Some algebraic properties of Toeplitz operators on the Segal-Bargmann space

Trieu Le
joint work with W. Bauer
University of Toledo

SEAM XXVII
University of Florida, March 19, 2011

Introduction

- Let \mathcal{H} denote the Segal-Bargmann space on \mathbb{C}^{n}, which consists of all entire functions h for which

$$
\|h\|=\left(\int_{\mathbb{C}^{n}}|h|^{2} d \mu\right)^{1 / 2}<\infty
$$

here $d \mu(z)=\pi^{-n} \exp \left(-|z|^{2}\right) d V(z)$ is the Gaussian measure, $d V$ being the usual Lebesgue measure on \mathbb{C}^{n}.

- It is well known that \mathcal{H} is a closed subspace of $L^{2}\left(\mathbb{C}^{n}, d \mu\right)$, hence \mathcal{H} is a Hilbert space itself. It is also referred to by the name "Fock space".

Introduction

- Monomials are orthogonal in \mathcal{H}. In fact, \mathcal{H} has the standard orthonormal basis

$$
\mathcal{B}=\left\{e_{\alpha}(z)=\frac{z^{\alpha}}{\sqrt{\alpha!}}: \alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}_{0}^{n}\right\}
$$

Here for $z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}$ and $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$, we write $z^{\alpha}=z_{1}^{\alpha_{1}} \cdots z_{n}^{\alpha_{n}}$ and $\alpha!=\alpha_{1}!\cdots \alpha_{n}!$.

- Let P denote the orthogonal projection from $L^{2}\left(\mathbb{C}^{n}, d \mu\right)$ onto \mathcal{H}. For a measurable function f, the Toeplitz operator T_{f} is defined by

$$
T_{f} h=P M_{f} h=P(f \cdot h),
$$

for all $h \in \mathcal{H}$ for which $f \cdot h \in L^{2}\left(\mathbb{C}^{n}, d \mu\right)$.

Introduction

- If f is bounded, then since M_{f} is bounded, $T_{f}=P M_{f}$ is bounded and $\left\|T_{f}\right\| \leq\|f\|_{\infty}$.
- For a general f, the operator T_{f} may not even have a dense domain. For example, if $f(z)=e^{|z|^{2}}$, then the domain of T_{f} contains only the zero function.
- We need to deal with unbounded functions, and hence unbounded operators because on \mathbb{C}^{n}, even nicest functions (polynomials) are unbounded.

Introduction

- We will restrict our attention to functions that have at most polynomial growth at infinity: there exist constants $C, M>0$ so that

$$
|f(z)| \leq C\left(1+|z|^{2}\right)^{M} \text { for all } z \in \mathbb{C}^{n}
$$

For such an f, the domain of T_{f} contains all polynomials, which is dense in \mathcal{H}.

- In fact, for f_{1}, \ldots, f_{k} belonging to the above class of functions, the product $T_{f_{1}} \cdots T_{f_{k}}$ is densely defined with domain containing the polynomials.

Radial symbols

- We call a function f on \mathbb{C}^{n} radial if $f(z)=f(|z|)$ for all $z \in \mathbb{C}^{n}$.
- If f is radial, then T_{f} is diagonal with respect to the standard orthonormal basis $\mathcal{B}=\left\{e_{\alpha}: \alpha \in \mathbb{N}_{0}^{n}\right\}$.
- $T_{f} e_{\alpha}=\lambda(f, \alpha) e_{\alpha}$ for all α. In fact, $\lambda(f, \alpha)$ depends only on f and $|\alpha|=\alpha_{1}+\cdots+\alpha_{n}$.

The problem

- Let f_{1} and f_{2} be two radial functions that have at most polynomial growth at infinity. We are interested in the operator equation $T_{f_{1}} T_{g}=T_{g} T_{f_{2}}$.
- Solving this problem will give important applications to the commuting problem (when $f_{1}=f_{2}$) and the zero product problem (when either $f_{1}=0$ or $f_{2}=0$).
- Our work here was motived by previous works on similar problems on the Bergman space of the unit ball.
- To solve the equation $T_{f_{1}} T_{g}=T_{g} T_{f_{2}}$, we need to investigate the relation between the eigenvalues of $T_{f_{1}}$ and $T_{f_{2}}$.

Main result

Theorem (Bauer-L.)

Let f_{1} and f_{2} be two radial functions that have at most polynomial growth at infinity; at least one is non-constant.
Then exactly one of the following two cases occurs.
(1) For any g having at most polynomial growth, $T_{f_{1}} T_{g}=T_{g} T_{f_{2}}$ if and only if $g=0$ a.e. in \mathbb{C}^{n}.
(2) There is an integer d such that for any g having at most polynomial growth,

$$
T_{f_{1}} T_{g}=T_{g} T_{f_{2}} \text { if and only if } g\left(\gamma z_{1}, \ldots, \gamma z_{n}\right)=\gamma^{d} g(z)
$$

for a.e. $\gamma \in \mathbb{T}, z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}$.

Example 1

- Consider $f_{1}(z)=|z|^{2}$ and $f_{2}(z)=|z|^{2}+b$, where b is a fixed complex number.
- It turns out that if b is not an integer, then the first case occurs: if $T_{f_{1}} T_{g}=T_{g} T_{f_{2}}$, then $g=0$ a.e.
- If b is an integer, then the second occurs with $d=b$: if $T_{f_{1}} T_{g}=T_{g} T_{f_{2}}$, then $g\left(\gamma z_{1}, \ldots, \gamma z_{n}\right)=\gamma^{b} g(z)$ for a.e. $\gamma \in \mathbb{T}$ and $z \in \mathbb{C}^{n}$.
- This example shows that the derivation map $T_{g} \mapsto\left[T_{g}, T_{|z|^{2}}\right]$ has only integer eigenvalues.

Example 2

- Consider $f_{1}(z)=|z|^{4}$ and $f_{2}(z)=|z|^{4}+b$, where b is a fixed complex number.
- It turns out that if $b \neq 0$, then the first case occurs: if $T_{f_{1}} T_{g}=T_{g} T_{f_{2}}$, then $g=0$ a.e.
- If $b=0$, then the second case occurs with $d=0$: if $T_{f_{1}} T_{g}=T_{g} T_{f_{2}}$, then $g\left(\gamma z_{1}, \ldots, \gamma z_{n}\right)=g(z)$ for a.e. $\gamma \in \mathbb{T}$ and $z \in \mathbb{C}^{n}$.

Consequences of the main result

(1) $f_{1}=f_{2}=f$, non-constant radial: the second case must occur and the integer d is 0 .

$$
T_{f} T_{g}=T_{g} T_{f} \text { iff } g\left(\gamma z_{1}, \ldots, \gamma z_{n}\right)=g(z) \quad \text { a.e. } \quad \gamma \in \mathbb{T}, z \in \mathbb{C}^{n}
$$

This result is the same as the result on the Bergman space of the unit ball obtained by Čučković and Rao for $n=1$, and later by L. for all n.
(2) $f_{1}=0$ and $f_{2}=f$ non-constant radial: the first case occurs and we have

$$
T_{g} T_{f}=0 \text { if and only if } g=0 \quad \text { a.e. }
$$

(3) Similarly (or by taking adjoint), if f is non-constant radial, then

$$
T_{f} T_{g}=0 \text { if and only if } g=0 \quad \text { a.e. }
$$

Consequences of the main result

- We have thus obtained an affirmative answer to a special case (when one symbol is radial) of the zero product problem: if $T_{f} T_{g}=0$, does it follow that $f=0$ or $g=0$?
- This result is also the same as the result on the Bergman space of the unit ball obtained earlier by Ahern and Čučković for $n=1$, and later by L. for all n.

Zero products of three Toeplitz operators

- On the Bergman space of the unit ball, the following is true: if f_{1}, \ldots, f_{k} are bounded functions all of which, except possibly one, are radial and $T_{f_{1}} \cdots T_{f_{k}}=0$, then one of these functions must be zero.
- It turns out that the situation is completely different for the Segal-Bargmann space: there are zero products of three non-zero Toeplitz operators.
- We consider one dimension case $n=1$. For $j=0,1,2$, take

$$
f_{j}(z)=|z|^{2 j} e^{-|z|^{2}} \sin \left(2 \sqrt{3}|z|^{2}\right), \quad z \in \mathbb{C} .
$$

Note that the functions f_{j} go to zero at exponential rate as $|z| \rightarrow \infty$.

Zero products of three Toeplitz operators

- Each $T_{f_{j}}$ is diagonal with respect to $\mathcal{B}=\left\{e_{m}: m \in \mathbb{N}_{0}\right\}$.
- The $m^{\text {th }}$ eigenvalue of $T_{f_{j}}$ is a non-zero multiple of $\sin \left(\frac{(j+m+1) \pi}{3}\right)$.
- It follows that the product $T_{f_{0}} T_{f_{1}} T_{f_{2}}$ is diagonal and the $m^{\text {th }}$ eigenvalue is a multiple of the product

$$
\sin \left(\frac{(m+1) \pi}{3}\right) \sin \left(\frac{(1+m+1) \pi}{3}\right) \sin \left(\frac{(2+m+1) \pi}{3}\right)
$$

But the last thing is zero for all integers m, so $T_{f_{1}} T_{f_{2}} T_{f_{3}}=0$.

Some questions

(1) The commuting problem: on the Bergman space of the unit disk, Axler and Čučković showed that if both f and g are bounded harmonic functions and $T_{f} T_{g}=T_{g} T_{f}$, then there are three possibilities: both f, g are analytic; or both \bar{f}, \bar{g} are analytic; or one is a linear combination of the other with the constant function 1 . We do not know what happens in the Segal-Bargmann space on \mathbb{C}.
(2) The zero-product problem: on the Bergman space of the unit disk, Ahern and Čučković showed that if f and g are bounded harmonic functions and $T_{f} T_{g}=0$, then one of the functions must be zero. We do not know if this holds in the Segal-Bargmann space on \mathbb{C}.

