- 1. (40 points) Define the following terms with precision and in a form suitable for using in a proof.
 - (i) The greatest lower bound of a subset $S \subset \mathbb{R}$.
 - (ii) The *closure* of a subset S of a metric space X.
 - (iii) The *inverse image*, $f^{-1}(E)$, of a subset E of a set Y under a mapping $f: X \to Y$.
 - (iv) A metric d on a set X.
- 2. (30 points) Do three of four. In each case, give an example, if possible.
 - (a) A bounded subset S of \mathbb{R} which has no least upper bound.
 - (b) Nonempty sets $A, B \subset \mathbb{R}$ such that for each $a \in A$ there is a $b \in B$ such that a < b, but for which A is not bounded above and B is not bounded below.
 - (c) Sets X, Y and $C \subset X$ and a function $f : X \to Y$ such that $f^{-1}(f(C)) \neq C$.
 - (d) A metric space X a point $p \in X$ and r > 0 such that the closure of $N_r(p)$ is not $B_r(p)$.
- 3. (30 points) Do one of two.
 - (a) Let (X, d) be a metric space and suppose $p \in X$ and $r \ge 0$. Prove that the set

$$B_r(p) = \{x \in X : d(x, p) \le r\}$$

is a closed set.

(b) Suppose $S \subset \mathbb{R}$ is nonempty, bounded below and that $t \in \mathbb{R}$. Show that

 $T = S + t = \{x \in \mathbb{R} : \text{ there exists } s \in S \text{ such that } x = s + t\}.$

has a greatest lower bound and moreover $\inf(T) = \inf(S) + t$.