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1. Review of Sets and Functions

It is assumed that the reader is familiar with the most basic set con-
structions and functions and knows the natural numbers N, the integers Z,
the rational numbers Q, the real numbers R, and the complex numbers C,
though we will review carefully the properties which characterize R.

Familiarity with matrices Mn(F) and Mm,n(F), where F is either R or C,
is also assumed.

1.1. Unions, intersections, complements, and products.

Definition 1.1. Given sets X,Y ⊂ S, the union and intersection of X and
Y are

X ∪ Y ={z ∈ S : z ∈ X or z ∈ Y } ⊂ S
X ∩ Y ={z ∈ S : z ∈ X and z ∈ Y } ⊂ S,

respectively.
The complement of X, denoted X̃, is the set

X̃ = {x ∈ S : x /∈ X}.

The relative complement of X in Y is

Y \X = Y ∩ X̃ = {z ∈ S : z ∈ Y and z /∈ X}.

Note X̃ = S \X.

Definition 1.2. Let X and Y be sets. The Cartesian product of X and Y
is the set

X × Y = {(x, y) : x ∈ X, y ∈ Y }.

Example 1.3. R2 = R× R is known as the Cartesian plane.
R3 is the 3-dimensional Euclidean space of third semester Calculus. 4

Definition 1.4. Given a set S, let P (S) denote the power set of S, the set
of all subsets of S.

Example 1.5. Let S = {0, 1}. Then,

P (S) = {∅, {0}, {1}, {0, 1}}.

As we shall see later, P (N) is a very large set. 4

Definition 1.6. Given sets I and S and a function α : I → P (S), let
Ai = α(i). The union and intersection of the collection α(I) are

∪i∈IAi ={x ∈ S : there is a j ∈ I such that x ∈ Aj}
∩i∈IAi ={x ∈ S : x ∈ Aj for every j ∈ I}.

respectively.
1
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For an example, for n ∈ N, let An = {m ∈ Z : m ≥ n} and observe that

∩n∈NAn = ∅.

Remark 1.7. Given F ⊂ P (S), letting F index itself,

∩A∈FA = {x ∈ S : x ∈ A for every A ∈ F}.
�

Do Problem 1.1.

1.2. Functions.

Definition 1.8. A function f is a triple (f,A,B) where A and B are sets
and f is a rule which assigns to each a ∈ A a unique b = f(a) in B. We
write

f : A→ B.

(a) The set A is the domain of f .
(b) The set B is the codomain of f
(c) The range of f , sometimes denoted rg(f), is the set {f(a) : a ∈ A}.
(d) The function f : A → B is one-one if x, y ∈ A and x 6= y implies

f(x) 6= f(y).
(e) The function f : A→ B is onto if for each b ∈ B there exists an a ∈ A

such that b = f(a); i.e., if rg(f) = B.
(f) The graph of f is the set

graph(f) = {(a, f(a)) : a ∈ A} ⊂ A×B.

(g) If f : A→ B and Y ⊂ B, the inverse image of Y under f is the set

f−1(Y ) = {x ∈ A : f(x) ∈ Y }.

(h) If f : A→ B and C ⊂ A, the set

f(C) = {f(c) : c ∈ C} = {b ∈ B : there is an c ∈ C such that b = f(c)}
is the image of C under f .

(i) The identity function on a set A is the function idA : A → A with rule
idA(x) = x.

Example 1.9. Often one sees functions specified by giving the rule only,
leaving the domain implicitly understood (and the codomain unspecified), a
practice to be avoided. For example, given f(x) = x2 it is left to the reader
to guess that the domain is the set of real numbers. But it could also be C or
even Mn(C), the n×n matrices with entries from C. If the domain is taken
to be R, then R is a reasonable choice of codomain. However, the range of
f is [0,∞) (a fact which will be carefully proved later) and so the codomain
could be any set containing [0,∞). The moral is that it is important to
specify both the domain and codomain as well as the rule when defining a
function. 4
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Example 1.10. Define f : R → R by f(x) = x2. Note that f is neither
one-one nor onto.

As an illustrations of the notion of inverse image, f−1((4,∞)) = (−∞, 2)∪
(2,∞) and f−1((−2,−1)) = ∅. 4

Example 1.11. The function g : R → [0,∞) defined by g(x) = x2 is not
one-one, but it is, as we’ll see in Subsection 2.4, onto.

The function h : [0,∞)→ [0,∞) is both one-one and onto. Note h−1((4,∞)) =
(2,∞). 4

Do Exercises 1.3 and 1.1.

Definition 1.12. Given sets A,B and X,Y and functions f : A → X and
g : B → Y , define f × g : A×B → X × Y by f × g(a, b) = (f(a), g(b)).

Example 1.13. For example, if f : N → N is defined by f(n) = 2n and
g : Z → N is defined by g(m) = 3m2, then f × g : N × Z → N × N is given
by f × g(n,m) = (2n, 3m2). 4

Do Problem 1.2.

Definition 1.14. Given f : A→ B and C ⊂ A, the restriction of f to C is
the function f |C : C → B defined by f |C(x) = f(x) for x ∈ C.

Definition 1.15. Given f : X → Y and g : Y → Z the composition of f
and g is the function g ◦ f : X → Z with rule g ◦ f(x) = g(f(x)).

A function f : X → Y is invertible if there is a function g : Y → X such
that

g ◦ f =idX

f ◦ g =idY .

We call g the inverse of f (see part (a) of Proposition 1.16 below), written
g = f−1.

Proposition 1.16. (a) If f is invertible, then the function g in Definition
1.15 is unique.

(b) f : X → Y is invertible if and only if f is both one-one and onto.

Example 1.17. The function h : [0,∞) → [0,∞) given by h(x) = x2 of
Example 1.11 is one-one and onto and thus has an inverse. Of course this
inverse h−1 : [0,∞) → [0,∞) is commonly denoted as

√
so that h−1(x) =√

x. 4

Proof. Suppose f is invertible so that there exists g : Y → X satisfying
the conditions of Definition 1.15. If f(x1) = f(x2), then x1 = g ◦ f(x1) =
g ◦ f(x2) = x2 and hence f is one-one. Similarly, given y ∈ Y , f ◦ g(y) = y
so that y = f(g(y)) is in the range of f . Hence f is onto.

Suppose f is one-one and g, h : Y → X satisfy f ◦ g = idY = f ◦h. Then,
for each y ∈ Y , f(g(y)) = y = f(h(y)). Since f is one-one, g(y) = h(y),
proving that if f is invertible, then g as in Definition 1.15 is unique.
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Finally, suppose f is both one-one and onto. Define g : Y → X as follows.
Given y ∈ Y , there is a unique x ∈ X so that f(x) = y (why?). Let g(y) = x
and note that f(g(y)) = y and g(f(x)) = x. �

See Exercise 1.5 Do Problem 1.3.

1.3. finite and countable sets.

Definition 1.18. Two sets A and B are equivalent, denoted A ∼ B if there
is a one-one onto mapping f : A→ B.

Observe that ∼ is behaves like an equivalence relation; i.e., A ∼ A; if
A ∼ B, then B ∼ A; and finally if A ∼ B and B ∼ C, then A ∼ C.

Given a positive integer n, let Jn denote the set {1, 2, . . . , n}. The show
that Jn is not equivalent to N note, if f : Jn → N, then f(j) ≤

∑n
`=1 f(`)

for each j and so f is not onto.

Definition 1.19. Let A be a set.

(a) A is finite if it is either empty or there is an n ∈ N+ such that
A ∼ Jn;

(b) A is infinite if it is not finite;
(c) A is countable if A ∼ N;
(d) A is at most countable if either A is finite or countable; and
(e) A is uncountable if it is not at most countable.

Here N+ are the positive natural numbers; i.e., N \ {0}.

Remark 1.20. Note, by the comments preceding the definition, that N is
infinite. �

Proposition 1.21. A set A is at most countable if and only if there is an
onto mapping f : N→ A.

We will not prove this proposition.
Do Problem 1.4.

Proposition 1.22. The sets Z, N× N, and Q are all at most countable.

Sketch of proof. Define f : N→ Z by f(2m) = m and f(2m+ 1) = −m− 1.
Since f is onto, Z is at most countable.

To prove N × N is countable, consider N as an array. Explicitly, define
g : N→ N×N by g(k) = (n−m,m) where 1

2n(n+ 1) ≤ k < 1
2(n+ 1)(n+ 2)

and k = 1
2n(n+ 1) +m.

Now the composition (f×idN)◦g : N→ Z×N is onto. Thus, to prove that
Q is at most countable, it suffices to exhibit an onto mapping h : Z×N→ Q,
since then h ◦ (f × idN) ◦ g maps N onto Q. Define h by h(m,n) = m

n+1 . �

Do Problems 1.5 and 1.6

Proposition 1.23. The set P (N) is not countable.

The proof is accomplished using Cantor’s diagonalization argument.
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Proof. It suffices to prove, if f : N→ P (N), then f is not onto.
Given such an f , let

B = {n ∈ N : n /∈ f(n)}.
We claim that B is not in the range of f . Arguing by contradiction, suppose
m ∈ N and f(m) = B. If m /∈ B, then m ∈ f(m) = B a contradiction. On
the other hand, if m ∈ B, then m /∈ f(m) = B, also a contradiction. �

Later we will use the proposition to see that R is uncountable.
Do Problem 1.7.

1.4. Exercises.

Exercise 1.1. Define f : R→ R2 by

f(x) = (cos(x), sin(x)).

Let
D = {(x, y) ∈ R2 : x2 + y2 < 1}

and
S = {(x, y) ∈ R2 : x2 + (y − 1)2 < 1}.

Identify

(i) f−1(S);
(ii) f−1(D); and
(iii) f−1(f((−π

2 ,
π
2 ))).

Exercise 1.2. Consider the function h = f × g of Example 1.13 and let
6N denote the set {6k : k ∈ N}. Find the inverse image of the set {(j, k) :
j ∈ {2, 3, 4} k ∈ 6N}. Find the inverse image of the set {(j, k) : j ∈
{0, 1, 2} k is odd}.

Exercise 1.3. Suppose f : A → B. Prove that f is one-one if and only if
for each b ∈ B the set f−1({b}) contains at most one element.

Exercise 1.4. Use induction to show, for n ∈ N+, that P (Jn) ∼ J2n .

Exercise 1.5. If f : X → Y is invertible, and B ⊂ Y , f−1(B) could refer to
either the inverse image of B under f , or the image of B under the function
f−1. Show that, happily, these two sets are the same.

1.5. Problems.

Problem 1.1. Show
∪̃A∈FA = ∩A∈F Ã.

Problem 1.2. Suppose f : X → S and F ⊂ P (S). Show,

f−1(∪A∈FA) = ∪A∈F f−1(A)

f−1(∩A∈FA) = ∩A∈F f−1(A)

Show, if A,B ⊂ X, then f(A ∩ B) ⊂ f(A) ∩ f(B). Give an example, if
possible, where strict inclusion holds.
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Show, if C ⊂ X, then f−1(f(C)) ⊃ C. Give an example, if possible,
where strict inclusion holds.

Problem 1.3. If f : A→ B, then graph(f) is a subset of A×B. Conversely,
show, if S ⊂ A × B has the property that for each a ∈ A there is a unique
b ∈ B such that (a, b) ∈ S, then defining g(a) = b produces a function
g : A→ B such that graph(g) = S.

Problem 1.4. Let A be a nonempty set. Prove that A is at most countable
if and only if there is a one-one mapping g : A→ N.

Problem 1.5. Prove that an at most countable union of at most countable
sets is at most countable; i.e., if S is a set, α : N→ P (S) is a function such
that each Aj = α(j) is at most countable, then

T = ∪∞j=0Aj := ∪j∈NAj

is at most countable.
Suggestion: For each j there is a function gj : N→ Aj . Define a function

F : N× N→ T by F (j, k) = gj(k). Proceed.

Problem 1.6. Show that the collection F ⊂ P (N) of finite subsets of N is
an at most countable set.

Problem 1.7. Suppose A is a non-empty set. Show there does not exist an
onto mapping f : A→ P (A); i.e., show A 6∼ P (A).

Problem 1.8. Let A be a given nonempty set. Show, 2A = {f : A→ {0, 1}}
is equivalent to P (A).

2. The Real Numbers

We will take the view that we know what the real numbers are and we
will simply review some important properties in this section.

Recall the following notations for the natural numbers, integers, and ra-
tional numbers, respectively.

N ={0, 1, 2, . . . }
Z ={0,±1,±2, . . . }

Q ={m
n

: m ∈ Z, n ∈ N+}.

Let N+ denote the positive integers and R the real numbers.

Example 2.1. The square root of 2 is not rational; i.e., there is no rational
number s > 0 such that s2 = 2. 4
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2.1. Field Axioms.

Definition 2.2. A field F is a triple, (F,+, ·), where F is a set and

+, · : F× F→ F

are functions, called addition and multiplication respectively and written
x + y = +(x, y) and xy = ·(x, y), satisfying the following (long list) of
axioms

(i) x+ y = y + x for every x, y ∈ F;
(ii) xy = yx, for every x, y;
(iii) (x+ y) + z = x+ (y + z) for every x, y, z;
(iv) (xy)z = x(yz) for every x, y, z;
(v) there is an element 0 ∈ F such that 0 + w = w for every w ∈ F;
(vi) there is an element 1 ∈ F, distinct from 0, such that 1w = w for every

w ∈ F;
(vii) for each x ∈ F there is an element u ∈ F such that x+ u = 0;
(viii) for each x 6= 0, there is a y such that xy = 1; and

(ix) (x+ y)z = xz + yz for every x, y, z.

Proposition 2.3. [Cancellation] Given x, y, z ∈ F, if x + y = x + z, then
y = z.

Proof. There exists u ∈ F such that x+ u = 0. Thus,

y =0 + y

=(u+ x) + y

=u+ (x+ y)

=u+ (x+ z)

=(u+ x) + z

=0 + z = z.

�

Remark 2.4. It follows that 0 and additive inverses are unique. Hence it
makes sense to write u = −x in case x+ u = 0 so that x+ (−x) = 0. �

Proposition 2.5. Given x ∈ F, 0x = 0 and −x = (−1)x.

Proof. Since 0 + 0x = 0x = (0 + 0)x = 0x+ 0x, cancellation gives 0 = 0x.
Using 0x = 0, we have x+(−1)x = 1x+(−1)x = (1+(−1))x = 0x = 0. �

Remark 2.6. From here on we will use freely, without proof or further
comment, the many routine properties of fields which follow from the axioms.

�

Example 2.7. The sets Q,R,C are all fields with their usual operations of
addition and multiplication. 4
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Example 2.8. Let Z3 = ({0, 1, 2},+, ·) where

x+ y = x+ y modulo 3

xy = xy modulo 3

Here the + on the left hand side is addition in Z3, whereas + on the right
hand side is addition in N.

The residue modulo 3 is the remainder after dividing by 3.
Z3 is a field with neutral elements 0, 1. 4

Definition 2.9. Given fields F and G, a mapping f : F → G is a field
isomorphism provided

(i) f is one-one;
(ii) f is onto;
(iii) f(x+ y) = f(x) + f(y) for all x, y ∈ F; and
(iv) f(xy) = f(x)f(y) for all x, y ∈ F.

Remark 2.10. It follows that f(0F) = 0G etc. �
Do Problem 2.2.

2.2. Ordered Fields.

Definition 2.11. An ordered set (S,<) consists of a (nonempty) set S and
a relation < on S which satisfies

(i) (trichotomy) for each x, y ∈ S, exactly one of the following hold,

x < y, y < x, x = y;

(ii) (transitivity) for x, y, z ∈ S, if x < y and y < z, then x < z.

Example 2.12. The usual order on R (and thus on any subset of R) is an
example of an ordered set.

The dictionary order on R2 produces an ordered set. 4
Definition 2.13. An ordered field F = (F,+, ·, <) consists of a field (F,+, ·)
which is also an ordered set (F, <) such that,

(i) if x, y, z ∈ F and x < y, then x+ z < y + z;
(ii) if x, y ∈ F and x, y > 0, then xy > 0.

If x > 0 we call x positive.

Example 2.14. R and Q with the usual ordering are ordered fields. 4
Proposition 2.15. Suppose F is an ordered field and x ∈ F.

(i) If x < 0, then −x > 0.
(ii) If x 6= 0, then x2 > 0.
(iii) In particular, 1 > 0 in any ordered field.

Proof. If x < 0, then 0 = x− x < 0− x = −x.
To prove (ii), note, by trichotomy either x > 0 or x < 0. If x > 0,

then x2 = xx > 0. On the other hand, if x < 0, then −x > 0 and thus
x2 = (−x)2 > 0.

�



D
RA
FT

9

Remark 2.16. We will not state (much less) prove the usual facts about
the order structure in an ordered field, but rather use them without further
comment. �

Example 2.17. Prove that there is no order on Z3 which makes it an
ordered field.

We argue by contradiction. Accordingly suppose < is an order on Z3

which makes Z3 an ordered field. Since 1 = 12, it follows that 1 > 0 and
hence −1 < 0. On the other hand, −1 = 2 = 1 + 1 > 0 + 0 = 0, a
contradiction (of trichotomy). 4

Do Problem 2.1.

2.3. The least upper bound property.

Definition 2.18. Let S be a subset of an ordered field F.

(i) The set S is bounded above if there is a b ∈ F such that b ≥ s for all
s ∈ S.

(ii) Any b ∈ F such that b ≥ s for all s ∈ S is an upper bound for S.

Example 2.19. Identify the set of upper bounds for the following subsets
of the ordered field R.

(a) [0, 1);
(b) [0, 1];
(c) Q;
(d) ∅.

4

Lemma 2.20. Let S be a subset of an ordered field F and suppose both b
and b′ are upper bounds for S. If b and b′ both have the property that if
c ∈ F is an upper bound for S, then c ≥ b and c ≥ b′, then b = b′.

Definition 2.21. The least upper bound for a subset S of an ordered field
F, if it exists, is a b ∈ F such that

(i) b is an upper bound for S; and
(ii) if c ∈ F is an upper bound for S, then c ≥ b.

Remark 2.22. Lemma 2.20 justifies the use of the (as opposed to an) in
describing the least upper bound.

The condition (ii) can be replaced with either of the following conditions

(ii)′ if c < b, then there exists an s ∈ S such that c < s; or
(ii)′′ for each ε > 0 there is an s ∈ S such that b− ε < s.

The notions of bounded below, lower bound and greatest lower bound are
defined analogously.

Least upper bound is often abbreviated lub. The term supremum, often
abbreviated sup, is synonymous with lub. Likewise glb and inf for greatest
lower bound and infimum. �

Example 2.23. Here is a list of examples.
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(i) The least upper bound of S = [0, 1) ⊂ R is 1.
(ii) The least upper bound of V = [0, 1] ⊂ R is also 1.
(iii) The set Q ⊂ R has no upper bound and thus no least upper bound;
(iv) Every real number is an upper bound for the set ∅ ⊂ R. Thus ∅ has no

least upper bound.
(v) With some effort, it can be shown that if the subset S = {x ∈ Q : 0 <

x, x2 < 2} of the ordered field R has a least upper bound s, then
s > 0 and s2 = 2; i.e., this least upper bound is the square root of two.

4

Example 2.24. Consider the subset S = {q ∈ Q : 0 < q, q2 < 2} of the
ordered field Q. Arguing by contradiction, one shows, as in Example 2.23
Item (v), that if S has a least upper bound s, then s2 = 2 contradicting
Example 2.1. Thus, there are subsets S of Q which are nonempty and
bounded above but yet do not have least upper bounds (in Q). 4

Theorem 2.25. Every nonempty subset of R which is bounded above has
a least upper bound.

Thus there is a positive real number s with s2 = 2.

Definition 2.26. Let F and G be fields. A mapping ϕ : F→ G is an ordered
field isomorphism if ϕ is a field isomorphism and ϕ(x) <G ϕ(y) whenever
x, y ∈ F and x <F y.

Proposition 2.27. If F is an ordered field with the property that every
nonempty subset S of F which is bounded above has a least upper bound
(in F of course), then then there is an ordered field isomorphism ϕ : F→ R.

Hence R is the essentially unique ordered field with the property that
every set which could possibly have a least upper bound in fact does.

Do Problems 2.4 and 2.5.
We will not prove Theorem 2.25 and Theorem 2.27.

Theorem 2.28. [Archimedean properties] Suppose x, y ∈ R.
(i) There is a natural number n so that n > x.

(ii) If 1 < x− y, then there is an integer m so that y < m < x.
(iii) If y < x, then there is a q ∈ Q such that y < q < x.

Remark 2.29. The last part of the theorem is sometimes expressed as
saying Q is dense in R. �

Proof. We prove (i) by arguing by contradiction. Accordingly, suppose no
such natural number exists. In that case x is an upper bound for N. It
follows that N has a lub α. If n ∈ N, then n+ 1 ∈ N. Hence n+ 1 ≤ α and
thus n ≤ α− 1 for all n ∈ N. Consequently, α− 1 is an upper bound for N,
contradicting the least property of α. Hence N is not bounded above and
there is an n > x, which proves item (i).
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To prove (ii), it suffices to assume that x > 0 (why). The set {k ∈ N :
k ≥ x} is nonempty and does not contain 0. It has a least element k > 0.
Thus x− 1 ≤ k − 1 < x and since x− y > 1, it follows that y < k − 1 < x.

Item (iii) is Problem 2.3. As a suggestion, note that, by item (i), there is
a positive integer n so that n(x− y) > 1. Proceed. �

Example 2.30. Suppose 0 < a < 1. Show the set A = {an : n ∈ N} is
bounded below and its infimum is 0.

Since a ≥ 0 each an ≥ 0. Thus A is bounded below by 0. The set A is not
empty. It follows that A has an infimum. Let α = inf(A) and note α ≥ 0.
Since α ≤ an for n = 0, 1, 2, . . . , α ≤ an+1 for n ∈ N and therefore α

a ≤ an

for n ∈ N. Thus, α
a is a lower bound for A. It follows that α

a ≤ α. Since
a < 1 and α ≥ 0, α = 0. 4

Do Problems 2.6, 2.7, 2.8, 2.9,

2.4. The existence of n-th roots. Here is an outline a proof that positive
real numbers have n-th roots for positive integers n.

Proposition 2.31. If y > 0 and n ∈ N+, then there is a unique positive
real number s such that sn = y.

Of course, s = y
1
n is the notation for this n-th root.

The uniqueness is straightforward based upon the fact that if 0 < a < b,
then an < bn. It should not come as a shock that existence depends upon
the existence of least upper bounds, Theorem 2.25.

Let

S = {x ∈ R : 0 < x and xn < y}.
First show S is non-empty and bounded above. Hence S has a least upper

bound, say s.
Show, if 0 < t and y < tn, then t is an upper bound for S.
Show if 0 < t and y < tn, then there is a v such that 0 < v < t such that

y < vn. Hence, v < t and v is an upper bound for S. In particular, t does
not satisfy the least property of least upper bound. Thus, sn ≤ y.

Finally, show if 0 < t and tn < y, then there exists a v such that 0 < t < v
such that vn < y. Hence, t is not an upper bound for S. Thus sn ≥ y. Hence
sn = y.

It now follows that the mapping h : [0,∞)→ [0,∞) defined by h(x) = xn

is both one-one and onto. Its inverse, h−1 : [0,∞) → [0,∞) is then the

function commonly denoted by n
√

or x
1
n so that h−1(x) = x

1
n .

2.5. Vector spaces. Recall that Rn is the vector space of n-tuples of real
numbers. Thus an element x ∈ Rn has the form,

x =

x1...
xn

 .
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Vectors - elements of Rn - are added and multiplied by scalars (elements of
R) entrywise.

The set of polynomials P (in one variable with real coefficients) is a vector
space under the usual operations of addition and scalar multiplication.

Definition 2.32. A norm on a vector space V over R is a function ‖ · ‖ :
V → R satisfying

(i) ‖x‖ ≥ 0 for all x ∈ V ;
(ii) ‖x‖ = 0 if and only if x = 0;
(iii) ‖cx‖ = |c| ‖x‖ for all c ∈ R and x ∈ V ; and
(iv) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ V .

The last condition is known as the triangle inequality.

Example 2.33. The functions ‖ · ‖1 and ‖ · ‖∞ mapping Rn to R defined by

‖x‖1 =
n∑
j=1

|xj |

and

‖x‖∞ = max{|xj | : 1 ≤ j ≤ n}
respectively are norms on Rn. 4

Definition 2.34. Let V be a vector space over R. A function < ·, · >:
V × V → R is an inner product (or scalar product ) on V if,

(i) 〈x, x〉 ≥ 0 for all x ∈ V ;
(ii) 〈x, x〉 = 0 if and only if x = 0;
(iii) 〈x, y〉 = 〈y, x〉 for all x, y ∈ V ;
(iv) 〈cx+ y, z〉 = c〈x, z〉+ 〈y, z〉.

Example 2.35. On Rn, the pairing,

〈x, y〉 =
n∑
j=1

xjyj

is an inner product. In the case of n = 2, 3 it is often called the dot product.

On P, the space of polynomials, the pairing

〈p, q〉 =

∫ 1

0
pq dt

is an inner product.
4

Proposition 2.36. [Cauchy-Schwartz inequality] Suppose 〈·, ·〉 is an inner
product on a vector space V . If x, y ∈ V , then

|〈x, y〉|2 ≤ 〈x, x〉 〈y, y〉.
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Proof. Given x, y ∈ V and t ∈ R,
0 ≤〈x+ ty, x+ ty〉

=〈x, x〉+ 2t〈x, y〉+ t2〈y, y〉.
Thus, the discriminate satisfies

|〈x, y〉|2 − 〈x, x〉 〈y, y〉 ≤ 0.

�

Proposition 2.37. If 〈·, ·〉 is an inner product on a vector space V , then

the function ‖ · ‖ : V → R defined by ‖x‖ =
√
〈x, x〉 is a norm on V .

Remark 2.38. In the case that V has an inner product, the norm ‖ · ‖ of
Proposition 2.37 is, unless otherwise noted, understood to be the norm on
V and ‖x‖ the norm of a vector x ∈ V .

With this notation, the Cauchy-Schwartz inequality says

|〈x, y〉| ≤ ‖x‖ ‖y‖.
�

Proof. Verification that ‖ · ‖ satisfies the first three axioms of a norm are
straightforward and left to the gentle reader.

To prove the triangle inequality, estimate, using the Cauchy-Schwartz
inequality,

‖x+ y‖2 =‖x‖2 + 2〈x, y〉+ ‖y‖2

≤‖x‖2 + 2‖x‖ ‖y‖+ ‖y‖2

=(‖x‖+ ‖y‖)2.
�

Example 2.39. On Rn the norm arising from the inner product of Example
2.35 is the usual Euclidean norm,

‖x‖2 =

n∑
j=1

x2j .

Unless otherwise indicated, we take these as the inner product and norm on
Rn and refer to Rn as Euclidean space. 4

2.6. Exercises.

Exercise 2.1. Suppose f : F 7→ G is a field isomorphism.

(i) Is f−1 : G→ F a field isomorphism?
(ii) Show that f(0F) = 0G.
(iii) What is f(1F)?

Exercise 2.2. Show that the functions in Example 2.33 are both norms on
Rn.

Exercise 2.3. Verify the claims made in Example 2.35.
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Exercise 2.4. Given a positive real number y and positive integers m and
n, show

(y
1
n )m = (ym)

1
n .

Likewise verify

(ym)n = (yn)m and (y
1
m )

1
n = (y

1
n )

1
m .

Thus, y
m
n is unambiguously defined.

Exercise 2.5. Show there is no order on Z2 which makes Z2 an ordered
field.

Exercise 2.6. LetQ(
√

2) = {a+b
√

2 : a, b ∈ Q}. Show that Q(
√

2) is closed
under both addition and multiplication (the operations inherited from R).
It can be shown that Q(

√
2) is a field. For a nonzero a + b

√
2 in this field,

identify its multiplicative inverse.

2.7. Problems.

Problem 2.1. Show there is no order on C which makes C an ordered field.

Problem 2.2. Show, if G is field with (exactly) three elements, then there
is a field isomorphism f : Z3 → G.

Problem 2.3. Prove item (iii) of Theorem 2.28.

Problem 2.4. Let A be a nonempty set of real numbers which is bounded
both above and below. Prove, sup(A) ≥ inf(A).

Problem 2.5. Let A be a nonempty set of real numbers which is bounded
above. Let −A = {−a : a ∈ A} = {x ∈ R : −x ∈ A}. Show −A is bounded
below and − inf(−A) = sup(A).

Problem 2.6. Prove, if A ⊂ B are subsets of R and A is nonempty and B
is bounded above, then A and B have least upper bounds and

sup(A) ≤ sup(B).

Problem 2.7. Suppose A ⊂ R is nonempty and bounded above and β ∈ R.
Let

A+ β = {a+ β : a ∈ A}
Prove that A+ β has a supremum and

sup(A+ β) = sup(A) + β.

Problem 2.8. Suppose A ⊂ [0,∞) ⊂ R is nonempty and bounded above
and β > 0. Let

βA = {aβ : a ∈ A}.
Prove βA is nonempty and bounded above and thus has a supremum and

sup(βA) = β sup(A).
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Problem 2.9. Suppose A,B ⊂ [0,∞) are nonempty and bounded above.
Let

AB = {ab : a ∈ A, b ∈ B}.
Prove that AB is nonempty and bounded above and

sup(AB) = sup(A) sup(B).

Here is an outline of a proof. The hypotheses on A and B imply that
α = sup(A) and β = sup(B) both exist. Argue that AB is nonempty and
bounded above by αβ and thus

sup(AB) ≤ αβ.

Fix a ∈ A. From an earlier exercise,

sup(aB) = a sup(B) = aβ.

On the other hand, aB ⊂ AB and thus,

aβ ≤ sup(AB)

for each a ∈ A. It follows that βA is bounded above by sup(AB) and thus,

αβ = sup(βA) ≤ sup(AB).

Problem 2.10. Suppose A,B ⊂ R are nonempty and bounded above. Let

A+B = {a+ b : a ∈ A, b ∈ B}.

Show A+B has a supremum and moreover,

sup(A+B) = sup(A) + sup(B).

Problem 2.11. Show, if V is a vector space with an inner product, then
the norm

(1) ‖v‖ =
√
〈v, v〉

satisfies the parallelogram law ,

‖v + w‖2 + ‖v − w‖2 = 2(‖v‖2 + ‖w‖2).

Explain why this is called the parallelogram law.
Recall the norm ‖ · ‖1 on Rn defined in Example 2.33. Does this norm

come from an inner product?

Problem 2.12. Suppose f : [a, b]→ [α, β] and ϕ : [α, β]→ R. Let h = ϕ◦f .
Show, if there is a C > 0 such that

|ϕ(s)− ϕ(t)| ≤ C|s− t|

for all s, t ∈ [α, β], then

sup{h(x) : a ≤ x ≤ b}− inf{h(x) : a ≤ x ≤ b}
≤C [sup{f(x) : a ≤ x ≤ b} − inf{f(x) : a ≤ x ≤ b}] .
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3. Metric Spaces

3.1. Definitions and Examples.

Definition 3.1. A metric space (X, d) consists of a set X and function
d : X ×X → R such that, for x, y, z ∈ X,

(i) d(x, y) ≥ 0;
(ii) d(x, y) = 0 if and only if x = y;
(iii) d(x, y) = d(y, x); and
(iv) d(x, z) ≤ d(x, y) + d(y, z).

We usually call the metric space X and d the metric, or distance function.
Item (iv) is the triangle inequality. Items (i) and (ii) together are sometimes
expressed by saying d is positive definite. Evidently (iii) is a symmetry
axiom.

Example 3.2. Here are some examples of metric spaces.

(a) Unless otherwise noted, R is the metric space with distance function
d(x, y) = |x− y|.

(b) Let X be any nonempty set and define d(x, y) = 0 if x = y and d(x, y) =
1 if x 6= y. This is the discrete metric.

(c) On the vector space Rn define,

d1(x, y) =
∑
|xj − yj |.

This is the `1 metric.
(d) On Rn, define d∞ by

d∞(x, y) = max{|xj − yj | : 1 ≤ j ≤ n}.

This metric is the `∞ metric (or worst case metric). In particular
(Rn, d1) and (Rn, d∞) are different metric spaces.

(e) Define, on the space of polynomials P,

d1(p, q) =

∫ 1

0
|p− q|dt.

(f) If (X, d) is a metric space and Y ⊂ X, then (Y, d|Y×Y ) is a metric space
and is called a subspace of X.

4

Do Problem 3.1.

Proposition 3.3. If ‖ · ‖ is a norm on a vector space V , then the function

d(x, y) = ‖x− y‖,

is a metric on V .

Remark 3.4. In the case of Rn with its Euclidean norm, the resulting metric
is the Euclidean distance which will sometimes be written as d2. Note that
(Rn, d2) is, as a metric space, distinct from both (Rn, d1) and (Rn, d∞).
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When we speak of the metric space Rn we mean with the Euclidean
distance, unless we have indicated otherwise. �

Proof. With the exception of the triangle inequality, it is evident that d
satisfies the axioms of a metric.

To prove that d satisfies the triangle inequality, let x, y, z ∈ V be given
and estimate, using the triangle inequality for the norm,

d(x, z) =‖x− z‖
=‖(x− y) + (y − z)‖
≤‖x− y‖+ ‖y − z‖
=d(x, y) + d(y, z).

�

Proposition 3.5. Let (X, d) be a metric space.
If p, q, r ∈ X, then

|d(p, r)− d(q, r)| ≤ d(p, q).

If p1, . . . , pn ∈ X, then

d(p1, pn) ≤
n−1∑
j=1

d(pj , pj+1).

3.2. Open Sets.

Definition 3.6. Let (X, d) be a metric space. A subset U ⊂ X is open if
for each x ∈ U there is an ε > 0 such that

Nε(x) := {p ∈ X : d(p, x) < ε} ⊂ U.
The set Nε(x) is the ε-neighborhood of x. More or less synonymously, an
open ball is a set of the form Nr(y) for some y ∈ X and r > 0.

Proposition 3.7. Neighborhoods are open sets; i.e., if (X, d) is a metric
space, y ∈ X and r > 0, then the set

Nr(y) = {p ∈ X : d(p, y) < r}
is an open set.

Proof. We must show, for each x ∈ Nr(y) there is an ε (depending on x) such
that Nε(x) ⊂ Nr(y). Accordingly, let x ∈ Nr(y) be given. Thus, d(x, y) < r.
Choose ε = r−d(x, y) > 0. Suppose now that p ∈ Nε(x) so that d(x, p) < ε.
Estimate, using the triangle inequality,

d(y, p) ≤ d(y, x) + d(x, p) < d(y, x) + ε = d(y, x) + (r − d(y, x)) = r.

Thus, p ∈ Nr(y). We have shown Nε(x) ⊂ Nr(y) and the proof is complete.
�

Do Problem 3.2.
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Example 3.8. In R2 with the Euclidean distance, show E = {(x1, x2) :
xj > 0} is an open set. 4

Example 3.9. The set [0, 1) ⊂ R is not an open, since, for every ε > 0, the
set Nε(0) = (−ε, ε) contains negative numbers and is thus not a subset of
[0, 1). 4

Proposition 3.10. Let U ⊂ Rn be given. The following are equivalent,

(i) U is open in (Rn, d1);
(ii) U is open in (Rn, d2);
(iii) U is open in (Rn, d∞).

Sketch of proof. Let N j
ε (x) denote the ε > 0 neighborhood of x in the j =

1, 2,∞ norms respectively.
Suppose U is open in (Rn, d1) and let x ∈ U be given. There is an ε > 0

such that N1
ε (x) ⊂ U .

By the C-S inequality,

d1(x, y) =

n∑
1

|xj − yj | 1

≤
√∑

|xj − yj |2

√√√√ n∑
1

1

=d2(x, y)
√
n.

It follows that N2
ε√
n

(x) ⊂ N1
ε (x) ⊂ U and thus U is open in (Rn, d2). We

have proved, if U is open in d1, then it is open in d2.
The proof that if U is open in d2, then U is open in d∞ is based on the

inequality,

d2(x, y) ≤
√
nd∞(x, y);

and the proof that if U is open in d∞, then U is open in d1 is based on the
inequality

d∞(x, y) ≤ d1(x, y).

The details are left as an exercise. �

Example 3.11. Returning to the example of the set E = {(x, y) : x, y >
0} ⊂ R2} above, it is convenient to use the d∞ metric to prove E is open;
i.e., show that E is open in (R2, d∞) and conclude that E is open in R2. 4

Proposition 3.12. Let (X, d) be a metric space.

(i) ∅, X ⊂ X are open;
(ii) if F ⊂ P (X) is a collection of open sets, then

∪U∈FU

is open; and
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(iii) if n ∈ N+ and U1, . . . , Un ⊂ X are open, then

∩nj=1Uj

is open.

Example 3.13. Let Uj = (− 1
j+1 , 1) ⊂ R for j ∈ N. The sets Uj are open

in R (they are open balls). However, the set

[0, 1) = ∩∞j=0Uj

is not open. Thus it is not possible to improve on the last item in the
proposition. 4

Example 3.14. The set (−∞, 0) = ∪∞n=0(−2n, 0) = ∪∞n=0Nn(−n) and is
therefore open. We could of course easily checked this directly from the
definition of open set. 4

Example 3.15. The set

R2 ⊃ E = {(x1, x2) : xj > 0} = {x : x1 > 0} ∩ {x2 > 0}.
This provides yet another way to prove E is open. Namely, show that each
of the sets on the right hand side above is open. 4

Do Problem 3.3.

3.2.1. Relatively open sets.

Definition 3.16. Suppose (Z, d) is a metric space and X ⊂ Z so that
(X, d|X×X) is also a metric space. A subset U ⊂ X is open relative to X or
is relatively open, if U is open in the metric space X.

Example 3.17. Let X = [0,∞) ⊂ Z = R. The set [0, 1) is open in X, but
not in Z. 4

Proposition 3.18. Suppose Z is a metric space and U ⊂ X ⊂ Z. The
set U is open in X if and only if there is an open set W in Z such that
U = W ∩X.

Proof. First, suppose W ⊂ Z is open (in Z) and U = W ∩ X ⊂ X. Given
x ∈ U , there is a δ > 0 such that {y ∈ Z : d(x, y) < δ} ⊂ W since x ∈ W
and W is open in Z. It follows that {y ∈ X : d(x, y) < δ} ⊂ W ∩ X = U
and thus U is open in X.

Now suppose U ⊂ X is open relative to X. For each x ∈ U there is an
εx > 0 such that Vx = {y ∈ X : d(x, y) < εx} ⊂ U . Let Wx = {y ∈ Z :
d(x, y) < εx}, note that Vx = Wx ∩X, and let

W = ∪x∈UWx.

Then W is open in Z and

U ⊂W ∩X = ∪x∈UWx ∩X = ∪x∈XVx ⊂ U.
�
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3.3. Closed Sets.

Definition 3.19. Let (X, d) be a metric space. A subset C ⊂ X is closed
if X \ C is open.

Example 3.20. (a) In R the set [0,∞) is closed, since its complement,
(−∞, 0) is open.

(b) The set [0, 1) ⊂ R is neither open nor closed.
(c) The set Q ⊂ R is neither open nor closed.
(d) The set F = {(x1, x2) ∈ R2 : x1x2 = 0} is closed.
(e) The sets X and ∅ are both open and closed. They are clopen.
(f) Every subset of a discrete metric space is clopen. (See Problem 3.3.)

4

Proposition 3.21. Let (X, d) be a metric space and let x ∈ X and r ≥ 0
be given. The set

{p ∈ X : d(p, x) ≤ r}
is a closed.

Proof. The complement of {p ∈ X : d(p, x) ≤ r} is the set

U = {p : d(p, x) > r}
and it suffices to prove that U is open. Let y ∈ U be given. Then d(y, x) > r.
Let ε = d(y, x)− r > 0. If z ∈ Nε(y) so that d(z, y) < ε, then,

d(x, z) ≥d(x, y)− d(y, z)

>d(x, y)− ε
=r.

It follows that Nε(y) ⊂ U and thus, since y ∈ U was arbitrary, U is open. �

Corollary 3.22. In a metric space, singleton sets are closed; i.e., if (X, d)
is a metric space and x ∈ X, then {x} is closed.

Proposition 3.23. Let X be a metric space.

(i) X and ∅ are closed;
(ii) if C1, . . . , Cn are closed subsets of X, then ∪n1Cj is closed; and
(iii) if Cα, α ∈ J is a family of closed subsets of X, then

C = ∩α∈JCα
is closed.

Corollary 3.24. A finite set F in a metric space X is closed.

Proposition 3.25. If C ⊂ R is bounded above, nonempty, and closed, then
C has a largest element.

Proof. The hypotheses imply α = sup(C) exist. Certainly, α ≥ x for all
x ∈ C. Thus to prove the proposition it suffices to prove α ∈ C. We argue
by contradiction and accordingly assume α ∈ C̃. Since C is closed, C̃ is
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open and therefore there is an ε > 0 such that Nε(α) ⊂ C̃ or equivalently

C ⊂ Ñε(α). Thus, if c ∈ C, then c ≤ α − ε (since also c ≤ α). It follows
that α − ε is an upper bound for C, contradicting the least property of α.
Thus α ∈ C. �

Example 3.26. Let R = Q ∩ [0, 1] denote the rational numbers in the
interval [0, 1]. Since Q is countable, so is R. Choose an enumeration R =
{r1, r2, . . . } of R. Fix 1 > ε > 0 and let

Vj = N ε

2j+1
(rj)

and V = ∪Vj . Thus V is an open set which contains R.
The set C = [0, 1] \ V is closed because it is the intersection of the closed

sets [0, 1] and Ṽ . On the other hand, its complement contains every rational
in the interval [0, 1], but is also the union of intervals the sum1 of whose
lengths is at most

∞∑
j=1

ε

2j
= ε < 1.

Thus C is a closed subset of [0, 1] which contains no rational number, but
is large in the sense that its complement can be covered by open intervals
whose lengths sum to at most ε.

A heuristic is that open sets are nice and closed sets can be strange, while
most sets are neither open nor closed. 4

Do Problem 3.4.

3.4. The interior, closure, and boundary of a set.

Definition 3.27. Let (X, d) be a metric space and S ⊂ X. The closure of
S is

S := ∩{C ⊂ X : C ⊃ S, C is closed}.

Proposition 3.28. Let S be a subset of a metric space X.

(i) S ⊂ S;
(ii) S is closed;
(iii) if K is any other set satisfying (i) and (ii), then S ⊂ K.

Moreover, S is closed if and only if S = S.

Definition 3.29. Let (X, d) be a metric space and S ⊂ X. The interior of
S is the set

S◦ := ∪{U ⊂ X : U ⊂ S is open}.

Proposition 3.30. Let S be a subset of a metric space X.

(i) S◦ ⊂ S;
(ii) S◦ is open;
(iii) if V ⊂ S is an open set, then V ⊂ S◦.

1Series are introduced in Problem 4.17 in the next section and will be treated in detail
later, but this particular sum should be familiar from Calculus II.
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Moreover, S is open if and only if S = S◦.

Definition 3.31. A point x ∈ X is an interior point of S if there is an ε > 0
such that Nε(x) ⊂ S.

Do Problems 3.5 and 3.6.

Definition 3.32. The boundary of a set S in a metric space X is ∂S = S∩S̃.

Do Problem 3.7

3.5. Exercises.

Exercise 3.1. Show, if a, b, c ≥ 0 and a+ b ≥ c, then

a

1 + a
+

b

1 + b
≥ c

1 + c
.

Show if (X, d) is a metric space, then

d∗(x, y) =
d(x, y)

1 + d(x, y)

is a metric on X too.

Exercise 3.2. Show that the subset S = {(x, y) ∈ R2 : x 6= y} is open.

Exercise 3.3. Verify that the discrete metric is indeed a distance function.

Exercise 3.4. Let X be a nonempty set and d the discrete metric. Fix a
point z ∈ X. Is the closure of the set N1(z) equal to {x ∈ X : d(x, z) ≤ 1}?

Exercise 3.5. Show that the set

{(x1, x2) : x1, x2 ≥ 0} ⊂ R2

is closed.
Show that the set

{(x1, x2) ∈ R2 : x1x2 = 1}

is closed.

Exercise 3.6. By Proposition 3.3,

d(f, g) = (

∫ 1

0
|f − g|2dt)

1
2

defines a metric on the space of polynomials P. For n ∈ N, let

pn(t) =
√

2n+ 1 tn.

Find d(pn, pm).

Exercise 3.7. Determine the boundary of an interval (a, b] in R.
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3.6. Problems.

Problem 3.1. Suppose (X, dX) and (Y, dY ) are metric spaces. Define d :
(X × Y )× (X × Y )→ R by

d((x, y), (a, b)) = dX(x, a) + dY (y, b).

Prove d is a metric on X × Y .

Problem 3.2. Describe the neighborhoods in a discrete metric space (X, d).

Problem 3.3. Determine, with proof, the open subsets of the discrete met-
ric space (X, d).

Problem 3.4. Given a metric space Z and F ⊂ X ⊂ Z define F is relatively
closed in X. Show, F is relatively closed in X if and only if there is a closed
set C ⊂ Z such that F = C ∩X.

Prove that the closure of C ⊂ X, as a subset of X, is X ∩ C, where C is
the closure of C in Z. Conclude, if C is relatively closed, then C = C ∩X.

Finally, show, if

(i) A,B ⊂ Z;
(ii) Z = A ∪B; and
(iii) A ∩B = ∅,

then B = Ã ∩ Z and hence is open relative to Z.

Problem 3.5. Show,

I(S) = {s ∈ S : s is an interior point of S} = S◦.

Here is an outline of a solution: First show

I(S) = {s ∈ S : s is an interior point of S}

is an open set (mostly easily done by writing it as a union of neighborhoods),
from which it will then follow that I(S) ⊂ S◦. The inclusion S◦ ⊂ I(S) is
straightforward.

Problem 3.6. Prove,

S = (̃S̃)◦;

i.e., S consists of those points x ∈ X such that for every ε > 0, Nε(x)∩S 6= ∅.
Suggestion: Use the properties of closure and interior. For instance, note

that S̃ is open and contained in S̃.

Problem 3.7. Prove that x ∈ ∂S if and only if for every ε > 0 there exists
s ∈ S, t ∈ S̃ such that d(x, s), d(x, t) < ε.

Prove S is closed if and only if S contains its boundary; and S is open if
and only if S is disjoint from its boundary.

Problem 3.8. Show, in R2, if x ∈ R2 and r > 0, then the closure of

Nr(x) = {y ∈ R2 : d(x, y) = ‖x− y‖ < r}
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is the set
{y ∈ R2 : d(x, y) = ‖x− y‖ ≤ r}.

Is the corresponding statement true in all metric spaces?

Problem 3.9. Let S be a non-empty subset of a metric space X. Show, x
is in S if and only if

inf{d(x, s) : s ∈ S} = 0.

Problem 3.10. Prove Proposition 3.30.

Problem 3.11. Show that the closure of Q in R is all of R. (Suggestion:
Use Problem 3.6 and Theorem 2.28 item iii). Compare with Remark 2.29.

Problem 3.12. Show that the closure of Q̃ (the irrationals) in R is all of
R. Combine this problem and Problem 3.11 to determine the boundary of
Q (in R).

Problem 3.13. Suppose (X, d) is a metric space and x ∈ X and r > 0 are
given. Show that the closure of Nr(x) is a subset of the set

{y ∈ X : d(x, y) ≤ r}.
Give an example of a metric space X, an x ∈ X, and an r > 0 such that the
closure of Nr(x) is not the set

{y ∈ X : d(x, y) ≤ r}.
Compare with Problem 3.8.

Problem 3.14. Let (X, d) and d∗ be as in Exercise 3.1. Do the metric
spaces (X, d) and (X, d∗) have the same open sets?

Problem 3.15. Suppose d and d′ are metrics on the set X and there is a
constant C such that, for all x, y ∈ X,

d(x, y) ≤ Cd′(x, y).

Prove, if U is open in (X, d), then U is open in (X, d′).
Thus, if there is also a constant C ′ such that

d′(x, y) ≤ C ′d(x, y),

then the metric spaces (X, d) and (X, d′) have the same open sets.

4. Sequences

4.1. Definitions and examples.

Definition 4.1. A sequence is a function a with domain N. It is customary
to write an = a(n) and (an)n or (an)∞n=0 for this function.

If the an lie in the set X, then (an) is a sequence from X.
If (X, d) is a metric space and L ∈ X. The sequence (an) (from X)

converges to L if for every ε > 0 there is an N ∈ N such that for all n ≥ N ,
d(an, L) < ε,

lim
n→∞

an = L
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and L is said to be the limit of the sequence.
The sequence (an) converges if there exists an L ∈ X such that (an)

converges to L. A sequence which does not converge is said to diverge.

It is often convenient to relax the definition of sequence, allowing the
domain to be a set of the form {n ∈ Z : n ≥ n0} for some integer n0. In this
case, we may write (an)∞n=n0

.

Remark 4.2. From the (positive definite) axioms (items (i) and (ii) of
Definition 3.1) of a metric, if x, y are points in a metric space (X, d) and if
d(x, y) < ε for every ε > 0, then x = y. �

The following proposition list some of the most basic properties of limits.
The first justifies the terminology the limit (as opposed to a limit) above.

Proposition 4.3. Let (an)∞n=k and (bn)∞n=m be sequences from the metric
space X.

(i) If (an) converges, then its limit is unique;
(ii) if there is an N and an ` such that for n ≥ N , bn = an+`, then (an)

converges if and only if (bn) converges and moreover in this case the
sequences have the same limit; and

(iii) if (an)n is a sequence from R (X = R), c ∈ R, and (an) converges to
L, then (can) converges to cL.

The items (ii) and (iii) together say that we need not be concerned with
keeping close track of k.

Example 4.4. The sequence ( 1
n+1)n converges to 0 in R; however it does

not converge in the metric space ((0, 1], | · |), as can be proved using the
previous proposition and the fact that the sequence converges to 0 in R.

The sequence ( n
n+1)n converges to 1 (in R). 4

Example 4.5. If 0 ≤ a < 1, then the sequence (an) converges to 0.
To prove this last statement, recall that we have already shown that

inf({an : n ∈ N}) = 0. Thus, given ε > 0 there is an N such that 0 ≤ aN < ε.
It follows that, for all n ≥ N , |an − 0| ≤ aN < ε. 4

Do Problems 4.1, 4.2, 4.3 and Exercise 4.2.
We will make repeated use of the following simple identity, valid for all

real r and positive integers m,

(2) 1− rm = (1− r)(1 + r + r2 + . . . rm−1)

Proposition 4.6. In (the metric space) R,

(a) if ρ > 0, then the sequence (ρ
1
n ) converges to 1; and

(b) the sequence (n
1
n ) converges to 1.

Proof. To prove (a), first suppose ρ > 1. Using Equation (2) with m = n

and r = ρ
1
n gives

ρ
1
n − 1 =

ρ− 1∑n−1
j=0 ρ

j
n

.
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Thus

|ρ
1
n − 1| < ρ− 1

n
.

Now, given ε > 0 there is, by Theorem 2.28(i) there is an N such that if
n ≥ N , then

1

n
<

ε

ρ− 1
.

Thus, for n ≥ N ,

|ρ
1
n − 1| < ρ− 1

n
< ε.

Hence (ρ
1
n ) converges to 1.

If 0 < ρ < 1, then σ = 1
ρ > 1 and (σ

1
n ) converges to 1. On the other

hand,

|1− ρ
1
n | = ρ

1
n |σ

1
n − 1| ≤ |σ

1
n − 1|,

from which the result follows.
To prove (b) note that the Binomial Theorem gives, for x > 0,

(1 + x)n =
n∑
j=0

(
n
j

)
xj ≥ n(n− 1)

2
x2.

Thus, with x = n
1
n − 1,

n ≥ n(n− 1)

2
x2.

Hence, for n ≥ 2, √
2

n− 1
≥ n

1
n − 1 ≥ 0,

from which it follows that (n
1
n ) converges to 1. Indeed, given ε > 0 choose

N ∈ N+ such that N ≥ 2
ε2

+ 1 and observe if n ≥ N , then N ≥ 2 and

ε >

√
2

N − 1
≥
√

2

n
≥ |n

1
n − 1|.

�

Remark 4.7. The limit of a sequence depends only upon the notion of open
sets. See Problem 4.4. �

4.2. Sequences and closed sets.

Proposition 4.8. A subset S of a metric space X is closed if and only if
every sequence (an) from S which converges in X actually converges in S.

Proof. Suppose S is closed and (an) is a sequence from S which converges

to L ∈ X. Since S̃ is open, if y /∈ S, then there is an ε > 0 such that
Nε(y) ∩ S = ∅. In particular, d(an, y) ≥ ε for all n and (an) does not
converge to y. Hence L ∈ S.
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Now suppose that S is not closed, equivalently S̃ is not open. In this case,
there exists an L ∈ S̃ such that for every n ∈ N there is an sn such that

sn ∈ S ∩N 1
n+1

(L).

It is straightforward to verify that (sn) is a sequence from S which converges
to L /∈ S. �

Do Problems 4.5, 4.6 and 4.7.

4.3. The monotone convergence theorem for real numbers. For nu-
merical sequences, that is sequences from R, limits are compatible with the
order structure on R.

Proposition 4.9. Suppose (an) and (bn) are sequences from R and c ∈ R.
If an ≤ bn + c for all n and if both sequences converge, then

lim
n
an ≤ lim

n
bn + c.

Further, if (an), (bn), and (cn) are all sequences from R, if there is an N
so that for n ≥ N ,

an ≤ bn ≤ cn
and if (an) and (bn) converge to the same limit L, then (bn) also converges
to L.

The second part of the Proposition is a version of the squeeze theorem
and in Problem 4.8 you are asked to provide a proof.

Proof. Let A and B denote the limits of (an) and (bn) respectively. Let
ε > 0 be given. There is an N so that for n ≥ N both |an − A| < ε and
|bn−B| < ε. Hence, A−B−c = (A−an)+(an−bn−c)+(bn−B) < 2ε. �

Definition 4.10. A sequence (an) from R is increasing (synonymously non-
decreasing) if an ≤ an+1 for all n. The sequence is strictly increasing if
an < an+1 for all n.

A sequence is eventually increasing if there is an N so that the sequence
(an)∞n=N is increasing.

The notion of a decreasing sequence is defined analogously. A monotone
sequence is a sequence which is either increasing or decreasing.

Theorem 4.11. If (an) is an increasing sequence from R which is bounded
above, then (an) converges.

Remark 4.12. Generally, results stated for increasing sequences hold for
eventually increasing sequences in view of Proposition 4.3(ii). �

Proof. The set R = {an : n ∈ N} (the range of the sequence) is nonempty
and bounded above and therefore has a least upper bound. Let A = sup(R).
Given ε > 0 there is an r ∈ R such that A − ε < r. There is an N so that
r = aN . If n ≥ N , then, since the sequence is increasing, 0 ≤ A − an ≤
A− aN < ε. Hence (an) converges to A. �
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Proposition 4.13. In the metric space R, if 0 ≤ r < 1, then both (rn) and
(nrn) converge to 0.

The proof uses the easily proved special case of Proposition 4.20(i) that
if (an) and (bn) are sequences of real numbers which converge to A and B
respectively, then (an + bn) converges to A+B.

Proof. That (rn) converges to 0 is Example 4.5.
To prove that (nrn) converges to 0, note that, by Example 4.4, for n

sufficiently large
n

n+ 1
> r.

It follows that there is an N such that for n ≥ N the sequence (nrn) is
decreasing. Since it also bounded below by 0 it converges to some L. Hence,
using (rn) converges to 0,

rL = rL+ 0 = r limnrn + lim rn+1 = lim(n+ 1)rn+1 = L.

Since r 6= 1, it follows that L = 0. �

Do Problems 4.9 and 4.10.

4.3.1. The real numbers as infinite decimals. Here is an informal discussion
of infinite decimal (base ten) expansions. An infinite decimal expansion
(base 10) is an expression of the form

a = a0.a1a2a3 · · · ,
where a0 ∈ Z and aj ∈ {0, 1, 2, . . . , 9}. Let

sn = a0 +

n∑
j=1

aj
10j

and note that the sequence (sn) is increasing and bounded above by a0 + 1.
Thus the sequence (sn) converges to some real number s and we identify a
with this real number.

Conversely, given a real number s there is a smallest integer m > s. Let
a0 = m − 1. Recursively choose aj so that, with sn = a0.a1 · · · an, we have
0 ≤ s−sn ≤ 1

10n . In this case (sn) converges to s and we can identify s with
an infinite decimal expansion.

Note that a real number can have more than one decimal expansion. For
example both 0.999 · · · and 1.000 · · · represent the real number 1.

Remark 4.14. Note too it makes sense to talk of expansions with other
bases, not just base 10. Base two, called binary, is common. Base three is
called ternary. For n ∈ N with n ≥ 2, expansions base n are called n-ary. �

Remark 4.15. Here is an informal argument that a rational number has a
repeating infinite decimal expansion.

Suppose x is rational, x = m
n . Note that the Euclidean division algorithm

produces a decimal representation of x. At each stage there are at most
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n choices of remainder. Hence, after at most n steps of the algorithm, we
must have a repeat remainder. From there the decimal repeats. �

4.3.2. An abundance of real numbers.

Proposition 4.16. The set R is uncountable; i.e., there are uncountably
many real numbers.

Proof. It suffices to show if f : N → R, then f is not onto. For notational
ease, let xj = f(j).

Choose b0 > a0 such that x0 /∈ I0 := [a0, b0]. Next choose a1 < b1 such
that a0 ≤ a1 < b1 ≤ b0 and x1 /∈ I1 = [a1, b1]. Continuing in this fashion,
construct, by the principle of recursion, a sequence of intervals Ij = [aj , bj ]
such that

(1) I0 ⊃ I1 ⊃ I2 ⊃ · · · ;
(2) bj − aj > 0; and
(3) xj /∈ Ik for j ≤ k.

Observe that the recursive construction of the sequences of endpoints
(aj) and (bj) implies that a0 ≤ a1 ≤ a2 < · · · < b2 ≤ b1 ≤ b0; i.e., (aj) is
increasing and is bounded above by each bm. By Theorem 4.11 (aj) converges
to

y = sup{aj : j ∈ N}.
In particular, am ≤ y ≤ bm for each m. Thus y ∈ Im for all m. On the other
hand, for each k,

xk /∈ Ik
and so y 6= xk. Hence y is not in the set {xk : k ∈ N} which is the range of
f . �

Do Problem 4.11.

4.4. Limit theorems.

Proposition 4.17. Let (a(n))n be a sequence from Rg and write a(n) =
(a1(n), . . . , ag(n)). The sequence converges to L = (L1, . . . , Lg) ∈ Rg if and
only if

lim
n
aj(n) = Lj

for each 1 ≤ j ≤ g.

Definition 4.18. A sequence (an) from a metric space X is bounded if there
exists an x ∈ X and R > 0 such that {an : n ∈ N} ⊂ NR(x).

Proposition 4.19. Convergent sequences are bounded.

Proof. Suppose (an) converges to L in the metric space X. Observe, with
ε = 1 there is an N such that if n ≥ N , then d(an, L) < 1. Choosing

R = max({d(aj , L) : 0 ≤ j < N} ∪ {1}) + 1

gives {an : n ∈ N} ⊂ NR(L). Hence {an : n ∈ N} is bounded. �
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Proposition 4.20. Let (an) and (bn) be sequences from Rg and c ∈ R. If
(an) converges to A and (bn) converges to B, then

(i) (an + bn) converges to A+B;
(ii) (can) converges to cA;
(iii) (an · bn) converges to A ·B; and
(iv) if g = 1 and bn 6= 0 for each n and B 6= 0, then an

bn
converges to A

B .

Proof. Proofs of the first two items are routine and left to the reader.
To prove the third item, let ε > 0 be given. Since the sequence (bn)

converges, it is bounded by say M . Since (an) and (bn) converge to A and
B respectively, there exists Na and Nb such that if n ≥ Na, then

‖A− an‖ ≤
ε

2(M + 1)

and likewise if n ≥ Nb, then

‖B − bn‖ <
ε

2(‖A‖+ 1)
.

Choose N = max{Na, Nb}. If n ≥ N , then

‖A ·B − an · bn‖ =‖A · (B − bn) + (A− an) · bn‖
≤‖A‖‖B − bn‖+ ‖A− an‖‖bn‖
≤‖A‖‖B − bn‖+ ‖A− an‖M
<ε.

To prove the last statement, it suffices to prove it under the assumption

that an = 1 for all n. Since (|bn|) converges to |B| > 0, with ε = |B|
2 there

is an M such that if n ≥M , then |bn| ≥ |B|2 . For such n

| 1
B
− 1

bn
| = |B − bn|
|B| |bn|

≤ |B − bn|
2

|B|2
.

The remaining details are left to the gentle reader. �

Proposition 4.21. Suppose (an) is a sequence of nonnegative numbers,
p, q ∈ N+ and r = p

q . If (an) converges to L, then (arn) converges to Lr.

Proof. Item (iii) of Proposition 4.20 with g = 1 and bn = an shows that (a2n)
converges to L2. An induction argument now shows that (apn) converges to
Lp.

To show (a
1
q
n ) converges to L

1
q , first observe that L ≥ 0. Suppose L > 0.

In this case, the identity,

(xq − yq) = (x− y)

q−1∑
j=0

xjyq−1−j
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applied to x = a
1
q
n and y = L

1
q gives,

|an − L| = |a
1
q
n − L

1
q |
q−1∑
j=0

a
j
q
nL

q−1−j
q ≥ |a

1
q
n − L

1
q |L

q−1
q .

From here the remainder of the argument is easy and left to the gentle
reader. �

Have another look at Problem 4.10.

4.5. Subsequences.

Definition 4.22. Given a sequence (an) and an increasing sequence n1 <
n2 < . . . of natural numbers, the sequence (anj )j is a subsequence of (an).

Alternately, a sequence (bm) is a subsequence of (an) if there is a strictly
increasing function σ : N→ N such that bm = aσ(m).

Example 4.23. The sequence ( 1
j2

) is a subsequence of ( 1
n) (choosing nj = j2

for j ≥ 1).
The constant sequences (−1) and (1) are both subsequences of ((−1)n).

4

Proposition 4.24. Suppose (an) is sequence in a metric space X. If (an)
converges to L ∈ X, then every subsequence of (an) converges to L.

This proposition is an immediate consequence of Problem 4.1.
Do Problem 4.12.

Proposition 4.25. Let (xn) be a sequence from a metric space X and let
y ∈ X be given. If for every ε > 0 the set

{n ∈ N : d(y, xn) < ε}

is infinite, then there exists a subsequence (xnk) of (xn) such that (xnk)k
converges to y.

Proof. With ε = 1 there is an n1 such that d(y, xn1) < 1. Suppose now
that n1 < n2 · · · < nk have been constructed so that d(y, xnj ) <

1
j for each

1 ≤ j ≤ k. Since the set {n : d(y, an) < 1
k+1} is infinite, there exists

a nk+1 > nk such that d(y, ank+1
) < 1

k+1 . Thus, by recursion, we have

constructed a subsequence (ank) which converges to y. �

4.6. The limits superior and inferior.

Proposition 4.26. Given a bounded sequence (an) of real numbers, let

αn = sup{aj : j ≥ n}.

The sequence (αn) is decreasing and bounded below and hence converges.

The proof of the Proposition is left as an exercise (see Problem 4.13.)
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Definition 4.27. The limit of the sequence (αn) is called the limsup or
limit superior of the sequence (an). The liminf is defined analogously.

Observe that inf{aj : j ≥ n} ≤ an ≤ sup{aj : j ≥ n} for each n. Do
Problem 4.14.

Example 4.28. Here are some simple examples.

(i) The lim sup and lim inf of (sin(π2n)) are 1 and −1 respectively.

(ii) The lim sup and lim inf of the sequence ((−1)n(1 + 1
n)) are also 1 and

−1 respectively.
(iii) The lim inf of the sequence ((1 − (−1)n)n) is 0. It has no lim sup.

Alternately, the lim sup could be interpreted as ∞.

4

Proposition 4.29. A bounded sequence (an) converges if and only if

lim sup an = lim inf an

and in this case (an) converges to this common value.

Proof sketch. For notational purposes, let αn = sup{aj : j ≥ n} and let
γn = inf{aj : j ≥ n}.

Suppose (an) converges to a. Given ε > 0, there is an N such that if
j ≥ N , then |aj − a| < ε. In particular, for j ≥ N , we have aj ≤ a+ ε and
thus αN ≤ a+ ε. Consequently, if n ≥ N , then

a− ε < an ≤ αn ≤ αN ≤ a+ ε

and therefore |αn− a| ≤ ε. It follows that (αn) converges to a and therefore

lim sup an = a.

By symmetry,

lim inf an = a.

Now suppose

lim sup an = lim inf an

and let A denote this common value.
Observe that γn ≤ an ≤ αn for all n. Hence, by the Squeeze Theorem,

Problem 4.8, (an) converges to A. �

Do Problem 4.15.

Proposition 4.30. Suppose (an) is a bounded sequence of real numbers.
Given x ∈ R, let Jx = {n : an > x} and let

S = {x ∈ R : Jx is infinite}.

Then,

lim sup an = sup(S).
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Proof. For notational ease, let αm = sup{an : n ≥ m} and let α = lim sup an
Observe that Jx is infinite if and only if for each n ∈ N there is an m ≥ n

such m ∈ Jx; i.e., there is an m ≥ n such that that am > x.
To prove α is an upper bound for S, let x ∈ S be given. Given an integer

n there is an m ≥ n such that am > x Hence αn > x. It follows that α ≥ x.
To prove that α is the least upper bound of S, suppose x < α. Given n, it

follows that x < αn. Hence, x is not an upper bound for the set {aj : j ≥ n}
which means there is an m ≥ n such that x < am ≤ αn. This shows Jx is
infinite. Thus x ∈ S. It follows that (−∞, α) ⊃ S and thus if β is an upper
bound for S, then β ≥ α. Hence α is the least upper bound of S. �

Do Problem 4.16.

4.7. Exercises.

Exercise 4.1. Show, arguing directly from the definitions, that the numer-
ical sequences

an =
2n− 3

n+ 5
, n ≥ 0;

bn =
n+ 3

n2 − n− 1
n ≥ 2

converge.

Exercise 4.2. By negating the definition of convergence of a sequence, state
carefully what it means for the sequence (an) from the metric space X to
not converge.

Show that the sequence (from R) (an = (−1)n) does not converge. Sug-
gestion, show if L 6= 1, then (an) does not converge to L; and if L 6= −1,
then (an) does not converge to L.

Exercise 4.3. Consider the sequence (sn) from R defined by

sn =
n∑
j=1

j−2.

Show by induction that

sn ≤ 2− 1

n
.

Prove that the sequence (sn) converges.

Exercise 4.4. Define a sequence from R as follows. Fix r > 1. Let a1 = 1
and define recursively,

an+1 =
1

r
(an + r + 1).

Show, by induction, that (an) is increasing and bounded above by r+1
r−1 . Does

the sequence converge?

Exercise 4.5. Return to Exercise 4.1, but now verify the limits using The-
orem 4.20 together with a little algebra.
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Exercise 4.6. Find the limit in Exercise 4.4.

Exercise 4.7. Let σ : N → Q ∩ [0, 1] be a bijection. What are the subse-
quential limits of the sequence (σ(n))?

Exercise 4.8. Suppose (an) is a sequence from a metric space X and L ∈ X.
Show, if there is a sequence (rn) of real numbers which converges to 0, a
real number C, and positive integer M such that, for m ≥M ,

d(am, L) ≤ Crm,
then (an) converges to L.

4.8. Problems.

Problem 4.1. Suppose (an), a sequence in a metric space X, converges to
L ∈ X. Show, if σ : N→ N is one-one, then the sequence (bn = aσ(n))n also
converges to L.

Problem 4.2. Suppose (an) is a sequence from R. Show, if (an) converges
to L, then the sequence (of Cesaro means) (sn) defined by

sn =
1

n+ 1

n∑
j=0

aj

also converges to L. Is the converse true?

Problem 4.3. Suppose (an) and (bn) are sequences from a metric space X.
Show, if both sequences converge to L ∈ X, then (cn), defined by c2n = an
and c2n+1 = bn, also converges to L.

Problem 4.4. Suppose d and d′ are both metrics on X and that the metric
spaces (X, d) and (X, d′) have the same open sets. Show, the sequence (an)
from X converges in (X, d) if and only if it converges in (X, d′) and then to
the same limit.

Problem 4.5. Let S be a subset of a metric space X. A point y ∈ X is a
limit point of S if there is a sequence (sn) from S \ {y}, which converges to
y.

Prove that S is closed if and only if S contains all its limit points. (Often
this limit point criteria is taken as the definition of closed set.)

Problem 4.6. Let S′ denote the set of limit points of a subset S of a metric
space X. (See Problem 4.5.) Prove that S′ is closed.

Problem 4.7. Show, if C is a subset of R which has a supremum, say α,
then there is a sequence (cn) from C which converges to α. Use this fact,
plus Proposition 4.8, to give another proof of Proposition 3.25.

Problem 4.8. [A squeeze theorem] Suppose (an), (bn), and (cn) are se-
quences of real numbers. Show, if an ≤ bn ≤ cn for all n and both (an) and
(cn) converge to L, then (bn) converges to L.
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Problem 4.9. Suppose (an) is a sequence of positive real numbers and
assume

L = lim
an+1

an
exists. Show, if L < 1, then (an) converges to 0 by completing the following
outline (or otherwise).

(a) Choose L < ρ < 1.
(b) Show there is an M so that if m ≥M , then am+1 ≤ ρam;
(c) Show aM+k ≤ ρkaM for k ∈ N;
(d) Show an ≤ ρn aMρM for n ≥M ;

(e) Complete the proof.

Give an example where (an) converges to 0 and L = 1; and give an
example where (an) does not go to 0, but L = 1.

Prove, if 0 ≤ L < 1, and p is a positive integer, then (npan) converges to
0 too.

Problem 4.10. Let a0 =
√

2 and define, recursively, an+1 =
√
an + 2.

Prove, by induction, that the sequence (an) is increasing and is bounded
above by 2. Does the sequence converge? If so, what should the limit be?

Problem 4.11. Use Theorem 2.28 to prove for each real number r there is
a sequence (qn) of rational numbers converging to r. Use Proposition 4.8 to
conclude that the closure of Q (in R) is R. (See Remark 2.29.)

Problem 4.12. Suppose (an) is a sequence in a metric space X. Show,
if there is an L ∈ X such that every subsequence of (an) has a further
subsequence which converges to L, then (an) converges to L.

Problem 4.13. Prove Proposition 4.26.

Problem 4.14. Suppose (an) is a bounded sequence of real numbers. Prove

lim inf an ≤ lim sup an.

Give an example which shows the inequality can be strict.

Problem 4.15. Suppose both (an) and (bn) are bounded sequences of real
numbers. Prove,

lim sup(an + bn) ≤ lim sup an + lim sup bn.

[Hint: Observe {aj + bj : j ≥ n} ⊂ {aj + bk : j, k ≥ n} from this, and the
fact that sup(S + T ) = sup(S) + sup(T ), it will follow that

sup({aj+bj : j ≥ n}) ≤ sup({aj+bk : j, k ≥ n}) = sup{aj : j ≥ n}+sup{bk : k ≥ n}.
Give an example which shows the inequality can be strict.

Problem 4.16. Let (an) be a bounded sequence of real numbers. Prove
there is a subsequence (anj )j which converges to y = lim sup an. Here is one
way to proceed. Show, either directly or using Proposition 4.30, that for
each ε > 0 the set {n : |y − an| < ε} is infinite and then apply Proposition
4.25.
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Problem 4.17. Given a sequence (aj)
∞
j=0 of real numbers, let

sm =
m∑
j=0

aj .

The expression
∑∞

n=0 an is called a series and the sequence (sn) is its se-
quence of partial sums. If the sequence (sn) converges, then the series is said
to converge and if moreover, (sn) converges to L, then the series converges
to L written

∞∑
n=0

an = L = lim
m→∞

sm.

In particular, the expression
∑∞

n=0 an is used both for the sequence (sn) and
the limit of this sequence, if it exists.

Show, if an ≥ 0, then the series either converges or diverges to∞ depend-
ing on whether the partial sums form a bounded sequence or not.

Show, if 0 ≤ r < 1, then, for each m,

(1− r)
m∑
n=0

rn = 1− rm+1

and thus,
∞∑
n=0

rn =
1

1− r
.

5. Cauchy sequences and completeness

Definition 5.1. A sequence (an) in a metric space (X, d) is Cauchy if for
every ε > 0 there is an N such that for all n,m ≥ N , d(an, am) < ε.

Do Problem 5.1.

Proposition 5.2. Convergent sequences are Cauchy; i.e., if (an) is a con-
vergent sequence in a metric space X, then (an) is Cauchy.

Proposition 5.3. Cauchy sequences are bounded.

Definition 5.4. A metric space X is complete if every Cauchy sequence in
X converges (in X).

Example 5.5. Cauchy sequences in a discrete metric space are eventually
constant and hence converge. Thus, a discrete metric space is complete. 4

Example 5.6. The metric space Q is an example of an incomplete space.
Exercise 5.2 gives further examples of incomplete spaces. 4

Theorem 5.7. R is a complete metric space.

Proof. Let (an) be a given Cauchy sequence from R. By Proposition 5.3,
this sequence is bounded. Hence it has a limsup; i.e., with

αn = sup{ak : k ≥ n}
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the sequence (αn) is decreasing and bounded below and converges to α =
lim sup an.

It suffices to show that (an) converges to α. To this end, let ε > 0 be
given. Because (αn) converges to α, there is an M so that if m ≥M , then

(3) α ≤ αm < α+ ε.

Since (an) is Cauchy, there is a K such that for n, k ≥ K,

|ak − an| < ε.

In particular, for k ≥ n ≥ K,

ak ≤ an + ε.

Hence an + ε is an upper bound for {aj : j ≥ n} and therefore,

(4) αn ≤ an + ε.

Let N = max{M,K}. If n ≥ N , then, by combining Equations (3) and (4),

α+ ε > αn ≥ an ≥ αn − ε ≥ α− ε.

Thus, if n ≥ N , then

|α− an| < ε

and the proof is complete. �

Proposition 5.8. A closed subset of a complete metric space is complete.

Proof. Apply Proposition 4.8. �

Proposition 5.9. A complete subset of a metric space is closed.

Proof. Apply Proposition 4.8. �

Definition 5.10. A sequence (xn) from a metric space X is super Cauchy
if there exists a 0 ≤ k < 1 such that

(5) d(an+1, an) ≤ kd(an, an−1)

for all n ≥ 1.

The following result is a version of the contraction mapping principle.

Proposition 5.11. If (an) is super Cauchy, then (an) is Cauchy. In partic-
ular, super Cauchy sequences in a complete metric space converge.

Proof. First observe, by Equation (2),

n∑
j=0

kj ≤ 1

k − 1
.

Next note that, by iterating the inequality of Equation (5),

d(am+1, am) ≤ kmd(a1, a0)
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for all m. Thus, for ` ≥ 0,

d(an+`, an) ≤
`−1∑
j=0

d(an+j+1, an+j)

≤
`−1∑
j=0

kn+jd(a1, a0)

= knd(a1, a0)
`−1∑
j=0

kj

≤ knd(a1, a0)

1− k
.

The remainder of the proof is a straightforward exercise based on the fact
that (kn) converges to 0. �

Note that Proposition 5.11 holds under the weaker assumption that there
is an N such that the inequality of Equation (5) holds just for all n ≥ N+1;
i.e., (an) just need be eventually super Cauchy.

Example 5.12. For n ∈ N+, let

sn =
n∑
j=2

1

j
.

Note that

s2n =

n−1∑
k=0

2k+1∑
j=2k+1

1

j
≥ n

2

and thus (sn) is not a bounded sequence and is therefore not Cauchy.
On the other hand,

|sn+2 − sn+1| =
1

n+ 2
<

1

n+ 1
= |sn+1 − sn|.

4

5.1. Exercises.

Exercise 5.1. Define a sequence of real numbers recursively as follows. Let
a1 = 1 and

an+1 = 1 +
1

1 + an
.

Show (an) is not monotonic (that is neither increasing or decreasing). Show
that an ≥ 1 for all n and then use Proposition 5.11 to show that (an) is
Cauchy. Conclude that the sequences converges and find its limit.

Exercise 5.2. Suppose y is a limit point (see Problem 4.5) of the metric
space X. Show Y = X \ {y} is not complete.
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Exercise 5.3. Show directly that the sequence ((−1)n) is not Cauchy and
conclude that it doesn’t converge. Compare with Exercise 4.2.

5.2. Problems.

Problem 5.1. Suppose (xn) is a Cauchy sequence in a metric space X.
Show, if (xn) has a subsequence (xnk) which converges to some y ∈ X, then
(xn) converges to y.

Problem 5.2. Fix A > 0 and define a sequence from R as follows. Let
a0 = 1. For n ≥ 1, recursively define

an+1 = A+
1

an
.

Show, for all n ≥ 1, an ≥ A and anan+1 ≥ 1 + A2. Use Proposition 5.11 to
prove that (an) converges. What is the limit?

Problem 5.3. The diameter of a set S in a metric space X is

diam(S) = sup{d(s, t) : s, t ∈ S}.
(In the case that the set of values d(s, t) is not bounded above this supremum
is interpreted as plus infinity.)

Prove, if X is a complete metric space, S1 ⊃ S2 ⊃ . . . is a nested decreas-
ing sequence of nonempty closed subsets of X, and the sequence (diam(Sn))n
converges to 0, then

∩Sn
contains exactly one point.

Show that this result fails if any of the hypotheses - completeness, closed-
ness of the Sn, or that the diameters tend to 0 - are omitted.

Problem 5.4. Suppose U1, U2, . . . is a sequence of open sets in a nonempty
complete metric space X. Show, if, for each j, the closure of Uj is all of X,
then

∩∞1 Uj 6= ∅.
This is a version of the Baire Category Theorem.

Here is an outline of a proof. Observe that for each x ∈ X, r > 0, and j,
that Nr(x) ∩ Uj 6= ∅ and let Br(x) = {y ∈ X : d(x, y) ≤ r} (the closed ball
of radius r with center x).

Pick a point x1 ∈ U1. There is an r1 ≤ 1 such that Br1(x1) ⊂ U1. There
is a point x2 ∈ Nr1(x)∩U2. There is an 0 < r2 <

r1
2 such that Br2(x2) ⊂ U2.

Continuing in this fashion constructs a sequence of sets Brj (xj). Apply an
earlier problem to complete the proof.

Problem 5.5. Complete the following outline that R is complete. Let (an)
be a given Cauchy sequence from R. Explain why

α = lim sup an

exists. There is a subsequence (anj ) of (an) which converges to α (by Prob-
lem 4.16); and thus the sequence itself converges to α (by Problem 5.1).
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Problem 5.6. Given metric spaces (X, dX) and (Y, dY ) let Z denote the
metric space built from X and Y as in Problem 3.1. Show, if X and Y are
complete, then so is X × Y .

Problem 5.7. Show that the sequence (an) from Exercise 5.1 is not even-
tually monotone. As a suggestion, first show that, for each n, an+1 6= an as
otherwise an would be irrational.

6. Compact Sets

6.1. Definitions and Examples.

Definition 6.1. An open cover U of a subset S of a metric space X is a
subset of P (X) such that each U ∈ U is open and

S ⊂ ∪{U : U ∈ U} = ∪U∈UU.
A subcover of the open cover U is a subset V ⊂ U which is also an open

cover of S.
A subset K of a metric space X is compact provided every open cover of

K has a finite subcover.

Remark 6.2. Often it is convenient to view covers as an indexed family of
sets, rather than a subset of P(X). In this case an open cover of S consists
of an index set J and a collection of open sets U = {Uj : j ∈ J } whose
union contains S. A subcover is then a collection V = {Uk : k ∈ K}, for
some subset K of J . A set K is compact if for each collection {Uj : j ∈ J}
such that

K ⊂ ∪j∈JUj ,
there is a finite subset K ⊂ J such that

K ⊂ ∪k∈KUk.
�

Example 6.3. Consider the set K = {0, 1, 12 ,
1
3 , . . . } as a subset of the

metric space R.
Let U be a given open cover of K. There is then a U0 ∈ U such that

0 ∈ U0. Since U0 is open, there is an ε > 0 such that Nε(0) ⊂ U0. Since
1
n converges to 0, there is an N such that if n ≥ N , then 1

n ∈ Nε(0). For

each j = 1, 2, . . . , N − 1 there is a Uj ∈ U such that 1
j ∈ Uj . It follows that

V = {U0, . . . , UN−1} ⊂ U is a finite subcover (ofK). ThusK is compact. 4

Do Problems 6.1 and 6.2.

Example 6.4. Let S = (0, 1] ⊂ R and consider the indexed family of sets
Uj = (1j , 2) for j ∈ N+. It is readily checked that

S ⊂ ∪∞j=1Uj

and of course each Uj is open. Thus U = {Uj : j ∈ N+} is an open cover of
S.



D
RA
FT

41

Let V be a given finite subset of U . In particular, there is an N such that
V ⊂ {Uj : 1 ≤ j ≤ N} and therefore,

∪V ∈VV ⊂ ∪Nj=1Uj = (
1

N
, 2).

Thus V is not a cover of S and hence U contains no finite subset which
covers S. Thus S is not compact. 4

Theorem 6.5. Closed bounded intervals in R are compact.

Proof. Let [a, b] be a given closed bounded interval and let U be a given
open cover of [a, b].

Let

S = {x ∈ [a, b] : [a, x] has a finite subcover from U}.
There is a U ∈ U such that a ∈ U and hence [a, a] ⊂ U . It follows that
a ∈ S and thus S is nonempty. It is also bounded above by b. It follows
that sup(S) exists and is at most b.

To prove that b ∈ S, observe that there is a U0 ∈ U such that sup(S) ∈ U0

since sup(S) ∈ [a, b] and U is an open cover of [a, b]. Because U0 is open,
there is an ε > 0 such that Nε(sup(S)) ⊂ U0. There is an s ∈ S such that
sup(S) − ε < s ≤ sup(S). Since s ∈ S, there is a finite subcover V ⊂ U of
[a, s]; i.e., V is finite and

[a, s] ⊂ ∪{U : U ∈ V}.

It follows that

[a, sup(S) +
ε

2
] ⊂ [a, s] ∪ [sup(S)− ε

2
, sup(S) +

ε

2
] ⊂ ∪{U : U ∈ V} ∪ {U0}.

Thus, for each t ∈ [a, b]∩ [sup(S), sup(S) + ε
2 ], the collection W = V ∪ {U0}

is a finite subset of U which covers [a, t]. Thus, each such t is in S. In
particular, sup(S) ∈ S. On the other hand, if sup(S) < b, then there is
a t ∈ s ∈ [a, b] ∩ (sup(S), sup(S) + ε

2 ] in violation of the least property of
sup(S). Thus, sup(S) = b and moreover

[a, b] ⊂ {U : U ∈ V} ∪ {U0}.

Thus [a, b] is compact. �

Do Problem 6.3 which says that a subset K of a discrete metric space X
is compact if and only if K is finite. In particular, if the set K in Example
6.3 is considered with the discrete metric, then it is not Compact.

Theorem 6.6. If Y is a metric space and K ⊂ X ⊂ Y , then K is compact
in X if and only if K is compact in Y .

Remark 6.7. The proposition says that compactness is intrinsic and thus,
unlike for open and closed sets, we we can speak of compact sets without
reference to a larger ambient metric space. �
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Proof. First suppose K is compact in X. To prove K is compact in Y , let
U ⊂ P (Y ) an open (in Y ) cover of K be given. Let W = {U ∩X : U ∈ U}.
ThenW ⊂ P (X) is an open (in X) cover of K. Hence there is a finite subset
V of U such that {U ∩ X : U ∈ V} covers K. It follows that V is a finite
subset of U which covers K and hence K is compact as a subset of Y .

Conversely, suppose K is compact in Y . To prove that K is compact in
X, let Let U ⊂ P (X) be a given open (in X) cover of K. For each U ∈ U
there exists an open in Y set WU such that U = X ∩WU . The collection
W = {WU : U ∈ U} ⊂ P (Y ) is an open cover of X. Hence there is a finite
subset V of U such that {WU : U ∈ V} covers K. It follows that V is a finite
subset of U which covers K. Hence K is compact in X. �

Do Problems 6.4 and 6.5.

6.2. Compactness and closed sets.

Definition 6.8. A subset B of a metric space X is bounded if there exists
x ∈ X and R > 0 such that B ⊂ NR(x).

Equivalently, B is bounded if for every y ∈ X there is a C > 0 such that
B ⊂ NC(y).

Proposition 6.9. Compact sets are closed and bounded.

Proof. Suppose K is a compact subset of a metric space X. If K̃ is empty,
then it is open and K is closed. Suppose now that K̃ is not empty. Let
y /∈ K be given. Let Vn = {x ∈ X : d(x, y) > 1

n}. The sets Vn are open and

∪∞n=1Vn ⊃ X \ {y} ⊃ K.
Since K is compact, there is an N so that

VN = ∪Nn=1Vn ⊃ K.
It follows that, for each x ∈ K, d(x, y) > 1

N . Hence N 1
N

(y) ⊂ K̃ and so K̃

is open and K is closed.
To prove that K is bounded, fix x0 ∈ X and let Wn = {x ∈ X : d(x0, x) <

n}. Then
K ⊂ X = ∪Wn.

By compactness of K, there is an N so that K ⊂ WN and thus K is
bounded. �

Proposition 6.10. A closed subset of a compact set is compact.

Proof. Suppose X is a metric space, C ⊂ K ⊂ X, K is compact, and C is
closed.

To prove C is compact, let U be a given open cover of C. Then W =
U ∪ {C̃} is an open cover of K. Hence some finite subset of W covers K;
but then a finite subset of U covers C. �

Corollary 6.11. Closed bounded subsets of R are compact. Thus a subset
of R is compact if and only if it is closed and bounded.



D
RA
FT

43

Proof. Suppose K ⊂ R is both closed and bounded. Since K is bounded,
there is a positive real M such that K ⊂ [−M,M ]. Now K is a closed subset
of the compact set [−M,M ] and is hence itself compact. �

It turns out that this corollary is true with R replaced by Rg, a result
which is called the Heine-Borel Theorem. A proof, based upon the Lebesgue
number Lemma, and the concomitant fact that compactness and sequential
compactness are the same for a metric space, is in Subsection 6.4 below.

Remark 6.12. If X is an infinite set with the discrete metric, then X
is closed and bounded, but not compact. Hence, in general, closed and
bounded does not imply compact. While this example may seem a bit
contrived, we will encounter other more natural metric spaces for which
closed and bounded is not the same as compact. (See for instance Problem
6.7.) �

6.3. Sequential Compactness.

Definition 6.13. A subset K of a metric space X is sequentially compact
if every sequence in K has a subsequence which converges in K; i.e., if (an)
is a sequence from K, then there exists p ∈ K and a subsequence (anj )j of
(an) which converges to p.

Remark 6.14. The notion of sequentially compact does not actually depend
upon the larger metric space X, just the metric space K. �

Proposition 6.15. If X is sequentially compact, then X is complete.

Problem 6.8 asks you to provide a proof of this Proposition.

Proposition 6.16. Let X be a metric space. If X is compact, then X is
sequentially compact.

Proof. Let (sn) be a given sequence from X. If there is an s ∈ X such
that for every ε > 0 the set Jε(s) = {n : sn ∈ Nε(s)} is infinite, then,
by Proposition 4.25, (sn) has a convergent subsequence (namely one that
converges to s).

Arguing by contradiction, suppose for each s ∈ X there is an εs > 0 such
that J(s) = {n : sn ∈ Nεs(s)} is a finite set. The collection {Nεs(s) : s ∈ X}
is an open cover of X. Since X is compact there is a finite subset F ⊂ X
such that V = {Nεt(t) : t ∈ F} is a cover of X; i.e.,

X ⊂ ∪{Nεt(t) : t ∈ F}.
For each n there is a t ∈ F such that sn ∈ Nεt(t) and thus N = ∪t∈FJεt(t).
But then, for some u ∈ F , the set Jεu(u) is infinite, a contradiction. �

Do Problem 6.9.

Proposition 6.17. If X is compact, then X is complete.

Corollary 6.18. The metric space R is complete.
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Proof. Suppose (an) is a Cauchy sequence from R. It follows that (an)
is bounded and hence there is a number R > 0 such that each an is in
the interval I = [−R,R]. Since I is compact, it is complete. Hence (an)
converges in I and thus in R. �

The remainder of this section is devoted to proving the converse of Propo-
sition 6.16.

Lemma 6.19. [Lebesgue number lemma] If K is a sequentially compact
metric space and if U is an open cover of K, then there is a δ > 0 such that
for each x ∈ K there is a U ∈ U such that Nδ(x) ⊂ U .

Proof. We argue by contradiction. Accordingly, suppose for every n ∈ N+

there is an xn ∈ K such that, for each U ∈ U , N 1
n

(xn) is not a subset of

U . The sequence (xn) has a subsequence (xnk)k which converges to some
w ∈ K because K is sequentially compact. There is a W ∈ U such that
w ∈ W . Hence there is an ε > 0 such that Nε(w) ⊂ W. Choose k so that
1
nk

< ε
2 and also so that d(xnk , w) < ε

2 . Then N 1
nk

(xnk) ⊂ Nε(w) ⊂ W , a

contradiction. �

Definition 6.20. A metric space X is totally bounded if, for each ε > 0,
there exists a finite set F ⊂ X such that

X = ∪x∈FNε(x).

Proposition 6.21. If X is sequentially compact, then X is totally bounded.

Proof. We prove the contrapositive. Accordingly, suppose X is not totally
bounded. Then there exists an ε > 0 such that for every finite subset F of
X,

X 6= ∪x∈FNε(x).

Choose x1 ∈ X. Choose x2 /∈ Nε(x1). Recursively choose,

xn+1 /∈ ∪n1Nε(xj).

The sequence (xn) has no convergent subsequence since, for j 6= k, d(xk, xj) ≥
ε. Thus X is not sequentially compact. �

Proposition 6.22. If X is sequentially compact, then X is compact.

Proof. Let U be a given open cover of X. From the Lebesgue Number
Lemma, there is a δ > 0 such that for each x ∈ X there is a U ∈ U such
that Nδ(x) ⊂ U .

Since X is totally bounded, there exists a finite set F ⊂ X so that

X = ∪x∈FNδ(x).

For each x ∈ F , there is a Ux ∈ U such that Nδ(x) ⊂ Ux. Hence,

X = ∪x∈FUx;

i.e., {Ux : x ∈ F} ⊂ U is an open cover of X. Hence X is compact. �
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6.4. The Heine-Borel theorem.

Lemma 6.23. Cubes in Rg are compact.

Proof for the case g = 2. Either an induction argument or an argument sim-
ilar to the proof below for g = 2 handles the case of general d.

Consider the cube C = [a, b] × [c, d]. It suffices to prove that every se-
quence (zn) from C has a subsequence which converges in C; i.e., that C is
sequentially compact. To this end, let (zn) = (xn, yn) be a given sequence
from C. Since [a, b] is compact, there is a subsequence (xnk)k of (xn) which
converges to some x ∈ [a, b]. Similarly, since [c, d] is compact the sequence
(ynk)k has a subsequence (ynkj )j which converges to a y ∈ [c, d]. It follows

that (znkj )j converges to z = (x, y) ∈ C. �

Theorem 6.24. [Heine-Borel] A subset K of Rg is compact if and only if
it is closed and bounded.

Proof. We have already seen that compact implies closed and bounded in
any metric space.

Suppose now that K is closed and bounded. There is a cube C such that
K ⊂ C ⊂ Rg. The cube C is compact and K is a closed subset of C and is
therefore compact. �

Do Problem 6.12.

Corollary 6.25. Rg is complete.

The proof is similar to that of Corollary 6.18. The details are left as an
exercise for the gentle reader.

6.5. Exercises.

Exercise 6.1. Let X be a metric space. Show, if there is an r > 0 and
sequence (xn) from X such that d(xn, xm) ≥ r for n 6= m, then X is not
compact.

Exercise 6.2. Suppose X has the property that each closed bounded subset
of X is compact. Show X is complete.

Exercise 6.3. Show, if X is totally bounded, then X is bounded. Give an
example of a bounded metric space X which is not totally bounded.

6.6. Problems.

Problem 6.1. Prove, if X is a metric space and (an)∞n=1 is a sequence in
X which converges to A, then {A, a1, a2, . . . } is compact.

Problem 6.2. Prove a finite subset of a metric space X is compact.
More generally, prove a finite union of compact sets is compact.

Problem 6.3. Show, a subset K of a discrete metric space X is compact
if and only if it is finite. In particular, if X is infinite, then X is closed and
bounded, but not compact.
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Problem 6.4. [The finite intersection property (fip)] Suppose X is a com-
pact metric space and F ⊂ P (X). Show, if each C ∈ F is closed and for
each finite subset F ⊂ F the set

∩C∈FC 6= ∅,

then in fact

∩C∈FC 6= ∅.
As a corollary, show if C1 ⊃ C2 ⊃ is a nested decreasing sequence of

non-empty compact sets in a metric space X, then ∩Cj is non-empty too.
Show the result fails if X is not assumed compact. On the other hand,

even if X is not compact, the result is true if it assumed that there is a
D ∈ F which is compact. Compare with Problem 5.3.

Problem 6.5. Prove that any open cover of R has an at most countable
subcover.

More generally, prove, if there exists a sequence K1,K2, . . . of compact
subsets of a metric space X such that X = ∪Kj , then every open cover of
X has an at most countable subcover.

Problem 6.6. Let `∞ denote the set of bounded sequences a = (a(n)) of
real numbers. The function d : `∞ × `∞ → R defined by

d(a, b) = sup{|a(n)− b(n)| : n ∈ N}

is a metric on `∞.
Let ej denote the sequence from `∞ (so a sequence of sequences) with

ej(j) = 1 and ej(k) = 0 if k 6= j. Find, d(ej , e`).
Let 0 denote the zero sequence in `∞. Is

B = {a ∈ `∞ : d(a, 0) ≤ 1}

closed? Is it bounded? Is it compact?
As a challenge, show `∞ is complete.

Problem 6.7. This problem assumes Problem 4.17. Let `2 denote the set
of sequences (a(n)) of real numbers such that

∞∑
0

|a(n)|2

converges (to a finite number). Use the Cauchy Schwartz inequality to show,
if a, b ∈ `2, then

〈a, b〉 :=
∞∑
0

a(j)b(j)

converges and that 〈a, b〉 is an inner product on `2. Let

d(x, y) = ‖x− y‖ =
√
〈x− y, x− y〉

denote the resulting metric.
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Let ej denote the sequence with ej(j) = 1 and ej(k) = 0 if j 6= k.
What is d(ej , ek)? Does the sequence (of sequences) (ej) have a convergent
subsequence? Let 0 denote the zero sequence. Is the set

B = {x ∈ `2 : d(x, 0) ≤ 1}

closed? Is it bounded? Is it compact?
As a challenge, prove that `2 is complete.

Problem 6.8. Prove Proposition 6.15. (See Problem 5.1.)

Problem 6.9. Suppose K is a nonempty compact subset of a metric space
X and x ∈ X. Show, there is a point p ∈ K such that, for all other q ∈ K,

d(p, x) ≤ d(q, x).

[Suggestion: Let S = {d(x, y) : y ∈ K} and show there is a sequence (qn)
from K such that (d(x, qn)) converges to inf(S).]

Give an example where this conclusion fails if the hypothesis that K is
compact is replaced by K is closed and bounded.

Problem 6.10. Suppose B is a compact subset of a metric space X and
a /∈ B. Show there exists disjoint open sets U and V such that a ∈ U and
B ⊂ V. Suggestion, first use Problem 6.9 to show, for each b ∈ B there is an
εb > 0 such that Nεb(b) ∩Nεb(a) = ∅.

Problem 6.11. Show if A and B are disjoint compact sets in a metric
space X, then there exists disjoint open sets U and V such that A ⊂ U and
B ⊂ V . Suggestion, by the previous problem, for each a ∈ A there exists
disjoint open sets Ua and Va such that a ∈ Ua and B ⊂ Vb.

Problem 6.12. Show that K compact can be replaced by K closed in
Problem 6.9 in the case that X = Rg.

Problem 6.13. Given metric spaces (X, dX) and (Y, dY ) let Z denote the
metric space built from X and Y as in Problem 3.1. Show, if X and Y are
compact, then so is X × Y .

7. Connected sets

Definition 7.1. A metric space X is disconnected if there exists sets U, V ⊂
X such that

(i) U and V are open;
(ii) U ∩ V = ∅;
(iii) X = U ∪ V ; and
(iv) U 6= ∅ 6= V ;

The metric space X is connected if it is not disconnected.
A subset S of X is connected if the metric space (subspace) S is connected.

Do Problem 7.1.
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Remark 7.2. A metric space X is connected if and only if the only subsets
of X which are both open and closed are X and ∅.

By Proposition 3.18, subsets U0 and V0 of S are open relative to S if
and only if there exists subsets U, V of X which are open (in X) such that
U0 = U ∩ S and V0 = V ∩ S. Thus, a subset S of a metric space X is
connected if and only if given subsets U and V of X such that

(i) U and V are open;
(ii) U ∩ S ∩ V = ∅; and
(iii) S ⊂ U ∪ V
it follows that either U ∩ S or V ∩ S is empty.

Note, if U, V satisfy (ii) and (iii), then Ṽ ∩ S = U ∩ S. �

Problem 7.2 gives an alternate condition for a subset S of a metric space
X to be connect in terms of subsets of X. Do also Problem 7.3.

Proposition 7.3. A nonempty subset I of R is connected if and only if
x, y ∈ I and x < z < y implies z ∈ I.

In particular, intervals in R are connected.

Proof. Suppose I has the property that x, y ∈ I and x < z < y implies
z ∈ I. To prove that I is connected, it suffices to show, if U, V ⊂ R satisfy
condition (i), (ii), and (iii) in Remark 7.2, then either U ∩ I or V ∩ I is
empty. Arguing by contradiction, suppose U ∩ I and V ∩ I are both non-
empty and choose u ∈ U ∩ I and v ∈ V ∩ I. Without loss of generality,
u < v. By hypothesis [u, v] ⊂ I. Consider A = U ∩ [u, v] and B = V ∩ [u, v]

and observe that A ∪ B = [u, v] and A ∩ B = ∅. Hence B̃ ∩ [u, v] = A

and therefore, as B̃ = Ṽ ∪ ˜[u, v], A = Ṽ ∩ [u, v]. In particular, A is closed
and bounded. It follows that A has a largest element a ∈ A. Since v ∈ B,
we find a < v. Since U is open, there is an ε such that v − a > ε > 0 and
Nε(a) ⊂ U . In particular, (a, a+ε) ⊂ U∩[u, v] = A. But then say a+ ε

2 ∈ A,
a contradiction.

To prove the converse, suppose there exists x, y ∈ I and z /∈ I such that
x < z < y. In this case, let U = (−∞, z) and V = (z,∞). Then U ∩ V = ∅,
U and V are open, U ∩ I and V ∩ I are nonempty, and I ⊂ U ∪ V , thus I
is not connected. �

Do Problem 7.4.

Proposition 7.4. If C is a nonempty collection of connected subsets of a
metric space X and if

∩{C : C ∈ C} 6= ∅,
then Γ = ∪{C : C ∈ C} is connected.

Proof. Suppose U, V ⊂ X are open, U∩Γ∩V = ∅, and Γ ⊂ U∪V . It suffices
to show that either Γ∩U = ∅ or Γ∩V = ∅. Arguing by contradiction, suppose
both are not empty. Then there exists CU , CV ∈ C such that CU ∩U 6= ∅ and
CV ∩V 6= ∅. Now U, V are open; CU ⊂ U∪V ; and U∩CU∩V ⊂ U∩Γ∩V = ∅.
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Thus, since CU is connected, either CU ∩ U = ∅ or CU ∩ V = ∅. It follows
that CU ∩ V = ∅ and hence CU ⊂ U . By symmetry, CV ⊂ V and thus,

CU ∩ CV ⊂ U ∩ Γ ∩ V = ∅,

contradicting the assumption that the intersection of the sets C in C is
nonempty. �

Do Problems 7.5 and 7.6.

Corollary 7.5. Given a point x in a subset S of a metric space X there is
a largest connected set Cx containing x and contained in S; i.e.,

(i) x ∈ Cx ⊂ S,
(ii) Cx ⊂ X is connected; and
(iii) if x ∈ D ⊂ S and D ⊂ X is connected, then D ⊂ Cx.

The set Cx of the Corollary is called the connected component containing
x.

Proof. Note that {x} is connected. Let C denote the collection of connected
sets containing x and contained in S and apply the previous proposition to
conclude that Γ = ∪{C : C ∈ C} is connected. By construction, if D is
connected and x ∈ D, then D ⊂ Γ. �

Do Problems 7.7, 7.8 and 7.9.

7.1. Exercises.

Exercise 7.1. Determine the connected subsets of a discrete metric space.

Exercise 7.2. Let I = [0, 1] ⊂ R. If 0 < x < 1, is I \ {x} connected?
Let S ⊂ R2 denote the unit circle, {(x, y) ∈ R2 : x2 + y2 = 1}. If x ∈ S,

is S \ {x} connected? If x 6= y are both in S, is S \ {x, y} connected?
Let R ⊂ R2 denote the unit square R = [0, 1] × [0, 1]. If F ⊂ R is finite,

is R \ F connected?

Exercise 7.3. Let S = { 1n : n ∈ N+} ⊂ R and let

C = (K × [0, 1]) ∪ ([0, 1]× {0}) ⊂ R2.

Draw a picture of C. Is it connected?
Let D = C ∪ {(0, 1)}. Is D connected? Can you draw a path from (0, 0)

to (0, 1) without leaving D?

Exercise 7.4. Show if A,B,C are connected subsets of X and A ∩ B 6= ∅
and A ∩ C 6= ∅, then A ∪ B ∪ C is connected. A more general statement,
requiring a more elaborate proof, can be found in Problem 7.5.
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7.2. Problems.

Problem 7.1. Show singleton sets are connected, but finite sets with more
than one element are not.

Problem 7.2. Prove, S ⊂ X is disconnected if and only if there exists
subsets A,B ⊂ X such that

(i) both A and B are nonemtpy;
(ii) A ∪B = S;
(iii) A ∩B = ∅; and
(iv) A ∩B = ∅.

(Here the closures are taken with respect to X.) You may wish to use
Problem 3.4.

Problem 7.3. Show, if S is a connected subset of a metric space X, then
S is also connected. In fact, each S ⊂ T ⊂ S is connected.

Problem 7.4. Suppose I ⊂ R is open. Prove that I is also connected if
and only if either

(i) I is an open interval;
(ii) there is an a ∈ R such that I = (a,∞);
(iii) there is a b ∈ R such that I = (−∞, b); or
(iv) I is empty or all of R.

The term open interval is expanded to refer to a set of any of the above
forms.

Problem 7.5. Prove the following stronger variant of Proposition 7.4. Sup-
pose C is a nonempty collection of connected subsets of a metric space X
and B ∈ C. and if, for each A ∈ C, A ∩ B 6= ∅, then Γ = ∪{C : C ∈ C} is
connected.

Problem 7.6. Must the intersection of two connected sets be connected?

Problem 7.7. Let X be a metric space. For each x ∈ X, let Cx denote the
connected component containing x. Prove that the collection {Cx : x ∈ X}
is a partition of X; i.e., if x, y ∈ X then either Cx = Cy or Cx ∩Cy = ∅ and
X = ∪x∈XCx.

Problem 7.8. Prove, if O ⊂ R is open, then each connected component of
O is open; i.e., if U ⊂ O is connected in R and if U ⊂ V ⊂ O is connected
implies U = V , then U is open.

Problem 7.9. Prove that every open subset O of R is a disjoint union of
open intervals (in the sense of Problem 7.4). Further show that this union is
at most countable by noting that each component must contain a rational.

8. Continuous Functions

8.1. Definitions and Examples.
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Definition 8.1. Suppose X,Y are metric spaces, a ∈ X and f : X → Y .
The function f is continuous at a if for every ε > 0 there is a δ > 0 such
that if dX(a, x) < δ, then dY (f(a), f(x)) < ε.

If f is continuous at every point a ∈ X, then f is said to be continuous.

Example 8.2. (a) Constant functions are continuous.
(b) For a metric space X, the identity function id : X → X given by

id(x) = x is continuous.
(c) If f : X → Y is continuous and Z ⊂ X, then f |Z : Z → Y is continuous.
(d) The function f : R → R given by f(x) = 1 if x ∈ Q and f(x) = 0 if

x /∈ Q is nowhere continuous.
To prove this last statement, given x ∈ R, choose ε0 = 1

2 .

(e) The function f : [0, 1]→ R defined by f(x) = 0 if x /∈ Q and f(x) = 1
q ,

where x = p
q , p ∈ N, q ∈ N+, and gcd(p, q) = 1, is continuous precisely

at the irrational points.
Lets prove that f is continuous at irrational points, leaving the fact

that it is not continuous at each rational point as an easy exercise.
Suppose x /∈ Q (x ∈ [0, 1]) and let ε > 0 be given. Choose N ∈ N+ so

that 1
N < ε. Let

δ = min{|x− m

n
| : m,n ≤ N, m, n ∈ N+}.

This minimum exists and is positive since it is a minimum over a finite
set and 0 is not an element of the set (since x /∈ Q). If |x− y| < δ and
y ∈ [0, 1], then either y /∈ Q in which case |f(x) − f(y)| = |0 − 0| = 0;
or y ∈ Q and y = p

q (in reduced form) where q > N in which case

|f(x)− f(y)| = 1
q < ε.

(f) If X is a metric space and a ∈ X, then the function f : X → R given
by f(x) = d(a, x) is continuous.

Fix x and let ε > 0 be given. Choose δ = ε. If d(x, y) < δ, then

|f(x)− f(y)| = |d(x, a)− d(a, y)| ≤ d(x, y) < δ = ε.

(g) Given γ ∈ Rg, the function pγ : Rg → R defined by

pγ(x) = 〈x, γ〉
is continuous.

4

Do Problems 8.1 and 8.2.

Proposition 8.3. A function f : X → Y is continuous if and only if
f−1(U) ⊂ X is open for every open set U ⊂ Y .

Note that the result doesn’t change if Y is replaced by any Z with f(X) ⊂
Z ⊂ Y .

Proof. Suppose f is continuous and U ⊂ Y is open. To prove f−1(U) is
open, let x ∈ f−1(U) be given. Since U is open and f(x) ∈ U , there is an
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ε > 0 such that Nε(f(x)) ⊂ U . Since f is continuous at x, there is a δ > 0
such that if dX(x, z) < δ, then dY (f(x), f(z)) < ε. Thus, if z ∈ Nδ(x), then
f(z) ∈ Nε(f(x)) ⊂ U and thus z ∈ f−1(U). Hence Nδ(x) ⊂ f−1(U). We
have proved that f−1(U) is open.

Conversely, suppose that f−1(U) is open in X whenever U is open in Y .
Let x ∈ X and ε > 0 be given. The set U = Nε(f(x)) is open and thus
f−1(U) is also open. Since x ∈ f−1(U), there is a δ > 0 such that Nδ(x) ⊂
f−1(U); i.e., if dX(x, z) < δ, then f(z) ∈ U which means dY (f(x), f(z)) < ε.
Hence f is continuous at x; and thus f is continuous. �

Corollary 8.4. A function f : X → Y is continuous if and only if f−1(C)
is closed (in X) for every closed set C (in Y ).

Do Problems 8.3 and 8.4. See also Problem 3.9.

Proposition 8.5. Suppose X,Y, Z are metric spaces, f : X → Y and
g : Y → Z. If both f and g are continuous, then so is h = g ◦ f : X → Z.

Proof. Let V an open subset of Z be given. Since g is continuous, U =
g−1(V ) is open in Y . Since f is continuous, f−1(U) is open in X. Thus,
h−1(V ) = f−1(U) is open and hence h is continuous. �

There are local versions of Propositions 8.5 and 8.3 (See Problems 8.6 and
8.5). Here is a sample whose proof is left to the reader.

Proposition 8.6. Suppose X,Y, Z are metric spaces, f : X → Y and
g : Y → Z. If f is continuous at a and g is continuous at b = f(a), then
h = g ◦ f is continuous at a.

8.2. Continuity and Limits.

Definition 8.7. Let S be a subset of a metric space X. A point p ∈ X is
a limit point of S if, for every δ > 0, the set S ∩Nδ(p) is infinite.

A point p ∈ S is an isolated point of S if p is not a limit point of S.

Do Exercise 8.1 and compare with Problem 4.5.

Example 8.8. (a) If S 6= ∅ is an open set in Rg, then every point of S is
a limit point of S. In fact, as an exercise, show in this case the set of
limit points of S is the closure of S.

(b) The set Z in R has no limit points.
(c) The only limit point of the set { 1n : n ∈ N+} is 0.

4

Definition 8.9. Let X and Y be metric spaces and let a ∈ X and b ∈ Y.
Suppose a is a limit point of X and either f : X → Y or f : X \ {a} → Y .
Then f has limit b as x approaches a, written

lim
x→a

f(x) = b,

if for every ε > 0 there is a δ such that if 0 < dX(a, x) < δ, then dY (b, f(x)) <
ε.
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Remark 8.10. The limit b, if it exists, is unique. �

Proposition 8.11. Suppose f : X → Y and a ∈ X is a limit point of X.
The function f is continuous at a if and only if limx→a f(x) exists and equals
f(a).

If f : X \{a} → Y and limx→a f(x) exists and equals b, then the function
g : X → Y defined by g(x) = f(x) for x 6= a and g(a) = b is continuous at
a.

If a is not a limit point of X and h : X → Y , then h is continuous at a.

Proposition 8.12. Suppose a ∈ X and f : W → Y , where W = X or
W = X \ {a}. If limx→a f(x) = b and if g : Y → Z is continuous at b,
then limx→a g ◦ f(x) = g(b). In particular, if f is continuous at a and g is
continuous at f(a), then g ◦ f is continuous at a.

Proof. The function h : X → Y defined by h(x) = f(x) if x 6= a and h(a) = b
is continuous at a by Proposition 8.11. Hence g ◦ h is continuous at a by
Proposition 8.5. It follows that

lim
x→a

g ◦ f(x) = lim
x→a

g ◦ h(x) = g(h(a)) = g(b).

�

For a variation on this composition law for limits, see Problem 8.7.
The following Proposition gives a sequential formulation of limit.

Proposition 8.13. Suppose X is a metric space, a is a limit point of X,
and f : Z \ {a} → Y where Z is either X or X \ {a}. The limit limx→a f(x)
exists and equals b ∈ Y if and only if for every sequence (an) from Z which
converges to a, (f(an)) converges to b.

If f : X → Y , then f is continuous at a if and only if for every sequence
(an) from X \ {a} converging to a, (f(an)) converges to f(a).

Proof. To prove the the first part of the lemma in the case Z = X \ {a},
first suppose limx→a f(x) = b and (an) converges to a. To see that (f(an))
converges to b, let ε > 0 be given. There is a δ > 0 such that if 0 <
dX(a, x) < δ, then dY (b, f(x)) < ε. There is an N so that if n ≥ N , then
0 < dX(a, an) < δ. Hence, if n ≥ N , then dY (b, f(an)) < ε and thus (f(an))
converges to b.

Conversely, suppose limx→a f(x) 6= b. Then there is an ε0 > 0 such that
for each n there exists an such that dX(a, an) < 1

n , but dY (b, f(an)) ≥ ε0.
The sequence (an) converges to a, but (f(an)) does not converge to b.

The second part of the proposition follows readily from the first part. �

8.3. Continuity of Rational Operations.

Proposition 8.14. LetX be a metric space and a ∈ X be a limit point ofX.
Suppose f : Y → Rk where Y is either X or X \ {a}. Write f = (f1, . . . , fk)
with fj : X → R.
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The limit limx→a f(x) exists and equals A = (A1, . . . , Ak) ∈ Rk if and
only if, for each j, the limit limx→a fj(x) exists and equals Aj . In particular,

if f : X → Rk, then f is continuous at a if and only if each fj is continuous
at a.

Proof. Let (an) be a given sequence from X \ {a} which converges to a. By
Proposition 4.17, the sequence An = f(an) converges to A if and only if
(fj(an))n converges to Aj for each j. An application of Proposition 8.13
thus completes the proof. �

Proposition 8.15. Suppose a ∈ X is a limit point of the metric space X,
W is either X or X \{a} and f, g : W → Rk. If limx→a f(x) and limx→a g(x)
exist and equal A and B respectively, then

(i) limx→a f(x) · g(x) = A ·B;
(ii) limx→a(f + g)(x) = A+B;
(iii) if k = 1, g is never 0 and B 6= 0, then limx→a

1
g(x) = 1

B .

Proof. To prove item (i), suppose (an) is a sequence in X \ {a} which con-
verges to a. From Proposition 8.13, (f(an)) and (g(an)) converge to A and
B respectively. Hence (f(an) ·g(an)) converges to A ·B, by Proposition 4.20.
Finally, another application of Proposition 8.13 completes the proof.

The proofs of the other items are similar. �

Corollary 8.16. If f, g : X → Rk are continuous at a, then so are f · g and
f + g. If k = 1 and g is never 0, then 1

g is continuous at a.

Example 8.17. For each j, the function πj : Rd → R given by πj(x) = xj
is continuous since it can be expressed as

πj(x) = 〈x, ej〉 = x · ej ,
where ej is the j-th standard basis vector of Rd; i.e., ej has a 1 in the j-th
entry and 0 elsewhere.

If p(x1, . . . , xd) and q(x1, . . . , xd) are polynomials, then the rational func-
tion

r(x) =
p(x)

q(x)

is continuous (wherever it is defined). 4

Do Problems 8.8 and 8.9.

8.4. Continuity and Compactness.

Proposition 8.18. If f : X → Y is continuous and X is compact, then
f(X) is compact; i.e., the continuous image of a compact set is compact.

Proof. Let W be a given open cover of f(X). Then,

U = {f−1(U) : U ∈ W}
is an open cover of X. Hence there is a finite subset F ⊂ W such that
{f−1(U) : U ∈ F} is a cover of X.
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Using the fact that f(f−1(B)) ⊂ B, it follows that

∪{U : U ∈ F} ⊃ ∪{f(f−1(U)) : U ∈ F} = f(∪{f−1(U) : U ∈ F}) ⊃ f(X).

Thus, {U : U ∈ F} is a finite subcover of f(X). �

Do Problem 8.10.

Corollary 8.19 (Extreme Value Theorem). If f : X → R is continuous
and X is non-empty and compact, then there exists x0 ∈ X such that
f(x0) ≥ f(x) for all x ∈ X; i.e., f has a maximum on X.

Proof. By the previous proposition, the set f(X) is a compact subset of
R. It is also non-empty. In view of Proposition 3.25, non-empty compact
subsets of R have a largest element; i.e., there is an M ∈ f(X) such that
M ≥ f(x) for all x ∈ X. Since M ∈ f(X), there is an x0 ∈ X such that
M = f(x0). �

Return to Problem 6.9.

Corollary 8.20. If X is compact, and if f : X → Y is one-one, onto and
continuous, then f−1 is continuous.

Proof. Let C ⊂ X, a closed set, be given. Since X is compact, so is C.
Hence f(C) is compact and thus closed in Y . Thus (f−1)−1(C) = f(C) is
closed. It follows, from Corollary 8.4 that f−1 is continuous. �

Example 8.21. Let T = {z ∈ C : |z| = 1} = {(x, y) ∈ R2 : x2 + y2 = 1}
and define f : [0, 2π) → T by f(t) = exp(it) = (cos(t), sin(t)). Then f is
continuous and invertible, but f−1 is not continuous at 1.

In fact, if g : T→ [0, 2π) is continuous, then it is not onto since its image
g(T) will then be a compact, and hence proper, subset of [0, 2π). 4
8.5. Uniform Continuity and Compactness.

Definition 8.22. A function f : X → Y is uniformly continuous if for
every ε > 0 there is a δ > 0 such that if x, y ∈ X and dX(x, y) < δ, then
dY (f(x), f(y)) < ε.

Given S ⊂ X, f is uniformly continuous on S if f |S : S → Y is uniformly
continuous.

Proposition 8.23. If f : X → Y is continuous on X and if X is compact,
then f is uniformly continuous on X.

Proof. Let ε > 0 be given. For each x ∈ X there is a rx > 0 such that if
dX(x, y) < rx, then d(f(x), f(y)) < ε

2 .
The collection U = {N rx

2
(x) : x ∈ X} is an open cover of X. Since X is

compact, there is a finite subset F ⊂ X such that V = {N rx
2

(s) : s ∈ F} is

a cover of X.
Let δ = 1

2 min{rx : x ∈ F}. Suppose y, z ∈ X and dX(y, z) < δ. There is
an x ∈ F such that y ∈ N rx

2
(x); i.e., dX(x, y) < rx

2 . Hence

dX(x, z) ≤ dX(x, y) + dX(y, z) <
rx
2

+ δ ≤ rx.
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Consequently,

dY (f(y), f(z)) ≤ dY (f(y), f(x)) + dY (f(x), f(z)) < ε.

�

Example 8.24. The function f : R→ R given by f(x) = x2 is not uniformly
continuous.

Choose ε0 = 1. Given δ > 0, let x = 2
δ and y = 2

δ + δ
2 . Then |x− y| < δ,

but,

|f(y)− f(x)| = 2 +
δ2

4
≥ ε0 = 1.

On the other hand, the function from Problem 8.1 is uniformly continuous.
4

Do Problems 8.12 and 8.11.

8.6. Continuity and Connectedness.

Proposition 8.25. If f : X → Y is continuous and X is connected, then
f(X) is connected.

Proof. Suppose U and V are open subsets of f(X) such that f(X) = U ∪V
and U ∩ V = ∅.

The sets A = f−1(U) and B = f−1(V ) are open, X = A∪B and A∩B = ∅
(since if x ∈ A ∩ B, then f(x) ∈ U ∩ V ). Hence, without loss of generality,
A = X. Hence, f(A) = f(X) = f(f−1(U)) ⊂ U and V = ∅. It follows that
f(X) is connected. �

Example 8.26. Returning to Example 8.21, there does not exist a one-one
onto continuous mapping f : [0, 2π] → T. If there were, then g = f−1

would be a continuous one-one mapping of T onto [0, 2π]. Let z = f(π)
and Z = T \ {z}. Now Z is connected and g|Z : Z → [0, π) ∪ (π, 2π] is
one-one and onto. But then g|Z(Z) = [0, π) ∪ (π, 2π] is connected which is
a contradiction. 4

Do Problems 8.13, 8.14, and 8.15.

Corollary 8.27. [Intermediate Value Theorem] If f : [a, b] → R is con-
tinuous and f(a) < 0 < f(b), then there is a point a < c < b, such that
f(c) = 0.

Definition 8.28. Let S denote a subset of R. A function f : S → R is
increasing (synonymously non-decreasing) if x, y ∈ S and x ≤ y implies
f(x) ≤ f(y). The function is strictly increasing if x, y ∈ S and x < y
implies f(x) < f(y).

Corollary 8.29. If f : [a, b] → R is continuous and increasing, then
f([a, b]) = [f(a), f(b)].
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Example 8.30. Returning to the discussion in Subsection 2.4, fix a positive
integer n and let f : [0,∞)→ [0,∞) denote the function with rule f(x) = xn.
To show that f is onto, let y ∈ [0,∞) be given. With b the larger of 1 and
y, consider g = f |[0,b] : [0, b] → R. Since f(b) ≥ y, it follows that y is in
the interval [0, g(b)]. By Corollary 8.29, y is in the range of g and hence
in the range of f . The conclusion is then that positive numbers have n-th
roots. 4

8.6.1. More on connectedness - optional. The following property of a metric
space X is sometimes expressed by saying that X is completely normal. It
is evidently stronger than the statement that disjoint closed sets can be
separated by disjoint open sets, a property known as normality. Compare
with Problem 6.11.

Proposition 8.31. If A,B are subset of a metric space such that A∩B 6= ∅
and A ∩B 6= ∅, then there exists U, V ⊂ X such that

(i) U and V are open;
(ii) A ⊂ U , B ⊂ V ; and
(iii) U ∩ V = ∅.

Proof. If either A or B is empty, then the result is immediate. Accordingly,
suppose that A 6= ∅ and B 6= ∅ and of course that A∩B = ∅ and B∩A = ∅¿
By Problem 8.1, the function f : X → R given by

f(x) = d(x;B)− d(x;A)

is continuous. Observe, if x ∈ A, then x /∈ B and hence d(x;A) = 0, but
d(x;B) > 0 by Problem 3.9. Thus, f(x) > 0 for x ∈ A. Similarly, f(x) < 0
for x ∈ B. Let U = f−1(0,∞) and V = f−1(−∞, 0). It follows that U
and V are open, A ⊂ U , B ⊂ V , and U ∩ V = ∅. Thus U and V satisfy
conditions (i)–(iv). �

Remark 8.32. Proposition 8.31 gives another characterization of connected
subsets S of a metric space X. Namely, S is not connected if and only if there
exist nonempty, open, disjoint subsets U, V of X such that S ⊂ U ∪ V . �

8.7. Exercises.

Exercise 8.1. Let S be a subset of the metric space X and suppose p ∈ X.
Explain why the following conditions are equivalent.

(i) p is a limit point of S;
(ii) For every δ > 0 the set (S \ {p}) ∩Nδ(p) 6= ∅; and
(iii) There is a sequence (sn) from S \ {p} which converges to p.

Explain why p ∈ S is an isolated point of S if and only if the set {p} is
an open set in S; i.e., open relative to S.

Exercise 8.2. Show that f : (0, 1]→ R defined by f(x) = 1
x is continuous,

but not uniformly so.
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Exercise 8.3. Use the Intermediate Value Theorem 8.27 along with Corol-
lary 8.20 to argue that the function n

√
is continuous.

Exercise 8.4. Use Exercise 8.3 to show if the sequence (an) of nonnegative
real numbers converges to A, and r = m

n (m,n ∈ N+) is a rational number,
then (arn) converges to Ar.

Exercise 8.5. Give an alternate proof of the statement of Problem 6.9 using
Example 8.2(f) and Corollary 8.19.

8.8. Problems.

Problem 8.1. Let A be a nonempty subset of a metric space X. Define
f : X → [0,∞) by f(x) = inf{d(x, a) : a ∈ A}. Prove that f is continuous.

Problem 8.2. Let X be a metric space and Y a discrete metric space.

(i) Determine all continuous functions f : Y → X.
(ii) Determine all continuous functions g : R→ Y ;

Problem 8.3. Prove Corollary 8.4.

Problem 8.4. Show, if f : X → R is continuous, then the zero set of f ,

Z(f) = {x ∈ X : f(x) = 0}
is a closed set.

Show that the set

{(x, y) : xy = 1} ⊂ R2

is a closed set.

Problem 8.5. Prove the following local version of Proposition 8.3.
Suppose f : X → Y and a ∈ X. The function f is continuous at a if

and only if for every open set U containing b = f(a), there is an open set V
containing a so that V ⊂ f−1(U).

Problem 8.6. Prove Proposition 8.6.

Problem 8.7. Suppose X is a metric space, a ∈ X is a limit point of X
and f : X \ {a} → Y . Show, if

(a) limx→a f(x) exists and equals b;
(b) g : Z → X is continuous at c;
(c) g(c) = a; and
(d) g(z) 6= a for z 6= c,

then

lim
z→c

f ◦ g(z) = b.

Problem 8.8. Define f : R \ {0} → R by f(x) = sin( 1x). Show

(i) f does not have a limit at 0;
(ii) does g(x) = xf(x) have a limit at 0;
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(iii) more generally, show if h : R → R is continuous at 0 and h(0) = 0,
then hf has a limit at 0.

Problem 8.9. Define f : R2 → R by

f(x, y) =

{
xy√
x2+y2

(x, y) 6= (0, 0)

0 (x, y) = (0, 0)

Is f continuous at 0 = (0, 0)?
Define g : R2 → R by

g(x, y) =

{
xy

x2+y2
(x, y) 6= (0, 0)

0 (x, y) = (0, 0)

Is g continuous at 0 = (0, 0)?

Problem 8.10. Suppose X is compact and f : X → Y. Let Z denote the
metric space Z = X × Y with distance function

d((x1, y1), (x2, y2)) = max{dX(x1, x2), dY (y1, y2)}.
Prove, if f : X → Y is continuous, then F : X → Z defined by F (x) =

(x, f(x)) is also continuous.
Prove, if f is continuous, then the graph of f ,

graph(f) = {(x, f(x)) ∈ Z : x ∈ X} ⊂ Z
is compact.

As a challenge, show, if the graph of f is compact, then f is continu-
ous. As a suggestion, consider the function H : graph(f) → X defined by
H(x, f(x)) = x.

Problem 8.11. Prove if f : X → Y is uniformly continuous and (an) is a
Cauchy sequence from X, then (f(an)) is Cauchy in Y .

Problem 8.12. Given a metric space Y, a point L ∈ Y , and f : [0,∞)→ Y ,
f has limit L ∈ Y at infinity, written,

lim
x→∞

f(x) = L,

if for every ε > 0 there is a C > 0 such that if x > C, then dY (f(x), L) < ε.
Prove, if f : [0,∞) → Y is continuous and has a limit at infinity, then f

is uniformly continuous.

Problem 8.13. A function f : X → Y is a homeomorphism if it is one-one
and onto and both f and f−1 are continuous.

Suppose f : X → Y is a homeomorphism. Show, if Z ⊂ X, then f |Z :
Z → f(Z) is also a homeomorphism. In particular, if Z is connected, then
so is f(Z).

Problem 8.14. Does there exist a continuous onto function f : [0, 1]→ R?
Does there exist a continuous onto function f : (0, 1)→ (−1, 0) ∪ (0, 1)?
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Problem 8.15. Suppose f : [0, 1] × [0, 1] → R. Prove, if f is continuous,
then f is not one-one.

Problem 8.16. Let I = (c, d) be an interval and suppose a ∈ I. Let E
denote either I or I \ {a} and suppose f : E → R. We say f has a limit as
x approaches a from the right (above) if the function f |(a,d) : (a, d)→ R has
a limit at a. The limit, if it exists, is denoted,

lim
x→a+

f(x) = lim
a<x→a

f(x).

The limit from the left (below) is defined similarly.
Show f has a limit at a if and only if both the limits from the right and

left at a exist and are equal.

Problem 8.17. Suppose f : (c, d)→ R is monotone increasing and c < a <
d. Show, f has a limit from the left at a and this limit is

sup{f(t) : c < t < a}.

Problem 8.18. Suppose f : [a, b]→ [c, d] is one-one and onto and (strictly)
monotone increasing. Prove f is continuous.

Problem 8.19. A function f : X → X is a contraction mapping if there is
an 0 ≤ r < 1 such that

d(f(x), f(y)) ≤ rd(x, y)

for all x, y ∈ X.
A point p is a fixed point of f if f(p) = p.
Prove that a contraction mapping can have at most one fixed point.
Prove, if f is a contraction mapping and X is complete, then f has a

(unique) fixed point. In fact, show, for any point x ∈ X, the sequence (xn)
defined recursively by x0 = x and xn+1 = f(xn) converges to this fixed
point. (See Proposition 5.11.)

Problem 8.20. Suppose K is compact and f : K → K. Show, if f is
continuous, then the function g : K → [0,∞)

g(x) = d(f(x), x)

attains its infimum (achieves a minimum). Show further that if g(z) is the
minimum value, then

d(f(f(z)), f(z)) ≥ d(f(z), z).

Show that x is a fixed point of f if and only if g(x) = 0.
Suppose now that f satisfies

d(f(x), f(y)) < d(x, y)

for all x 6= y in K.
Prove f has a unique fixed point.
Show by example, that the hypothesis that K is compact can not be

dropped.
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Problem 8.21. Suppose f : X → Y maps convergent sequences to con-
vergent sequences; i.e., if (an) converges in X, then (f(an)) converges in
Y .

Show, if (an) converges to a, and (bn) is the sequence defined by b2n = an
and b2n+1 = a, then (bn) converges to a. Now prove that f(bn) converges to
f(a).

Prove f is continuous.

Problem 8.22 (Pasting Lemma). Suppose f : X → Y and X = S ∪ T ,
where S and T are closed. Show, if the restriction of f to both S and T
is continuous, then f is continuous. The same is true if both S and T are
open.

Problem 8.23. Show, if f : X → X is continuous, X is compact, and f
does not have a fixed point, then there is an ε > 0 such that d(x, f(x)) ≥ ε
for all x ∈ X.
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Euclidean norm, 13
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limit at infinity, 59
limit of a function, 52
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limit superior, 32
limsup, 32
lower bound, 9
lub, 9

metric, 16
metric space, 16
monotone, 27
monotone convergence theorem, 27

natural numbers, 6
neighborhood, 17
non-decreasing, 27, 56
norm, 12
normality, 57
numerical sequences, 27

one-one, 2
onto, 2
open ball, 17
open cover, 40
open set, 17
ordered field, 8
ordered field isomorphism, 10
ordered set, 8

parallelogram law, 15
Pasting Lemma, 61
positive definite, 16
power set, 1

range, 2
rational numbers, 6
relative complement, 1
relatively open, 19
restriction, 3

scalar product, 12
scalars, 12
sequence, 24
sequence from X, 24
sequence of partial sums, 36
sequential compactness, 43
sequentially compact, 43
series, 36
set difference, 1
squeeze theorem, 27, 34
strictly increasing, 27, 56
subcover, 40
subcover, countable, 46
subsequence, 31
subspace, 16
sup, 9
super Cauchy, 37

supremum, 9

The finite intersection property (fip), 46
totally bounded, 44
transitivity, 8
triangle inequality, 12, 16
trichotomy, 8

uncountable, 4, 29
uniformly continuous, 55
union, 1, 2
upper bound, 9

vector space, 11, 12
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