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Introduction

Let H denote the Segal-Bargmann space on Cn, which consists of all
entire functions h for which

‖h‖ =
(∫

Cn

|h|2dµ
)1/2

<∞,

here dµ(z) = π−n exp(−|z |2)dV (z) is the Gaussian measure, dV
being the usual Lebesgue measure on Cn.

It is well known that H is a closed subspace of L2(Cn, dµ), hence H is
a Hilbert space itself. It is also referred to by the name “Fock space”.
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Introduction

Monomials are orthogonal in H. In fact, H has the standard
orthonormal basis

B =
{

eα(z) =
zα√
α!

: α = (α1, . . . , αn) ∈ Nn
0

}
.

Here for z = (z1, . . . , zn) ∈ Cn and α = (α1, . . . , αn), we write
zα = zα1

1 · · · zαn
n and α! = α1! · · ·αn!.

Let P denote the orthogonal projection from L2(Cn, dµ) onto H. For
a measurable function f , the Toeplitz operator Tf is defined by

Tf h = PMf h = P(f · h),

for all h ∈ H for which f · h ∈ L2(Cn, dµ).
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Introduction

If f is bounded, then since Mf is bounded, Tf = PMf is bounded and
‖Tf ‖ ≤ ‖f ‖∞.

For a general f , the operator Tf may not even have a dense domain.
For example, if f (z) = e |z|

2
, then the domain of Tf contains only the

zero function.

We need to deal with unbounded functions, and hence unbounded
operators because on Cn, even nicest functions (polynomials) are
unbounded.
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Introduction

We will restrict our attention to functions that have at most
polynomial growth at infinity: there exist constants C ,M > 0 so that

|f (z)| ≤ C (1 + |z |2)M for all z ∈ Cn.

For such an f , the domain of Tf contains all polynomials, which is
dense in H.

In fact, for f1, . . . , fk belonging to the above class of functions, the
product Tf1 · · ·Tfk is densely defined with domain containing the
polynomials.
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Radial symbols

We call a function f on Cn radial if f (z) = f (|z |) for all z ∈ Cn.

If f is radial, then Tf is diagonal with respect to the standard
orthonormal basis B = {eα : α ∈ Nn

0}.
Tf eα = λ(f , α)eα for all α. In fact, λ(f , α) depends only on f and
|α| = α1 + · · ·+ αn.
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The problem

Let f1 and f2 be two radial functions that have at most polynomial
growth at infinity. We are interested in the operator equation
Tf1Tg = Tg Tf2 .

Solving this problem will give important applications to the
commuting problem (when f1 = f2) and the zero product problem
(when either f1 = 0 or f2 = 0).

Our work here was motived by previous works on similar problems on
the Bergman space of the unit ball.

To solve the equation Tf1Tg = Tg Tf2 , we need to investigate the
relation between the eigenvalues of Tf1 and Tf2 .

Trieu Le (University of Toledo) Toeplitz Operators on Segal-Bargmann space March 19, 2011 7 / 15



Main result

Theorem (Bauer-L.)

Let f1 and f2 be two radial functions that have at most polynomial growth
at infinity; at least one is non-constant.
Then exactly one of the following two cases occurs.

1 For any g having at most polynomial growth, Tf1Tg = Tg Tf2 if and
only if g = 0 a.e. in Cn.

2 There is an integer d such that for any g having at most polynomial
growth,

Tf1Tg = Tg Tf2 if and only if g(γz1, . . . , γzn) = γdg(z)

for a.e. γ ∈ T, z = (z1, . . . , zn) ∈ Cn.
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Example 1

Consider f1(z) = |z |2 and f2(z) = |z |2 + b, where b is a fixed complex
number.

It turns out that if b is not an integer, then the first case occurs: if
Tf1Tg = Tg Tf2 , then g = 0 a.e.

If b is an integer, then the second occurs with d = b: if
Tf1Tg = Tg Tf2 , then g(γz1, . . . , γzn) = γbg(z) for a.e. γ ∈ T and
z ∈ Cn.

This example shows that the derivation map Tg 7→ [Tg ,T|z|2 ] has
only integer eigenvalues.
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Example 2

Consider f1(z) = |z |4 and f2(z) = |z |4 + b, where b is a fixed complex
number.

It turns out that if b 6= 0, then the first case occurs: if
Tf1Tg = Tg Tf2 , then g = 0 a.e.

If b = 0, then the second case occurs with d = 0: if Tf1Tg = Tg Tf2 ,
then g(γz1, . . . , γzn) = g(z) for a.e. γ ∈ T and z ∈ Cn.
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Consequences of the main result

1 f1 = f2 = f , non-constant radial: the second case must occur and the
integer d is 0.

Tf Tg = Tg Tf iff g(γz1, . . . , γzn) = g(z) a.e. γ ∈ T, z ∈ Cn.

This result is the same as the result on the Bergman space of the unit
ball obtained by Čučković and Rao for n = 1, and later by L. for all n.

2 f1 = 0 and f2 = f non-constant radial: the first case occurs and we
have

Tg Tf = 0 if and only if g = 0 a.e.

3 Similarly (or by taking adjoint), if f is non-constant radial, then

Tf Tg = 0 if and only if g = 0 a.e.
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Consequences of the main result

We have thus obtained an affirmative answer to a special case (when
one symbol is radial) of the zero product problem: if Tf Tg = 0, does
it follow that f = 0 or g = 0?

This result is also the same as the result on the Bergman space of the
unit ball obtained earlier by Ahern and Čučković for n = 1, and later
by L. for all n.
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Zero products of three Toeplitz operators

On the Bergman space of the unit ball, the following is true: if
f1, . . . , fk are bounded functions all of which, except possibly one, are
radial and Tf1 · · ·Tfk = 0, then one of these functions must be zero.

It turns out that the situation is completely different for the
Segal-Bargmann space: there are zero products of three non-zero
Toeplitz operators.

We consider one dimension case n = 1. For j = 0, 1, 2, take

fj(z) = |z |2je−|z|
2

sin(2
√

3|z |2), z ∈ C.

Note that the functions fj go to zero at exponential rate as |z | → ∞.
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Zero products of three Toeplitz operators

Each Tfj is diagonal with respect to B = {em : m ∈ N0}.

The mth eigenvalue of Tfj is a non-zero multiple of sin
(

(j+m+1)π
3

)
.

It follows that the product Tf0Tf1Tf2 is diagonal and the mth

eigenvalue is a multiple of the product

sin
((m + 1)π

3

)
sin
((1 + m + 1)π

3

)
sin
((2 + m + 1)π

3

)
.

But the last thing is zero for all integers m, so Tf1Tf2Tf3 = 0.
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Some questions

1 The commuting problem: on the Bergman space of the unit disk,
Axler and Čučković showed that if both f and g are bounded
harmonic functions and Tf Tg = Tg Tf , then there are three
possibilities: both f , g are analytic; or both f̄ , ḡ are analytic; or one is
a linear combination of the other with the constant function 1. We do
not know what happens in the Segal-Bargmann space on C.

2 The zero-product problem: on the Bergman space of the unit disk,
Ahern and Čučković showed that if f and g are bounded harmonic
functions and Tf Tg = 0, then one of the functions must be zero. We
do not know if this holds in the Segal-Bargmann space on C.
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