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Introduction

In representation theory for O(n), one can consider the space of
homogeneous harmonic polynomials. If one refines to the space of
homogeneous monogenic polynomials when refining the
representation theory to the covering group of O(n), then the
Rarita-Schwinger operators arise in this context. The
Rarita-Schwinger operators are generalizations of the Dirac
operator. They are also known as Stein-Weiss operators. We
denote a Rarita-Schwinger operator by Rk , where
k = 0, 1, · · · ,m, · · · . When k = 0 it is the Dirac operator.



Preliminaries

A Clifford algebra, Cln, can be generated from Rn by considering
the relationship

x2 = −‖x‖2

for each x ∈ Rn. We have Rn ⊆ Cln. If e1, . . . , en is an
orthonormal basis for Rn, then x2 = −‖x‖2 tells us that

eiej + ejei = −2δij ,

where δij is the Kroneker delta function.
An arbitrary element of the basis of the Clifford algebra can be
written as eA = ej1 · · · ejr , where A = {j1, · · · , jr} ⊂ {1, 2, · · · , n}
and 1 ≤ j1 < j2 < · · · < jr ≤ n. Hence for any element a ∈ Cln, we
have a =

∑
A aAeA, where aA ∈ R.



For a ∈ Cln, we will need the following anti-involutions:
Reversion:

ã =
∑
A

(−1)|A|(|A|−1)/2aAeA,

where |A| is the cardinality of A. In particular,

˜ej1 · · · ejr = ejr · · · ej1 . Also ãb = b̃ã for a, b ∈ Cln.
Clifford conjugation:

ā =
∑
A

(−1)|A|(|A|+1)/2aAeA.

Further, we have ej1 · · · ejr = (−1)rejr · · · ej1 and ab = b̄ā for
a, b ∈ Cln.



Pin(n) and Spin(n)

Pin(n) := {a ∈ Cln : a = y1 . . . yp : y1, . . . , yp ∈ Sn−1, p ∈ N}

is a group under multiplication in Cln. As we can choose y1, . . . , yp
arbitrarily in Sn−1 the group homomorphism

θ : Pin(n) −→ O(n) : a 7−→ Oa

with a = y1 . . . yp and Oa(x) = axã is surjective. Further
−ax(−ã) = axã, so 1,−1 ∈ ker(θ). In fact ker(θ) = {±1}.
Let Spin(n) := {a ∈ Pin(n) : a = y1 . . . yp and p is even}.
Then Spin(n) is a subgroup of Pin(n) and

θ : Spin(n) −→ SO(n)

is surjective with kernel {1,−1}.



Dirac Operator

The Dirac Operator in Rn is defined to be

D :=
n∑

j=1

ej
∂

∂xj
.

Note D2 = −∆n, where ∆n is the Laplacian in Rn. The solution of
the equation Df = 0 is called a left monogenic function.



Almansi-Fischer decomposition

Let Pk denote the space of Cln− valued monogenic polynomials,
homogeneous of degree k and Hk be the space of Cln valued
harmonic polynomials homogeneous of degree k . If hk ∈ Hk then
Dhk ∈ Pk−1. But Dupk−1(u) = (−n − 2k + 2)pk−1(u), so the
Almansi-Fischer decomposition is

Hk = Pk
⊕

uPk−1.

That is, for any hk ∈ Hk , we obtain that
hk(u) = pk(u) + upk−1(u). Note that if Df (u) = 0 then
f̄ (u)D̄ = −f̄ (u)D = 0. So we can talk of right k− monogenic
polynomials and we have a right Almansi-Fisher decomposition,
Hk = P̄k

⊕
P̄k−1ū.



Rarita-Schwiger operators Rk

Suppose U is a domain in Rn. Consider a function

f : U × Rn −→ Cln

such that for each x ∈ U, f (x , u) is a left monogenic polynomial
homogeneous of degree k in u.

Consider Dx f (x , u) = f1,k(x , u) + uf2,k−1(x , u), where f1,k(x , u)
and f2,k−1(x , u) are left monogenic polynomials homogeneous of
degree k and k − 1 in u respectively.
Let Pk be the left projection map

Pk : Hk(= Pk
⊕

uPk−1)→ Pk ,

then Rk f (x , u) is defined to be PkDx f (x , u).
The left Rarita-Schwinger equation is defined to be

Rk f (x , u) = 0.
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We also have a right projection Pk,r : Hk → P̄k , and a right
Rarita-Schwinger equation f (x , u)DxPk,r = f (x , u)Rk = 0.
Further we obtain that

Pk = (
uDu

n + 2k − 2
+ 1) and Rk = (

uDu

n + 2k − 2
+ 1)Dx .



Are there any non-trivial solutions to the Rarita-Schwinger
equation?

First for any k-monogenic polynomial pk(u) we have trivially
Rkpk(u) = 0. Now consider the fundamental solution

G (u) =
1

ωn

−u

‖u‖n
to the Dirac operator D, where ωn is the surface

area of the unit sphere, Sn−1.
Consider the Taylor series expansion of G (v − u) and restrict to
the kth order terms in u1, . . . , un (u = u1e1 + . . .+ unen). These
terms have as vector valued coefficients

∂k

∂v1
k1 . . . ∂vnkn

G (v) (k1 + . . .+ kn = k).



As DG (v) =
∑n

i=1 ej
∂G (v)

∂vj
= 0, we can replace

∂

∂v1
by

−
∑n

j=2 e−1
1 ej

∂

∂vj
. Doing this each time

∂

∂v1
occurs and collecting

like terms we obtain a finite series of polynomials homogeneous of
degree k in u ∑

σ

Pσ(u)Vσ(v)

where the summation is taken over all permutations of monogenic
polynomials (u2 − u1e−1

1 e2), · · · , (un − u1e−1
1 en),

Pσ(u) =
1

k!
Σ(ui1 − u1e−1

1 ei1) . . . (uik − u1e−1
1 eik ) and

Vσ(v) =
∂kG (v)

∂v j2
2 . . . ∂v jn

n

, j2 + · · ·+ jn = k.



Further

∫
Sn−1

Vσ(u)uPµ(u)dS(u) = δσ,µ where δσ,µ is the Kroneker

delta and µ is a set of n − 1 non-negative integers summing to k.
Consequently, the expression

Zk(u, v) :=
∑
σ

Pσ(u)Vσ(v)v

is the reproducing kernel of Pk with respect to integration over
Sn−1. See [BDS]. Further as Zk(u, v) does not depend on x ,

RkZk = 0.



Are there any solutions to Rk f (x , u) = 0 that depends on
x?

To answer this we need to look at the links to conformal
transformations. Ahlfors [A] and Vahlen [V] show that given
conformal transformation on Rn

⋃
{∞} it can be expressed as

y = φ(x) = (ax + b)(cx + d)−1 where a, b, c , d ∈ Cln and satisfy
the following conditions:

1. a, b, c , d are all products of vectors in Rn.

2. ab̃, cd̃ , b̃c , d̃a ∈ Rn.

3. ad̃ − bc̃ = ±1.

When c = 0,
φ(x) = (ax + b)(cx + d)−1 = axd−1 + bd−1 = ±axã + bd−1.
Now assume c 6= 0, then
φ(x) = (ax + b)(cx + d)−1 = ac−1 ± (cxc̃ + dc̃)−1, this is called
an Iwasawa decomposition.



The following can be established.
If Df (y) = 0 and y = axã, a ∈ Pin(n), then Dãf (axã) = 0.
If Df (y) = 0 and y = x−1 then DG (x)f (x−1) = 0.
Using these and the Iwasawa decomposition we get Df (y) = 0

implies DJ(φ, x)f (φ(x)) = 0, where J(φ, x) =
c̃x + d

‖cx + d‖n
.



Conformal invariance of Pk

1. Orthogonal transformation: Let x = ay ã, and u = awã,
where a ∈ Pin(n).
Lemma 1 Pk,w ãf (ay ã, awã) = ãPk,uf (x , u), where Pk,w and
Pk,u are the projections with respect to w and u respectively.

2. Inversion: Let x = y−1, u =
ywy

‖y‖2
.

Lemma 2 Pk,w
y

‖y‖n
f (y−1,

ywy

‖y‖2
) =

y

‖y‖n
Pk,uf (x , u), where Pk,w

and Pk,u are the projections with respect to w and u respectively.
3. Translation: x = y + a, a ∈ Rn. In order to keep the
homogeneity of f (x , u) in u, u does not change under translation.
Lemma 3 Pk f (x , u) = Pk f (y + a, u).
4. Dilation: x = λy , where λ ∈ R+.
Lemma 4 Pk f (x , u) = Pk f (λy , u).



Using the Iwasawa decomposition, we get the following result:
Theorem 3

Pk,wJ(φ, x)f (φ(x),
˜(cx + d)w(cx + d)

‖cx + d‖2
) = J(φ, x)Pk,uf (φ(x), u),

where u =
˜(cx + d)w(cx + d)

‖cx + d‖2
, where Pk,w and Pk,u are the

projections with respect to w and u respectively.



Conformal invariance of the equation Rk f = 0

(i) Inversion: Let x = y−1, (=
−y

‖y‖2
).

Theorem 4 If Rk f (x , u) = 0, then RkG (y)f (y−1,
ywy

‖y‖2
) = 0.

(ii) Orthogonal transformation: O ∈ O(n), a ∈ Pin(n)
Theorem 5 If x = ay ã, u = awã and Rk f (x , u) = 0 then
Rk ãf (ay ã, awã) = 0.
(iii) Dilation: x = λy , λ ∈ R+.
If Rk f (x , u) = 0 then Rk f (λy , u) = 0.
(iv) Translation: x = y + a, a ∈ Rn

If Rk f (x , u) = 0 then Rk f (y + a, u) = 0.
Now using the Iwasawa decomposition of (ax + b)(cx + d)−1, we
obtain that

Rk f (x , u) = 0 implies RkJ(φ, x)f (φ(x),
˜(cx + d)w(cx + d)

‖cx + d‖2
) = 0,

where u =
˜(cx + d)w(cx + d)

‖cx + d‖2
.



The Fundamental Solution of Rk

Applying inversion to Zk(u, v) from the right we obtain

Ek(y , u, v) := ckZk(u,
yvy

‖y‖2
)

y

‖y‖n

is a non-trivial solution to f (y , v)Rk = 0 on Rn \ {0}, where

ck =
n − 2 + 2k

n − 2
.

Similarly, applying inversion to Zk(u, v) from the left we can
obtain that

ck
y

‖y‖n
Zk(

yuy

‖y‖2
, v)

is a non-trivial solution to Rk f (y , u) = 0 on Rn \ {0}. In fact, this
function is Ek(y , u, v), and Ek(y , u, v) is the fundamental solution
of Rk .



Basic Integral Formulas

Definition 1 For any Cln−valued polynomials P(u),Q(u), the
inner product (P(u),Q(u))u with respect to u is given by

(P(u),Q(u))u =

∫
Sn−1

P(u)Q(u)dS(u).

For any pk ∈ Pk , one obtains

pk(u) = (Zk(u, v), pk(v))v =

∫
Sn−1

Zk(u, v)pk(v)dS(v).

See [BDS].



Basic Integral Formulas

Theorem 1 [BSSV] (Stokes’ Theorem for Rk) Let Ω and Ω′ be
domains in Rn and suppose the closure of Ω lies in Ω′. Further
suppose the closure of Ω is compact and ∂Ω is piecewise smooth.
Then for f , g ∈ C 1(Ω′,Pk), we have∫

Ω
[(g(x , u)Rk , f (x , u))u + (g(x , u),Rk f (x , u))u]dxn

=

∫
∂Ω

(g(x , u),Pkdσx f (x , u))u =

∫
∂Ω

(g(x , u)dσxPk,r , f (x , u))u ,

where dxn = dx1 ∧ · · · ∧ dxn, dσx =
n∑

j=1

(−1)j−1ejdx̂j , and

dx̂j = dx1 ∧ · · · dxj−1 ∧ dxj+1 · · · ∧ dxn.



Basic Integral Formulas

Theorem 2 [BSSV](Borel-Pompeiu Theorem ) Let Ω′ and Ω be
as in Theorem 1 and y ∈ Ω. Then for f ∈ C 1(Ω′,Pk)

f (y , u) =

∫
∂Ω

(Ek(x − y , u, v),Pkdσx f (x , v))v

−
∫

Ω
(Ek(x − y , u, v),Rk f (x , v))vdxn.

Here we will use the representation

Ek(x − y , u, v) = ckZk(u,
(x − y)v(x − y)

‖x − y‖2
)

x − y

‖x − y‖n
.



Basic Integral Formulas

Theorem 3 (Cauchy Integral Formula) If Rk f (x , v) = 0, then for
y ∈ Ω,

f (y , v) =

∫
∂Ω

(Ek(x − y , u, v),Pkdσx f (x , v))v

=

∫
∂Ω

(Ek(x − y , u, v)dσxPk,r , f (x , v))v .

Theorem 4

∫∫
Rn

−(Ek(x − y , u, v),Rkψ(x , v))vdxn = ψ(y , u)

for each ψ ∈ C∞0 (Rn).



Basic Integral Formulas

Definition 2 For a domain Ω ⊂ Rn and a function
f : Ω× Rn −→ Cln, the Cauchy, or Tk -transform, of f is formally
defined to be

(Tk f )(y , v) = −
∫

Ω
(Ek(x − y , u, v), f (x , u))u dxn, y ∈ Ω.

Theorem 5 RkTkψ = ψ for ψ ∈ C∞0 (Rn). i.e

Rk

∫∫
Rn

(Ek(x − y , u, v), ψ(x , u))u dxn = ψ(y , v).
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