Regularizations of general singular integral operators

Constanze Liaw

Texas A&M University

March 19th, 2011

This talk is based on joint work with Sergei Treil.

This work is accepted by 'Revista Matematica Iberoamericano' for publication and available on the arXiv:1010.6184. For further questions please do not hesitate to contact: conni 'at' math 'dot' tamu 'dot' edu

Outline

What is a singular integral operator (SIO)?

Smooth mollifying multipliers

A trivial idea Families of smooth mollifying multipliers Uniform boundedness of regularized kernels

Uniform boundedness of truncations

The problem

- Consider kernel K(s,t) which is singular near the diagonal, i.e. $K(s,\,\cdot\,)$ and $K(\,\cdot\,,t)$ are not in $L^1_{\rm loc}$ near s=t
- A SIO is an operator T on $L^2(\mu)$ is formally given by

$$Tf(s) = \int K(s,t)f(t) \, d\mu(t)$$

- This means that the above integral is not defined even for the simplest functions *f*
- What meaning do we give this formal expression?
- If T is the classical Hilbert Transform on the real line, then the integral exists in the sense of principal value

$$\lim_{\alpha \to 0+} \int_{|s-t| > \alpha} \frac{f(t)}{s-t} dt \quad \text{for } f \in C^1_{\mathbf{c}}(\mathbb{R})$$

• This approach is not possible, if $d\mu(t) \neq dt$

Some of literature's remedies

 In the general situation the boundedness in L^p is often defined as the uniform boundedness (independent of ε → 0) of either

truncated operators:
$$T_{\varepsilon}f(s) = \int_{|s-t|>\varepsilon} K(s,t)f(t)d\mu(t), \text{ or }$$

smooth regularizations, e.g.:
$$T_{\varepsilon}f(s) = \int_{\mathbb{R}} \frac{f(t)}{s-t+i\varepsilon} d\mu(t)$$

The corresponding SIO is then the limit point (in WOT)
T is unique up to '+multiplication by L[∞]−function'

A trivial idea Families of smooth mollifying multipliers Uniform boundedness of regularized kernels

Definitions

- Radon measures μ and ν in \mathbb{R}^N (no grow, doubling condition)
- A singular kernel in \mathbb{R}^N (wrt μ and ν) is locally $L^2(\mu \times \nu)$ off the diagonal $\{(s,t) \in \mathbb{R}^N \times \mathbb{R}^N : s = t\}$
- K is of order d, if the kernel \widetilde{K} is locally $L^2(\mu \times \nu)$,

$$\widetilde{K}(s,t) = \begin{cases} K(s,t)|s-t|^d, & s \neq t \\ 0 & s = t \end{cases}$$

• Formal singular integral operator with the kernel K is restrictedly bounded in L^p if

$$\left| \int K(s,t)f(t)g(s)d\mu(t)d\nu(s) \right| \le C \|f\|_{L^{p}(\mu)} \|g\|_{L^{p'}(\nu)},$$

for all bounded f, g with separated compact supports

• The least C (for $p,~\mu$ and ν fixed) is the restricted norm of K

A trivial idea

A trivial idea Families of smooth mollifying multipliers Uniform boundedness of regularized kernels

 $\bullet~{\rm If}~K(s,t)$ has restricted L^p norm C, then so does the kernel

$$K(s,t)e^{-ia\cdot t}e^{ia\cdot s}$$
 for any $a\in\mathbb{R}^N$

is also restrictedly bounded with the same constant

• Averaging over all a with weight $\rho \in L^1(dx)$, kernel

$$\int_{\mathbb{R}^N} \rho(a) K(s,t) e^{-ia \cdot t} e^{ia \cdot s} da = \widehat{\rho}(t-s) K(s,t)$$

is also restrictedly bounded with restricted norm $C\|\rho\|_1$

Lemma

•

Let K be a restrictedly L^p bounded kernel with a bound C. Assume that $\rho \in L^1(dx)$ and let $M = 1 - \hat{\rho}$, $M_{\varepsilon}(x) := M(x/\varepsilon)$. Then the kernels $K_{\varepsilon}(s,t) := K(s,t)M_{\varepsilon}(t-s)$ are L^p restrictedly bounded with constant $(1 + \|\rho\|_1)C$.

A trivial idea

Families of smooth mollifying multipliers Uniform boundedness of regularized kernels

Example: The Hilbert Transform

Lemma (repeated from previous slide)

Let K be a restrictedly L^p bounded kernel with a bound C. Assume that $\rho \in L^1(dx)$ and let $M = 1 - \widehat{\rho}$, $M_{\varepsilon}(x) := M(x/\varepsilon)$. Then the kernels $K_{\varepsilon}(s,t) := K(s,t)M_{\varepsilon}(t-s)$ are L^p restrictedly bounded with constant $(1 + \|\rho\|_1)C$.

- On $\mathbb R$ consider Hilbert Transform $K(s,t)=\pi^{-1}(s-t)^{-1}$ and the weight $\rho(x)=e^{-x}\chi_{[0,\infty)}(x)$
- We get $\widehat{\rho}(s) = (1+is)^{-1}$, so $M(s) = 1 \widehat{\rho}(s) = \frac{s}{s-i}$ and $M_{\varepsilon}(s) := M(s/\varepsilon) = \frac{s}{s-i\varepsilon}$
- Regularization with this mollifying factor gives the kernel

$$K_{\varepsilon}(s,t) = \frac{1}{\pi} \cdot \frac{1}{s-t} M_{\varepsilon}(t-s) = \frac{1}{\pi} \cdot \frac{1}{s-t+i\varepsilon}$$

Constanze Liaw Regularizations of general singular integral operators

A trivial idea Families of smooth mollifying multipliers Uniform boundedness of regularized kernels

Many smooth mollifying multipliers

Theorem

Let M be a function on \mathbb{R}^N such that $M \equiv 0$ near 0, and $1 - M \in H^k(\mathbb{R}^N) = W^{k,2}(\mathbb{R}^N)$, k > N/2.

Then the functions $M_{\varepsilon}(s,t) := M((t-s)/\varepsilon)$ is a family of smooth regularizing multipliers, meaning that:

- (i) $M_{\varepsilon}(s,t) \to 1$ as $\varepsilon \to 0$ uniformly on all sets $\{s,t \in \mathbb{R}^N : |s-t| > a\}, a > 0.$
- (ii) For any singular kernel K the regularized kernels $K_{\varepsilon} = KM_{\varepsilon}$ are in $L^2_{loc}(\mu \times \nu)$.
- (iii) If the kernel is restrictedly bounded in L^p , and the measures μ and ν do not have common atoms, then the regularized integral operators T_{ε} with kernels K_{ε} are uniformly (in ε) bounded as operators $L^p(\mu) \to L^p(\nu)$.

A trivial idea Families of smooth mollifying multipliers Uniform boundedness of regularized kernels

Main application: Uniform boundedness

• Let T be a limit point of $T_{\varepsilon}\text{, }\varepsilon \rightarrow 0$ in WOT

Theorem

Let μ and ν be Radon measures in \mathbb{R}^N without common atoms. Assume that a kernel $K \in L^2_{loc}(\mu \times \nu)$ is L^p resrictedly bounded, with the restricted norm C.

Then the integral operator with T kernel K is a bounded operator $L^p(\mu) \rightarrow L^p(\nu)$ with the norm at most 2C.

• As in the classical case, T is unique up to '+multiplication by $L^\infty-{\rm function'}$

A trivial idea Families of smooth mollifying multipliers Uniform boundedness of regularized kernels

Case of common atoms

When μ and ν do have common atoms, the boundedness of the singular integral operator can be defined as follows:

Decompose

$$\mu = \widetilde{\mu} + \mu_0, \qquad \nu = \widetilde{\nu} + \nu_0,$$

where μ_0 and ν_0 are the parts of μ and ν supported on their common atoms

- Use the Theorem to check the L^p boundedness as an operator $L^p(\mu)\to L^p(\widetilde{\nu})$ or $L^p(\widetilde{\mu})\to L^p(\nu)$
- It remains to check the block acting $L^p(\mu_0) \rightarrow L^p(\nu_0)$. But the bilinear form of this block is well defined for functions supported at finitely many points, so there is no problem defining this block

Idea of Theorem

• Under some additional assumptions, the restricted L^p boundedness implies the uniform boundedness of the truncated operators T_{ε} ,

$$T_{\varepsilon}f(s) = \int_{|s-t| > \varepsilon} K(s,t)f(t)d\mu(t)$$

• These assumptions are satisfied for classical operators like generalized Riesz Transforms (treated as a vector-valued transformation), or Ahlfors–Beurling operator

Summary

What is a singular integral operator (SIO)?

Smooth mollifying multipliers

A trivial idea Families of smooth mollifying multipliers Uniform boundedness of regularized kernels

Uniform boundedness of truncations

Thank you for your attention.