Some Rarita-Schwinger Type Operators

Junxia Li
University of Arkansas

March 17-19, 2011
University of Florida
27th South Eastern Analysis Meeting, Gainesville, FL

Introduction

In representation theory for $O(n)$, one can consider the space of homogeneous harmonic polynomials. If one refines to the space of homogeneous monogenic polynomials when refining the representation theory to the covering group of $O(n)$, then the Rarita-Schwinger operators arise in this context. The Rarita-Schwinger operators are generalizations of the Dirac operator. They are also known as Stein-Weiss operators. We denote a Rarita-Schwinger operator by R_{k}, where $k=0,1, \cdots, m, \cdots$. When $k=0$ it is the Dirac operator.

Preliminaries

A Clifford algebra, $C I_{n}$, can be generated from \mathbb{R}^{n} by considering the relationship

$$
\underline{x}^{2}=-\|\underline{x}\|^{2}
$$

for each $\underline{x} \in \mathbb{R}^{n}$. We have $\mathbb{R}^{n} \subseteq C I_{n}$. If e_{1}, \ldots, e_{n} is an orthonormal basis for \mathbb{R}^{n}, then $\underline{x}^{2}=-\|\underline{x}\|^{2}$ tells us that

$$
e_{i} e_{j}+e_{j} e_{i}=-2 \delta_{i j}
$$

where $\delta_{i j}$ is the Kroneker delta function.
An arbitrary element of the basis of the Clifford algebra can be written as $e_{A}=e_{j_{1}} \cdots e_{j_{r}}$, where $A=\left\{j_{1}, \cdots, j_{r}\right\} \subset\{1,2, \cdots, n\}$ and $1 \leq j_{1}<j_{2}<\cdots<j_{r} \leq n$. Hence for any element $a \in C l_{n}$, we have $a=\sum_{A} a_{A} e_{A}$, where $a_{A} \in \mathbb{R}$.

For $a \in C l_{n}$, we will need the following anti-involutions:
Reversion:

$$
\tilde{a}=\sum_{A}(-1)^{|A|(|A|-1) / 2} a_{A} e_{A},
$$

where $|A|$ is the cardinality of A. In particular, $\widetilde{e_{j_{1}} \cdots e_{j_{r}}}=e_{j_{r}} \cdots e_{j_{1}}$. Also $\widetilde{a b}=\tilde{b} \tilde{a}$ for $a, b \in C l_{n}$.
Clifford conjugation:

$$
\bar{a}=\sum_{A}(-1)^{|A|(|A|+1) / 2} a_{A} e_{A} .
$$

Further, we have $\overline{e_{j_{1}} \cdots e_{j_{r}}}=(-1)^{r} e_{j_{r}} \cdots e_{j_{1}}$ and $\overline{a b}=\bar{b} \bar{a}$ for $a, b \in C l_{n}$.

$\operatorname{Pin}(\mathrm{n})$ and $\operatorname{Spin}(\mathrm{n})$

$$
\operatorname{Pin}(n):=\left\{a \in C I_{n}: a=y_{1} \ldots y_{p}: y_{1}, \ldots, y_{p} \in S^{n-1}, p \in \mathbb{N}\right\}
$$

is a group under multiplication in $C l_{n}$. As we can choose y_{1}, \ldots, y_{p} arbitrarily in S^{n-1} the group homomorphism

$$
\theta: \operatorname{Pin}(n) \longrightarrow O(n): a \longmapsto O_{a}
$$

with $a=y_{1} \ldots y_{p}$ and $O_{a}(x)=a x a \tilde{a}$ is surjective. Further $-a x(-\tilde{a})=a x a ̃$, so $1,-1 \in \operatorname{ker}(\theta)$. In fact $\operatorname{ker}(\theta)=\{ \pm 1\}$. Let $\operatorname{Spin}(n):=\left\{a \in \operatorname{Pin}(n): a=y_{1} \ldots y_{p}\right.$ and p is even $\}$. Then $\operatorname{Spin}(n)$ is a subgroup of $\operatorname{Pin}(n)$ and

$$
\theta: \operatorname{Spin}(n) \longrightarrow S O(n)
$$

is surjective with kernel $\{1,-1\}$.

Dirac Operator

The Dirac Operator in \mathbb{R}^{n} is defined to be

$$
D:=\sum_{j=1}^{n} e_{j} \frac{\partial}{\partial x_{j}}
$$

Note $D^{2}=-\Delta_{n}$, where Δ_{n} is the Laplacian in \mathbb{R}^{n}. The solution of the equation $D f=0$ is called a left monogenic function.

Almansi-Fischer decomposition

Let \mathcal{P}_{k} denote the space of $C I_{n}-$ valued monogenic polynomials, homogeneous of degree k and \mathcal{H}_{k} be the space of $C I_{n}$ valued harmonic polynomials homogeneous of degree k. If $h_{k} \in \mathcal{H}_{k}$ then $D h_{k} \in \mathcal{P}_{k-1}$. But $\operatorname{Dup}_{k-1}(u)=(-n-2 k+2) p_{k-1}(u)$, so the Almansi-Fischer decomposition is

$$
\mathcal{H}_{k}=\mathcal{P}_{k} \bigoplus u \mathcal{P}_{k-1}
$$

That is, for any $h_{k} \in \mathcal{H}_{k}$, we obtain that $h_{k}(u)=p_{k}(u)+u p_{k-1}(u)$. Note that if $\operatorname{Df}(u)=0$ then $\bar{f}(u) \bar{D}=-\bar{f}(u) D=0$. So we can talk of right k - monogenic polynomials and we have a right Almansi-Fisher decomposition, $\mathcal{H}_{k}=\overline{\mathcal{P}}_{k} \bigoplus \overline{\mathcal{P}}_{k-1} \bar{u}$.

Rarita-Schwiger operators R_{k}

Suppose U is a domain in \mathbb{R}^{n}. Consider a function

$$
f: U \times \mathbb{R}^{n} \longrightarrow C I_{n}
$$

such that for each $x \in U, f(x, u)$ is a left monogenic polynomial homogeneous of degree k in u.

Rarita-Schwiger operators R_{k}

Suppose U is a domain in \mathbb{R}^{n}. Consider a function

$$
f: U \times \mathbb{R}^{n} \longrightarrow C I_{n}
$$

such that for each $x \in U, f(x, u)$ is a left monogenic polynomial homogeneous of degree k in u.
Consider $D_{x} f(x, u)$

Rarita-Schwiger operators R_{k}

Suppose U is a domain in \mathbb{R}^{n}. Consider a function

$$
f: U \times \mathbb{R}^{n} \longrightarrow C I_{n}
$$

such that for each $x \in U, f(x, u)$ is a left monogenic polynomial homogeneous of degree k in u.
Consider $D_{x} f(x, u)=f_{1, k}(x, u)+u f_{2, k-1}(x, u)$, where $f_{1, k}(x, u)$ and $f_{2, k-1}(x, u)$ are left monogenic polynomials homogeneous of degree k and $k-1$ in u respectively.

Rarita-Schwiger operators R_{k}

Suppose U is a domain in \mathbb{R}^{n}. Consider a function

$$
f: U \times \mathbb{R}^{n} \longrightarrow C I_{n}
$$

such that for each $x \in U, f(x, u)$ is a left monogenic polynomial homogeneous of degree k in u.
Consider $D_{x} f(x, u)=f_{1, k}(x, u)+u f_{2, k-1}(x, u)$, where $f_{1, k}(x, u)$ and $f_{2, k-1}(x, u)$ are left monogenic polynomials homogeneous of degree k and $k-1$ in u respectively.
Let P_{k} be the left projection map

$$
P_{k}: \mathcal{H}_{k}\left(=\mathcal{P}_{k} \bigoplus u \mathcal{P}_{k-1}\right) \rightarrow \mathcal{P}_{k}
$$

then $R_{k} f(x, u)$ is defined to be $P_{k} D_{x} f(x, u)$.
The left Rarita-Schwinger equation is defined to be

$$
R_{k} f(x, u)=0
$$

We also have a right projection $P_{k, r}: \mathcal{H}_{k} \rightarrow \overline{\mathcal{P}_{k}}$, and a right Rarita-Schwinger equation $f(x, u) D_{x} P_{k, r}=f(x, u) R_{k}=0$. Further we obtain that

$$
P_{k}=\left(\frac{u D_{u}}{n+2 k-2}+1\right) \text { and } R_{k}=\left(\frac{u D_{u}}{n+2 k-2}+1\right) D_{x} .
$$

Are there any non-trivial solutions to the Rarita-Schwinger equation?

First for any k-monogenic polynomial $p_{k}(u)$ we have trivially $R_{k} p_{k}(u)=0$. Now consider the fundamental solution
$G(u)=\frac{1}{\omega_{n}} \frac{-u}{\|u\|^{n}}$ to the Dirac operator D, where ω_{n} is the surface area of the unit sphere, S^{n-1}.
Consider the Taylor series expansion of $G(v-u)$ and restrict to the k th order terms in $u_{1}, \ldots, u_{n}\left(u=u_{1} e_{1}+\ldots+u_{n} e_{n}\right)$. These terms have as vector valued coefficients

$$
\frac{\partial^{k}}{\partial v_{1}^{k_{1}} \ldots \partial v_{n}^{k_{n}}} G(v) \quad\left(k_{1}+\ldots+k_{n}=k\right)
$$

As $D G(v)=\sum_{i=1}^{n} e_{j} \frac{\partial G(v)}{\partial v_{j}}=0$, we can replace $\frac{\partial}{\partial v_{1}}$ by
$-\sum_{j=2}^{n} e_{1}^{-1} e_{j} \frac{\partial}{\partial v_{j}}$. Doing this each time $\frac{\partial}{\partial v_{1}}$ occurs and collecting like terms we obtain a finite series of polynomials homogeneous of degree k in u

$$
\sum_{\sigma} P_{\sigma}(u) V_{\sigma}(v)
$$

where the summation is taken over all permutations of monogenic polynomials $\left(u_{2}-u_{1} e_{1}^{-1} e_{2}\right), \cdots,\left(u_{n}-u_{1} e_{1}^{-1} e_{n}\right)$,
$P_{\sigma}(u)=\frac{1}{k!} \Sigma\left(u_{i_{1}}-u_{1} e_{1}^{-1} e_{i_{1}}\right) \ldots\left(u_{i_{k}}-u_{1} e_{1}^{-1} e_{i_{k}}\right)$ and
$V_{\sigma}(v)=\frac{\partial^{k} G(v)}{\partial v_{2}^{j_{2}} \ldots \partial v_{n}^{j_{n}}}, j_{2}+\cdots+j_{n}=k$.

Further $\int_{S^{n-1}} V_{\sigma}(u) u P_{\mu}(u) d S(u)=\delta_{\sigma, \mu}$ where $\delta_{\sigma, \mu}$ is the Kroneker delta and μ is a set of $n-1$ non-negative integers summing to k. Consequently, the expression

$$
Z_{k}(u, v):=\sum_{\sigma} P_{\sigma}(u) V_{\sigma}(v) v
$$

is the reproducing kernel of \mathcal{P}_{k} with respect to integration over S^{n-1}. See [BDS]. Further as $Z_{k}(u, v)$ does not depend on x,

$$
R_{k} Z_{k}=0
$$

Are there any solutions to $R_{k} f(x, u)=0$ that depends on

 x ?To answer this we need to look at the links to conformal transformations. Ahlfors [A] and Vahlen [V] show that given conformal transformation on $\mathbb{R}^{n} \bigcup\{\infty\}$ it can be expressed as $y=\phi(x)=(a x+b)(c x+d)^{-1}$ where $a, b, c, d \in C l_{n}$ and satisfy the following conditions:

1. a, b, c, d are all products of vectors in \mathbb{R}^{n}.
2. $a \tilde{b}, c \tilde{d}, \tilde{b} c, \tilde{d} a \in \mathbb{R}^{n}$.
3. $a \tilde{d}-b \tilde{c}= \pm 1$.

When $c=0$,
$\phi(x)=(a x+b)(c x+d)^{-1}=a x d^{-1}+b d^{-1}= \pm a x a \tilde{a}+b d^{-1}$.
Now assume $c \neq 0$, then
$\phi(x)=(a x+b)(c x+d)^{-1}=a c^{-1} \pm(c x \tilde{c}+d \tilde{c})^{-1}$, this is called an Iwasawa decomposition.

The following can be established.
If $\operatorname{Df}(y)=0$ and $y=a x a ̃, a \in \operatorname{Pin}(n)$, then $D a ̃ f(a x a ̃)=0$.
If $D f(y)=0$ and $y=x^{-1}$ then $D G(x) f\left(x^{-1}\right)=0$.
Using these and the Iwasawa decomposition we get $D f(y)=0$
implies $D J(\phi, x) f(\phi(x))=0$, where $J(\phi, x)=\frac{c x+d}{\|c x+d\|^{n}}$.

Conformal invariance of P_{k}

1. Orthogonal transformation: Let $x=a y a ̃$, and $u=a w a ̃$, where $a \in \operatorname{Pin}(n)$.
Lemma $1 \quad P_{k, w} \tilde{a} f(a y \tilde{a}, a w a ̃)=\tilde{a} P_{k, u} f(x, u)$, where $P_{k, w}$ and $P_{k, u}$ are the projections with respect to w and u respectively.
2. Inversion: Let $x=y^{-1}, u=\frac{y w y}{\|y\|^{2}}$.

Lemma $2 P_{k, w} \frac{y}{\|y\|^{n}} f\left(y^{-1}, \frac{y w y}{\|y\|^{2}}\right)=\frac{y}{\|y\|^{n}} P_{k, u} f(x, u)$, where $P_{k, w}$
and $P_{k, u}$ are the projections with respect to w and u respectively.
3. Translation: $x=y+a, a \in \mathbb{R}^{n}$. In order to keep the homogeneity of $f(x, u)$ in u, u does not change under translation.
Lemma $3 \quad P_{k} f(x, u)=P_{k} f(y+a, u)$.
4. Dilation: $x=\lambda y$, where $\lambda \in \mathbb{R}^{+}$.

Lemma $4 \quad P_{k} f(x, u)=P_{k} f(\lambda y, u)$.

Using the Iwasawa decomposition, we get the following result: Theorem 3
$P_{k, w} J(\phi, x) f\left(\phi(x), \frac{(\widetilde{c x+d}) w(c x+d)}{\|c x+d\|^{2}}\right)=J(\phi, x) P_{k, u} f(\phi(x), u)$,
where $u=\frac{(c x+d) w(c x+d)}{\|c x+d\|^{2}}$, where $P_{k, w}$ and $P_{k, u}$ are the projections with respect to w and u respectively.

Conformal invariance of the equation $R_{k} f=0$

(i) Inversion: Let $x=y^{-1},\left(=\frac{-y}{\|y\|^{2}}\right)$.

Theorem 4 If $R_{k} f(x, u)=0$, then $R_{k} G(y) f\left(y^{-1}, \frac{y w y}{\|y\|^{2}}\right)=0$.
(ii) Orthogonal transformation: $O \in O(n), a \in \operatorname{Pin}(n)$

Theorem 5 If $x=a y a ̃, u=a w a ̃$ and $R_{k} f(x, u)=0$ then $R_{k} \tilde{a} f(a y a ̃, a w a ̃)=0$.
(iii) Dilation: $x=\lambda y, \lambda \in \mathbb{R}^{+}$.

If $R_{k} f(x, u)=0$ then $R_{k} f(\lambda y, u)=0$.
(iv) Translation: $x=y+\underline{a}, \quad \underline{a} \in \mathbb{R}^{n}$

If $R_{k} f(x, u)=0$ then $R_{k} f(y+\underline{a}, u)=0$.
Now using the Iwasawa decomposition of $(a x+b)(c x+d)^{-1}$, we obtain that
$R_{k} f(x, u)=0$ implies $R_{k} J(\phi, x) f\left(\phi(x), \frac{\widetilde{(c x+d)} w(c x+d)}{\|c x+d\|^{2}}\right)=0$,
where $u=\frac{(\widetilde{c x+d}) w(c x+d)}{\|c x+d\|^{2}}$.

The Fundamental Solution of R_{k}

Applying inversion to $Z_{k}(u, v)$ from the right we obtain

$$
E_{k}(y, u, v):=c_{k} Z_{k}\left(u, \frac{y v y}{\|y\|^{2}}\right) \frac{y}{\|y\|^{n}}
$$

is a non-trivial solution to $f(y, v) R_{k}=0$ on $\mathbb{R}^{n} \backslash\{0\}$, where $c_{k}=\frac{n-2+2 k}{n-2}$.
Similarly, applying inversion to $Z_{k}(u, v)$ from the left we can obtain that

$$
c_{k} \frac{y}{\|y\|^{n}} Z_{k}\left(\frac{y u y}{\|y\|^{2}}, v\right)
$$

is a non-trivial solution to $R_{k} f(y, u)=0$ on $\mathbb{R}^{n} \backslash\{0\}$. In fact, this function is $E_{k}(y, u, v)$, and $E_{k}(y, u, v)$ is the fundamental solution of R_{k}.

Basic Integral Formulas

Definition 1 For any $C l_{n}$-valued polynomials $P(u), Q(u)$, the inner product $(P(u), Q(u))_{u}$ with respect to u is given by

$$
(P(u), Q(u))_{u}=\int_{S^{n-1}} P(u) Q(u) d S(u)
$$

For any $p_{k} \in \mathcal{P}_{k}$, one obtains

$$
p_{k}(u)=\left(Z_{k}(u, v), p_{k}(v)\right)_{v}=\int_{S^{n-1}} Z_{k}(u, v) p_{k}(v) d S(v)
$$

See [BDS].

Basic Integral Formulas

Theorem 1 [BSSV] (Stokes' Theorem for R_{k}) Let Ω and Ω^{\prime} be domains in \mathbb{R}^{n} and suppose the closure of Ω lies in Ω^{\prime}. Further suppose the closure of Ω is compact and $\partial \Omega$ is piecewise smooth. Then for $f, g \in C^{1}\left(\Omega^{\prime}, \mathcal{P}_{k}\right)$, we have

$$
\begin{aligned}
& \int_{\Omega}\left[\left(g(x, u) R_{k}, f(x, u)\right)_{u}+\left(g(x, u), R_{k} f(x, u)\right)_{u}\right] d x^{n} \\
& =\int_{\partial \Omega}\left(g(x, u), P_{k} d \sigma_{x} f(x, u)\right)_{u}=\int_{\partial \Omega}\left(g(x, u) d \sigma_{x} P_{k, r}, f(x, u)\right)_{u},
\end{aligned}
$$

where $d x^{n}=d x_{1} \wedge \cdots \wedge d x_{n}, d \sigma_{x}=\sum_{j=1}^{n}(-1)^{j-1} e_{j} d \hat{x}_{j}$, and $d \hat{x}_{j}=d x_{1} \wedge \cdots d x_{j-1} \wedge d x_{j+1} \cdots \wedge d x_{n}$.

Basic Integral Formulas

Theorem 2 [BSSV](Borel-Pompeiu Theorem) Let Ω^{\prime} and Ω be as in Theorem 1 and $y \in \Omega$. Then for $f \in C^{1}\left(\Omega^{\prime}, \mathcal{P}_{k}\right)$

$$
\begin{aligned}
& f(y, u)=\int_{\partial \Omega}\left(E_{k}(x-y, u, v), P_{k} d \sigma_{x} f(x, v)\right)_{v} \\
& -\int_{\Omega}\left(E_{k}(x-y, u, v), R_{k} f(x, v)\right)_{v} d x^{n}
\end{aligned}
$$

Here we will use the representation

$$
E_{k}(x-y, u, v)=c_{k} Z_{k}\left(u, \frac{(x-y) v(x-y)}{\|x-y\|^{2}}\right) \frac{x-y}{\|x-y\|^{n}}
$$

Basic Integral Formulas

Theorem 3 (Cauchy Integral Formula) If $R_{k} f(x, v)=0$, then for $y \in \Omega$,

$$
\begin{aligned}
& f(y, v)=\int_{\partial \Omega}\left(E_{k}(x-y, u, v), P_{k} d \sigma_{x} f(x, v)\right)_{v} \\
& =\int_{\partial \Omega}\left(E_{k}(x-y, u, v) d \sigma_{x} P_{k, r}, f(x, v)\right)_{v}
\end{aligned}
$$

Theorem $4 \iint_{\mathbb{R}^{n}}-\left(E_{k}(x-y, u, v), R_{k} \psi(x, v)\right)_{v} d x^{n}=\psi(y, u)$ for each $\psi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$.

Basic Integral Formulas

Definition 2 For a domain $\Omega \subset \mathbb{R}^{n}$ and a function $f: \Omega \times \mathbb{R}^{n} \longrightarrow C I_{n}$, the Cauchy, or T_{k}-transform, of f is formally defined to be

$$
\left(T_{k} f\right)(y, v)=-\int_{\Omega}\left(E_{k}(x-y, u, v), f(x, u)\right)_{u} d x^{n}, \quad y \in \Omega
$$

Theorem $5 \quad R_{k} T_{k} \psi=\psi$ for $\psi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$. i.e

$$
R_{k} \iint_{\mathbb{R}^{n}}\left(E_{k}(x-y, u, v), \psi(x, u)\right)_{u} d x^{n}=\psi(y, v)
$$

References

目 L．V．Ahlfors，Old and new in Möbius groups，Ann．Acad．Sci． Fenn．Ser．A I Math．， 9 （1984）93－105．

囦 F．Brackx，R．Delanghe，and F．Sommen，Clifford Analysis， Pitman，London， 1982.
睩 J．Bureš，F．Sommen，V．Souček，P．Van Lancker， Rarita－Schwinger Type Operators in Clifford Analysis，J． Funct．Annl． 185 （2001），No．2，425－455．
R A．Sudbery，Quaternionic Analysis，Mathematical Procedings of the Cambridge Phlosophical Society，（1979），85，199－225．
國 K．Th．Vahlen，Über Bewegungen und complexe zahlen， （German）Math．Ann．，55（1902），No． 4 585－593．

