 2, \dots\}$ is linearly independent.

Proposition 2. Let $T : H \to H$ be a multiplicity-free operator of class C_0 and ϕ be an inner divisor of the minimal function m_T of T. If ϕ is not a trivial inner divisor, then ker $\phi(T)$ is a non-trivial invariant subspace for T. **Theorem 1.** Let $T \in L(H)$ be a completely non-unitary contraction.

If T has a non-trivial algebraic element h, then T has a non-trivial invariant subspace.

Corollary 2. Every C_0 -operator has a non-trivial invariant subspace.