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The problem

Consider kernel K(s, t) which is singular near the diagonal,
i.e. K(s, · ) and K( · , t) are not in L1

loc near s = t
A SIO is an operator T on L2(µ) is formally given by

Tf(s) =

∫
K(s, t)f(t) dµ(t)

This means that the above integral is not defined even for the
simplest functions f
What meaning do we give this formal expression?
If T is the classical Hilbert Transform on the real line, then
the integral exists in the sense of principal value

lim
α→0+

∫
|s−t|>α

f(t)

s− t
dt for f ∈ C1

c (R)

This approach is not possible, if dµ(t) 6= dt
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Some of literature’s remedies

In the general situation the boundedness in Lp is often defined
as the uniform boundedness (independent of ε→ 0) of either

truncated operators: Tεf(s) =

∫
|s−t|>ε

K(s, t)f(t)dµ(t), or

smooth regularizations, e.g.: Tεf(s) =

∫
R

f(t)

s− t+ iε
dµ(t)

The corresponding SIO is then the limit point (in WOT)

T is unique up to ‘+multiplication by L∞−function’
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Definitions

Radon measures µ and ν in RN (no grow, doubling condition)

A singular kernel in RN (wrt µ and ν) is locally L2(µ× ν) off
the diagonal {(s, t) ∈ RN × RN : s = t}
K is of order d, if the kernel K̃ is locally L2(µ× ν),

K̃(s, t) =

{
K(s, t)|s− t|d, s 6= t
0 s = t

Formal singular integral operator with the kernel K is
restrictedly bounded in Lp if∣∣∣∣∫ K(s, t)f(t)g(s)dµ(t)dν(s)

∣∣∣∣ ≤ C‖f‖Lp(µ)‖g‖Lp′ (ν),

for all bounded f , g with separated compact supports

The least C (for p, µ and ν fixed) is the restricted norm of K
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A trivial idea

If K(s, t) has restricted Lp norm C, then so does the kernel

K(s, t)e−ia·teia·s for any a ∈ RN

is also restrictedly bounded with the same constant
Averaging over all a with weight ρ ∈ L1(dx), kernel∫

RN

ρ(a)K(s, t)e−ia·teia·sda = ρ̂(t− s)K(s, t)

is also restrictedly bounded with restricted norm C‖ρ‖1

Lemma

Let K be a restrictedly Lp bounded kernel with a bound C.
Assume that ρ ∈ L1(dx) and let M = 1− ρ̂, Mε(x) :=M(x/ε).

Then the kernels Kε(s, t) := K(s, t)Mε(t− s) are Lp restrictedly
bounded with constant (1 + ‖ρ‖1)C.
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Example: The Hilbert Transform

Lemma (repeated from previous slide)

Let K be a restrictedly Lp bounded kernel with a bound C.
Assume that ρ ∈ L1(dx) and let M = 1− ρ̂, Mε(x) :=M(x/ε).
Then the kernels Kε(s, t) := K(s, t)Mε(t− s) are Lp restrictedly
bounded with constant (1 + ‖ρ‖1)C.

On R consider Hilbert Transform K(s, t) = π−1(s− t)−1 and
the weight ρ(x) = e−xχ[0,∞)(x)

We get ρ̂(s) = (1 + is)−1, so M(s) = 1− ρ̂(s) = s
s−i and

Mε(s) :=M(s/ε) =
s

s− iε
Regularization with this mollifying factor gives the kernel

Kε(s, t) =
1

π
· 1

s− t
Mε(t− s) =

1

π
· 1

s− t+ iε
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Many smooth mollifying multipliers

Theorem

Let M be a function on RN such that M ≡ 0 near 0, and
1−M ∈ Hk(RN ) =W k,2(RN ), k > N/2.

Then the functions Mε(s, t) :=M((t− s)/ε) is a family of smooth
regularizing multipliers, meaning that:

(i) Mε(s, t)→ 1 as ε→ 0 uniformly on all sets
{s, t ∈ RN : |s− t| > a}, a > 0.

(ii) For any singular kernel K the regularized kernels Kε = KMε

are in L2
loc(µ× ν).

(iii) If the kernel is restrictedly bounded in Lp, and the measures µ
and ν do not have common atoms, then the regularized
integral operators Tε with kernels Kε are uniformly (in ε)
bounded as operators Lp(µ)→ Lp(ν).

Constanze Liaw Regularizations of general singular integral operators



What is a singular integral operator (SIO)?
Smooth mollifying multipliers

Uniform boundedness of truncations

A trivial idea
Families of smooth mollifying multipliers
Uniform boundedness of regularized kernels

Main application: Uniform boundedness

Let T be a limit point of Tε, ε→ 0 in WOT

Theorem

Let µ and ν be Radon measures in RN without common atoms.
Assume that a kernel K ∈ L2

loc(µ× ν) is Lp resrictedly bounded,
with the restricted norm C.

Then the integral operator with T kernel K is a bounded operator
Lp(µ)→ Lp(ν) with the norm at most 2C.

As in the classical case, T is unique up to ‘+multiplication by
L∞−function’
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Case of common atoms

When µ and ν do have common atoms, the boundedness of the
singular integral operator can be defined as follows:

Decompose
µ = µ̃+ µ0, ν = ν̃ + ν0,

where µ0 and ν0 are the parts of µ and ν supported on their
common atoms

Use the Theorem to check the Lp boundedness as an operator
Lp(µ)→ Lp(ν̃) or Lp(µ̃)→ Lp(ν)

It remains to check the block acting Lp(µ0)→ Lp(ν0). But
the bilinear form of this block is well defined for functions
supported at finitely many points, so there is no problem
defining this block
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Idea of Theorem

Under some additional assumptions, the restricted Lp

boundedness implies the uniform boundedness of the
truncated operators Tε,

Tεf(s) =

∫
|s−t|>ε

K(s, t)f(t)dµ(t)

These assumptions are satisfied for classical operators like
generalized Riesz Transforms (treated as a vector-valued
transformation), or Ahlfors–Beurling operator
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Thank you for your attention.
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