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1. Review of Sets and Functions

It is assumed that the reader is familiar with the most basic set
constructions and functions and knows the natural numbers N, the
integers Z, the rational numbers Q, the real numbers R, and the com-
plex numbers C, though we will review carefully the properties which
characterize R.

Familiarity with matrices Mn(F) and Mm,n(F), where F is either R
or C, is also assumed.

1.1. Unions, intersections, complements, and products.

Definition 1.1. Given sets X, Y ⊂ S, the union and intersection of
X and Y are

X ∪ Y ={z ∈ S : z ∈ X or z ∈ Y } ⊂ S

X ∩ Y ={z ∈ S : z ∈ X and z ∈ Y } ⊂ S,

respectively.
The complement of X, denoted X̃, is the set

X̃ = {x ∈ S : x /∈ X}.

The relative complement of X in Y is

Y \X = Y ∩ X̃ = {z ∈ S : z ∈ Y and z /∈ X}.

Note X̃ = S \X. /

Definition 1.2. Let X and Y be sets. The Cartesian product of X
and Y is the set

X × Y = {(x, y) : x ∈ X, y ∈ Y }.

/

Example 1.3. R2 = R× R is known as the Cartesian plane.
R3 is the 3-dimensional Euclidean space of third semester Calculus.

4

Definition 1.4. Given a set S, let P (S) denote the power set of S, the
set of all subsets of S. /
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Example 1.5. Let S = {0, 1}. Then,

P (S) = {∅, {0}, {1}, {0, 1}}.
As we shall see later, P (N) is a very large set. 4

Definition 1.6. Given sets I and S and a function α : I → P (S), let
Ai = α(i). The union and intersection of the collection α(I) are

∪i∈IAi ={x ∈ S : there is a j ∈ I such that x ∈ Aj}
∩i∈IAi ={x ∈ S : x ∈ Aj for every j ∈ I}.

respectively. /

For an example, for n ∈ N, let An = {m ∈ Z : m ≥ n} and observe
that

∩n∈NAn = ∅.

Remark 1.7. Given F ⊂ P (S), letting F index itself,

∩A∈FA = {x ∈ S : x ∈ A for every A ∈ F}.
�

Do Problem 1.1.

1.2. Functions.

Definition 1.8. A function f is a triple (f, A,B) where A and B are
sets and f is a rule which assigns to each a ∈ A a unique b = f(a) in
B. We write

f : A→ B.

(a) The set A is the domain of f .
(b) The set B is the codomain of f
(c) The range of f , sometimes denoted rg(f), is the set {f(a) : a ∈ A}.

(d) The function f : A → B is one-one if x, y ∈ A and x 6= y implies
f(x) 6= f(y).

(e) The function f : A → B is onto if for each b ∈ B there exists an
a ∈ A such that b = f(a); i.e., if rg(f) = B.

(f) The graph of f is the set

graph(f) = {(a, f(a)) : a ∈ A} ⊂ A×B.

(g) If f : A → B and Y ⊂ B, the inverse image of Y under f is the
set

f−1(Y ) = {x ∈ A : f(x) ∈ Y }.
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(h) If f : A→ B and C ⊂ A, the set

f(C) = {f(c) : c ∈ C} = {b ∈ B : there is an c ∈ C such that b = f(c)}
is the image of C under f .

(i) The identity function on a set A is the function idA : A→ A with
rule idA(x) = x.

/

Example 1.9. Often one sees functions specified by giving the rule
only, leaving the domain implicitly understood (and the codomain un-
specified), a practice to be avoided. For example, given f(x) = x2 it is
left to the reader to guess that the domain is the set of real numbers.
But it could also be C or even Mn(C), the n× n matrices with entries
from C. If the domain is taken to be R, then R is a reasonable choice
of codomain. However, the range of f is [0,∞) (a fact which will be
carefully proved later) and so the codomain could be any set containing
[0,∞). The moral is that it is important to specify both the domain
and codomain as well as the rule when defining a function. 4

Example 1.10. Define f : R → R by f(x) = x2. Note that f is
neither one-one nor onto.

As an illustrations of the notion of inverse image, f−1((4,∞)) =
(−∞, 2) ∪ (2,∞) and f−1((−2,−1)) = ∅. 4

Example 1.11. The function g : R → [0,∞) defined by g(x) = x2 is
not one-one, but it is, as we’ll see in Subsection 2.4, onto.

The function h : [0,∞) → [0,∞) is both one-one and onto. Note
h−1((4,∞)) = (2,∞). 4

Do Exercises 1.3 and 1.1.

Definition 1.12. Given sets A,B and X, Y and functions f : A→ X
and g : B → Y , define f × g : A × B → X × Y by f × g(a, b) =
(f(a), g(b)). /

Example 1.13. For example, if f : N → N is defined by f(n) = 2n
and g : Z→ N is defined by g(m) = 3m2, then f × g : N×Z→ N×N
is given by f × g(n,m) = (2n, 3m2). 4

Do Problem 1.2.

Definition 1.14. Given f : A→ B and C ⊂ A, the restriction of f to
C is the function f |C : C → B defined by f |C(x) = f(x) for x ∈ C. /

Definition 1.15. Given f : X → Y and g : Y → Z the composition
of f and g is the function g ◦ f : X → Z with rule g ◦ f(x) = g(f(x)).
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A function f : X → Y is invertible if there is a function g : Y → X
such that

g ◦ f =idX

f ◦ g =idY .

We call g the inverse of f (see part (a) of Proposition 1.16 below),
written g = f−1. /

Proposition 1.16. (a) If f is invertible, then the function g in Defi-
nition 1.15 is unique.

(b) f : X → Y is invertible if and only if f is both one-one and
onto. †

Example 1.17. The function h : [0,∞) → [0,∞) given by h(x) = x2

of Example 1.11 is one-one and onto and thus has an inverse. Of course
this inverse h−1 : [0,∞) → [0,∞) is commonly denoted as

√
so that

h−1(x) =
√
x. 4

Proof. Suppose f is invertible so that there exists g : Y → X satisfying
the conditions of Definition 1.15. If f(x1) = f(x2), then x1 = g ◦
f(x1) = g ◦ f(x2) = x2 and hence f is one-one. Similarly, given y ∈ Y ,
f ◦ g(y) = y so that y = f(g(y)) is in the range of f . Hence f is onto.

Suppose f is one-one and g, h : Y → X satisfy f ◦ g = idY = f ◦ h.
Then, for each y ∈ Y , f(g(y)) = y = f(h(y)). Since f is one-one,
g(y) = h(y), proving that if f is invertible, then g as in Definition 1.15
is unique.

Finally, suppose f is both one-one and onto. Define g : Y → X as
follows. Given y ∈ Y , there is a unique x ∈ X so that f(x) = y (why?).
Let g(y) = x and note that f(g(y)) = y and g(f(x)) = x. �

See Exercise 1.5 Do Problem 1.3.

1.3. finite and countable sets.

Definition 1.18. Two sets A and B are equivalent, denoted A ∼ B if
there is a one-one onto mapping f : A→ B. /

Observe that ∼ is behaves like an equivalence relation; i.e., A ∼ A;
if A ∼ B, then B ∼ A; and finally if A ∼ B and B ∼ C, then A ∼ C.

Given a positive integer n, let Jn denote the set {1, 2, . . . , n}. To
show that Jn is not equivalent to N note, if f : Jn → N, then f(j) ≤∑n

`=1 f(`) for each j and so f is not onto.

Definition 1.19. Let A be a set.

(a) A is finite if it is either empty or there is an n ∈ N+ such that
A ∼ Jn;
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(b) A is infinite if it is not finite;
(c) A is countable if A ∼ N;
(d) A is at most countable if either A is finite or countable; and
(e) A is uncountable if it is not at most countable.

Here N+ are the positive natural numbers; i.e., N \ {0}. /

Remark 1.20. Note, by the comments preceding the definition, that
N is infinite. �

Proposition 1.21. A set A is at most countable if and only if there
is an onto mapping f : N→ A. †

We will not prove this proposition.
Do Problem 1.4.

Proposition 1.22. The sets Z, N×N, and Q are all at most countable.
†

Sketch of proof. Define f : N → Z by f(2m) = m and f(2m + 1) =
−m− 1. Since f is onto, Z is at most countable.

To prove N × N is countable, consider N as an array. Explicitly,
define g : N → N × N by g(k) = (n −m,m) where 1

2
n(n + 1) ≤ k <

1
2
(n+ 1)(n+ 2) and k = 1

2
n(n+ 1) +m.

Now the composition (f × idN) ◦ g : N → Z × N is onto. Thus,
to prove that Q is at most countable, it suffices to exhibit an onto
mapping h : Z× N → Q, since then h ◦ (f × idN) ◦ g maps N onto Q.
Define h by h(m,n) = m

n+1
. �

Do Problems 1.5 and 1.6

Proposition 1.23. The set P (N) is not countable. †

The proof is accomplished using Cantor’s diagonalization argument.

Proof. It suffices to prove, if f : N→ P (N), then f is not onto.
Given such an f , let

B = {n ∈ N : n /∈ f(n)}.

We claim that B is not in the range of f . Arguing by contradiction,
suppose m ∈ N and f(m) = B. If m /∈ B, then m ∈ f(m) = B a
contradiction. On the other hand, if m ∈ B, then m /∈ f(m) = B, also
a contradiction. �

Later we will use the proposition to see that R is uncountable.
Do Problem 1.7.
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1.4. Exercises.

Exercise 1.1. Define f : R→ R2 by

f(x) = (cos(x), sin(x)).

Let
D = {(x, y) ∈ R2 : x2 + y2 < 1}

and
S = {(x, y) ∈ R2 : x2 + (y − 1)2 < 1}.

Identify

(i) f−1(S);
(ii) f−1(D); and

(iii) f−1(f((−π
2
, π
2
))).

Exercise 1.2. Consider the function h = f × g of Example 1.13 and
let 6N denote the set {6k : k ∈ N}. Find the inverse image of the
set {(j, k) : j ∈ {2, 3, 4} k ∈ 6N}. Find the inverse image of the set
{(j, k) : j ∈ {0, 1, 2} k is odd}.

Exercise 1.3. Suppose f : A → B. Prove that f is one-one if and
only if for each b ∈ B the set f−1({b}) contains at most one element.

Exercise 1.4. Use induction to show, for n ∈ N+, that P (Jn) ∼ J2n .

Exercise 1.5. If f : X → Y is invertible, and B ⊂ Y , f−1(B) could
refer to either the inverse image of B under f , or the image of B under
the function f−1. Show that, happily, these two sets are the same.

1.5. Problems.

Problem 1.1. Show
∪̃A∈FA = ∩A∈F Ã.

Problem 1.2. Suppose f : X → S and F ⊂ P (S). Show,

f−1(∪A∈FA) = ∪A∈F f−1(A)

f−1(∩A∈FA) = ∩A∈F f−1(A)

Show, if A,B ⊂ X, then f(A∩B) ⊂ f(A)∩f(B). Give an example,
if possible, where strict inclusion holds.

Show, if C ⊂ X, then f−1(f(C)) ⊃ C. Give an example, if possible,
where strict inclusion holds.

Problem 1.3. If f : A → B, then graph(f) is a subset of A × B.
Conversely, show, if S ⊂ A × B has the property that for each a ∈ A
there is a unique b ∈ B such that (a, b) ∈ S, then defining g(a) = b
produces a function g : A→ B such that graph(g) = S.
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Problem 1.4. Let A be a nonempty set. Prove that A is at most
countable if and only if there is a one-one mapping g : A→ N.

Problem 1.5. Prove that an at most countable union of at most count-
able sets is at most countable; i.e., if S is a set, α : N → P (S) is a
function such that each Aj = α(j) is at most countable, then

T = ∪∞j=0Aj := ∪j∈NAj
is at most countable.

Suggestion: For each j there is a function gj : N → Aj. Define a
function F : N× N→ T by F (j, k) = gj(k). Proceed.

Problem 1.6. Show that the collection F ⊂ P (N) of finite subsets of
N is an at most countable set.

Problem 1.7. Suppose A is a non-empty set. Show there does not
exist an onto mapping f : A→ P (A); i.e., show A 6∼ P (A).

Problem 1.8. Let A be a given nonempty set. Show, 2A = {f : A→
{0, 1}} is equivalent to P (A).

2. The Real Numbers

We will take the view that we know what the real numbers are and
we will simply review some important properties in this section.

Recall the following notations for the natural numbers, integers, and
rational numbers, respectively.

N ={0, 1, 2, . . . }
Z ={0,±1,±2, . . . }

Q ={m
n

: m ∈ Z, n ∈ N+}.

Let N+ denote the positive integers and R the real numbers.

Example 2.1. The square root of 2 is not rational; i.e., there is no
rational number s > 0 such that s2 = 2. 4

2.1. Field Axioms.

Definition 2.2. A field F is a triple, (F,+, ·), where F is a set and

+, · : F× F→ F
are functions, called addition and multiplication respectively and writ-
ten x+ y = +(x, y) and xy = ·(x, y), satisfying the following (long list)
of axioms

(i) x+ y = y + x for every x, y ∈ F;
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(ii) xy = yx, for every x, y;
(iii) (x+ y) + z = x+ (y + z) for every x, y, z;
(iv) (xy)z = x(yz) for every x, y, z;
(v) there is an element 0 ∈ F such that 0 + w = w for every w ∈ F;

(vi) there is an element 1 ∈ F, distinct from 0, such that 1w = w for
every w ∈ F;

(vii) for each x ∈ F there is an element u ∈ F such that x+ u = 0;
(viii) for each x 6= 0, there is a y such that xy = 1; and
(ix) (x+ y)z = xz + yz for every x, y, z.

/

Proposition 2.3. [Cancellation] Given x, y, z ∈ F, if x + y = x + z,
then y = z. †

Proof. There exists u ∈ F such that x+ u = 0. Thus,

y =0 + y

=(u+ x) + y

=u+ (x+ y)

=u+ (x+ z)

=(u+ x) + z

=0 + z = z.

�

Remark 2.4. It follows that 0 and additive inverses are unique. Hence
it makes sense to write u = −x in case x+u = 0 so that x+(−x) = 0. �

Proposition 2.5. Given x ∈ F, 0x = 0 and −x = (−1)x. †

Proof. Since 0 + 0x = 0x = (0 + 0)x = 0x + 0x, cancellation gives
0 = 0x.

Using 0x = 0, we have x + (−1)x = 1x + (−1)x = (1 + (−1))x =
0x = 0. �

Remark 2.6. From here on we will use freely, without proof or further
comment, the many routine properties of fields which follow from the
axioms. �

Example 2.7. The sets Q,R,C are all fields with their usual opera-
tions of addition and multiplication. 4

Example 2.8. Let Z3 = ({0, 1, 2},+, ·) where

x+ y = x+ y modulo 3

xy = xy modulo 3
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Here the + on the left hand side is addition in Z3, whereas + on the
right hand side is addition in N.

The residue modulo 3 is the remainder after dividing by 3.
Z3 is a field with neutral elements 0, 1. 4

Definition 2.9. Given fields F and G, a mapping f : F→ G is a field
isomorphism provided

(i) f is one-one;
(ii) f is onto;

(iii) f(x+ y) = f(x) + f(y) for all x, y ∈ F; and
(iv) f(xy) = f(x)f(y) for all x, y ∈ F.

/

Remark 2.10. It follows that f(0F) = 0G etc. �

Do Problem 2.2.

2.2. Ordered Fields.

Definition 2.11. An ordered set (S,<) consists of a (nonempty) set
S and a relation < on S which satisfies

(i) (trichotomy) for each x, y ∈ S, exactly one of the following hold,

x < y, y < x, x = y;

(ii) (transitivity) for x, y, z ∈ S, if x < y and y < z, then x < z.

/

Example 2.12. The usual order on R (and thus on any subset of R)
is an example of an ordered set.

The dictionary order on R2 produces an ordered set. 4

Definition 2.13. An ordered field F = (F,+, ·, <) consists of a field
(F,+, ·) which is also an ordered set (F, <) such that,

(i) if x, y, z ∈ F and x < y, then x+ z < y + z;
(ii) if x, y ∈ F and x, y > 0, then xy > 0.

If x > 0 we call x positive. /

Example 2.14. R and Q with the usual ordering are ordered fields.
4

Proposition 2.15. Suppose F is an ordered field and x ∈ F.
(i) If x < 0, then −x > 0.

(ii) If x 6= 0, then x2 > 0.
(iii) In particular, 1 > 0 in any ordered field.

†
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Proof. If x < 0, then 0 = x− x < 0− x = −x.
To prove (ii), note, by trichotomy either x > 0 or x < 0. If x > 0,

then x2 = xx > 0. On the other hand, if x < 0, then −x > 0 and thus
x2 = (−x)2 > 0.

�

Remark 2.16. We will not state (much less) prove the usual facts
about the order structure in an ordered field, but rather use them
without further comment. �

Example 2.17. Prove that there is no order on Z3 which makes it an
ordered field.

We argue by contradiction. Accordingly suppose < is an order on
Z3 which makes Z3 an ordered field. Since 1 = 12, it follows that 1 > 0
and hence −1 < 0. On the other hand, −1 = 2 = 1 + 1 > 0 + 0 = 0, a
contradiction (of trichotomy). 4

Do Problem 2.1.

2.3. The least upper bound property.

Definition 2.18. Let S be a subset of an ordered field F.

(i) The set S is bounded above if there is a b ∈ F such that b ≥ s for
all s ∈ S.

(ii) Any b ∈ F such that b ≥ s for all s ∈ S is an upper bound for S.

/

Example 2.19. Identify the set of upper bounds for the following
subsets of the ordered field R.

(a) [0, 1);
(b) [0, 1];
(c) Q;
(d) ∅.

4

Lemma 2.20. Let S be a subset of an ordered field F and suppose both
b and b′ are upper bounds for S. If b and b′ both have the property
that if c ∈ F is an upper bound for S, then c ≥ b and c ≥ b′, then
b = b′. †

Definition 2.21. The least upper bound for a subset S of an ordered
field F, if it exists, is a b ∈ F such that

(i) b is an upper bound for S; and
(ii) if c ∈ F is an upper bound for S, then c ≥ b.

/
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Remark 2.22. Lemma 2.20 justifies the use of the (as opposed to an)
in describing the least upper bound.

The condition (ii) can be replaced with either of the following con-
ditions

(ii)′ if c < b, then there exists an s ∈ S such that c < s; or
(ii)′′ for each ε > 0 there is an s ∈ S such that b− ε < s.

The notions of bounded below, lower bound and greatest lower bound
are defined analogously.

Least upper bound is often abbreviated lub. The term supremum,
often abbreviated sup, is synonymous with lub. Likewise glb and inf
for greatest lower bound and infimum. �
Example 2.23. Here is a list of examples.

(i) The least upper bound of S = [0, 1) ⊂ R is 1.
(ii) The least upper bound of V = [0, 1] ⊂ R is also 1.

(iii) The set Q ⊂ R has no upper bound and thus no least upper
bound;

(iv) Every real number is an upper bound for the set ∅ ⊂ R. Thus ∅
has no least upper bound.

(v) With some effort, it can be shown that if the subset S = {x ∈ Q :
0 < x, x2 < 2} of the ordered field R has a least upper bound s,
then s > 0 and s2 = 2; i.e., this least upper bound is the square
root of two.

4
Example 2.24. Consider the subset S = {q ∈ Q : 0 < q, q2 < 2}
of the ordered field Q. Arguing by contradiction, one shows, as in
Example 2.23 Item (v), that if S has a least upper bound s, then s2 = 2
contradicting Example 2.1. Thus, there are subsets S of Q which are
nonempty and bounded above but yet do not have least upper bounds
(in Q). 4
Theorem 2.25. Every nonempty subset of R which is bounded above
has a least upper bound.

Thus there is a positive real number s with s2 = 2.

Definition 2.26. Let F and G be fields. A mapping ϕ : F→ G is an
ordered field isomorphism if ϕ is a field isomorphism and ϕ(x) <G ϕ(y)
whenever x, y ∈ F and x <F y. /

Proposition 2.27. If F is an ordered field with the property that every
nonempty subset S of F which is bounded above has a least upper
bound (in F of course), then then there is an ordered field isomorphism
ϕ : F→ R.
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Hence R is the essentially unique ordered field with the property
that every set which could possibly have a least upper bound in fact
does. †

Do Problems 2.4 and 2.5.
We will not prove Theorem 2.25 and Theorem 2.27.

Theorem 2.28. [Archimedean properties] Suppose x, y ∈ R.
(i) There is a natural number n so that n > x.
(ii) If 1 < x− y, then there is an integer m so that y < m < x.

(iii) If y < x, then there is a q ∈ Q such that y < q < x.

Remark 2.29. The last part of the theorem is sometimes expressed
as saying Q is dense in R. �

Proof. We prove (i) by arguing by contradiction. Accordingly, suppose
no such natural number exists. In that case x is an upper bound for
N. It follows that N has a lub α. If n ∈ N, then n + 1 ∈ N. Hence
n+ 1 ≤ α and thus n ≤ α− 1 for all n ∈ N. Consequently, α− 1 is an
upper bound for N, contradicting the least property of α. Hence N is
not bounded above and there is an n > x, which proves item (i).

To prove (ii), it suffices to assume that x > 0 (why). The set {k ∈
N : k ≥ x} is nonempty and does not contain 0. It has a least element
k > 0. Thus x − 1 ≤ k − 1 < x and since x − y > 1, it follows that
y < k − 1 < x.

Item (iii) is Problem 2.3. As a suggestion, note that, by item (i),
there is a positive integer n so that n(x− y) > 1. Proceed. �

Example 2.30. Suppose 0 < a < 1. Show the set A = {an : n ∈ N}
is bounded below and its infimum is 0.

Since a ≥ 0 each an ≥ 0. Thus A is bounded below by 0. The set A
is not empty. It follows that A has an infimum. Let α = inf(A) and
note α ≥ 0. Since α ≤ an for n = 0, 1, 2, . . . , α ≤ an+1 for n ∈ N and
therefore α

a
≤ an for n ∈ N. Thus, α

a
is a lower bound for A. It follows

that α
a
≤ α. Since a < 1 and α ≥ 0, α = 0. 4

Do Problems 2.6, 2.7, 2.8, 2.9,

2.4. The existence of n-th roots. Here is an outline a proof that
positive real numbers have n-th roots for positive integers n.

Proposition 2.31. If y > 0 and n ∈ N+, then there is a unique positive
real number s such that sn = y. †

Of course, s = y
1
n is the notation for this n-th root.
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The uniqueness is straightforward based upon the fact that if 0 <
a < b, then an < bn. It should not come as a shock that existence
depends upon the existence of least upper bounds, Theorem 2.25.

Let

S = {x ∈ R : 0 < x and xn < y}.

First show S is non-empty and bounded above. Hence S has a least
upper bound, say s.

Show, if 0 < t and y < tn, then t is an upper bound for S.
Show if 0 < t and y < tn, then there is a v such that 0 < v < t

such that y < vn. Hence, v < t and v is an upper bound for S. In
particular, t does not satisfy the least property of least upper bound.
Thus, sn ≤ y.

Finally, show if 0 < t and tn < y, then there exists a v such that
0 < t < v such that vn < y. Hence, t is not an upper bound for S.
Thus sn ≥ y. Hence sn = y.

It now follows that the mapping h : [0,∞) → [0,∞) defined by
h(x) = xn is both one-one and onto. Its inverse, h−1 : [0,∞)→ [0,∞)

is then the function commonly denoted by n
√

or x
1
n so that h−1(x) =

x
1
n .

2.5. Vector spaces. Recall that Rn is the vector space of n-tuples of
real numbers. Thus an element x ∈ Rn has the form,

x =

x1...
xn

 .

Vectors - elements of Rn - are added and multiplied by scalars (elements
of R) entrywise.

The set of polynomials P (in one variable with real coefficients) is a
vector space under the usual operations of addition and scalar multi-
plication.

Definition 2.32. A norm on a vector space V over R is a function
‖ · ‖ : V → R satisfying

(i) ‖x‖ ≥ 0 for all x ∈ V ;
(ii) ‖x‖ = 0 if and only if x = 0;

(iii) ‖cx‖ = |c| ‖x‖ for all c ∈ R and x ∈ V ; and
(iv) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ V .

The last condition is known as the triangle inequality. /



D
RA
FT

17

Example 2.33. The functions ‖·‖1 and ‖·‖∞ mapping Rn to R defined
by

‖x‖1 =
n∑
j=1

|xj|

and
‖x‖∞ = max{|xj| : 1 ≤ j ≤ n}

respectively are norms on Rn. 4

Definition 2.34. Let V be a vector space over R. A function < ·, · >:
V × V → R is an inner product (or scalar product ) on V if,

(i) 〈x, x〉 ≥ 0 for all x ∈ V ;
(ii) 〈x, x〉 = 0 if and only if x = 0;

(iii) 〈x, y〉 = 〈y, x〉 for all x, y ∈ V ;
(iv) 〈cx+ y, z〉 = c〈x, z〉+ 〈y, z〉.

/

Example 2.35. On Rn, the pairing,

〈x, y〉 =
n∑
j=1

xjyj

is an inner product. In the case of n = 2, 3 it is often called the dot
product.

On P , the space of polynomials, the pairing

〈p, q〉 =

∫ 1

0

pq dt

is an inner product.
4

Proposition 2.36. [Cauchy-Schwartz inequality] Suppose 〈·, ·〉 is an
inner product on a vector space V . If x, y ∈ V , then

|〈x, y〉|2 ≤ 〈x, x〉 〈y, y〉.
†

Proof. Given x, y ∈ V and t ∈ R,
0 ≤〈x+ ty, x+ ty〉

=〈x, x〉+ 2t〈x, y〉+ t2〈y, y〉.
Thus, the discriminate satisfies

|〈x, y〉|2 − 〈x, x〉 〈y, y〉 ≤ 0.

�
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Proposition 2.37. If 〈·, ·〉 is an inner product on a vector space V ,

then the function ‖ · ‖ : V → R defined by ‖x‖ =
√
〈x, x〉 is a norm on

V . †

Remark 2.38. In the case that V has an inner product, the norm ‖ · ‖
of Proposition 2.37 is, unless otherwise noted, understood to be the
norm on V and ‖x‖ the norm of a vector x ∈ V .

With this notation, the Cauchy-Schwartz inequality says

|〈x, y〉| ≤ ‖x‖ ‖y‖.
�

Proof. Verification that ‖ · ‖ satisfies the first three axioms of a norm
are straightforward and left to the gentle reader.

To prove the triangle inequality, estimate, using the Cauchy-Schwartz
inequality,

‖x+ y‖2 =‖x‖2 + 2〈x, y〉+ ‖y‖2

≤‖x‖2 + 2‖x‖ ‖y‖+ ‖y‖2

=(‖x‖+ ‖y‖)2.
�

Example 2.39. On Rn the norm arising from the inner product of
Example 2.35 is the usual Euclidean norm,

‖x‖2 =
n∑
j=1

x2j .

Unless otherwise indicated, we take these as the inner product and
norm on Rn and refer to Rn as Euclidean space. 4

2.6. Exercises.

Exercise 2.1. Suppose f : F 7→ G is a field isomorphism.

(i) Is f−1 : G→ F a field isomorphism?
(ii) Show that f(0F) = 0G.

(iii) What is f(1F)?

Exercise 2.2. Show that the functions in Example 2.33 are both norms
on Rn.

Exercise 2.3. Verify the claims made in Example 2.35.

Exercise 2.4. Given a positive real number y and positive integers m
and n, show

(y
1
n )m = (ym)

1
n .
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Likewise verify

(ym)n = (yn)m and (y
1
m )

1
n = (y

1
n )

1
m .

Thus, y
m
n is unambiguously defined.

Exercise 2.5. Show there is no order on Z2 which makes Z2 an ordered
field.

Exercise 2.6. Let Q(
√

2) = {a+b
√

2 : a, b ∈ Q}. Show that Q(
√

2) is
closed under both addition and multiplication (the operations inherited
from R). It can be shown that Q(

√
2) is a field. For a nonzero a+ b

√
2

in this field, identify its multiplicative inverse.

2.7. Problems.

Problem 2.1. Show there is no order on C which makes C an ordered
field.

Problem 2.2. Show, if G is field with (exactly) three elements, then
there is a field isomorphism f : Z3 → G.

Problem 2.3. Prove item (iii) of Theorem 2.28.

Problem 2.4. Let A be a nonempty set of real numbers which is
bounded both above and below. Prove, sup(A) ≥ inf(A).

Problem 2.5. Let A be a nonempty set of real numbers which is
bounded above. Let −A = {−a : a ∈ A} = {x ∈ R : −x ∈ A}. Show
−A is bounded below and − inf(−A) = sup(A).

Problem 2.6. Prove, if A ⊂ B are subsets of R and A is nonempty
and B is bounded above, then A and B have least upper bounds and

sup(A) ≤ sup(B).

Problem 2.7. Suppose A ⊂ R is nonempty and bounded above and
β ∈ R. Let

A+ β = {a+ β : a ∈ A}
Prove that A+ β has a supremum and

sup(A+ β) = sup(A) + β.

Problem 2.8. Suppose A ⊂ [0,∞) ⊂ R is nonempty and bounded
above and β > 0. Let

βA = {aβ : a ∈ A}.
Prove βA is nonempty and bounded above and thus has a supremum
and

sup(βA) = β sup(A).



D
RA
FT

20

Problem 2.9. Suppose A,B ⊂ [0,∞) are nonempty and bounded
above. Let

AB = {ab : a ∈ A, b ∈ B}.
Prove that AB is nonempty and bounded above and

sup(AB) = sup(A) sup(B).

Here is an outline of a proof. The hypotheses on A and B imply that
α = sup(A) and β = sup(B) both exist. Argue that AB is nonempty
and bounded above by αβ and thus

sup(AB) ≤ αβ.

Fix a ∈ A. From an earlier exercise,

sup(aB) = a sup(B) = aβ.

On the other hand, aB ⊂ AB and thus,

aβ ≤ sup(AB)

for each a ∈ A. It follows that βA is bounded above by sup(AB) and
thus,

αβ = sup(βA) ≤ sup(AB).

Problem 2.10. Suppose A,B ⊂ R are nonempty and bounded above.
Let

A+B = {a+ b : a ∈ A, b ∈ B}.
Show A+B has a supremum and moreover,

sup(A+B) = sup(A) + sup(B).

Problem 2.11. Show, if V is a vector space with an inner product,
then the norm

(1) ‖v‖ =
√
〈v, v〉

satisfies the parallelogram law ,

‖v + w‖2 + ‖v − w‖2 = 2(‖v‖2 + ‖w‖2).

Explain why this is called the parallelogram law.
Recall the norm ‖ · ‖1 on Rn defined in Example 2.33. Does this

norm come from an inner product?

Problem 2.12. Suppose f : [a, b] → [α, β] and ϕ : [α, β] → R. Let
h = ϕ ◦ f . Show, if there is a C > 0 such that

|ϕ(s)− ϕ(t)| ≤ C|s− t|
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for all s, t ∈ [α, β], then

sup{h(x) : a ≤ x ≤ b}− inf{h(x) : a ≤ x ≤ b}
≤C [sup{f(x) : a ≤ x ≤ b} − inf{f(x) : a ≤ x ≤ b}] .

3. Metric Spaces

3.1. Definitions and Examples.

Definition 3.1. A metric space (X, d) consists of a set X and function
d : X ×X → R such that, for x, y, z ∈ X,

(i) d(x, y) ≥ 0;
(ii) d(x, y) = 0 if and only if x = y;
(iii) d(x, y) = d(y, x); and
(iv) d(x, z) ≤ d(x, y) + d(y, z).

We usually call the metric space X and d the metric, or distance
function. Item (iv) is the triangle inequality. Items (i) and (ii) together
are sometimes expressed by saying d is positive definite. Evidently (iii)
is a symmetry axiom. /

Example 3.2. Here are some examples of metric spaces.

(a) Unless otherwise noted, R is the metric space with distance function
d(x, y) = |x− y|.

(b) Let X be any nonempty set and define d(x, y) = 0 if x = y and
d(x, y) = 1 if x 6= y. This is the discrete metric.

(c) On the vector space Rn define,

d1(x, y) =
∑
|xj − yj|.

This is the `1 metric.
(d) On Rn, define d∞ by

d∞(x, y) = max{|xj − yj| : 1 ≤ j ≤ n}.
This metric is the `∞ metric (or worst case metric). In particular
(Rn, d1) and (Rn, d∞) are different metric spaces.

(e) Define, on the space of polynomials P ,

d1(p, q) =

∫ 1

0

|p− q|dt.

(f) If (X, d) is a metric space and Y ⊂ X, then (Y, d|Y×Y ) is a metric
space and is called a subspace of X.

4

Do Problem 3.1.



D
RA
FT

22

Proposition 3.3. If ‖ · ‖ is a norm on a vector space V , then the
function

d(x, y) = ‖x− y‖,
is a metric on V . †

Remark 3.4. In the case of Rn with its Euclidean norm, the resulting
metric is the Euclidean distance which will sometimes be written as d2.
Note that (Rn, d2) is, as a metric space, distinct from both (Rn, d1) and
(Rn, d∞).

When we speak of the metric space Rn we mean with the Euclidean
distance, unless we have indicated otherwise. �

Proof. With the exception of the triangle inequality, it is evident that
d satisfies the axioms of a metric.

To prove that d satisfies the triangle inequality, let x, y, z ∈ V be
given and estimate, using the triangle inequality for the norm,

d(x, z) =‖x− z‖
=‖(x− y) + (y − z)‖
≤‖x− y‖+ ‖y − z‖
=d(x, y) + d(y, z).

�

Proposition 3.5. Let (X, d) be a metric space.
If p, q, r ∈ X, then

|d(p, r)− d(q, r)| ≤ d(p, q).

If p1, . . . , pn ∈ X, then

d(p1, pn) ≤
n−1∑
j=1

d(pj, pj+1).

†

3.2. Open Sets.

Definition 3.6. Let (X, d) be a metric space. A subset U ⊂ X is open
if for each x ∈ U there is an ε > 0 such that

Nε(x) := {p ∈ X : d(p, x) < ε} ⊂ U.

The set Nε(x) is the ε-neighborhood of x. More or less synonymously,
an open ball is a set of the form Nr(y) for some y ∈ X and r > 0. /
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Proposition 3.7. Neighborhoods are open sets; i.e., if (X, d) is a met-
ric space, y ∈ X and r > 0, then the set

Nr(y) = {p ∈ X : d(p, y) < r}
is an open set. †

Proof. We must show, for each x ∈ Nr(y) there is an ε (depending on x)
such that Nε(x) ⊂ Nr(y). Accordingly, let x ∈ Nr(y) be given. Thus,
d(x, y) < r. Choose ε = r − d(x, y) > 0. Suppose now that p ∈ Nε(x)
so that d(x, p) < ε. Estimate, using the triangle inequality,

d(y, p) ≤ d(y, x) + d(x, p) < d(y, x) + ε = d(y, x) + (r − d(y, x)) = r.

Thus, p ∈ Nr(y). We have shown Nε(x) ⊂ Nr(y) and the proof is
complete. �

Do Problem 3.2.

Example 3.8. In R2 with the Euclidean distance, show E = {(x1, x2) :
xj > 0} is an open set. 4

Example 3.9. The set [0, 1) ⊂ R is not an open, since, for every ε > 0,
the set Nε(0) = (−ε, ε) contains negative numbers and is thus not a
subset of [0, 1). 4

Proposition 3.10. Let U ⊂ Rn be given. The following are equivalent,

(i) U is open in (Rn, d1);
(ii) U is open in (Rn, d2);
(iii) U is open in (Rn, d∞).

†

Sketch of proof. Let N j
ε (x) denote the ε > 0 neighborhood of x in the

j = 1, 2,∞ norms respectively.
Suppose U is open in (Rn, d1) and let x ∈ U be given. There is an

ε > 0 such that N1
ε (x) ⊂ U .

By the C-S inequality,

d1(x, y) =
n∑
1

|xj − yj| 1

≤
√∑

|xj − yj|2

√√√√ n∑
1

1

=d2(x, y)
√
n.

It follows that N2
ε√
n
(x) ⊂ N1

ε (x) ⊂ U and thus U is open in (Rn, d2).

We have proved, if U is open in d1, then it is open in d2.
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The proof that if U is open in d2, then U is open in d∞ is based on
the inequality,

d2(x, y) ≤
√
n d∞(x, y);

and the proof that if U is open in d∞, then U is open in d1 is based on
the inequality

d∞(x, y) ≤ d1(x, y).

The details are left as an exercise. �

Example 3.11. Returning to the example of the set E = {(x, y) :
x, y > 0} ⊂ R2} above, it is convenient to use the d∞ metric to prove
E is open; i.e., show that E is open in (R2, d∞) and conclude that E
is open in R2. 4

Proposition 3.12. Let (X, d) be a metric space.

(i) ∅, X ⊂ X are open;
(ii) if F ⊂ P (X) is a collection of open sets, then

∪U∈FU

is open; and
(iii) if n ∈ N+ and U1, . . . , Un ⊂ X are open, then

∩nj=1Uj

is open.

†

Example 3.13. Let Uj = (− 1
j+1

, 1) ⊂ R for j ∈ N. The sets Uj are

open in R (they are open balls). However, the set

[0, 1) = ∩∞j=0Uj

is not open. Thus it is not possible to improve on the last item in the
proposition. 4

Example 3.14. The set (−∞, 0) = ∪∞n=0(−2n, 0) = ∪∞n=0Nn(−n) and
is therefore open. We could of course easily checked this directly from
the definition of open set. 4

Example 3.15. The set

R2 ⊃ E = {(x1, x2) : xj > 0} = {x : x1 > 0} ∩ {x2 > 0}.

This provides yet another way to prove E is open. Namely, show that
each of the sets on the right hand side above is open. 4

Do Problem 3.3.
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3.2.1. Relatively open sets.

Definition 3.16. Suppose (Z, d) is a metric space and X ⊂ Z so that
(X, d|X×X) is also a metric space. A subset U ⊂ X is open relative to
X or is relatively open, if U is open in the metric space X. /

Example 3.17. Let X = [0,∞) ⊂ Z = R. The set [0, 1) is open in X,
but not in Z. 4

Proposition 3.18. Suppose Z is a metric space and U ⊂ X ⊂ Z. The
set U is open in X if and only if there is an open set W in Z such that
U = W ∩X. †

Proof. First, suppose W ⊂ Z is open (in Z) and U = W ∩ X ⊂ X.
Given x ∈ U , there is a δ > 0 such that {y ∈ Z : d(x, y) < δ} ⊂ W
since x ∈ W and W is open in Z. It follows that {y ∈ X : d(x, y) <
δ} ⊂ W ∩X = U and thus U is open in X.

Now suppose U ⊂ X is open relative to X. For each x ∈ U there
is an εx > 0 such that Vx = {y ∈ X : d(x, y) < εx} ⊂ U . Let
Wx = {y ∈ Z : d(x, y) < εx}, note that Vx = Wx ∩X, and let

W = ∪x∈UWx.

Then W is open in Z and

U ⊂ W ∩X = ∪x∈UWx ∩X = ∪x∈XVx ⊂ U.

�

3.3. Closed Sets.

Definition 3.19. Let (X, d) be a metric space. A subset C ⊂ X is
closed if X \ C is open. /

Example 3.20. (a) In R the set [0,∞) is closed, since its complement,
(−∞, 0) is open.

(b) The set [0, 1) ⊂ R is neither open nor closed.
(c) The set Q ⊂ R is neither open nor closed.
(d) The set F = {(x1, x2) ∈ R2 : x1x2 = 0} is closed.
(e) The sets X and ∅ are both open and closed. They are clopen.
(f) Every subset of a discrete metric space is clopen. (See Problem

3.3.)
4

Proposition 3.21. Let (X, d) be a metric space and let x ∈ X and
r ≥ 0 be given. The set

{p ∈ X : d(p, x) ≤ r}
is a closed. †
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Proof. The complement of {p ∈ X : d(p, x) ≤ r} is the set

U = {p : d(p, x) > r}
and it suffices to prove that U is open. Let y ∈ U be given. Then
d(y, x) > r. Let ε = d(y, x) − r > 0. If z ∈ Nε(y) so that d(z, y) < ε,
then,

d(x, z) ≥d(x, y)− d(y, z)

>d(x, y)− ε
=r.

It follows that Nε(y) ⊂ U and thus, since y ∈ U was arbitrary, U is
open. �

Corollary 3.22. In a metric space, singleton sets are closed; i.e., if
(X, d) is a metric space and x ∈ X, then {x} is closed. †

Proposition 3.23. Let X be a metric space.

(i) X and ∅ are closed;
(ii) if C1, . . . , Cn are closed subsets of X, then ∪n1Cj is closed; and

(iii) if Cα, α ∈ J is a family of closed subsets of X, then

C = ∩α∈JCα
is closed.

†

Corollary 3.24. A finite set F in a metric space X is closed. †

Proposition 3.25. If C ⊂ R is bounded above, nonempty, and closed,
then C has a largest element. †

Proof. The hypotheses imply α = sup(C) exist. Certainly, α ≥ x for
all x ∈ C. Thus to prove the proposition it suffices to prove α ∈ C.
We argue by contradiction and accordingly assume α ∈ C̃. Since C is
closed, C̃ is open and therefore there is an ε > 0 such that Nε(α) ⊂ C̃
or equivalently C ⊂ Ñε(α). Thus, if c ∈ C, then c ≤ α − ε (since also
c ≤ α). It follows that α − ε is an upper bound for C, contradicting
the least property of α. Thus α ∈ C. �

Example 3.26. Let R = Q∩ [0, 1] denote the rational numbers in the
interval [0, 1]. Since Q is countable, so is R. Choose an enumeration
R = {r1, r2, . . . } of R. Fix 1 > ε > 0 and let

Vj = N ε

2j+1
(rj)

and V = ∪Vj. Thus V is an open set which contains R.
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The set C = [0, 1] \ V is closed because it is the intersection of the
closed sets [0, 1] and Ṽ . On the other hand, its complement contains
every rational in the interval [0, 1], but is also the union of intervals
the sum1 of whose lengths is at most

∞∑
j=1

ε

2j
= ε < 1.

Thus C is a closed subset of [0, 1] which contains no rational number,
but is large in the sense that its complement can be covered by open
intervals whose lengths sum to at most ε.

A heuristic is that open sets are nice and closed sets can be strange,
while most sets are neither open nor closed. 4

Do Problem 3.4.

3.4. The interior, closure, and boundary of a set.

Definition 3.27. Let (X, d) be a metric space and S ⊂ X. The closure
of S is

S := ∩{C ⊂ X : C ⊃ S, C is closed}.
/

Proposition 3.28. Let S be a subset of a metric space X.

(i) S ⊂ S;
(ii) S is closed;

(iii) if K is any other set satisfying (i) and (ii), then S ⊂ K.

Moreover, S is closed if and only if S = S. †

Definition 3.29. Let (X, d) be a metric space and S ⊂ X. The
interior of S is the set

S◦ := ∪{U ⊂ X : U ⊂ S is open}.
/

Proposition 3.30. Let S be a subset of a metric space X.

(i) S◦ ⊂ S;
(ii) S◦ is open;

(iii) if V ⊂ S is an open set, then V ⊂ S◦.

Moreover, S is open if and only if S = S◦. †

Definition 3.31. A point x ∈ X is an interior point of S if there is
an ε > 0 such that Nε(x) ⊂ S. /

1Series are introduced in Problem 4.17 in the next section and will be treated in
detail later, but this particular sum should be familiar from Calculus II.
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Do Problems 3.5 and 3.6.

Definition 3.32. The boundary of a set S in a metric space X is

∂S = S ∩ S̃. /

Do Problem 3.7

3.5. Exercises.

Exercise 3.1. Show, if a, b, c ≥ 0 and a+ b ≥ c, then

a

1 + a
+

b

1 + b
≥ c

1 + c
.

Show if (X, d) is a metric space, then

d∗(x, y) =
d(x, y)

1 + d(x, y)

is a metric on X too.

Exercise 3.2. Show that the subset S = {(x, y) ∈ R2 : x 6= y} is open.

Exercise 3.3. Verify that the discrete metric is indeed a distance func-
tion.

Exercise 3.4. Let X be a nonempty set and d the discrete metric.
Fix a point z ∈ X. Is the closure of the set N1(z) equal to {x ∈ X :
d(x, z) ≤ 1}?

Exercise 3.5. Show that the set

{(x1, x2) : x1, x2 ≥ 0} ⊂ R2

is closed.
Show that the set

{(x1, x2) ∈ R2 : x1x2 = 1}
is closed.

Exercise 3.6. By Proposition 3.3,

d(f, g) = (

∫ 1

0

|f − g|2dt)
1
2

defines a metric on the space of polynomials P . For n ∈ N, let

pn(t) =
√

2n+ 1 tn.

Find d(pn, pm).

Exercise 3.7. Determine the boundary of an interval (a, b] in R.
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3.6. Problems.

Problem 3.1. Suppose (X, dX) and (Y, dY ) are metric spaces. Define
d : (X × Y )× (X × Y )→ R by

d((x, y), (a, b)) = dX(x, a) + dY (y, b).

Prove d is a metric on X × Y .

Problem 3.2. Describe the neighborhoods in a discrete metric space
(X, d).

Problem 3.3. Determine, with proof, the open subsets of the discrete
metric space (X, d).

Problem 3.4. Given a metric space Z and F ⊂ X ⊂ Z define F is
relatively closed in X. Show, F is relatively closed in X if and only if
there is a closed set C ⊂ Z such that F = C ∩X.

Prove that the closure of C ⊂ X, as a subset of X, is X ∩ C, where
C is the closure of C in Z. Conclude, if C is relatively closed, then
C = C ∩X.

Finally, show, if

(i) A,B ⊂ Z;
(ii) Z = A ∪B; and

(iii) A ∩B = ∅,

then B = Ã ∩ Z and hence is open relative to Z.

Problem 3.5. Show,

I(S) = {s ∈ S : s is an interior point of S} = S◦.

Here is an outline of a solution: First show

I(S) = {s ∈ S : s is an interior point of S}

is an open set (mostly easily done by writing it as a union of neighbor-
hoods), from which it will then follow that I(S) ⊂ S◦. The inclusion
S◦ ⊂ I(S) is straightforward.

Problem 3.6. Prove,

S = (̃S̃)◦;

i.e., S consists of those points x ∈ X such that for every ε > 0, Nε(x)∩
S 6= ∅.

Suggestion: Use the properties of closure and interior. For instance,

note that S̃ is open and contained in S̃.
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Problem 3.7. Prove that x ∈ ∂S if and only if for every ε > 0 there
exists s ∈ S, t ∈ S̃ such that d(x, s), d(x, t) < ε.

Prove S is closed if and only if S contains its boundary; and S is
open if and only if S is disjoint from its boundary.

Problem 3.8. Show, in R2, if x ∈ R2 and r > 0, then the closure of

Nr(x) = {y ∈ R2 : d(x, y) = ‖x− y‖ < r}
is the set

{y ∈ R2 : d(x, y) = ‖x− y‖ ≤ r}.
Is the corresponding statement true in all metric spaces?

Problem 3.9. Let S be a non-empty subset of a metric space X.
Show, x is in S if and only if

inf{d(x, s) : s ∈ S} = 0.

Problem 3.10. Prove Proposition 3.30.

Problem 3.11. Show that the closure of Q in R is all of R. (Sug-
gestion: Use Problem 3.6 and Theorem 2.28 item iii). Compare with
Remark 2.29.

Problem 3.12. Show that the closure of Q̃ (the irrationals) in R is
all of R. Combine this problem and Problem 3.11 to determine the
boundary of Q (in R).

Problem 3.13. Suppose (X, d) is a metric space and x ∈ X and r > 0
are given. Show that the closure of Nr(x) is a subset of the set

{y ∈ X : d(x, y) ≤ r}.
Give an example of a metric space X, an x ∈ X, and an r > 0 such
that the closure of Nr(x) is not the set

{y ∈ X : d(x, y) ≤ r}.
Compare with Problem 3.8.

Problem 3.14. Let (X, d) and d∗ be as in Exercise 3.1. Do the metric
spaces (X, d) and (X, d∗) have the same open sets?

Problem 3.15. Suppose d and d′ are metrics on the set X and there
is a constant C such that, for all x, y ∈ X,

d(x, y) ≤ Cd′(x, y).

Prove, if U is open in (X, d), then U is open in (X, d′).
Thus, if there is also a constant C ′ such that

d′(x, y) ≤ C ′d(x, y),

then the metric spaces (X, d) and (X, d′) have the same open sets.
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4. Sequences

4.1. Definitions and examples.

Definition 4.1. A sequence is a function a with domain N. It is
customary to write an = a(n) and (an)n or (an)∞n=0 for this function.

If the an lie in the set X, then (an) is a sequence from X.
If (X, d) is a metric space and L ∈ X. The sequence (an) (from X)

converges to L if for every ε > 0 there is an N ∈ N such that for all
n ≥ N , d(an, L) < ε,

lim
n→∞

an = L

and L is said to be the limit of the sequence.
The sequence (an) converges if there exists an L ∈ X such that

(an) converges to L. A sequence which does not converge is said to
diverge. /

It is often convenient to relax the definition of sequence, allowing the
domain to be a set of the form {n ∈ Z : n ≥ n0} for some integer n0.
In this case, we may write (an)∞n=n0

.

Remark 4.2. From the (positive definite) axioms (items (i) and (ii)
of Definition 3.1) of a metric, if x, y are points in a metric space (X, d)
and if d(x, y) < ε for every ε > 0, then x = y. �

The following proposition list some of the most basic properties of
limits. The first justifies the terminology the limit (as opposed to a
limit) above.

Proposition 4.3. Let (an)∞n=k and (bn)∞n=m be sequences from the met-
ric space X.

(i) If (an) converges, then its limit is unique;
(ii) if there is an N and an ` such that for n ≥ N , bn = an+`, then

(an) converges if and only if (bn) converges and moreover in this
case the sequences have the same limit; and

(iii) if (an)n is a sequence from R (X = R), c ∈ R, and (an) converges
to L, then (can) converges to cL.

†
The items (ii) and (iii) together say that we need not be concerned

with keeping close track of k.

Example 4.4. The sequence ( 1
n+1

)n converges to 0 in R; however it
does not converge in the metric space ((0, 1], |·|), as can be proved using
the previous proposition and the fact that the sequence converges to 0
in R.

The sequence ( n
n+1

)n converges to 1 (in R). 4
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Example 4.5. If 0 ≤ a < 1, then the sequence (an) converges to 0.
To prove this last statement, recall that we have already shown that

inf({an : n ∈ N}) = 0. Thus, given ε > 0 there is an N such that
0 ≤ aN < ε. It follows that, for all n ≥ N , |an − 0| ≤ aN < ε. 4

Do Problems 4.1, 4.2, 4.3 and Exercise 4.2.
We will make repeated use of the following simple identity, valid for

all real r and positive integers m,

(2) 1− rm = (1− r)(1 + r + r2 + . . . rm−1)

Proposition 4.6. In (the metric space) R,

(a) if ρ > 0, then the sequence (ρ
1
n ) converges to 1; and

(b) the sequence (n
1
n ) converges to 1.

†
Proof. To prove (a), first suppose ρ > 1. Using Equation (2) with

m = n and r = ρ
1
n gives

ρ
1
n − 1 =

ρ− 1∑n−1
j=0 ρ

j
n

.

Thus

|ρ
1
n − 1| < ρ− 1

n
.

Now, given ε > 0 there is, by Theorem 2.28(i) there is an N such that
if n ≥ N , then

1

n
<

ε

ρ− 1
.

Thus, for n ≥ N ,

|ρ
1
n − 1| < ρ− 1

n
< ε.

Hence (ρ
1
n ) converges to 1.

If 0 < ρ < 1, then σ = 1
ρ
> 1 and (σ

1
n ) converges to 1. On the other

hand,

|1− ρ
1
n | = ρ

1
n |σ

1
n − 1| ≤ |σ

1
n − 1|,

from which the result follows.
To prove (b) note that the Binomial Theorem gives, for x > 0,

(1 + x)n =
n∑
j=0

(
n
j

)
xj ≥ n(n− 1)

2
x2.

Thus, with x = n
1
n − 1,

n ≥ n(n− 1)

2
x2.
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Hence, for n ≥ 2, √
2

n− 1
≥ n

1
n − 1 ≥ 0,

from which it follows that (n
1
n ) converges to 1. Indeed, given ε > 0

choose N ∈ N+ such that N ≥ 2
ε2

+1 and observe if n ≥ N , then N ≥ 2
and

ε >

√
2

N − 1
≥
√

2

n
≥ |n

1
n − 1|.

�

Remark 4.7. The limit of a sequence depends only upon the notion
of open sets. See Problem 4.4. �

4.2. Sequences and closed sets.

Proposition 4.8. A subset S of a metric space X is closed if and only
if every sequence (an) from S which converges in X actually converges
in S. †

Proof. Suppose S is closed and (an) is a sequence from S which con-
verges to L ∈ X. Since S̃ is open, if y /∈ S, then there is an ε > 0 such
that Nε(y) ∩ S = ∅. In particular, d(an, y) ≥ ε for all n and (an) does
not converge to y. Hence L ∈ S.

Now suppose that S is not closed, equivalently S̃ is not open. In this
case, there exists an L ∈ S̃ such that for every n ∈ N there is an sn
such that

sn ∈ S ∩N 1
n+1

(L).

It is straightforward to verify that (sn) is a sequence from S which
converges to L /∈ S. �

Do Problems 4.5, 4.6 and 4.7.

4.3. The monotone convergence theorem for real numbers. For
numerical sequences, that is sequences from R, limits are compatible
with the order structure on R.

Proposition 4.9. Suppose (an) and (bn) are sequences from R and
c ∈ R. If an ≤ bn + c for all n and if both sequences converge, then

lim
n
an ≤ lim

n
bn + c.

Further, if (an), (bn), and (cn) are all sequences from R, if there is
an N so that for n ≥ N ,

an ≤ bn ≤ cn
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and if (an) and (bn) converge to the same limit L, then (bn) also con-
verges to L. †

The second part of the Proposition is a version of the squeeze theorem
and in Problem 4.8 you are asked to provide a proof.

Proof. Let A and B denote the limits of (an) and (bn) respectively. Let
ε > 0 be given. There is an N so that for n ≥ N both |an−A| < ε and
|bn−B| < ε. Hence, A−B− c = (A− an) + (an− bn− c) + (bn−B) <
2ε. �

Definition 4.10. A sequence (an) from R is increasing (synonymously
non-decreasing) if an ≤ an+1 for all n. The sequence is strictly increas-
ing if an < an+1 for all n.

A sequence is eventually increasing if there is an N so that the se-
quence (an)∞n=N is increasing.

The notion of a decreasing sequence is defined analogously. A mono-
tone sequence is a sequence which is either increasing or decreasing. /

Theorem 4.11. If (an) is an increasing sequence from R which is
bounded above, then (an) converges.

Remark 4.12. Generally, results stated for increasing sequences hold
for eventually increasing sequences in view of Proposition 4.3(ii). �
Proof. The set R = {an : n ∈ N} (the range of the sequence) is
nonempty and bounded above and therefore has a least upper bound.
Let A = sup(R). Given ε > 0 there is an r ∈ R such that A − ε < r.
There is an N so that r = aN . If n ≥ N , then, since the sequence is
increasing, 0 ≤ A− an ≤ A− aN < ε. Hence (an) converges to A. �

Proposition 4.13. In the metric space R, if 0 ≤ r < 1, then both (rn)
and (nrn) converge to 0. †

The proof uses the easily proved special case of Proposition 4.20(i)
that if (an) and (bn) are sequences of real numbers which converge to
A and B respectively, then (an + bn) converges to A+B.

Proof. That (rn) converges to 0 is Example 4.5.
To prove that (nrn) converges to 0, note that, by Example 4.4, for

n sufficiently large
n

n+ 1
> r.

It follows that there is an N such that for n ≥ N the sequence (nrn) is
decreasing. Since it also bounded below by 0 it converges to some L.
Hence, using (rn) converges to 0,

rL = rL+ 0 = r limnrn + lim rn+1 = lim(n+ 1)rn+1 = L.
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Since r 6= 1, it follows that L = 0. �

Do Problems 4.9 and 4.10.

4.3.1. The real numbers as infinite decimals. Here is an informal dis-
cussion of infinite decimal (base ten) expansions. An infinite decimal
expansion (base 10) is an expression of the form

a = a0.a1a2a3 · · · ,
where a0 ∈ Z and aj ∈ {0, 1, 2, . . . , 9}. Let

sn = a0 +
n∑
j=1

aj
10j

and note that the sequence (sn) is increasing and bounded above by
a0 + 1. Thus the sequence (sn) converges to some real number s and
we identify a with this real number.

Conversely, given a real number s there is a smallest integer m > s.
Let a0 = m− 1. Recursively choose aj so that, with sn = a0.a1 · · · an,
we have 0 ≤ s− sn ≤ 1

10n
. In this case (sn) converges to s and we can

identify s with an infinite decimal expansion.
Note that a real number can have more than one decimal expansion.

For example both 0.999 · · · and 1.000 · · · represent the real number 1.

Remark 4.14. Note too it makes sense to talk of expansions with
other bases, not just base 10. Base two, called binary, is common.
Base three is called ternary. For n ∈ N with n ≥ 2, expansions base n
are called n-ary. �

Remark 4.15. Here is an informal argument that a rational number
has a repeating infinite decimal expansion.

Suppose x is rational, x = m
n

. Note that the Euclidean division
algorithm produces a decimal representation of x. At each stage there
are at most n choices of remainder. Hence, after at most n steps of the
algorithm, we must have a repeat remainder. From there the decimal
repeats. �

4.3.2. An abundance of real numbers.

Proposition 4.16. The set R is uncountable; i.e., there are uncount-
ably many real numbers. †

Proof. It suffices to show if f : N → R, then f is not onto. For
notational ease, let xj = f(j).

Choose b0 > a0 such that x0 /∈ I0 := [a0, b0]. Next choose a1 < b1
such that a0 ≤ a1 < b1 ≤ b0 and x1 /∈ I1 = [a1, b1]. Continuing in this
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fashion, construct, by the principle of recursion, a sequence of intervals
Ij = [aj, bj] such that

(1) I0 ⊃ I1 ⊃ I2 ⊃ · · · ;
(2) bj − aj > 0; and
(3) xj /∈ Ik for j ≤ k.

Observe that the recursive construction of the sequences of endpoints
(aj) and (bj) implies that a0 ≤ a1 ≤ a2 < · · · < b2 ≤ b1 ≤ b0; i.e., (aj)
is increasing and is bounded above by each bm. By Theorem 4.11 (aj)
converges to

y = sup{aj : j ∈ N}.
In particular, am ≤ y ≤ bm for each m. Thus y ∈ Im for all m. On the
other hand, for each k,

xk /∈ Ik
and so y 6= xk. Hence y is not in the set {xk : k ∈ N} which is the
range of f . �

Do Problem 4.11.

4.4. Limit theorems.

Proposition 4.17. Let (a(n))n be a sequence from Rg and write
a(n) = (a1(n), . . . , ag(n)). The sequence converges to L = (L1, . . . , Lg) ∈
Rg if and only if

lim
n
aj(n) = Lj

for each 1 ≤ j ≤ g. †

Definition 4.18. A sequence (an) from a metric space X is bounded if
there exists an x ∈ X and R > 0 such that {an : n ∈ N} ⊂ NR(x). /

Proposition 4.19. Convergent sequences are bounded. †

Proof. Suppose (an) converges to L in the metric space X. Observe,
with ε = 1 there is an N such that if n ≥ N , then d(an, L) < 1.
Choosing

R = max({d(aj, L) : 0 ≤ j < N} ∪ {1}) + 1

gives {an : n ∈ N} ⊂ NR(L). Hence {an : n ∈ N} is bounded. �

Proposition 4.20. Let (an) and (bn) be sequences from Rg and c ∈ R.
If (an) converges to A and (bn) converges to B, then

(i) (an + bn) converges to A+B;
(ii) (can) converges to cA;

(iii) (an · bn) converges to A ·B; and
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(iv) if g = 1 and bn 6= 0 for each n and B 6= 0, then an
bn

converges to
A
B

.

†

Proof. Proofs of the first two items are routine and left to the reader.
To prove the third item, let ε > 0 be given. Since the sequence (bn)

converges, it is bounded by say M . Since (an) and (bn) converge to A
and B respectively, there exists Na and Nb such that if n ≥ Na, then

‖A− an‖ ≤
ε

2(M + 1)

and likewise if n ≥ Nb, then

‖B − bn‖ <
ε

2(‖A‖+ 1)
.

Choose N = max{Na, Nb}. If n ≥ N , then

‖A ·B − an · bn‖ =‖A · (B − bn) + (A− an) · bn‖
≤‖A‖‖B − bn‖+ ‖A− an‖‖bn‖
≤‖A‖‖B − bn‖+ ‖A− an‖M
<ε.

To prove the last statement, it suffices to prove it under the assump-
tion that an = 1 for all n. Since (|bn|) converges to |B| > 0, with

ε = |B|
2

there is an M such that if n ≥M , then |bn| ≥ |B|
2

. For such n

| 1
B
− 1

bn
| = |B − bn|
|B| |bn|

≤ |B − bn|
2

|B|2
.

The remaining details are left to the gentle reader. �

Proposition 4.21. Suppose (an) is a sequence of nonnegative num-
bers, p, q ∈ N+ and r = p

q
. If (an) converges to L, then (arn) converges

to Lr. †

Proof. Item (iii) of Proposition 4.20 with g = 1 and bn = an shows
that (a2n) converges to L2. An induction argument now shows that
(apn) converges to Lp.

To show (a
1
q
n ) converges to L

1
q , first observe that L ≥ 0. Suppose

L > 0. In this case, the identity,

(xq − yq) = (x− y)

q−1∑
j=0

xjyq−1−j
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applied to x = a
1
q
n and y = L

1
q gives,

|an − L| = |a
1
q
n − L

1
q |

q−1∑
j=0

a
j
q
nL

q−1−j
q ≥ |a

1
q
n − L

1
q |L

q−1
q .

From here the remainder of the argument is easy and left to the gentle
reader. �

Have another look at Problem 4.10.

4.5. Subsequences.

Definition 4.22. Given a sequence (an) and an increasing sequence
n1 < n2 < . . . of natural numbers, the sequence (anj)j is a subsequence
of (an).

Alternately, a sequence (bm) is a subsequence of (an) if there is a
strictly increasing function σ : N→ N such that bm = aσ(m). /

Example 4.23. The sequence ( 1
j2

) is a subsequence of ( 1
n
) (choosing

nj = j2 for j ≥ 1).
The constant sequences (−1) and (1) are both subsequences of ((−1)n).

4

Proposition 4.24. Suppose (an) is sequence in a metric space X. If
(an) converges to L ∈ X, then every subsequence of (an) converges to
L. †

This proposition is an immediate consequence of Problem 4.1.
Do Problem 4.12.

Proposition 4.25. Let (xn) be a sequence from a metric space X and
let y ∈ X be given. If for every ε > 0 the set

{n ∈ N : d(y, xn) < ε}

is infinite, then there exists a subsequence (xnk) of (xn) such that (xnk)k
converges to y. †

Proof. With ε = 1 there is an n1 such that d(y, xn1) < 1. Suppose now
that n1 < n2 · · · < nk have been constructed so that d(y, xnj) <

1
j

for

each 1 ≤ j ≤ k. Since the set {n : d(y, an) < 1
k+1
} is infinite, there

exists a nk+1 > nk such that d(y, ank+1
) < 1

k+1
. Thus, by recursion, we

have constructed a subsequence (ank) which converges to y. �
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4.6. The limits superior and inferior.

Proposition 4.26. Given a bounded sequence (an) of real numbers,
let

αn = sup{aj : j ≥ n}.
The sequence (αn) is decreasing and bounded below and hence con-
verges. †

The proof of the Proposition is left as an exercise (see Problem 4.13.)

Definition 4.27. The limit of the sequence (αn) is called the limsup or
limit superior of the sequence (an). The liminf is defined analogously.

/

Observe that inf{aj : j ≥ n} ≤ an ≤ sup{aj : j ≥ n} for each n. Do
Problem 4.14.

Example 4.28. Here are some simple examples.

(i) The lim sup and lim inf of (sin(π
2
n)) are 1 and −1 respectively.

(ii) The lim sup and lim inf of the sequence ((−1)n(1 + 1
n
)) are also 1

and −1 respectively.
(iii) The lim inf of the sequence ((1− (−1)n)n) is 0. It has no lim sup.

Alternately, the lim sup could be interpreted as ∞.

4

Proposition 4.29. A bounded sequence (an) converges if and only if

lim sup an = lim inf an

and in this case (an) converges to this common value. †

Proof sketch. For notational purposes, let αn = sup{aj : j ≥ n} and
let γn = inf{aj : j ≥ n}.

Suppose (an) converges to a. Given ε > 0, there is an N such that if
j ≥ N , then |aj − a| < ε. In particular, for j ≥ N , we have aj ≤ a+ ε
and thus αN ≤ a+ ε. Consequently, if n ≥ N , then

a− ε < an ≤ αn ≤ αN ≤ a+ ε

and therefore |αn − a| ≤ ε. It follows that (αn) converges to a and
therefore

lim sup an = a.

By symmetry,
lim inf an = a.

Now suppose
lim sup an = lim inf an

and let A denote this common value.
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Observe that γn ≤ an ≤ αn for all n. Hence, by the Squeeze Theo-
rem, Problem 4.8, (an) converges to A. �

Do Problem 4.15.

Proposition 4.30. Suppose (an) is a bounded sequence of real num-
bers. Given x ∈ R, let Jx = {n : an > x} and let

S = {x ∈ R : Jx is infinite}.
Then,

lim sup an = sup(S).

†

Proof. For notational ease, let αm = sup{an : n ≥ m} and let α =
lim sup an

Observe that Jx is infinite if and only if for each n ∈ N there is an
m ≥ n such m ∈ Jx; i.e., there is an m ≥ n such that that am > x.

To prove α is an upper bound for S, let x ∈ S be given. Given an
integer n there is an m ≥ n such that am > x Hence αn > x. It follows
that α ≥ x.

To prove that α is the least upper bound of S, suppose x < α. Given
n, it follows that x < αn. Hence, x is not an upper bound for the set
{aj : j ≥ n} which means there is an m ≥ n such that x < am ≤ αn.
This shows Jx is infinite. Thus x ∈ S. It follows that (−∞, α) ⊃ S
and thus if β is an upper bound for S, then β ≥ α. Hence α is the
least upper bound of S. �

Do Problem 4.16.

4.7. Exercises.

Exercise 4.1. Show, arguing directly from the definitions, that the
numerical sequences

an =
2n− 3

n+ 5
, n ≥ 0;

bn =
n+ 3

n2 − n− 1
n ≥ 2

converge.

Exercise 4.2. By negating the definition of convergence of a sequence,
state carefully what it means for the sequence (an) from the metric
space X to not converge.

Show that the sequence (from R) (an = (−1)n) does not converge.
Suggestion, show if L 6= 1, then (an) does not converge to L; and if
L 6= −1, then (an) does not converge to L.
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Exercise 4.3. Consider the sequence (sn) from R defined by

sn =
n∑
j=1

j−2.

Show by induction that

sn ≤ 2− 1

n
.

Prove that the sequence (sn) converges.

Exercise 4.4. Define a sequence from R as follows. Fix r > 1. Let
a1 = 1 and define recursively,

an+1 =
1

r
(an + r + 1).

Show, by induction, that (an) is increasing and bounded above by r+1
r−1 .

Does the sequence converge?

Exercise 4.5. Return to Exercise 4.1, but now verify the limits using
Theorem 4.20 together with a little algebra.

Exercise 4.6. Find the limit in Exercise 4.4.

Exercise 4.7. Let σ : N → Q ∩ [0, 1] be a bijection. What are the
subsequential limits of the sequence (σ(n))?

Exercise 4.8. Suppose (an) is a sequence from a metric space X and
L ∈ X. Show, if there is a sequence (rn) of real numbers which con-
verges to 0, a real number C, and positive integer M such that, for
m ≥M ,

d(am, L) ≤ Crm,

then (an) converges to L.

4.8. Problems.

Problem 4.1. Suppose (an), a sequence in a metric space X, converges
to L ∈ X. Show, if σ : N → N is one-one, then the sequence (bn =
aσ(n))n also converges to L.

Problem 4.2. Suppose (an) is a sequence from R. Show, if (an) con-
verges to L, then the sequence (of Cesaro means) (sn) defined by

sn =
1

n+ 1

n∑
j=0

aj

also converges to L. Is the converse true?
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Problem 4.3. Suppose (an) and (bn) are sequences from a metric space
X. Show, if both sequences converge to L ∈ X, then (cn), defined by
c2n = an and c2n+1 = bn, also converges to L.

Problem 4.4. Suppose d and d′ are both metrics on X and that the
metric spaces (X, d) and (X, d′) have the same open sets. Show, the
sequence (an) from X converges in (X, d) if and only if it converges in
(X, d′) and then to the same limit.

Problem 4.5. Let S be a subset of a metric space X. A point y ∈ X
is a limit point of S if there is a sequence (sn) from S \ {y}, which
converges to y.

Prove that S is closed if and only if S contains all its limit points.
(Often this limit point criteria is taken as the definition of closed set.)

Problem 4.6. Let S ′ denote the set of limit points of a subset S of a
metric space X. (See Problem 4.5.) Prove that S ′ is closed.

Problem 4.7. Show, if C is a subset of R which has a supremum, say
α, then there is a sequence (cn) from C which converges to α. Use this
fact, plus Proposition 4.8, to give another proof of Proposition 3.25.

Problem 4.8. [A squeeze theorem] Suppose (an), (bn), and (cn) are
sequences of real numbers. Show, if an ≤ bn ≤ cn for all n and both
(an) and (cn) converge to L, then (bn) converges to L.

Problem 4.9. Suppose (an) is a sequence of positive real numbers and
assume

L = lim
an+1

an
exists. Show, if L < 1, then (an) converges to 0 by completing the
following outline (or otherwise).

(a) Choose L < ρ < 1.
(b) Show there is an M so that if m ≥M , then am+1 ≤ ρam;
(c) Show aM+k ≤ ρkaM for k ∈ N;
(d) Show an ≤ ρn aM

ρM
for n ≥M ;

(e) Complete the proof.

Give an example where (an) converges to 0 and L = 1; and give an
example where (an) does not go to 0, but L = 1.

Prove, if 0 ≤ L < 1, and p is a positive integer, then (npan) converges
to 0 too.

Problem 4.10. Let a0 =
√

2 and define, recursively, an+1 =
√
an + 2.

Prove, by induction, that the sequence (an) is increasing and is bounded
above by 2. Does the sequence converge? If so, what should the limit
be?
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Problem 4.11. Use Theorem 2.28 to prove for each real number r
there is a sequence (qn) of rational numbers converging to r. Use
Proposition 4.8 to conclude that the closure of Q (in R) is R. (See
Remark 2.29.)

Problem 4.12. Suppose (an) is a sequence in a metric space X. Show,
if there is an L ∈ X such that every subsequence of (an) has a further
subsequence which converges to L, then (an) converges to L.

Problem 4.13. Prove Proposition 4.26.

Problem 4.14. Suppose (an) is a bounded sequence of real numbers.
Prove

lim inf an ≤ lim sup an.

Give an example which shows the inequality can be strict.

Problem 4.15. Suppose both (an) and (bn) are bounded sequences of
real numbers. Prove,

lim sup(an + bn) ≤ lim sup an + lim sup bn.

[Hint: Observe {aj + bj : j ≥ n} ⊂ {aj + bk : j, k ≥ n} from this, and
the fact that sup(S + T ) = sup(S) + sup(T ), it will follow that

sup({aj+bj : j ≥ n}) ≤ sup({aj+bk : j, k ≥ n}) = sup{aj : j ≥ n}+sup{bk : k ≥ n}.
Give an example which shows the inequality can be strict.

Problem 4.16. Let (an) be a bounded sequence of real numbers. Prove
there is a subsequence (anj)j which converges to y = lim sup an. Here
is one way to proceed. Show, either directly or using Proposition 4.30,
that for each ε > 0 the set {n : |y − an| < ε} is infinite and then apply
Proposition 4.25.

Problem 4.17. Given a sequence (aj)
∞
j=0 of real numbers, let

sm =
m∑
j=0

aj.

The expression
∑∞

n=0 an is called a series and the sequence (sn) is its
sequence of partial sums. If the sequence (sn) converges, then the series
is said to converge and if moreover, (sn) converges to L, then the series
converges to L written

∞∑
n=0

an = L = lim
m→∞

sm.

In particular, the expression
∑∞

n=0 an is used both for the sequence (sn)
and the limit of this sequence, if it exists.
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Show, if an ≥ 0, then the series either converges or diverges to ∞
depending on whether the partial sums form a bounded sequence or
not.

Show, if 0 ≤ r < 1, then, for each m,

(1− r)
m∑
n=0

rn = 1− rm+1

and thus,
∞∑
n=0

rn =
1

1− r
.

5. Cauchy sequences and completeness

Definition 5.1. A sequence (an) in a metric space (X, d) is Cauchy if
for every ε > 0 there is an N such that for all n,m ≥ N , d(an, am) <
ε. /

Do Problem 5.1.

Proposition 5.2. Convergent sequences are Cauchy; i.e., if (an) is a
convergent sequence in a metric space X, then (an) is Cauchy. †

Proposition 5.3. Cauchy sequences are bounded. †

Definition 5.4. A metric space X is complete if every Cauchy sequence
in X converges (in X). /

Example 5.5. Cauchy sequences in a discrete metric space are even-
tually constant and hence converge. Thus, a discrete metric space is
complete. 4

Example 5.6. The metric space Q is an example of an incomplete
space. Exercise 5.2 gives further examples of incomplete spaces. 4

Theorem 5.7. R is a complete metric space.

Proof. Let (an) be a given Cauchy sequence from R. By Proposition
5.3, this sequence is bounded. Hence it has a limsup; i.e., with

αn = sup{ak : k ≥ n}
the sequence (αn) is decreasing and bounded below and converges to
α = lim sup an.

It suffices to show that (an) converges to α. To this end, let ε > 0 be
given. Because (αn) converges to α, there is an M so that if m ≥ M ,
then

(3) α ≤ αm < α + ε.
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Since (an) is Cauchy, there is a K such that for n, k ≥ K,

|ak − an| < ε.

In particular, for k ≥ n ≥ K,

ak ≤ an + ε.

Hence an + ε is an upper bound for {aj : j ≥ n} and therefore,

(4) αn ≤ an + ε.

Let N = max{M,K}. If n ≥ N , then, by combining Equations (3) and
(4),

α + ε > αn ≥ an ≥ αn − ε ≥ α− ε.
Thus, if n ≥ N , then

|α− an| < ε

and the proof is complete. �

Proposition 5.8. A closed subset of a complete metric space is com-
plete. †

Proof. Apply Proposition 4.8. �

Proposition 5.9. A complete subset of a metric space is closed. †

Proof. Apply Proposition 4.8. �

Definition 5.10. A sequence (xn) from a metric space X is super
Cauchy if there exists a 0 ≤ k < 1 such that

(5) d(an+1, an) ≤ kd(an, an−1)

for all n ≥ 1. /

The following result is a version of the contraction mapping principle.

Proposition 5.11. If (an) is super Cauchy, then (an) is Cauchy. In
particular, super Cauchy sequences in a complete metric space con-
verge. †

Proof. First observe, by Equation (2),

n∑
j=0

kj ≤ 1

k − 1
.

Next note that, by iterating the inequality of Equation (5),

d(am+1, am) ≤ kmd(a1, a0)
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for all m. Thus, for ` ≥ 0,

d(an+`, an) ≤
`−1∑
j=0

d(an+j+1, an+j)

≤
`−1∑
j=0

kn+jd(a1, a0)

= knd(a1, a0)
`−1∑
j=0

kj

≤ knd(a1, a0)

1− k
.

The remainder of the proof is a straightforward exercise based on
the fact that (kn) converges to 0. �

Note that Proposition 5.11 holds under the weaker assumption that
there is an N such that the inequality of Equation (5) holds just for all
n ≥ N + 1; i.e., (an) just need be eventually super Cauchy.

Example 5.12. For n ∈ N+, let

sn =
n∑
j=2

1

j
.

Note that

s2n =
n−1∑
k=0

2k+1∑
j=2k+1

1

j
≥ n

2

and thus (sn) is not a bounded sequence and is therefore not Cauchy.
On the other hand,

|sn+2 − sn+1| =
1

n+ 2
<

1

n+ 1
= |sn+1 − sn|.

4

5.1. Exercises.

Exercise 5.1. Define a sequence of real numbers recursively as follows.
Let a1 = 1 and

an+1 = 1 +
1

1 + an
.

Show (an) is not monotonic (that is neither increasing or decreasing).
Show that an ≥ 1 for all n and then use Proposition 5.11 to show that
(an) is Cauchy. Conclude that the sequences converges and find its
limit.
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Exercise 5.2. Suppose y is a limit point (see Problem 4.5) of the
metric space X. Show Y = X \ {y} is not complete.

Exercise 5.3. Show directly that the sequence ((−1)n) is not Cauchy
and conclude that it doesn’t converge. Compare with Exercise 4.2.

5.2. Problems.

Problem 5.1. Suppose (xn) is a Cauchy sequence in a metric space X.
Show, if (xn) has a subsequence (xnk) which converges to some y ∈ X,
then (xn) converges to y.

Problem 5.2. Fix A > 0 and define a sequence from R as follows. Let
a0 = 1. For n ≥ 1, recursively define

an+1 = A+
1

an
.

Show, for all n ≥ 1, an ≥ A and anan+1 ≥ 1 + A2. Use Proposition
5.11 to prove that (an) converges. What is the limit?

Problem 5.3. The diameter of a set S in a metric space X is

diam(S) = sup{d(s, t) : s, t ∈ S}.
(In the case that the set of values d(s, t) is not bounded above this
supremum is interpreted as plus infinity.)

Prove, if X is a complete metric space, S1 ⊃ S2 ⊃ . . . is a nested
decreasing sequence of nonempty closed subsets of X, and the sequence
(diam(Sn))n converges to 0, then

∩Sn
contains exactly one point.

Show that this result fails if any of the hypotheses - completeness,
closedness of the Sn, or that the diameters tend to 0 - are omitted.

Problem 5.4. Suppose U1, U2, . . . is a sequence of open sets in a
nonempty complete metric space X. Show, if, for each j, the closure
of Uj is all of X, then

∩∞1 Uj 6= ∅.
This is a version of the Baire Category Theorem.

Here is an outline of a proof. Observe that for each x ∈ X, r > 0,
and j, that Nr(x) ∩ Uj 6= ∅ and let Br(x) = {y ∈ X : d(x, y) ≤ r} (the
closed ball of radius r with center x).

Pick a point x1 ∈ U1. There is an r1 ≤ 1 such that Br1(x1) ⊂ U1.
There is a point x2 ∈ Nr1(x) ∩ U2. There is an 0 < r2 <

r1
2

such that
Br2(x2) ⊂ U2. Continuing in this fashion constructs a sequence of sets
Brj(xj). Apply an earlier problem to complete the proof.
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Problem 5.5. Complete the following outline that R is complete. Let
(an) be a given Cauchy sequence from R. Explain why

α = lim sup an

exists. There is a subsequence (anj) of (an) which converges to α (by
Problem 4.16); and thus the sequence itself converges to α (by Problem
5.1).

Problem 5.6. Given metric spaces (X, dX) and (Y, dY ) let Z denote
the metric space built from X and Y as in Problem 3.1. Show, if X
and Y are complete, then so is X × Y .

Problem 5.7. Show that the sequence (an) from Exercise 5.1 is not
eventually monotone. As a suggestion, first show that, for each n,
an+1 6= an as otherwise an would be irrational.

Problem 5.8. Suppose (an) and (bn) are bounded sequences of real
numbers. Show, if (bn) converges to some b > 0, then

lim sup anbn = b lim sup an.

6. Compact Sets

6.1. Definitions and Examples.

Definition 6.1. An open cover U of a subset S of a metric space X is
a subset of P (X) such that each U ∈ U is open and

S ⊂ ∪{U : U ∈ U} = ∪U∈UU.
A subcover of the open cover U is a subset V ⊂ U which is also an

open cover of S.
A subset K of a metric space X is compact provided every open cover

of K has a finite subcover. /

Remark 6.2. Often it is convenient to view covers as an indexed family
of sets, rather than a subset of P(X). In this case an open cover
of S consists of an index set J and a collection of open sets U =
{Uj : j ∈ J } whose union contains S. A subcover is then a collection
V = {Uk : k ∈ K}, for some subset K of J . A set K is compact if for
each collection {Uj : j ∈ J} such that

K ⊂ ∪j∈JUj,
there is a finite subset K ⊂ J such that

K ⊂ ∪k∈KUk.
�
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Example 6.3. Consider the set K = {0, 1, 1
2
, 1
3
, . . . } as a subset of the

metric space R.
Let U be a given open cover of K. There is then a U0 ∈ U such that

0 ∈ U0. Since U0 is open, there is an ε > 0 such that Nε(0) ⊂ U0. Since
1
n

converges to 0, there is an N such that if n ≥ N , then 1
n
∈ Nε(0).

For each j = 1, 2, . . . , N − 1 there is a Uj ∈ U such that 1
j
∈ Uj. It

follows that V = {U0, . . . , UN−1} ⊂ U is a finite subcover (of K). Thus
K is compact. 4

Do Problems 6.1 and 6.2.

Example 6.4. Let S = (0, 1] ⊂ R and consider the indexed family of
sets Uj = (1

j
, 2) for j ∈ N+. It is readily checked that

S ⊂ ∪∞j=1Uj

and of course each Uj is open. Thus U = {Uj : j ∈ N+} is an open
cover of S.

Let V be a given finite subset of U . In particular, there is an N such
that V ⊂ {Uj : 1 ≤ j ≤ N} and therefore,

∪V ∈VV ⊂ ∪Nj=1Uj = (
1

N
, 2).

Thus V is not a cover of S and hence U contains no finite subset which
covers S. Thus S is not compact. 4

Theorem 6.5. Closed bounded intervals in R are compact.

Proof. Let [a, b] be a given closed bounded interval and let U be a given
open cover of [a, b].

Let

S = {x ∈ [a, b] : [a, x] has a finite subcover from U}.
There is a U ∈ U such that a ∈ U and hence [a, a] ⊂ U . It follows
that a ∈ S and thus S is nonempty. It is also bounded above by b. It
follows that sup(S) exists and is at most b.

To prove that b ∈ S, observe that there is a U0 ∈ U such that
sup(S) ∈ U0 since sup(S) ∈ [a, b] and U is an open cover of [a, b].
Because U0 is open, there is an ε > 0 such that Nε(sup(S)) ⊂ U0.
There is an s ∈ S such that sup(S) − ε < s ≤ sup(S). Since s ∈ S,
there is a finite subcover V ⊂ U of [a, s]; i.e., V is finite and

[a, s] ⊂ ∪{U : U ∈ V}.
It follows that

[a, sup(S)+
ε

2
] ⊂ [a, s]∪[sup(S)− ε

2
, sup(S)+

ε

2
] ⊂ ∪{U : U ∈ V}∪{U0}.
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Thus, for each t ∈ [a, b] ∩ [sup(S), sup(S) + ε
2
], the collection W =

V ∪ {U0} is a finite subset of U which covers [a, t]. Thus, each such t
is in S. In particular, sup(S) ∈ S. On the other hand, if sup(S) < b,
then there is a t ∈ s ∈ [a, b] ∩ (sup(S), sup(S) + ε

2
] in violation of the

least property of sup(S). Thus, sup(S) = b and moreover

[a, b] ⊂ {U : U ∈ V} ∪ {U0}.
Thus [a, b] is compact. �

Do Problem 6.3 which says that a subset K of a discrete metric
space X is compact if and only if K is finite. In particular, if the set
K in Example 6.3 is considered with the discrete metric, then it is not
Compact.

Theorem 6.6. If Y is a metric space and K ⊂ X ⊂ Y , then K is
compact in X if and only if K is compact in Y .

Remark 6.7. The proposition says that compactness is intrinsic and
thus, unlike for open and closed sets, we we can speak of compact sets
without reference to a larger ambient metric space. �

Proof. First suppose K is compact in X. To prove K is compact in Y ,
let U ⊂ P (Y ) an open (in Y ) cover of K be given. Let W = {U ∩X :
U ∈ U}. Then W ⊂ P (X) is an open (in X) cover of K. Hence there
is a finite subset V of U such that {U ∩X : U ∈ V} covers K. It follows
that V is a finite subset of U which covers K and hence K is compact
as a subset of Y .

Conversely, suppose K is compact in Y . To prove that K is compact
in X, let Let U ⊂ P (X) be a given open (in X) cover of K. For each
U ∈ U there exists an open in Y set WU such that U = X ∩ WU .
The collection W = {WU : U ∈ U} ⊂ P (Y ) is an open cover of X.
Hence there is a finite subset V of U such that {WU : U ∈ V} covers
K. It follows that V is a finite subset of U which covers K. Hence K
is compact in X. �

Do Problems 6.4 and 6.5.

6.2. Compactness and closed sets.

Definition 6.8. A subset B of a metric space X is bounded if there
exists x ∈ X and R > 0 such that B ⊂ NR(x). /

Equivalently, B is bounded if for every y ∈ X there is a C > 0 such
that B ⊂ NC(y).

Proposition 6.9. Compact sets are closed and bounded. †
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Proof. Suppose K is a compact subset of a metric space X. If K̃ is
empty, then it is open and K is closed. Suppose now that K̃ is not
empty. Let y /∈ K be given. Let Vn = {x ∈ X : d(x, y) > 1

n
}. The sets

Vn are open and
∪∞n=1Vn ⊃ X \ {y} ⊃ K.

Since K is compact, there is an N so that

VN = ∪Nn=1Vn ⊃ K.

It follows that, for each x ∈ K, d(x, y) > 1
N

. Hence N 1
N

(y) ⊂ K̃ and

so K̃ is open and K is closed.
To prove that K is bounded, fix x0 ∈ X and let Wn = {x ∈ X :

d(x0, x) < n}. Then
K ⊂ X = ∪Wn.

By compactness of K, there is an N so that K ⊂ WN and thus K is
bounded. �

Proposition 6.10. A closed subset of a compact set is compact. †

Proof. Suppose X is a metric space, C ⊂ K ⊂ X, K is compact, and
C is closed.

To prove C is compact, let U be a given open cover of C. Then
W = U ∪ {C̃} is an open cover of K. Hence some finite subset of W
covers K; but then a finite subset of U covers C. �

Corollary 6.11. Closed bounded subsets of R are compact. Thus a
subset of R is compact if and only if it is closed and bounded. †

Proof. Suppose K ⊂ R is both closed and bounded. Since K is
bounded, there is a positive real M such that K ⊂ [−M,M ]. Now
K is a closed subset of the compact set [−M,M ] and is hence itself
compact. �

It turns out that this corollary is true with R replaced by Rg, a re-
sult which is called the Heine-Borel Theorem. A proof, based upon
the Lebesgue number Lemma, and the concomitant fact that compact-
ness and sequential compactness are the same for a metric space, is in
Subsection 6.4 below.

Remark 6.12. If X is an infinite set with the discrete metric, then
X is complete (hence closed) and bounded, but not compact. Hence,
in general, complete (or closed) and bounded does not imply compact.
While this example may seem a bit contrived, we will encounter other
more natural metric spaces for which closed or complete and bounded
is not the same as compact. (See for instance Problems 6.7 and 6.6.) �
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6.3. Sequential Compactness.

Definition 6.13. A subset K of a metric space X is sequentially com-
pact if every sequence in K has a subsequence which converges in K;
i.e., if (an) is a sequence from K, then there exists p ∈ K and a subse-
quence (anj)j of (an) which converges to p. /

Remark 6.14. The notion of sequentially compact does not actually
depend upon the larger metric space X, just the metric space K. �
Proposition 6.15. If X is sequentially compact, then X is complete.

†
Problem 6.8 asks you to provide a proof of this Proposition.

Proposition 6.16. Let X be a metric space. If X is compact, then X
is sequentially compact. †
Proof. Let (sn) be a given sequence from X. If there is an s ∈ X such
that for every ε > 0 the set Jε(s) = {n : sn ∈ Nε(s)} is infinite, then,
by Proposition 4.25, (sn) has a convergent subsequence (namely one
that converges to s).

Arguing by contradiction, suppose for each s ∈ X there is an εs > 0
such that J(s) = {n : sn ∈ Nεs(s)} is a finite set. The collection
{Nεs(s) : s ∈ X} is an open cover of X. Since X is compact there is
a finite subset F ⊂ X such that V = {Nεt(t) : t ∈ F} is a cover of X;
i.e.,

X ⊂ ∪{Nεt(t) : t ∈ F}.
For each n there is a t ∈ F such that sn ∈ Nεt(t) and thus N =
∪t∈FJεt(t). But then, for some u ∈ F , the set Jεu(u) is infinite, a
contradiction. �

Do Problem 6.9.

Proposition 6.17. If X is compact, then X is complete. †
Corollary 6.18. The metric space R is complete. †
Proof. Suppose (an) is a Cauchy sequence from R. It follows that (an)
is bounded and hence there is a number R > 0 such that each an is
in the interval I = [−R,R]. Since I is compact, it is complete. Hence
(an) converges in I and thus in R. �

The remainder of this section is devoted to proving the converse of
Proposition 6.16.

Lemma 6.19. [Lebesgue number lemma] If K is a sequentially com-
pact metric space and if U is an open cover of K, then there is a δ > 0
such that for each x ∈ K there is a U ∈ U such that Nδ(x) ⊂ U . †
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Proof. We argue by contradiction. Accordingly, suppose for every n ∈
N+ there is an xn ∈ K such that, for each U ∈ U , N 1

n
(xn) is not

a subset of U . The sequence (xn) has a subsequence (xnk)k which
converges to some w ∈ K because K is sequentially compact. There
is a W ∈ U such that w ∈ W . Hence there is an ε > 0 such that
Nε(w) ⊂ W. Choose k so that 1

nk
< ε

2
and also so that d(xnk , w) < ε

2
.

Then N 1
nk

(xnk) ⊂ Nε(w) ⊂ W , a contradiction. �

Definition 6.20. A metric space X is totally bounded if, for each ε > 0,
there exists a finite set F ⊂ X such that

X = ∪x∈FNε(x).

/

Proposition 6.21. If X is sequentially compact, then X is totally
bounded. †

Proof. We prove the contrapositive. Accordingly, suppose X is not
totally bounded. Then there exists an ε > 0 such that for every finite
subset F of X,

X 6= ∪x∈FNε(x).

Choose x1 ∈ X. Choose x2 /∈ Nε(x1). Recursively choose,

xn+1 /∈ ∪n1Nε(xj).

The sequence (xn) has no convergent subsequence since, for j 6= k,
d(xk, xj) ≥ ε. Thus X is not sequentially compact. �

Proposition 6.22. If X is sequentially compact, then X is compact.
†

Proof. Let U be a given open cover of X. From the Lebesgue Number
Lemma, there is a δ > 0 such that for each x ∈ X there is a U ∈ U
such that Nδ(x) ⊂ U .

Since X is totally bounded, there exists a finite set F ⊂ X so that

X = ∪x∈FNδ(x).

For each x ∈ F , there is a Ux ∈ U such that Nδ(x) ⊂ Ux. Hence,

X = ∪x∈FUx;

i.e., {Ux : x ∈ F} ⊂ U is an open cover of X. Hence X is compact. �



D
RA
FT

54

6.4. The Heine-Borel theorem.

Lemma 6.23. Cubes in Rg are compact. †

Proof for the case g = 2. Either an induction argument or an argument
similar to the proof below for g = 2 handles the case of general d.

Consider the cube C = [a, b] × [c, d]. It suffices to prove that every
sequence (zn) from C has a subsequence which converges in C; i.e.,
that C is sequentially compact. To this end, let (zn) = (xn, yn) be a
given sequence from C. Since [a, b] is compact, there is a subsequence
(xnk)k of (xn) which converges to some x ∈ [a, b]. Similarly, since [c, d] is
compact the sequence (ynk)k has a subsequence (ynkj )j which converges

to a y ∈ [c, d]. It follows that (znkj )j converges to z = (x, y) ∈ C. �

Theorem 6.24. [Heine-Borel] A subset K of Rg is compact if and only
if it is closed and bounded.

Proof. We have already seen that compact implies closed and bounded
in any metric space.

Suppose now that K is closed and bounded. There is a cube C such
that K ⊂ C ⊂ Rg. The cube C is compact and K is a closed subset of
C and is therefore compact. �

Do Problem 6.12.

Corollary 6.25. Rg is complete. †

The proof is similar to that of Corollary 6.18. The details are left as
an exercise for the gentle reader.

6.5. Exercises.

Exercise 6.1. Let X be a metric space. Show, if there is an r > 0 and
sequence (xn) from X such that d(xn, xm) ≥ r for n 6= m, then X is
not compact.

Exercise 6.2. Suppose X has the property that each closed bounded
subset of X is compact. Show X is complete.

Exercise 6.3. Show, if X is totally bounded, then X is bounded. Give
an example of a bounded metric space X which is not totally bounded.

6.6. Problems.

Problem 6.1. Prove, if X is a metric space and (an)∞n=1 is a sequence
in X which converges to A, then {A, a1, a2, . . . } is compact.

Problem 6.2. Prove a finite subset of a metric space X is compact.
More generally, prove a finite union of compact sets is compact.
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Problem 6.3. Show, a subset K of a discrete metric space X is com-
pact if and only if it is finite. In particular, if X is infinite, then X is
complete (and thus closed) and bounded, but not compact.

Problem 6.4. [The finite intersection property (fip)] Suppose X is a
compact metric space and F ⊂ P (X). Show, if each C ∈ F is closed
and for each finite subset F ⊂ F the set

∩C∈FC 6= ∅,

then in fact

∩C∈FC 6= ∅.
As a corollary, show if C1 ⊃ C2 ⊃ is a nested decreasing sequence of

non-empty compact sets in a metric space X, then ∩Cj is non-empty
too.

Show the result fails if X is not assumed compact. On the other
hand, even if X is not compact, the result is true if it assumed that
there is a D ∈ F which is compact. Compare with Problem 5.3.

Problem 6.5. Prove that any open cover of R has an at most countable
subcover.

More generally, prove, if there exists a sequence K1, K2, . . . of com-
pact subsets of a metric space X such that X = ∪Kj, then every open
cover of X has an at most countable subcover.

Problem 6.6. Let `∞ denote the set of bounded sequences a = (a(n))
of real numbers. The function d : `∞ × `∞ → R defined by

d(a, b) = sup{|a(n)− b(n)| : n ∈ N}

is a metric on `∞.
Let ej denote the sequence from `∞ (so a sequence of sequences) with

ej(j) = 1 and ej(k) = 0 if k 6= j. Find, d(ej, e`).
Let 0 denote the zero sequence in `∞. Is

B = {a ∈ `∞ : d(a, 0) ≤ 1}

closed? Is it bounded? Is it compact?
As a challenge, show `∞ is complete.

Problem 6.7. This problem assumes Problem 4.17. Let `2 denote the
set of sequences (a(n)) of real numbers such that

∞∑
0

|a(n)|2
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converges (to a finite number). Use the Cauchy Schwartz inequality to
show, if a, b ∈ `2, then

〈a, b〉 :=
∞∑
0

a(j)b(j)

converges and that 〈a, b〉 is an inner product on `2. Let

d(x, y) = ‖x− y‖ =
√
〈x− y, x− y〉

denote the resulting metric.
Let ej denote the sequence with ej(j) = 1 and ej(k) = 0 if j 6=

k. What is d(ej, ek)? Does the sequence (of sequences) (ej) have a
convergent subsequence? Let 0 denote the zero sequence. Is the set

B = {x ∈ `2 : d(x, 0) ≤ 1}
closed? Is it bounded? Is it compact?

As a challenge, prove that `2 is complete.

Problem 6.8. Prove Proposition 6.15. (See Problem 5.1.)

Problem 6.9. Suppose K is a nonempty compact subset of a metric
space X and x ∈ X. Show, there is a point p ∈ K such that, for all
other q ∈ K,

d(p, x) ≤ d(q, x).

[Suggestion: Let S = {d(x, y) : y ∈ K} and show there is a sequence
(qn) from K such that (d(x, qn)) converges to inf(S).]

Give an example where this conclusion fails if the hypothesis that K
is compact is replaced by K is closed and bounded.

Problem 6.10. Suppose B is a compact subset of a metric space X
and a /∈ B. Show there exists disjoint open sets U and V such that
a ∈ U and B ⊂ V. Suggestion, first use Problem 6.9 to show, for each
b ∈ B there is an εb > 0 such that Nεb(b) ∩Nεb(a) = ∅.

Problem 6.11. Show if A and B are disjoint compact sets in a metric
space X, then there exists disjoint open sets U and V such that A ⊂ U
and B ⊂ V . Suggestion, by the previous problem, for each a ∈ A there
exists disjoint open sets Ua and Va such that a ∈ Ua and B ⊂ Vb.

Problem 6.12. Show that K compact can be replaced by K closed in
Problem 6.9 in the case that X = Rg.

Problem 6.13. Given metric spaces (X, dX) and (Y, dY ) let Z denote
the metric space built from X and Y as in Problem 3.1. Show, if X
and Y are compact, then so is X × Y .
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7. Connected sets

Definition 7.1. A metric space X is disconnected if there exists sets
U, V ⊂ X such that

(i) U and V are open;
(ii) U ∩ V = ∅;

(iii) X = U ∪ V ; and
(iv) U 6= ∅ 6= V ;

The metric space X is connected if it is not disconnected.
A subset S of X is connected if the metric space (subspace) S is

connected. /

Do Problem 7.1.

Remark 7.2. A metric space X is connected if and only if the only
subsets of X which are both open and closed are X and ∅.

By Proposition 3.18, subsets U0 and V0 of S are open relative to S if
and only if there exists subsets U, V of X which are open (in X) such
that U0 = U ∩ S and V0 = V ∩ S. Thus, a subset S of a metric space
X is connected if and only if given subsets U and V of X such that

(i) U and V are open;
(ii) U ∩ S ∩ V = ∅; and

(iii) S ⊂ U ∪ V
it follows that either U ∩ S or V ∩ S is empty.

Note, if U, V satisfy (ii) and (iii), then Ṽ ∩ S = U ∩ S. �

Problem 7.2 gives an alternate condition for a subset S of a metric
space X to be connect in terms of subsets of X. Do also Problem 7.3.

Proposition 7.3. A nonempty subset I of R is connected if and only
if x, y ∈ I and x < z < y implies z ∈ I.

In particular, intervals in R are connected. †

Proof. Suppose I has the property that x, y ∈ I and x < z < y implies
z ∈ I. To prove that I is connected, it suffices to show, if U, V ⊂ R
satisfy condition (i), (ii), and (iii) in Remark 7.2, then either U ∩ I or
V ∩ I is empty. Arguing by contradiction, suppose U ∩ I and V ∩ I are
both non-empty and choose u ∈ U ∩ I and v ∈ V ∩ I. Without loss of
generality, u < v. By hypothesis [u, v] ⊂ I. Consider A = U ∩ [u, v]
and B = V ∩ [u, v] and observe that A ∪ B = [u, v] and A ∩ B = ∅.
Hence B̃ ∩ [u, v] = A and therefore, as B̃ = Ṽ ∪ ˜[u, v], A = Ṽ ∩ [u, v].
In particular, A is closed and bounded. It follows that A has a largest
element a ∈ A. Since v ∈ B, we find a < v. Since U is open, there is
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an ε such that v− a > ε > 0 and Nε(a) ⊂ U . In particular, (a, a+ ε) ⊂
U ∩ [u, v] = A. But then say a+ ε

2
∈ A, a contradiction.

To prove the converse, suppose there exists x, y ∈ I and z /∈ I such
that x < z < y. In this case, let U = (−∞, z) and V = (z,∞). Then
U ∩ V = ∅, U and V are open, U ∩ I and V ∩ I are nonempty, and
I ⊂ U ∪ V , thus I is not connected. �

Do Problem 7.4.

Proposition 7.4. If C is a nonempty collection of connected subsets
of a metric space X and if

∩{C : C ∈ C} 6= ∅,
then Γ = ∪{C : C ∈ C} is connected. †

Proof. Suppose U, V ⊂ X are open, U ∩ Γ ∩ V = ∅, and Γ ⊂ U ∪ V .
It suffices to show that either Γ ∩ U = ∅ or Γ ∩ V = ∅. Arguing by
contradiction, suppose both are not empty. Then there exists CU , CV ∈
C such that CU ∩ U 6= ∅ and CV ∩ V 6= ∅. Now U, V are open; CU ⊂
U ∪V ; and U ∩CU ∩V ⊂ U ∩Γ∩V = ∅. Thus, since CU is connected,
either CU ∩ U = ∅ or CU ∩ V = ∅. It follows that CU ∩ V = ∅ and
hence CU ⊂ U . By symmetry, CV ⊂ V and thus,

CU ∩ CV ⊂ U ∩ Γ ∩ V = ∅,
contradicting the assumption that the intersection of the sets C in C is
nonempty. �

Do Problems 7.5 and 7.6.

Corollary 7.5. Given a point x in a subset S of a metric space X
there is a largest connected set Cx containing x and contained in S;
i.e.,

(i) x ∈ Cx ⊂ S,
(ii) Cx ⊂ X is connected; and

(iii) if x ∈ D ⊂ S and D ⊂ X is connected, then D ⊂ Cx.

†

The set Cx of the Corollary is called the connected component con-
taining x.

Proof. Note that {x} is connected. Let C denote the collection of con-
nected sets containing x and contained in S and apply the previous
proposition to conclude that Γ = ∪{C : C ∈ C} is connected. By
construction, if D is connected and x ∈ D, then D ⊂ Γ. �

Do Problems 7.7, 7.8 and 7.9.
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7.1. Exercises.

Exercise 7.1. Determine the connected subsets of a discrete metric
space.

Exercise 7.2. Let I = [0, 1] ⊂ R. If 0 < x < 1, is I \ {x} connected?
Let S ⊂ R2 denote the unit circle, {(x, y) ∈ R2 : x2 + y2 = 1}. If

x ∈ S, is S \ {x} connected? If x 6= y are both in S, is S \ {x, y}
connected?

Let R ⊂ R2 denote the unit square R = [0, 1] × [0, 1]. If F ⊂ R is
finite, is R \ F connected?

Exercise 7.3. Let S = { 1
n

: n ∈ N+} ⊂ R and let

C = (K × [0, 1]) ∪ ([0, 1]× {0}) ⊂ R2.

Draw a picture of C. Is it connected?
Let D = C ∪ {(0, 1)}. Is D connected? Can you draw a path from

(0, 0) to (0, 1) without leaving D?

Exercise 7.4. Show if A,B,C are connected subsets of X and A∩B 6=
∅ and A∩C 6= ∅, then A∪B∪C is connected. A more general statement,
requiring a more elaborate proof, can be found in Problem 7.5.

7.2. Problems.

Problem 7.1. Show singleton sets are connected, but finite sets with
more than one element are not.

Problem 7.2. Prove, S ⊂ X is disconnected if and only if there exists
subsets A,B ⊂ X such that

(i) both A and B are nonempty;
(ii) A ∪B = S;

(iii) A ∩B = ∅; and
(iv) A ∩B = ∅.

(Here the closures are taken with respect to X.) You may wish to use
Problem 3.4.

Problem 7.3. Show, if S is a connected subset of a metric space X,
then S is also connected. In fact, each S ⊂ T ⊂ S is connected.

Problem 7.4. Suppose I ⊂ R is open. Prove that I is also connected
if and only if either

(i) I is an open interval;
(ii) there is an a ∈ R such that I = (a,∞);
(iii) there is a b ∈ R such that I = (−∞, b); or
(iv) I is empty or all of R.
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The term open interval is expanded to refer to a set of any of the
above forms.

Problem 7.5. Prove the following stronger variant of Proposition 7.4.
Suppose C is a nonempty collection of connected subsets of a metric
space X and B ∈ C. and if, for each A ∈ C, A∩B 6= ∅, then Γ = ∪{C :
C ∈ C} is connected.

Problem 7.6. Must the intersection of two connected sets be con-
nected?

Problem 7.7. Let X be a metric space. For each x ∈ X, let Cx denote
the connected component containing x. Prove that the collection {Cx :
x ∈ X} is a partition of X; i.e., if x, y ∈ X then either Cx = Cy or
Cx ∩ Cy = ∅ and X = ∪x∈XCx.

Problem 7.8. Prove, if O ⊂ R is open, then each connected compo-
nent of O is open; i.e., if U ⊂ O is connected in R and if U ⊂ V ⊂ O
is connected implies U = V , then U is open.

Problem 7.9. Prove that every open subset O of R is a disjoint union
of open intervals (in the sense of Problem 7.4). Further show that
this union is at most countable by noting that each component must
contain a rational.

8. Continuous Functions

8.1. Definitions and Examples.

Definition 8.1. Suppose X, Y are metric spaces, a ∈ X and f : X →
Y . The function f is continuous at a if for every ε > 0 there is a δ > 0
such that if dX(a, x) < δ, then dY (f(a), f(x)) < ε.

If f is continuous at every point a ∈ X, then f is said to be contin-
uous. /

Example 8.2. (a) Constant functions are continuous.
(b) For a metric space X, the identity function id : X → X given by

id(x) = x is continuous.
(c) If f : X → Y is continuous and Z ⊂ X, then f |Z : Z → Y is

continuous.
(d) The function f : R → R given by f(x) = 1 if x ∈ Q and f(x) = 0

if x /∈ Q is nowhere continuous.
To prove this last statement, given x ∈ R, choose ε0 = 1

2
.

(e) The function f : [0, 1] → R defined by f(x) = 0 if x /∈ Q and
f(x) = 1

q
, where x = p

q
, p ∈ N, q ∈ N+, and gcd(p, q) = 1, is

continuous precisely at the irrational points.
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Lets prove that f is continuous at irrational points, leaving the
fact that it is not continuous at each rational point as an easy
exercise.

Suppose x /∈ Q (x ∈ [0, 1]) and let ε > 0 be given. Choose
N ∈ N+ so that 1

N
< ε. Let

δ = min{|x− m

n
| : m,n ≤ N, m, n ∈ N+}.

This minimum exists and is positive since it is a minimum over
a finite set and 0 is not an element of the set (since x /∈ Q). If
|x− y| < δ and y ∈ [0, 1], then either y /∈ Q in which case |f(x)−
f(y)| = |0 − 0| = 0; or y ∈ Q and y = p

q
(in reduced form) where

q > N in which case |f(x)− f(y)| = 1
q
< ε.

(f) If X is a metric space and a ∈ X, then the function f : X → R
given by f(x) = d(a, x) is continuous.

Fix x and let ε > 0 be given. Choose δ = ε. If d(x, y) < δ, then

|f(x)− f(y)| = |d(x, a)− d(a, y)| ≤ d(x, y) < δ = ε.

(g) Given γ ∈ Rg, the function pγ : Rg → R defined by

pγ(x) = 〈x, γ〉

is continuous.
4

Do Problems 8.1 and 8.2.

Proposition 8.3. A function f : X → Y is continuous if and only if
f−1(U) ⊂ X is open for every open set U ⊂ Y . †

Note that the result doesn’t change if Y is replaced by any Z with
f(X) ⊂ Z ⊂ Y .

Proof. Suppose f is continuous and U ⊂ Y is open. To prove f−1(U)
is open, let x ∈ f−1(U) be given. Since U is open and f(x) ∈ U , there
is an ε > 0 such that Nε(f(x)) ⊂ U . Since f is continuous at x, there
is a δ > 0 such that if dX(x, z) < δ, then dY (f(x), f(z)) < ε. Thus,
if z ∈ Nδ(x), then f(z) ∈ Nε(f(x)) ⊂ U and thus z ∈ f−1(U). Hence
Nδ(x) ⊂ f−1(U). We have proved that f−1(U) is open.

Conversely, suppose that f−1(U) is open in X whenever U is open
in Y . Let x ∈ X and ε > 0 be given. The set U = Nε(f(x)) is open
and thus f−1(U) is also open. Since x ∈ f−1(U), there is a δ > 0
such that Nδ(x) ⊂ f−1(U); i.e., if dX(x, z) < δ, then f(z) ∈ U which
means dY (f(x), f(z)) < ε. Hence f is continuous at x; and thus f is
continuous. �
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Corollary 8.4. A function f : X → Y is continuous if and only if
f−1(C) is closed (in X) for every closed set C (in Y ). †

Do Problems 8.3 and 8.4. See also Problem 3.9.

Proposition 8.5. Suppose X, Y, Z are metric spaces, f : X → Y and
g : Y → Z. If both f and g are continuous, then so is h = g ◦ f : X →
Z. †

Proof. Let V an open subset of Z be given. Since g is continuous,
U = g−1(V ) is open in Y . Since f is continuous, f−1(U) is open in X.
Thus, h−1(V ) = f−1(U) is open and hence h is continuous. �

There are local versions of Propositions 8.5 and 8.3 (See Problems
8.6 and 8.5). Here is a sample whose proof is left to the reader.

Proposition 8.6. Suppose X, Y, Z are metric spaces, f : X → Y and
g : Y → Z. If f is continuous at a and g is continuous at b = f(a),
then h = g ◦ f is continuous at a. †

8.2. Continuity and Limits.

Definition 8.7. Let S be a subset of a metric space X. A point p ∈ X
is a limit point of S if, for every δ > 0, the set S ∩Nδ(p) is infinite.

A point p ∈ S is an isolated point of S if p is not a limit point of
S. /

Do Exercise 8.1 and compare with Problem 4.5.

Example 8.8. (a) If S 6= ∅ is an open set in Rg, then every point of
S is a limit point of S. In fact, as an exercise, show in this case
the set of limit points of S is the closure of S.

(b) The set Z in R has no limit points.
(c) The only limit point of the set { 1

n
: n ∈ N+} is 0.

4

Definition 8.9. Let X and Y be metric spaces and let a ∈ X and
b ∈ Y. Suppose a is a limit point of X and either f : X → Y or
f : X \ {a} → Y . Then f has limit b as x approaches a, written

lim
x→a

f(x) = b,

if for every ε > 0 there is a δ such that if 0 < dX(a, x) < δ, then
dY (b, f(x)) < ε. /

Remark 8.10. The limit b, if it exists, is unique. �
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Proposition 8.11. Suppose f : X → Y and a ∈ X is a limit point of
X. The function f is continuous at a if and only if limx→a f(x) exists
and equals f(a).

If f : X \ {a} → Y and limx→a f(x) exists and equals b, then the
function g : X → Y defined by g(x) = f(x) for x 6= a and g(a) = b is
continuous at a.

If a is not a limit point of X and h : X → Y , then h is continuous
at a. †

Proposition 8.12. Suppose a ∈ X and f : W → Y , where W = X or
W = X \ {a}. If limx→a f(x) = b and if g : Y → Z is continuous at b,
then limx→a g ◦ f(x) = g(b). In particular, if f is continuous at a and
g is continuous at f(a), then g ◦ f is continuous at a. †

Proof. The function h : X → Y defined by h(x) = f(x) if x 6= a
and h(a) = b is continuous at a by Proposition 8.11. Hence g ◦ h is
continuous at a by Proposition 8.5. It follows that

lim
x→a

g ◦ f(x) = lim
x→a

g ◦ h(x) = g(h(a)) = g(b).

�

For a variation on this composition law for limits, see Problem 8.7.
The following Proposition gives a sequential formulation of limit.

Proposition 8.13. Suppose X is a metric space, a is a limit point
of X, and f : Z → Y where Z is either X or X \ {a}. The limit
limx→a f(x) exists and equals b ∈ Y if and only if for every sequence
(an) from Z which converges to a, (f(an)) converges to b.

If f : X → Y , then f is continuous at a if and only if for every
sequence (an) from X \ {a} converging to a, (f(an)) converges to f(a).

†

Proof. To prove the the first part of the lemma in the case Z = X \{a},
first suppose limx→a f(x) = b and (an) converges to a. To see that
(f(an)) converges to b, let ε > 0 be given. There is a δ > 0 such that if
0 < dX(a, x) < δ, then dY (b, f(x)) < ε. There is an N so that if n ≥ N ,
then 0 < dX(a, an) < δ. Hence, if n ≥ N , then dY (b, f(an)) < ε and
thus (f(an)) converges to b.

Conversely, suppose limx→a f(x) 6= b. Then there is an ε0 > 0
such that for each n there exists an such that dX(a, an) < 1

n
, but

dY (b, f(an)) ≥ ε0. The sequence (an) converges to a, but (f(an)) does
not converge to b.

The second part of the proposition follows readily from the first
part. �
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8.3. Continuity of Rational Operations.

Proposition 8.14. Let X be a metric space and a ∈ X be a limit
point of X. Suppose f : Y → Rk where Y is either X or X \ {a}.
Write f = (f1, . . . , fk) with fj : X → R.

The limit limx→a f(x) exists and equals A = (A1, . . . , Ak) ∈ Rk if
and only if, for each j, the limit limx→a fj(x) exists and equals Aj. In
particular, if f : X → Rk, then f is continuous at a if and only if each
fj is continuous at a. †
Proof. Let (an) be a given sequence from X \ {a} which converges to
a. By Proposition 4.17, the sequence An = f(an) converges to A if
and only if (fj(an))n converges to Aj for each j. An application of
Proposition 8.13 thus completes the proof. �

Proposition 8.15. Suppose a ∈ X is a limit point of the metric space
X, W is either X or X \ {a} and f, g : W → Rk. If limx→a f(x) and
limx→a g(x) exist and equal A and B respectively, then

(i) limx→a f(x) · g(x) = A ·B;
(ii) limx→a(f + g)(x) = A+B;
(iii) if k = 1, g is never 0 and B 6= 0, then limx→a

1
g(x)

= 1
B

.

†
Proof. To prove item (i), suppose (an) is a sequence in X \ {a} which
converges to a. From Proposition 8.13, (f(an)) and (g(an)) converge
to A and B respectively. Hence (f(an) · g(an)) converges to A · B,
by Proposition 4.20. Finally, another application of Proposition 8.13
completes the proof.

The proofs of the other items are similar. �

Corollary 8.16. If f, g : X → Rk are continuous at a, then so are f ·g
and f + g. If k = 1 and g is never 0, then 1

g
is continuous at a. †

Example 8.17. For each j, the function πj : Rd → R given by πj(x) =
xj is continuous since it can be expressed as

πj(x) = 〈x, ej〉 = x · ej,
where ej is the j-th standard basis vector of Rd; i.e., ej has a 1 in the
j-th entry and 0 elsewhere.

If p(x1, . . . , xd) and q(x1, . . . , xd) are polynomials, then the rational
function

r(x) =
p(x)

q(x)

is continuous (wherever it is defined). 4
Do Problems 8.8 and 8.9.
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8.4. Continuity and Compactness.

Proposition 8.18. If f : X → Y is continuous and X is compact,
then f(X) is compact; i.e., the continuous image of a compact set is
compact. †

Proof. Let W be a given open cover of f(X). Then,

U = {f−1(U) : U ∈ W}

is an open cover of X. Hence there is a finite subset F ⊂ W such that
{f−1(U) : U ∈ F} is a cover of X.

Using the fact that f(f−1(B)) ⊂ B, it follows that

∪{U : U ∈ F} ⊃ ∪{f(f−1(U)) : U ∈ F} = f(∪{f−1(U) : U ∈ F}) ⊃ f(X).

Thus, {U : U ∈ F} is a finite subcover of f(X). �

Do Problem 8.10.

Corollary 8.19 (Extreme Value Theorem). If f : X → R is continuous
and X is non-empty and compact, then there exists x0 ∈ X such that
f(x0) ≥ f(x) for all x ∈ X; i.e., f has a maximum on X. †

Proof. By the previous proposition, the set f(X) is a compact subset
of R. It is also non-empty. In view of Proposition 3.25, non-empty
compact subsets of R have a largest element; i.e., there is an M ∈ f(X)
such that M ≥ f(x) for all x ∈ X. Since M ∈ f(X), there is an x0 ∈ X
such that M = f(x0). �

Return to Problem 6.9.

Corollary 8.20. If X is compact, and if f : X → Y is one-one, onto
and continuous, then f−1 is continuous. †

Proof. Let C ⊂ X, a closed set, be given. Since X is compact, so is C.
Hence f(C) is compact and thus closed in Y . Thus (f−1)−1(C) = f(C)
is closed. It follows, from Corollary 8.4 that f−1 is continuous. �

Example 8.21. Let T = {z ∈ C : |z| = 1} = {(x, y) ∈ R2 : x2 + y2 =
1} and define f : [0, 2π)→ T by f(t) = exp(it) = (cos(t), sin(t)). Then
f is continuous and invertible, but f−1 is not continuous at 1.

In fact, if g : T → [0, 2π) is continuous, then it is not onto since
its image g(T) will then be a compact, and hence proper, subset of
[0, 2π). 4
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8.5. Uniform Continuity and Compactness.

Definition 8.22. A function f : X → Y is uniformly continuous if for
every ε > 0 there is a δ > 0 such that if x, y ∈ X and dX(x, y) < δ,
then dY (f(x), f(y)) < ε.

Given S ⊂ X, f is uniformly continuous on S if f |S : S → Y is
uniformly continuous. /

Proposition 8.23. If f : X → Y is continuous on X and if X is
compact, then f is uniformly continuous on X. †

Proof. Let ε > 0 be given. For each x ∈ X there is a rx > 0 such that
if dX(x, y) < rx, then d(f(x), f(y)) < ε

2
.

The collection U = {N rx
2

(x) : x ∈ X} is an open cover of X. Since

X is compact, there is a finite subset F ⊂ X such that V = {N rx
2

(s) :

s ∈ F} is a cover of X.
Let δ = 1

2
min{rx : x ∈ F}. Suppose y, z ∈ X and dX(y, z) < δ.

There is an x ∈ F such that y ∈ N rx
2

(x); i.e., dX(x, y) < rx
2

. Hence

dX(x, z) ≤ dX(x, y) + dX(y, z) <
rx
2

+ δ ≤ rx.

Consequently,

dY (f(y), f(z)) ≤ dY (f(y), f(x)) + dY (f(x), f(z)) < ε.

�

For an alternate proof of

Example 8.24. The function f : R → R given by f(x) = x2 is not
uniformly continuous.

Choose ε0 = 1. Given δ > 0, let x = 2
δ

and y = 2
δ

+ δ
2
. Then

|x− y| < δ, but,

|f(y)− f(x)| = 2 +
δ2

4
≥ ε0 = 1.

On the other hand, the function from Problem 8.1 is uniformly con-
tinuous. 4

Do Problems 8.12 and 8.11.

8.6. Continuity and Connectedness.

Proposition 8.25. If f : X → Y is continuous and X is connected,
then f(X) is connected. †
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Proof. Suppose U and V are open subsets of f(X) such that f(X) =
U ∪ V and U ∩ V = ∅.

The sets A = f−1(U) and B = f−1(V ) are open, X = A ∪ B and
A ∩ B = ∅ (since if x ∈ A ∩ B, then f(x) ∈ U ∩ V ). Hence, without
loss of generality, A = X. Hence, f(A) = f(X) = f(f−1(U)) ⊂ U and
V = ∅. It follows that f(X) is connected. �

Example 8.26. Returning to Example 8.21, there does not exist a
one-one onto continuous mapping f : [0, 2π] → T. If there were, then
g = f−1 would be a continuous one-one mapping of T onto [0, 2π].
Let z = f(π) and Z = T \ {z}. Now Z is connected and g|Z : Z →
[0, π) ∪ (π, 2π] is one-one and onto. But then g|Z(Z) = [0, π) ∪ (π, 2π]
is connected which is a contradiction. 4

Do Problems 8.13, 8.14, and 8.15.

Corollary 8.27. [Intermediate Value Theorem] If f : [a, b] → R is
continuous and f(a) < 0 < f(b), then there is a point a < c < b, such
that f(c) = 0. †

Definition 8.28. Let S denote a subset of R. A function f : S → R
is increasing (synonymously non-decreasing) if x, y ∈ S and x ≤ y
implies f(x) ≤ f(y). The function is strictly increasing if x, y ∈ S and
x < y implies f(x) < f(y). /

Corollary 8.29. If f : [a, b] → R is continuous and increasing, then
f([a, b]) = [f(a), f(b)]. †

Example 8.30. Returning to the discussion in Subsection 2.4, fix a
positive integer n and let f : [0,∞)→ [0,∞) denote the function with
rule f(x) = xn. To show that f is onto, let y ∈ [0,∞) be given. With
b the larger of 1 and y, consider g = f |[0,b] : [0, b]→ R. Since f(b) ≥ y,
it follows that y is in the interval [0, g(b)]. By Corollary 8.29, y is in
the range of g and hence in the range of f . The conclusion is then that
positive numbers have n-th roots. 4

8.6.1. More on connectedness - optional. The following property of a
metric space X is sometimes expressed by saying that X is completely
normal. It is evidently stronger than the statement that disjoint closed
sets can be separated by disjoint open sets, a property known as nor-
mality. Compare with Problem 6.11.

Proposition 8.31. If A,B are subset of a metric space such that
A ∩B 6= ∅ and A ∩B 6= ∅, then there exists U, V ⊂ X such that

(i) U and V are open;
(ii) A ⊂ U , B ⊂ V ; and
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(iii) U ∩ V = ∅.
†

Proof. If either A or B is empty, then the result is immediate. Accord-
ingly, suppose that A 6= ∅ and B 6= ∅ and of course that A ∩ B = ∅
and B ∩ A = ∅¿ By Problem 8.1, the function f : X → R given by

f(x) = d(x;B)− d(x;A)

is continuous. Observe, if x ∈ A, then x /∈ B and hence d(x;A) = 0,
but d(x;B) > 0 by Problem 3.9. Thus, f(x) > 0 for x ∈ A. Similarly,
f(x) < 0 for x ∈ B. Let U = f−1(0,∞) and V = f−1(−∞, 0). It
follows that U and V are open, A ⊂ U , B ⊂ V , and U ∩ V = ∅. Thus
U and V satisfy conditions (i)–(iv). �

Remark 8.32. Proposition 8.31 gives another characterization of con-
nected subsets S of a metric space X. Namely, S is not connected if
and only if there exist nonempty, open, disjoint subsets U, V of X such
that S ⊂ U ∪ V . �

8.7. Exercises.

Exercise 8.1. Let S be a subset of the metric space X and suppose
p ∈ X. Explain why the following conditions are equivalent.

(i) p is a limit point of S;
(ii) For every δ > 0 the set (S \ {p}) ∩Nδ(p) 6= ∅; and

(iii) There is a sequence (sn) from S \ {p} which converges to p.

Explain why p ∈ S is an isolated point of S if and only if the set {p}
is an open set in S; i.e., open relative to S.

Exercise 8.2. Show that f : (0, 1]→ R defined by f(x) = 1
x

is contin-
uous, but not uniformly so.

Exercise 8.3. Use the Intermediate Value Theorem 8.27 along with
Corollary 8.20 to argue that the function n

√
is continuous.

Exercise 8.4. Use Exercise 8.3 to show if the sequence (an) of non-
negative real numbers converges to A, and r = m

n
(m,n ∈ N+) is a

rational number, then (arn) converges to Ar.

Exercise 8.5. Give an alternate proof of the statement of Problem 6.9
using Example 8.2(f) and Corollary 8.19.

Exercise 8.6. Suppose f : X → Rk, the point a ∈ X is an accumula-
tion point of X and A ∈ Rk. Show, if

lim
x→a

[f(x)− A] = 0
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(that is that the indicated limit exists and is 0), then

lim
x→a

f(x) = A.

8.8. Problems.

Problem 8.1. Let A be a nonempty subset of a metric space X. Define
f : X → [0,∞) by f(x) = inf{d(x, a) : a ∈ A}. Prove that f is
continuous.

Problem 8.2. Let X be a metric space and Y a discrete metric space.

(i) Determine all continuous functions f : Y → X.
(ii) Determine all continuous functions g : R→ Y ;

Problem 8.3. Prove Corollary 8.4.

Problem 8.4. Show, if f : X → R is continuous, then the zero set of
f ,

Z(f) = {x ∈ X : f(x) = 0}
is a closed set.

Show that the set

{(x, y) : xy = 1} ⊂ R2

is a closed set.

Problem 8.5. Prove the following local version of Proposition 8.3.
Suppose f : X → Y and a ∈ X. The function f is continuous at a if

and only if for every open set U containing b = f(a), there is an open
set V containing a so that V ⊂ f−1(U).

Problem 8.6. Prove Proposition 8.6.

Problem 8.7. Suppose X is a metric space, a ∈ X is a limit point of
X and f : X \ {a} → Y . Show, if

(a) limx→a f(x) exists and equals b;
(b) g : Z → X is continuous at c;
(c) g(c) = a; and
(d) g(z) 6= a for z 6= c,

then
lim
z→c

f ◦ g(z) = b.

Problem 8.8. Define f : R \ {0} → R by f(x) = sin( 1
x
). Show

(i) f does not have a limit at 0;
(ii) does g(x) = xf(x) have a limit at 0;

(iii) more generally, show if h : R→ R is continuous at 0 and h(0) = 0,
then hf has a limit at 0.
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Problem 8.9. Define f : R2 → R by

f(x, y) =

{
xy√
x2+y2

(x, y) 6= (0, 0)

0 (x, y) = (0, 0)

Is f continuous at 0 = (0, 0)?
Define g : R2 → R by

g(x, y) =

{
xy

x2+y2
(x, y) 6= (0, 0)

0 (x, y) = (0, 0)

Is g continuous at 0 = (0, 0)?

Problem 8.10. Suppose X is compact and f : X → Y. Let Z denote
the metric space Z = X × Y with distance function

d((x1, y1), (x2, y2)) = max{dX(x1, x2), dY (y1, y2)}.

Prove, if f : X → Y is continuous, then F : X → Z defined by
F (x) = (x, f(x)) is also continuous.

Prove, if f is continuous, then the graph of f ,

graph(f) = {(x, f(x)) ∈ Z : x ∈ X} ⊂ Z

is compact.
As a challenge, show, if the graph of f is compact, then f is continu-

ous. As a suggestion, consider the function H : graph(f)→ X defined
by H(x, f(x)) = x.

Problem 8.11. Prove if f : X → Y is uniformly continuous and (an)
is a Cauchy sequence from X, then (f(an)) is Cauchy in Y .

Problem 8.12. Given a metric space Y, a point L ∈ Y , and f :
[0,∞)→ Y , f has limit L ∈ Y at infinity, written,

lim
x→∞

f(x) = L,

if for every ε > 0 there is a C > 0 such that if x > C, then dY (f(x), L) <
ε.

Prove, if f : [0,∞) → Y is continuous and has a limit at infinity,
then f is uniformly continuous.

Problem 8.13. A function f : X → Y is a homeomorphism if it is
one-one and onto and both f and f−1 are continuous.

Suppose f : X → Y is a homeomorphism. Show, if Z ⊂ X, then
f |Z : Z → f(Z) is also a homeomorphism. In particular, if Z is
connected, then so is f(Z).
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Problem 8.14. Does there exist a continuous onto function f : [0, 1]→
R?

Does there exist a continuous onto function f : (0, 1) → (−1, 0) ∪
(0, 1)?

Problem 8.15. Suppose f : [0, 1]× [0, 1]→ R. Prove, if f is continu-
ous, then f is not one-one.

Problem 8.16. Let I = (c, d) be an interval and suppose a ∈ I. Let
E denote either I or I \ {a} and suppose f : E → R. We say f
has a limit as x approaches a from the right (above) if the function
f |(a,d) : (a, d)→ R has a limit at a. The limit, if it exists, is denoted,

lim
x→a+

f(x) = lim
a<x→a

f(x).

The limit from the left (below) is defined similarly.
Show f has a limit at a if and only if both the limits from the right

and left at a exist and are equal.

Problem 8.17. Suppose f : (c, d) → R is monotone increasing and
c < a < d. Show, f has a limit from the left at a and this limit is

sup{f(t) : c < t < a}.

Problem 8.18. Suppose f : [a, b] → [c, d] is one-one and onto and
(strictly) monotone increasing. Prove f is continuous.

Problem 8.19. A function f : X → X is a contraction mapping if
there is an 0 ≤ r < 1 such that

d(f(x), f(y)) ≤ rd(x, y)

for all x, y ∈ X.
A point p is a fixed point of f if f(p) = p.
Prove that a contraction mapping can have at most one fixed point.
Prove, if f is a contraction mapping and X is complete, then f has a

(unique) fixed point. In fact, show, for any point x ∈ X, the sequence
(xn) defined recursively by x0 = x and xn+1 = f(xn) converges to this
fixed point. (See Proposition 5.11.)

Problem 8.20. Suppose K is compact and f : K → K. Show, if f is
continuous, then the function g : K → [0,∞)

g(x) = d(f(x), x)

attains its infimum (achieves a minimum). Show further that if g(z) is
the minimum value, then

d(f(f(z)), f(z)) ≥ d(f(z), z).
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Show that x is a fixed point of f if and only if g(x) = 0.
Suppose now that f satisfies

d(f(x), f(y)) < d(x, y)

for all x 6= y in K.
Prove f has a unique fixed point.
Show by example, that the hypothesis that K is compact can not be

dropped.

Problem 8.21. Suppose f : X → Y maps convergent sequences to
convergent sequences; i.e., if (an) converges in X, then (f(an)) con-
verges in Y .

Show, if (an) converges to a, and (bn) is the sequence defined by
b2n = an and b2n+1 = a, then (bn) converges to a. Now prove that f(bn)
converges to f(a).

Prove f is continuous.

Problem 8.22 (Pasting Lemma). Suppose f : X → Y and X = S∪T ,
where S and T are closed. Show, if the restriction of f to both S and
T is continuous, then f is continuous. The same is true if both S and
T are open.

Problem 8.23. Show, if f : X → X is continuous, X is compact,
and f does not have a fixed point, then there is an ε > 0 such that
d(x, f(x)) ≥ ε for all x ∈ X.

Problem 8.24. Fill in the outline of the following proof of Proposition
8.23. Arguing by contradiction, suppose f is not uniformly continuous.
Hence there is an ε0 > 0 such that for each n ∈ N there exists xn, yn ∈
X such that dX(xn, yn) < 1

n
, but dY (f(xn), f(yn)) ≥ ε0. There exists

a point z ∈ X and some choice of positive integers n1 < n2 < . . . ,
such that (xnk)k and (ynk)k both converge to z. Explain why this last
statement contradicts the assumption that f is continuous.

9. Sequences of Functions and the Metric Space C(X)

9.1. Sequences of Functions.

Definition 9.1. Let X be a set and Y a metric space. A sequence
(fn) of functions fn : X → Y converges pointwise to f : X → Y if
for each x ∈ X the sequence (fn(x)) converges to f(x) in Y ; i.e., if for
every x ∈ X and every ε > 0 there is an N such that for every n ≥ N ,
dY (fn(x), f(x)) < ε. The function f is the limit of the sequence, written

lim
n→∞

fn = f (pointwise).

/
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Example 9.2. (a) Let f : [0, 1] → R denote the function defined by
f(1) = 1 and f(x) = 0 for 0 ≤ x < 1. The sequence fn : [0, 1]→ R
defined by fn(x) = xn converges pointwise to f .

(b) The sequence fn : [0, 1]→ R defined by

fn(x) =
x

1 + nx2

converges pointwise to 0.
4

Definition 9.3. Let X be a set and Y a metric space. A sequence (fn)
of functions fn : X → Y is uniformly convergent or converges uniformly
if there exists f : X → Y such that for every ε > 0 there is an N such
that dY (fn(x), f(x)) < ε for every x ∈ X and every n ≥ N.

In this case (fn) converges uniformly to f . /

Remark 9.4. If (fn) converges uniformly to f , then (fn) converges
pointwise to f . On the other hand, if (fn) converges pointwise, but not
uniformly, to f , then (fn) does not converge uniformly. �

Example 9.5. (a) The sequence in item (a) of Example (9.2) above
does not converge uniformly to its pointwise limit f (and thus does
not converge uniformly). To prove this statement, choose ε0 = 1

2
.

Given N , choose n = N and xN = (1
2
)

1
N . Then |fN(xN)−f(xN)| =

1
2
≥ ε0.

(b) The sequence from item (b) of Example (9.2) does converge uni-
formly to the zero function f . To prove this claim, let ε > 0 be
given. Choose N ∈ N+ such that 1

N
< ε2 and suppose n ≥ N . Let

x ∈ [0, 1] be given. If 0 ≤ x < ε, then

|fn(x)− f(x)| = fn(x) ≤ x < ε.

On the other hand, if 1 ≥ x ≥ ε, then

|fn(x)− f(x)| ≤ x

nx2
≤ 1

nε
< ε.

(c) Define hn : [0, 1] → [0, 1] such that the graph of hn connects (0, 0)
to ( 1

2n
, 1) and then connects ( 1

2n
, 1) to ( 1

n
, 0) and finally connects

( 1
n
, 0) to (1, 0). The sequence (hn) converge pointwise to 0, but

doesn’t converge uniformly to 0.
4

Theorem 9.6. Suppose X, Y are metric spaces and (fn) is a sequence
fn : X → Y . If each fn is continuous and if (fn) converges uniformly
to f , then f is continuous.
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Proof. Let x and ε > 0 be given. Choose N such that if n ≥ N and
y ∈ X, then dY (fn(y), f(y)) < ε. Since fN is continuous at x, there is
a δ > 0 such that if dX(x, y) < δ, then dY (fN(x), fN(y)) < ε. Thus, if
dX(x, y) < δ, then

dY (f(x), f(y)) ≤dY (f(x), fN(x)) + dY (fN(x), fN(y)) + dY (fN(y), f(y))

< 3ε.

�

Example 9.7. In Example (9.5)(c) a sequence of continuous functions
converges pointwise to a continuous function, but the convergence is
not uniform.

The sequence fn : [0, 1] → R given by fn(x) = xn can not converge
uniformly, since the limit f fails to be continuous at 1. Note that the
same is true for any subsequence. 4

9.2. The Metric Space C(X).

Definition 9.8. Suppose X is a set and Y is a metric space. A function
f : X → Y is bounded if the range of f is bounded. /

Remark 9.9. Suppose X is a set and Y is a metric space. If f, g :
X → Y are bounded functions, then, as is easily proved, the set
{dY (f(x), g(x)) : x ∈ X} is a bounded set of real numbers and hence
has a supremum. In the case that f is continuous and X is compact,
then f is bounded. Further, if both f and g are continuous (and still
X is compact), then because that mapping D : X → R defined by
D(x) = dY (f(x), g(x)) is continuous, the supremum is attained. �

Definition 9.10. Given a compact metric space X and a metric space
Y , let C(X, Y ) denote the set of continuous functions from X to Y .

The function d : C(X, Y )× C(X, Y )→ R defined by

d(f, g) = sup{dY (f(x), g(x)) : x ∈ X}
is called the uniform metric. /

Remark 9.11. In the case that Y is either R (or C) it is customary
to write C(X) instead of C(X,R). �

Proposition 9.12. Suppose X and Y are metric spaces and X is
compact.

(a) The function d is a metric on C(X, Y ).
(b) A sequence (fn) from C(X, Y ) converges to f (in the uniform met-

ric) if and only if (fn) converges to f uniformly.
(c) If Y is complete, then C(X, Y ) is also complete.
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†

Proof. We will prove that d satisfies the triangle inequality, the other
axioms of metric being easily verified.

Accordingly, let f, g, h ∈ C(X, Y ) be given. Given x ∈ X, the
triangle inequality in Y and the definition of d gives,

dY (f(x), h(x)) ≤ dY (f(x), g(x)) + dY (g(x), h(x)) ≤ d(f, g) + d(g, h).

Hence, d(f, g) + d(g, h) is an upper bound for the set {dY (f(x), h(x)) :
x ∈ X} and therefore, d(f, h) ≤ d(f, g) + d(g, h).

Now suppose (fn), a sequence from C(X, Y ), converges to f ∈
C(X, Y ) in the metric d. Given ε > 0 there is an N such that if n ≥ N ,
then d(fn, f) < ε. In particular, for all x ∈ X, dY (fn(x), f(x)) ≤
d(fn, f) < ε and (fn) converges to f uniformly.

Conversely, suppose (fn) converges to f ∈ C(X, Y ) uniformly. Given
ε > 0 there is an N such that if n ≥ N , then, for all x ∈ X,
dY (fn(x), f(x)) < ε. Hence, for n ≥ N , d(fn, f) ≤ ε and (fn) con-
verges to f in C(X, Y ).

Finally, suppose that Y is complete and that (fn), a sequence from
C(X, Y ), is uniformly Cauchy; i.e., is Cauchy with respect to d. Then,
for each x ∈ X, the sequence (fn(x)) is Cauchy in Y . Since Y is
complete, (fn(x)) converges to some f(x). Thus, there is a function
f : X → Y such that (fn) converges pointwise to f .

Now, let ε > 0 be given. There is an N such that if n,m ≥ N , then
d(fn, fm) < ε. In particular, dY (fn(x), fm(x)) < ε for each x ∈ X and
m,n ≥ N. Thus, for n ≥ N and all x ∈ X,

dY (fn(x), f(x)) = lim
m→∞

dY (fn(x), fm(x)) ≤ ε.

Hence (fn) converges uniformly to f . Since each fn is continuous, so is
f , by Theorem 9.6. Thus f ∈ C(X, Y ) and (fn) converges to f . �

Remark 9.13. The unit ball in C([0, 1]) is the set

B = {f ∈ C([0, 1]) : d(0, f) ≤ 1}.
The set B is complete (thus closed) and bounded, but not compact
since fn(x) = xn is a sequence from B which has no uniformly conver-
gent subsequence. See Problem 9.5 for a more general statement. �

9.3. Exercises.

Exercise 9.1. Show that the sequence of continuous real-valued func-
tions (fn) defined on the interval (−1, 1) by fn(x) = xn does not con-
verge uniformly, even though it does converge pointwise to a continuous
function.



D
RA
FT

76

Exercise 9.2. Show, for a fixed 0 < a < 1, the sequence of real-
valued functions (fn) defined on the interval [−a, a] by fn(x) = xn

does converge uniformly.

Exercise 9.3. Does the sequence of functions (fn) defined on the in-
terval [0, 1] by

fn(x) =
nx

1 + nx2

converge pointwise? Does it converge uniformly?

Exercise 9.4. Same as Exercise 9.3, but with

fn(x) =
nx

1 + n2x2
.

Same as Exercise 9.3, but with

fn(x) =
nx

1 + n3x2
.

Exercise 9.5. Show, if (fn) and (gn) are uniformly convergent se-
quences of functions mapping the set X into R, then the sequence
(hn = fn + gn) converges uniformly too.

Exercise 9.6. Consider the sequence (fn) where fn : R→ R is defined
by fn(x) = x + 1

n
. Show fn converges uniformly. Does the sequence

(f 2
n) converge uniformly? Compare with Exercise 9.5.

9.4. Problems.

Problem 9.1. Here is an application of Problem 8.19. Suppose g :
[0, 1]→ R is continuous and∫ 1

0

|g(t)|dt < 1.

Show, for k ∈ R, that the mapping F : C([0, 1])→ C([0, 1]) defined by

F (f)(x) = kx+

∫ x

0

g(t)f(t)dt

is a contractive mapping (see Problem 8.19).
Show that the equation F (f) = f has a unique solution.
Note that this solution satisfies f ′ = k + gf and f(0) = 0 (though

a proof will have to wait until after a discussion of differentiation of
course).

Problem 9.2. Show, if (fn) converges to f in C(X, Y ), then (fn)
is equicontinuous ; i.e., given ε > 0 there is a δ > 0 such that, for
every n, if d(x, y) < δ, then d(fn(x), fn(y)) < ε. (Thus the collection
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{fn : n ∈ N} is uniformly uniformly continuous.) (Recall, implicit is
the assumption that X is compact.)

Note that the conclusion holds if (fn) is a Cauchy sequence from
C(X, Y ), not necessarily convergent with a slight modification of the
proof for the case above.

Problem 9.3. Let X be a compact metric space. A subset C of C(X)
is equicontinuous if for each ε > 0 there is a δ > 0 such that for every
f ∈ C and x, y ∈ X with d(x, y) < δ,

|f(x)− f(y)| < ε.

If C is compact, then C is closed and bounded (in the metric space
C(X)). Show that C is also equicontinuous.

It turns out that the converse is true too, but more challenging to
prove. Namely, if C is closed, bounded and equicontinuous, then C is
compact.

Problem 9.4. Show, if (fn) converges to f in C(X, Y ) and if and (xn)
is a sequence from X which converges to x, then (fn(xn)) converges to
f(x). Use this fact to show that the sequence (hn) from Example 9.5
(c) does not converge uniformly. (Recall, implicit is the assumption
that X is compact.)

Note the following variant of this problem. If (fn) is a Cauchy se-
quence from C(X, Y ) and if (xn) is Cauchy from X, then (fn(xn)) is
Cauchy in Y .

Problem 9.5. Given a point a in a compact metric space X, let

g(x) =
1

1 + d(a, x)
.

Let fn : X → R denote the sequence of functions fn(x) = g(x)n (for
n ≥ 1).

Recall that a point a ∈ X is an isolated point of X if the set {a} is
open in X.

(a) Find the pointwise limit f of (fn);
(b) Explain why each fn is continuous;
(c) Prove that f is continuous if and only if a is an isolated point of

X;
(d) Prove, if a is not an isolated point of X, then the unit ball of C(X)

is not compact;
(e) Prove, if the closed unit ball of C(X) is compact, then every point

of X is an isolated point of X;
(f) Prove the closed unit ball of C(X) is compact if and only if X is a

finite set.
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Problem 9.6. Given a set X and metric space Y , let B(X, Y ) denote
the bounded functions fromX to Y . Prove that d(f, g) = sup{dY (f(x), g(x)) :
x ∈ X} defines a metric on B(X, Y ) and that most of Proposition 9.12
holds with B(X, Y ) in place of C(X, Y ).

Problem 9.7. Suppose f : [0, 1]→ R is continuous and let gn : [0, 1]→
R denote the function gn(t) = tnf(t). Show, if (gn) converges uni-
formly, then f(1) = 0; and conversely, if f(1) = 0, then (gn) converge
uniformly. [Note that it suffices to assume that f is bounded and con-
tinuous at 1.]

10. Differentiation

This section treats the derivative of a real-valued function defined
on an open set in R. Subsections 10.1 and 10.2 contain the definitions
and basic properties respectively. Subsections 10.3 and 10.4 treat the
Mean Value Theorem and Taylor’s Theorem. The brief subsection 10.5
introduces the derivative of a vector-valued function of a real variable.

10.1. Definitions and Examples.

Definition 10.1. Suppose D ⊂ R, a ∈ D is an accumulation point of
D and f : D → R. The function f is differentiable at a provided the
limit

lim
x→a

f(x)− f(a)

x− a
exists. In this case the value of the limit is called the derivative of f at
a , denoted f ′(a).

If f is differentiable at each point in D, then f is differentiable and
in this case f ′ : D → R is called the derivative of f . /

Example 10.2. Fix c ∈ R. The function f : R → R defined by
f(x) = c is differentiable and f ′ = 0.

The identity function g : R→ R given by g(x) = x is is differentiable
and g′(x) = 1. 4

Do Exercise 10.1.

10.2. Basic Properties.

Proposition 10.3. Suppose D ⊂ R and a ∈ D is an accumulation
point of D. If f : D → R is differentiable at a then f is continuous at
a. †
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Proof. Since the limit limx→a
f(x)−f(a)

x−a exist and and 0 = limx→a x− a,
it follows that

0 = lim
x→a

f(x)− f(a)

x− a
lim
x→a

x− a = lim
x→a

[f(x)− f(a)].

An application of Exercise 8.6 shows that the limit limx→a f(x) exists
and equals f(a). �

Proposition 10.4. Suppose D ⊂ R and a ∈ D is an accumulation
point of D. If f, g : D → R are differentiable at a, then

(i) fg is differentiable at a and (fg)′(a) = f ′(a)g(a) + f(a)g′(a);
(ii) f + g is differentiable at a and (f + g)′(a) = f ′(a) + g′(a);
(iii) if g′(a) 6= 0 and g is never 0, then 1

g
is differentiable at a and(

1

g

)′
(a) = − g

′(a)

g(a)2
.

†

Proof. To prove item (i) consider,

f ′(a)g(a) + f(a)g′(a) = lim
x→a

f(x)− f(a)

x− a
lim
x→a

g(x) + lim
x→a

g(x)− g(a)

x− a
f(a)

= lim
x→a

f(x)− f(a)

x− a
g(x) + lim

x→a

g(x)− g(a)

x− a
f(a)

= lim
x→a

f(x)g(x)− f(a)g(a)

x− a
The proofs of the other items are similar. �

The proofs of the chain rule and inverse function theorem, while
similar to the proofs of the items in the proposition above, are more
subtle.

Proposition 10.5. [Chain Rule] Suppose U, V ⊂ R and a and b are
accumulation points of U and V respectively. If f : U → V and
g : V → R are differentiable at a and b = f(a) respectively, then
h = g ◦ f is differentiable at a and h′(a) = g′(f(a))f ′(a). †

Proof. The function

F (y) =

{
g(y)−g(b)
y−b y 6= b

g′(b) y = b,
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is continuous at b. Thus, F ◦ f is continuous at a and

g′(b)f ′(a) = lim
x→a

F (f(x)) lim
x→a

f(x)− f(a)

x− a

= lim
x→a

F (f(x))
f(x)− f(a)

x− a

= lim
x→a

g(f(x))− g(b)

x− a
where the limit of a product is a product of the limits, provided they
both exist, has been used in the second equality. �

Proposition 10.6. [Inverse Function Theorem I] Suppose f : [a, b]→
R is continuous, strictly increasing, and differentiable at a < c < b. If
f ′(c) 6= 0, then f−1 : [f(a), f(b)]→ [a, b] is differentiable at f(c) and

(f−1)′(f(c)) =
1

f ′(c)
.

†

Proof. For notational ease, let g = f−1 and d = f(c). The function

F (x) =

{
x−c

f(x)−f(c) x 6= c
1

f ′(c)
x = c

is defined and continuous, including at c. Since also g(y) is continuous
and the composition of continuous functions is continuous, it follows
that

lim
y→d

F (g(y)) = F (g(d)) = F (c).

Noting that F (g(y)) = g(y)−d
y−d completes the proof. �

Example 10.7. The product rule and induction show that if n ∈ N+

and f(x) = xn, then f is differentiable and f ′(x) = nxn−1. Using the
quotient rule, the same formula holds for n ∈ Z, n 6= 0.

Given n ∈ N+, the function g : (0,∞)→ (0,∞) defined by g(x) = x
1
n

is the inverse of f(x) = xn. Hence, by the inverse function theorem, g
is differentiable and

g′(xn) =
1

f ′(x)
=

1

nxn−1

Thus, g′(x) = 1
n
x

1
n
−1. That this last formula holds for negative integers

follows from the quotient rule.
Finally, if q = m

n
is rational with m,n ∈ Z, n > 0 and f(x) = x

m
n ,

an application of the chain rule shows f is differentiable and f ′(x) =
qxq−1. 4
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10.3. The Mean Value Theorem. Suppose X is a metric space. A
f : X → R has a local maximum at a ∈ X if there is an open set V
such that a ∈ V ⊂ X and if x ∈ V , then f(a) ≥ f(x).

Proposition 10.8. Suppose U is an open subset of R, a ∈ U , and
f : U → R. If f is differentiable at a and if f has a local maximum at
a, then then f ′(a) = 0. †

Proof. The function

F (x) =

{
f(x)−f(a)

x−a x 6= a

f ′(a) x = a

is continuous at a. Thus, given ε > 0 there is a δ such that 0 < δ < η
and if |x− a| < δ, then

F (a) <F (x) + ε

F (a) >F (x)− ε.

Choosing x < a gives F (x) ≥ 0. Hence, F (a) > −ε. Choosing x > a
gives F (x) ≤ 0 and thus F (a) < ε. It now follows that F (a) = 0. �

Proposition 10.9. [Rolle’s Theorem] Suppose f : [a, b]→ R is contin-
uous, and f is differentiable at each point in (a, b). If f(a) = f(b) = 0,
then there is a point a < c < b such that f ′(c) = 0. †

Proof. Since f is continuous and real valued on a compact set f has
both a maximum and minimum. Since f(a) = f(b), at least one of
either the maximum or minimum occurs at a point a < c < b (of
course it is possible for both the maximum and minimum to occur at
the endpoints in which case f is identically 0). By the previous result,
f ′(c) = 0. �

Theorem 10.10. [Mean Value Theorem, Cauchy’s Version] If f, g :
[a, b] → R are continuous, and if both are differentiable at each point
in (a, b), then there is a c with a < c < b so that (f(b) − f(a))g′(c) =
f ′(c)(g(b)− g(a)).

Proof. Let F (x) = (f(x) − f(a))(g(b) − g(a)) − (f(b) − f(a))(g(x) −
g(a)). Then F (a) = F (b) = 0 and F satisfies the hypotheses of Rolle’s
Theorem. Hence there is a a < c < b such that F ′(c) = 0; i.e.,
f ′(c)(g(b)− g(a)) = (f(b)− f(a))g′(c). �

Choosing g(x) = x in the Cauchy Mean Value Theorem captures the
usual Mean Value Theorem.
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Corollary 10.11. [Mean Value Theorem, MVT] If f : [a, b] → R is
continuous, and if f is differentiable at each point in (a, b), then there
is a c with a < c < b so that f(b)− f(a) = f ′(c)(b− a). †

Recall the definition of an increasing function, Definition 8.28.

Corollary 10.12. Suppose f : (a, b) → R is differentiable. The func-
tion f is increasing if and only if f ′ ≥ 0 (meaning f ′(x) ≥ 0 for all
x ∈ (a, b)).

Further, if f ′(x) > 0 for all x ∈ (a, b), then f is strictly increasing. †

The function f : R→ R, defined by f(x) = x3 is strictly increasing,
but f ′(0) = 0.

Do Problem 10.1.

Proof. If f is increasing, then, for a fixed point a < p < b and any
q ∈ (a, b) with q 6= p,

f(p)− f(q)

p− q
≥ 0.

It follows from this inequality that f ′(p) ≥ 0.
For the converse, given a < x < y < b, by the MVT there is a

x < c < y such that

f(y)− f(x) = f ′(c)(y − x) ≥ 0,

where the inequality follows from the assumption that f ′ takes non-
negative values and y − x > 0. Thus f is increasing. If f ′ takes only
positive values, then f is strictly increasing. �

Proposition 10.13. [A version of L’hopitals rule] Let I = (a, b) and
f, g : I → R and suppose

(i) both f and g are differentiable;
(ii)

lim
x→a

f(x) = 0 = lim
x→a

g(x); and;

(iii) both g and g′ are never 0.

If

lim
x→a

f ′(x)

g′(x)

exists, then

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
.

†
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The article http://en.wikipedia.org/wiki/Johann_Bernoulli#

L.27H.C3.B4pital_controversy gives an amusing account of the (mis)naming
of L’hopital’s rule.

Proof. The functions f and g extend to be continuous on [a, b) by
defining f(a) = g(a) = 0.

Let

L = lim
x→a

f ′(x)

g′(x)
.

Given ε > 0 there is a δ > 0 such that if a < y < a+ δ, then

|L− f ′(y)

g′(y)
| < ε.

From the Cauchy mean value theorem and hypothesis (iii), given
a < x < a+ δ there is a a < c < x such that

f ′(c)

g′(c)
=
f(x)− f(a)

g(x)− g(a)
=
f(x)

g(x)
.

Thus, if a < x < a+ δ, then,

|L− f(x)

g(x)
| = |L− f ′(c)

g′(c)
| < ε.

�

10.4. Taylor’s Theorem.

Theorem 10.14. Let I = (u, v) ⊂ R be an open interval, n ∈ N, and
suppose f : I → R is (n + 1) times differentiable. If u < a < b < v,
then there is a c such that a < c < b and

f(b) =
n∑
j=0

f (j)(a)(b− a)j

j!
+
f (n+1)(c)(b− a)n+1

(n+ 1)!
.

The result remains true with b < a. See Exercise 10.3.

Proof. Define Rn : I → R by

Rn(x) = f(b)−
n∑
j=0

f (j)(x)(b− x)j

j!
.

There is a K so that Rn(a) = K (b−a)n+1

(n+1)!
and the goal is to prove there

is a a < c < b such that K = f (n+1)(c).
Let

ϕ(x) = Rn(x)−K (b− x)n+1

(n+ 1)!
.

http://en.wikipedia.org/wiki/Johann_Bernoulli#L.27H.C3.B4pital_controversy
http://en.wikipedia.org/wiki/Johann_Bernoulli#L.27H.C3.B4pital_controversy
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Note that ϕ : [a, b] → R is continuous and differentiable on (a, b).
Moreover, ϕ(a) = 0 = ϕ(b). Thus, by the MVT, there is a a < c < b
such that ϕ′(c) = 0. Since,

ϕ′(x) = −f (n+1)(x)
(b− x)n

n!
+K

(b− x)n

n!
,

it follows that

0 = (−f (n+1)(c) +K)
(b− c)n

n!
.

The conclusion of the theorem follows. �

10.5. Vector-Valued Functions. Given an open set U ⊂ R, the de-
rivative of a function f : U → Rk can be defined coordinate-wise.
An alternate, but equivalent, definition appears later. In any case, if
D ⊂ R and f : D → Rk is differentiable at p ∈ D, then, for each
vector v ∈ Rk, the function g : D → R given by g(x) = 〈f(x), v〉 is
differentiable at p and g′(p) = 〈f ′(p), v〉.

Problem 10.6 explores the extent to which the MVT extends to
vector-valued functions (of a real variable). You may first wish to
do Exercise 10.2.

10.6. Exercises.

Exercise 10.1. Determine which of the following functions f : R→ R
are differentiable at 0.

(i) f(x) = x2 sin( 1
x
) for x 6= 0 and f(0) = 0;

(ii) f(x) = x sin( 1
x
) for x 6= 0 and f(0) = 0;

(iii) f(x) = x2 for x ≤ 0 and f(x) = x3 for x > 0;
(iv) f(x) = |x|.

Exercise 10.2. Compute the derivative of f : R→ R2 defined by

f(x) =

(
x2

x3

)
.

Can you find a 0 < c < 1 such that

f ′(c) = f(1)− f(0)?

Exercise 10.3. Show Taylor’s Theorem remains true if b < a by ap-
plying the Theorem to g(x) = f(−x) and the points −a < −b.

Exercise 10.4. Show, if f : (a, b) → R is differentiable and f ′ = 0,
then f is constant.

Show, if f, g : (a, b) → R are differentiable, f ′ = g′ and there is a
point a < y < b such that f(y) = g(y), then f = g.
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10.7. Problems.

Problem 10.1. Consider the function f : R→ R given by

f(x) =

{
x
2

+ x2 sin( 1
x
) x 6= 0

0 x = 0.

Show, f is differentiable and f ′(0) > 0, yet there is no open interval
containing 0 on which f is increasing. [You may assume the usual rules
of calculus in which case differentiability of f away from 0 is automatic.
Thus, you need to show that f is differentiable at 0 and the derivative at
0 is positive. Using Corollary 10.12, to finish the problem it is enough
to show, f ′ is not nonnegative on any open interval containing 0.]

Problem 10.2. Suppose f : R→ R is differentiable. Use the MVT to
show, if f ′ is bounded, then f is uniformly continuous.

Problem 10.3. A function f : (a, b)→ R has limit∞ at a if for every
C > 0 there is a δ > 0 such that if a < x < a+ δ, then f(x) > C.

Prove that condition (ii) in Proposition 10.13 can be replaced by

(ii′) lim
x→a

g(x) =∞ = lim
x→a

f(x).

Suggestion: Fix a a < y < b. Given x < y, by the Cauchy MVT,
there is a t (depending on this choice of x and y) such that

f(x)− f(y)

g(x)− g(y)
=
f ′(t)

g′(t)
.

Deduce that
f(x)

g(x)
=
g(x)− g(y)

g(x)

f ′(t)

g′(t)
+
f(y)

g(x)
.

Proceed.

Problem 10.4. Suppose f : R→ R is differentiable. Show, if |f ′(t)| <
1 for all t, then f has at most one fixed point (a point y such that
f(y) = y). Show, if there is an 0 ≤ A < 1 such that |f ′(t)| ≤ A for all
t, then f has exactly one fixed point. [As a suggestion for the second
part, choose any point x1, let xn+1 = f(xn) and use Proposition 5.11.]

Note that the function any function f : R→ R of the form f = t+ g
where g takes only positive values, is differentiable and |1 + g′(x)| < 1
for all x has no fixed points, but does satisfy |f ′(x)| < 1 for all x.

Problem 10.5. Let f(x) = sin(x) and let pn denote the n-th Taylor
polynomial for f ; i.e.,

pn(x) =
n∑
j=0

ajx
j,
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where

aj =


0 j = 0 mod 2;
1
j!

j = 1 mod 4

− 1
j!

j = 3 mod 4.

Use Taylor’s Theorem to show that pn(x) converges to sin(x) uniformly
on the interval [−1, 1]. (Later we will see that, for any given C, the
sequence (C

n

n!
) converges to 0 from which it follows that the sequence

(pn) converges uniformly to sin(x) on the interval [−C,C].)

Problem 10.6. Give an example, if possible, of a function f : [a, b]→
R2 such that f ′ is continuous, but for each t ∈ [a, b],

f(b)− f(a) 6= f ′(t)(b− a).

Prove, if f : [a, b] → Rk is continuous and differentiable on (a, b),
then there is an a < c < b such that

‖f(b)− f(a)‖ ≤ ‖f ′(c)‖(b− a).

(Suggestion: Let u be a unit vector in the direction of f(b)− f(a) and
apply the usual Mean Value Theorem to g(x) = 〈f(x), u〉.)

Problem 10.7. Let a, b ∈ R, a < b, and assume that f, g : [a, b) →
R are continuous, and are differentiable on (a, b). Assume also that
f(a) = g(a) and that f ′(x) > g′(x) for all x ∈ (a, b). Prove that
f(x) > g(x) for all x ∈ (a, b).

Problem 10.8. Show, if f : R→ R is differentiable, then between any
two zeros of f there is a zero of f ′.

Using induction, prove that a (real) polynomial of degree n can have
at most n distinct real roots. (Don’t use the Fundamental Theorem
of Algebra to do this problem. The Fundamental Theorem of Algebra
says that over the complex numbers, any polynomial can be factored es-
sentially uniquely into linear terms. It’s much deeper and much harder
to prove than the result of this problem.)

Problem 10.9. Let X and Y be metric spaces. A function f : X → Y
is called Lipschitz continuous at p0 ∈ X if there exist K, δ > 0 such
that

(6) dY (f(p), f(p0)) ≤ KdX(p, p0)

for all p ∈ Nδ(p0). We call f Lipschitz continuous (or just Lipschitz)—
with no “at p0”—if there exists K > 0 such that

(7) dY (f(p), f(q)) ≤ KdX(p, q)
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for all p, q ∈ X. We call f locally Lipschitz if for all p0 ∈ X, there exists
δ > 0 such that the restriction of f to Nδ(p0) is Lipschitz continuous.

(Note that “locally Lipschitz” is stronger than “Lipschitz continuous
at every point;” for the latter, there would be a K(q) that works in
(7) for each q ∈ X and all p sufficiently close to q, but there might not
be a single K that works simultaneously for all p, q sufficiently close to
a given p0. Somewhat more logical terminology for “locally Lipschitz”
might be “locally uniformly Lipschitz”, and a similar comment applies
to “Lipschitz function” [with no “locally”]. Some mathematicians do
insert the word “uniformly” in these cases, but most do not.)

(a) Prove that if f : X → Y is Lipschitz continuous at p0 ∈ X,
then f is continuous at p0.

(Note: the converse is false. For example, the function [0,∞)→
R defined by x 7→

√
x is not Lipschitz continuous at 0.]

For the remainder of this problem, let U ⊂ R be an open interval,
and f : U → R a function.

(b) Let x0 ∈ U . Prove that if f is differentiable at x0, then f is
Lipschitz continuous at x0.

(c) Prove that if f is differentiable, and the function f ′ : U → R is
bounded, then f is Lipschitz continuous.

(d) Prove that if f is differentiable, and the function f ′ : U → R is
continuous, then f is locally Lipschitz.

11. Riemann Integration

This chapter develops the theory of the Riemann integral of a bounded
real-valued function f on an interval [a, b] ⊂ R. The approach used,
approximating from above and below, is very efficient and intuitive,
though a bit limited because it relies on the order structure of R.

11.1. Definition of the Integral.

Definition 11.1. A partition P of the interval [a, b] consists of a finite
set of points P = {a = x0 < x1 < · · · < xn = b}.

Given the partition P let ∆j = xj−xj−1. Given a bounded function
f : [a, b]→ R, let

mj = inf{f(x) : xj−1 ≤ x ≤ xj}
Mj = sup{f(x) : xj−1 ≤ x ≤ xj};
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define the lower and upper sums of f with respect to P by

L(P, f) =
n∑
j=1

mj∆j

U(P, f) =
n∑
j=1

Mj∆j;

define the lower and upper Riemann integrals of f (on [a, b]) by

¯

∫ b

a

f dx = sup{L(P, f) : P}∫̄ b

a

f dx = inf{U(P, f) : P};

and finally, f is Riemann integrable on [a, b] if the upper and lower
integrals agree, denoted by f ∈ R([a, b]). In this case, the common
value of the upper and lower integrals is the Riemann integral of f on
[a, b], denoted ∫ b

a

f dx.

/

Example 11.2. For the function f : [0, 1]→ [0, 1] defined by f(x) = 1
it is evident that U(P, f) = 1 = L(P, f) for every P . Hence f is
Riemann integrable and ∫ 1

0

1 dx = 1.

4

Example 11.3. Let g : [0, 1] → [0, 1] denote the identity function,
g(x) = x. Given a partition P as in the definition, observe,

U(P, g) =
n∑
j=1

xj(xj − xj−1)

≥
n∑
j=1

1

2
(xj + xj−1)(xj − xj−1)

=
1

2

n∑
j=1

x2j − x2j−1 =
1

2
.

Hence the upper integral of g is at least 1
2
. A similar argument shows

the lower integral is also at most 1
2
.
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Given a positive integer n, let Pn denote the partition

Pn = {xj =
j

n
: j = 0, . . . , n}.

The corresponding upper and lower sums are easily seen to be

U(Pn, g) =
n∑
j=1

j

n

1

n
=
n+ 1

2n

and

L(Pn, g) =
n−1∑
j=0

j

n

1

n
=
n− 1

2n
.

It follows that ∫̄ 1

0

x dx ≤ 1

2
and

¯

∫ 1

0

x, dx ≥ 1

2
.

Thus the upper and lower integrals are both 1
2
. Thus g is integrable

and its integral is 1
2
. 4

Do Problem 11.1.

Example 11.4. Let f : [0, 1] → R denote the indicator function of
[0, 1] ∩Q. Thus f(x) = 1 if x ∈ Q and f(x) = 0 otherwise. Verify, for
any partition P of [0, 1], that L(P, f) = 0 and U(P, f) = 1. Thus

¯

∫ 1

0

f dx = 0 < 1 =

∫̄ 1

0

f dx

and so f is not Riemann integrable (on [0, 1]). 4

Remark 11.5. If f : [a, b]→ R and P is a partition of [a, b], then

L(P, f) ≤ U(P, f).

�

Definition 11.6. Let P and Q denote partitions of [a, b]. We say Q is
a refinement of P if P ⊂ Q.

The common refinement of P and Q is P ∪Q. /

Lemma 11.7. Suppose f : [a, b] → R is bounded and P and Q are
partitions of [a, b].

(i) If Q is a refinement of P , then

L(P, f) ≤ L(Q, f) ≤ U(Q, f) ≤ U(P, f).
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(ii) If P and Q are any partitions of [a, b], then

L(P, f) ≤ U(Q, f).

(iii) In particular,

¯

∫ b

a

f dx ≤
∫̄ b

a

f dx.

†

Sketch of proof. The middle inequality in item (i) has is evident from
the definitions (as already noted). The first inequality can be reduced
to the following situation: P = {a < b} and Q = {a < t < b} where
the result is evident. This proves item (i).

To prove item (ii), let R denote the common refinement of P and Q.
Then, by item (i),

L(P, f) ≤ L(R, f) ≤ U(R, f) ≤ U(Q, f).

To prove (iii), fix a partition Q. For all partitions P, L(P, f) ≤
U(Q, f). Hence

¯

∫ b

a

f dx ≤ U(Q, f).

Since this inequality holds for all Q, the result follows. �

Example 11.8. Returning to Example 11.3, observe that, an applica-
tion of Lemma 11.7 avoids the need to first show that that the upper
and lower integrals are bounded below and above respectively by 1

2
. 4

Do Problem 11.2.

11.2. Sufficient Conditions for Integrability.

Proposition 11.9. If f : [a, b] → R and f is bounded, then f ∈
R([a, b]) if and only if for each ε > 0 there is a partition P of [a, b] such
that

U(P, f)− L(P, f) < ε.

†

Proof. First suppose f ∈ R([a, b]) and let ε > 0 be given. There exists
partitions Q,S such that

¯

∫ b

a

f dx <L(Q, f) + ε∫̄ b

a

f dx >U(S, f)− ε.
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Since the upper and lower integrals are equal, it follows that

L(Q, f) + ε > U(S, f)− ε.
Choosing P equal to the common refinement of Q and S and applying
Lemma 11.7 gives,

L(P, f) + ε > U(P, f)− ε.
Hence,

U(P, f)− L(P, f) < 2ε

and the proof of one direction of the proposition is complete.
The estimate

L(P, f) ≤
¯

∫ b

a

f dx ≤
∫̄ b

a

f dx ≤ U(P, f)

proves the converse. �

Corollary 11.10. If f ∈ R([a, b]) and ε > 0, then there is a partition
P = {a = x0 < x1 < · · · < xn = b} such that for any xj−1 ≤ sj ≤ xj,

|
∫ b

a

f dx−
n∑
j=1

f(sj)∆j| < ε.

†

The proof is Problem 11.4.

Theorem 11.11. If f is continuous on [a, b], then f ∈ R([a, b]).

Proof. Let ε > 0 be given. Since f is continuous on the compact set
[a, b], f is uniformly continuous. Hence, there is a δ > 0 so that if
a ≤ s, t ≤ b and |s− t| < δ, then |f(s)− f(t)| < ε.

Choose a partition P of [a, b] of width less than δ; i.e., a = x0 <
x1 . . . xn = b with ∆j < δ. It follows that Mj −mj < ε. Hence

U(P, f)− L(P, f) < ε(b− a).

An appeal to Proposition 11.9 completes the proof. �

Do Problems 11.5 and 11.8.

Proposition 11.12. If f : [a, b]→ R is increasing, then f ∈ R([a, b]).
†

Proof. Let ε > 0 be given. Choose a partition P = {a = x0 < x1 <
· · · < xn = b} so that ∆j ≤ ε. Since, by the increasing hypothesis,

Mj −mj = f(xj)− f(xj−1)
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we have

U(P, f)− L(P, f) =
n∑
j=1

(f(xj)− f(xj−1))∆j

≤
n∑
j=1

(f(xj)− f(xj−1))ε

=(f(b)− f(a))ε.

Once again, an application of Proposition 11.9 completes the proof. �

Proposition 11.13. Suppose f : [a, b] → R is bounded. If f is con-
tinuous except at finitely many points, then f ∈ R([a, b]). †

Sketch of proof. Here is the proof in the special case that f is continu-
ous, except possible at the point a < c < b.

Let M and m denote the supremum and infimum of the range of f .
Let ε > 0 be given. Choose δ so that

0 < δ < min{ ε

M −m+ 1
, c− a, b− c}.

The function f restricted to the interval [a, c − δ] is continuous and
hence integrable by Theorem 11.11. Thus, by Proposition 11.9, there
is a partition Q of [a, c− δ] such that

U(Q, f)− L(Q, f) < ε.

Likewise there is a partition R of [c+ δ, b] such that

U(R, f)− L(R, f) < ε.

Let P = Q ∪R. Then P is a partition of [a, b] and

U(P, f)−L(P, f)

=[U(Q, f)− L(Q, f)] + (M∗ −m∗)2δ + [U(R, f)− L(R, f)]

<ε+ 2(M −m)δ + ε < 4ε,

where M∗ and m∗ are the supremum and infimum of f on [c− δ, c+ δ]
respectively. �

Theorem 11.14. Suppose f ∈ R([a, b]) and f : [a, b] → [m,M ]. If
ϕ : [m,M ]→ R is continuous, then h = ϕ ◦ f ∈ R([a, b]).

Proof. Let ε > 0 be given. By the uniform continuity of ϕ, there exists a
0 < δ < ε so that if m ≤ s, t ≤M and |s−t| < δ, then |ϕ(s)−ϕ(t)| < ε.
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Choose a partition P = {a = x0 < x1 < · · · < xn = b} such that
U(P, f)− L(P, f) < δ2. Let

Mj = sup{f(x) : xj−1 ≤ x ≤ xj}
mj = inf{f(x) : xj−1 ≤ x ≤ xj}
M∗

j = sup{h(x) : xj−1 ≤ x ≤ xj}
M∗

j = inf{h(x) : xj−1 ≤ x ≤ xj}.

Thus, we have,
n∑
j=1

(Mj −mj)∆j < δ2

and it suffices to prove

U(P, h)− L(P, h) =
n∑
j=1

(M∗
j −m∗j)∆j < ε.

Let A = {j : Mj − mj < δ} ⊂ {1, 2, . . . , n} and let B = {j :
Mj −mj ≥ δ}. Observe,

δ2 >
∑
j∈B

(Mj −mj)∆j ≥ δ
∑
j∈B

∆j.

Thus,

(8)
∑
j∈B

∆j < δ

On the other hand, M∗
j − m∗j ≤ ε, for j ∈ A. Thus, with K =

sup{|h(x)| : a ≤ x ≤ b},

U(P, h)− L(P, h) =
∑
j∈A

(M∗
j −m∗j)∆j +

∑
j∈B

(M∗
j −m∗j)∆j

≤ε
∑
j∈A

∆j + 2K
∑
j∈B

∆j

≤ε(b− a) + 2Kε

=ε[(b− a) + 2K].

An application of Proposition 11.9 completes the proof. �

Remark 11.15. There is a simple proof, which you are asked to pro-
vide in Problem 11.11, in the case ϕ is Lipschitz continuous; i.e., if there
is a C > 0 such that if m ≤ s, t ≤M , then |ϕ(s)− ϕ(t)| ≤ C|s− t|.

Given an subset D of R, a function f : D → R is continuously
differentiable if it is differentiable and f ′ : D → R is continuous. If ϕ
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is continuously differentiable (on a closed bounded interval), then it is
Lipschitz continuous.

Regardless of the domain, a Lipschitz continuous function is au-
tomatically uniformly continuous. On the other hand, the function
ϕ(x) =

√
|x| on the interval [0, 1] is not Lipschitz continuous, though

it is uniformly continuous. �

Corollary 11.16. If f ∈ R([a, b]), then so are

(i) |f |p for p ≥ 0;
(ii) f+ = max{f, 0};
(iii) f− = min{f, 0}; and

†

Proof. The function ϕ(t) = |t|p is continuous for p ≥ 0. (Actually, to
this point, it has been shown that |t|p is continuous for rational p only.
Problem 11.13 explains how to handle general p > 0.)

To prove (ii), consider ϕ : R → R given by ϕ(t) = max{t, 0} =
1
2
(|t|+ t).

To prove (iii), consider ϕ(t) = − |t|−t
2
. �

11.3. Properties of the Integral. Here is a list of properties of the
Riemann Integral. The proofs are mostly left to the reader.

Proposition 11.17. If f1, f2 ∈ R([a, b]) and c1, c2 are real, then c1f1+
c2f2 ∈ R([a, b]) and∫ b

a

(c1f1 + c2f2) dx = c1

∫ b

a

f1 dx+ c2

∫ b

a

f2 dx.

†

Remark 11.18. The proposition says R([a, b]) is a (real) vector space
and the mapping I : R([a, b])→ R determined by the integral is linear.

�

Do Problem 11.6

Corollary 11.19. If f, g ∈ R([a, b]), then so is fg. †

Proof. By the previous proposition f + g ∈ R([a, b]). By the corollary
to Theorem 11.14 and several more applications of the previous propo-
sition, it then follows that fg = 1

2
[(f + g)2 − f 2 − g2] ∈ R([a, b]). �

Remark 11.20. A semi-inner product on a vector space V is a map-
ping 〈·, ·〉 : V × V → R satisfying the axioms of an inner product,
except it is not required that 〈x, x〉 = 0 if and only if x = 0.
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There is a natural semi-inner product on the vector space R([a, b])
given by,

〈f, g〉 =

∫ b

a

fg dx.

Whenever V is a vector space with a semi-inner product 〈·, ·〉, the
formula, ‖f‖2 = 〈f, f〉 defines a semi-norm and the Cauchy-Schwartz
inequality

|〈f, g〉| ≤ ‖f‖ ‖g‖
holds. Indeed, a standard approach is to first prove the C-S inequality
and use it to prove that ‖ · ‖ is a semi-norm.

The set of null vectors, N = {f ∈ V : ‖f‖ = 0} is a subspace and

〈f +N, g +N〉 = 〈f, g〉
defines an (honest) inner product on the quotient space V/N . �

Proposition 11.21. If f1, f2 ∈ R([a, b]) and f1 ≤ f2, then∫ b

a

f1 dx ≤
∫ b

a

f2 dx.

In fact, if f1, f2 : [a, b]→ R are bounded and f1 ≤ f2, then

¯

∫ b

a

f1 dx ≤
¯

∫ b

a

f2 dx

and ∫̄ b

a

f1 dx ≤
∫̄ b

a

f2 dx.

†

It turns out that if f1 and f2 are integrable and f1 < f2 (meaning
f1(x) < f2(x) for all x in the interval), then in fact∫ b

a

f1 dx <

∫ b

a

f2 dx,

though the proof is more involved than that of the Proposition. See
Problem 11.16.

Corollary 11.22. If f ∈ R([a, b]), then

|
∫ b

a

f dx| ≤
∫ b

a

|f | dx.

†

Proof. Use |f | ≥ ±f and the previous proposition twice. �

Do Problems 11.7 and 11.9.
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Proposition 11.23. If f ∈ R([a, b]) and a < c < b then f |[a,c] ∈
R([a, c]) and ∫ b

a

f dx =

∫ c

a

f dx+

∫ b

c

f dx.

†

11.4. Integration and Differentiation.

Theorem 11.24. [Second Fundamental Theorem of Calculus] If f ∈
R([a, b]), then the function F : [a, b]→ R defined by

F (x) =

∫ x

a

f(t) dt

is continuous. Further, if f is continuous at a < y < b, then F is
differentiable at y and F ′(y) = f(y).

Proof. Let M = sup{|f(x)| : a ≤ x ≤ b}. Given ε > 0, choose δ = ε
M+1

.
For a ≤ x < z ≤ b and z − x < δ we have,

|F (z)− F (x)| =|
∫ z

a

f(t) dt−
∫ x

a

f(t) dt|

=|
∫ z

x

f(t) dt|

≤
∫ z

x

|f(t)| dt

≤M(z − x) < ε.

Thus F is (uniformly) continuous.
Next, suppose f is continuous at y. Given ε > 0, there is a δ > 0

so that if a ≤ t ≤ b and |t − y| < δ, then |f(t) − f(y)| < ε. Thus, if
a ≤ y < z ≤ b and z − y < δ, then

|F (z)− F (y)

z − y
− f(y)| =| 1

z − y

∫ z

y

f(t) dt− f(y)|

=| 1

z − y
[

∫ z

y

(f(t)− f(y)) dt]|

≤ 1

z − y

∫ z

y

ε dt ≤ ε.

A similar argument prevails for a ≤ z < y ≤ b and the conclusion
follows. �

Corollary 11.25. If f : [a, b] → R is continuous, then there is a
continuous function F : [a, b] → R such that F is differentiable on
(a, b) and F ′ = f on (a, b). †
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Example 11.26. Consider f : (0,∞)→ R defined by f(t) = 1
t
. Define

log : (0,∞)→ R by

F (x) = log(x) =

∫ x

1

1

t
dt.

Thus F ′(x) = 1
x
, from which the usual properties of the log follow. (See

Problems 11.12 and 11.13.) In particular log( 1
x
) = − log(x).

Note that, by considering appropriate lower sums,

log(n+ 1) ≥
n+1∑
j=2

1

j
.

Since the harmonic series diverges and the log is continuous, it follows
that the range of the log contains [0,∞). Using log( 1

x
) = − log(x) it

must also be the case that the range of log contains (−∞, 0]. Hence
the range of log is all of R.

Since the derivative of log is strictly positive, log is strictly increasing
and in particular one-one. Thus log has an inverse, which is called the
exponential function exp : R→ (0,∞).

The usual properties of exp now follow from those of log. (See Prob-
lem 11.14.)

Recall, to this point, for positive real numbers x, the power xa has
only been defined for a a rational number. In Problem 11.13 the reader
is asked to show log(xa) = a log(x) for x > 0 and a ∈ Q. In view of
this fact, we now define, for x > 0 and a any real number,

xa = exp(a log(x)).

In particular,

exp(1)a = exp(a).

Hence, letting e = exp(1) gives ea = exp(a) and it is customary to
denote the exponential function by ex. 4

Theorem 11.27. [First Fundamental Theorem of Calculus] If F :
(α, β) → R is differentiable, F ′ is bounded, and [a, b] ⊂ (α, β), then,
for all partitions P of [a, b],

L(P , F ′) ≤ F (b)− F (a) ≤ U(P , F ′).

In particular, if F ′ ∈ R([a, b]), then

F (b)− F (a) =

∫ b

a

F ′dx.
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Proof. For notational ease, let f = F ′.
Let P = {x0 < x1 < · · · < xn = b} denote a given partition of [a, b].

For each j there exists, by the mean value theorem, a xj−1 < tj < xj
such that

(9) F (xj)− F (xj−1) = f(tj)(xj − xj−1).
Summing (9) over j gives and using the telescoping nature of the sum
on the left hand side gives,

(10) F (b)− F (a) =
∑

f(tj)(xj − xj−1).

Further, by Exercise 11.1,

(11) L(P , f) ≤
∑

f(tj)(xj − xj−1) ≤ U(P , f).

Combining (10) and (11) gives

L(P , f) ≤ F (b)− F (a) ≤ U(P , f).

�

Do Problem 11.10.

Corollary 11.28. Suppose F,G : (α, β) → R are differentiable and
[a, b] ⊂ (α, β). If F ′, G′ are Riemann integrable on [a, b], then FG′ and
GF ′ are Riemann integrable on [a, b] and∫ b

a

FG′dx = F (b)G(b)− F (a)G(a)−
∫ b

a

F ′Gdx.

†
Proof. The hypotheses imply the function H = FG is differentiable
and its derivative is Riemann integrable. Hence, by the product rule
and the first FTC,

H(b)−H(a) =

∫ b

a

H ′dx =

∫ b

a

FG′dx+

∫ b

a

G′Fdx.

Rearranging gives the result. �

11.5. Integration of vector valued functions.

Definition 11.29. Suppose f : [a, b] → Rk is bounded. Writing
f = (f1, . . . , fk), the function f is Riemann integrable , denoted f ∈
R([a, b]) if each fj ∈ R([a, b]). In this case the Riemann integral of f
is ∫ b

a

f dx = (

∫ b

a

f1 dx, . . . ,

∫ b

a

fk dx) ∈ Rk.

Thus the integral of a Rk-valued function is defined entry-wise and is
a vector in (element of) Rk. /
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Proposition 11.30. Suppose f : [a, b] → Rk and f ∈ R([a, b]). If
γ ∈ Rk, then the function

fγ(x) = 〈f(x), γ〉

is in R([a, b]) and ∫ b

a

fγ dx = 〈
∫ b

a

f dx, γ〉.

†

The proof is simply a matter of writing everything out in terms of
the standard basis for Rk and using properties of the integral. The
details are left to the reader. The proposition provides a coordinate
free way to define the integral of a vector valued function. Namely, the
integral, if it exists, is that unique vector I ∈ Rk such that for each
γ ∈ Rk,

〈I, γ〉 =

∫ b

a

fγ dx.

Proposition 11.31. Suppose F : (α, β) → Rk is differentiable and
[a, b] ⊂ (α, β). If F ′ ∈ R([a, b]), then

F (b)− F (a) =

∫ b

a

F ′dt.

†

The result follows immediately from applying the first fundamental
theorem of calculus coordinate-wise.

Proposition 11.32. Suppose f : [a, b] → Rk. If f ∈ R([a, b]), then
‖f‖ ∈ R([a, b]), and

‖
∫ b

a

f dx‖ ≤
∫ b

a

‖f‖ dx.

†

Proof. By hypothesis, each fj ∈ R([a, b]). Thus each |fj|2 ∈ R([a, b])
by Corollary 11.16 part (i) (with p = 2). Since the sum of integrable
functions is integrable, g =

∑
|fj|2 ∈ R([a, b]). Finally, another appli-

cation of Corollary 11.16 (this time with p = 1
2
) implies

‖f‖ = (
∑
|fj|2)

1
2 ∈ R([a, b]).



D
RA
FT

100

Assuming it is not 0, let u denote a unit vector in the direction of the
integral of f and estimate, using Proposition 11.30 and the Cauchy-
Schwarz inequality,

‖
∫ b

a

f dx‖ =|〈
∫ b

a

f dx, u〉|

=|
∫ b

a

〈f, u〉 dx|

≤
∫ b

a

|〈f, u〉| dx

≤
∫ b

a

‖f‖‖u‖ dx.

Since ‖u‖ = 1 the desired inequality follows. �

11.6. Differentiability of a limit.

Theorem 11.33. Suppose fn : (a, b)→ R is a sequence of continuously
differentiable functions which converges pointwise to f : (a, b) → R.
If the sequence of functions f ′n : (a, b) → R converges uniformly to
g : (a, b)→ R, then f is differentiable and f ′ = g.

Proof. Fix a point a < c < b. From the first fundamental theorem of
calculus, for a < x < b,

fn(x)− fn(c) =

∫ x

c

f ′n(t) dt.

The uniform limit g of f ′n is continuous and thus integrable on closed
subintervals of (a, b) and moreover, by Problem 11.9,∫ x

c

f ′n(t) dt→
∫ x

c

g(t) dt

for a < x < b. Since fn(x) and fn(c) converge to f(x) and f(c)
respectively,

f(x) = f(c) +

∫ x

c

g(t) dt.

From the second fundamental theorem of calculus and using the fact
that g is continuous, f ′(x) = g(x). �
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11.7. Exercises.

Exercise 11.1. Suppose f : [a, b]→ R is a bounded function and P =
{a = x0 < x1 < · · · < xn = b} is a partition. Show, if xj−1 ≤ tj ≤ xj,
then

L(P, f) ≤
n∑
j=1

f(tj)(xj − xj−1) ≤ U(P, f).

The sum above is a Riemann sum.

Exercise 11.2. Give an example of a sequence (fn) of Riemann inte-
grable functions f : [a, b] → R that converge pointwise to a bounded
function f which is not Riemann integrable.

Exercise 11.3. Define fn : [0, 1] → R by fn(x) = n if 0 < x ≤ 1
n

and
fn(x) = 0 otherwise. Explain why each fn is Riemann integrable, the
sequence (fn) converges pointwise to a Riemann integrable function,
but

lim
n→∞

∫ 1

0

fn dx 6=
∫ 1

0

f dx,

even though the limit on the left hand side exists. Compare with
Problem 11.9.

Exercise 11.4. Let f : [−1, 1]→ R denote the function with f(x) = 0
for x 6= 0 and f(0) = 1. Show f ∈ R([−1, 1]) and∫ 1

−1
f dx = 0.

Compare with Problem 11.5. See also Problem 11.15.

11.8. Problems.

Problem 11.1. Let f : [−1, 1] → R denote the function f(x) = 1 if
0 ≤ x ≤ 1 and f(x) = 0 otherwise. Prove, directly from the definitions,
that f ∈ R([−1, 1]) and ∫ 1

−1
f dx = 1.

Problem 11.2. Recall that
n∑
j=1

j2 =
1

6
n(n+ 1)(2n+ 1).

Use this formula, the definition and Lemma 11.7 to show h : [0, 1]→ R
defined by h(x) = x2 is Riemann integrable.
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Problem 11.3. Suppose f : [a, b]→ R is Riemann integrable. Prove,

lim
c→b, c<b

∫ c

a

f dx =

∫ b

a

f dx.

Problem 11.4. Prove Corollary 11.10. [Suggestion: See Exercise
11.1.]

Problem 11.5. Suppose f : [−1, 1] → R takes nonnegative values.
Show, if f is integrable, continuous at 0 and if f(0) > 0, then∫ 1

−1
f dx > 0.

Problem 11.6. Prove Proposition 11.17. [Suggestion: Use Corollary
11.10.]

Problem 11.7. Prove Proposition 11.21.

Problem 11.8. Suppose f : [a, b]→ R is continuous. For 1 ≤ p <∞,
the Lp norm of f is

‖f‖p = (

∫ b

a

|f |p dx)
1
p

and the L∞ norm of f is

‖f‖∞ = max{|f(t)| : t ∈ [a, b]}.
Prove,

lim
n→∞

‖f‖n = ‖f‖∞.

Here the limit is taken through n ∈ N+ (so is the limit of a sequence).
Feel free to make use of Proposition12.1 part (c).

Problem 11.9. Suppose fn : [a, b] → R is a sequence of Riemann
integrable functions which converges uniformly to a function f : [a, b]→
R. Prove, f ∈ R([a, b]) and

lim
n→∞

∫ b

a

fn dx =

∫ b

a

f dx.

[Suggestion: First observe that f is bounded and you may wish to
apply Proposition 11.21]

Problem 11.10. Suppose f : (α, β) → R is continuous and ϕ :
(γ, δ) → (α, β) is strictly increasing and continuously differentiable.
Show, if γ < A < B < δ, then∫ ϕ(B)

ϕ(A)

f dx =

∫ B

A

f(ϕ(t))ϕ′(t) dt.
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Problem 11.11. Give a simple proof of Theorem 11.14 under the
assumption that ϕ is Lipschitz continuous. See Problem 2.12.

Problem 11.12. Let f(x) = log(x). Given a > 0, let g(x) = f(ax).
Prove, g′(x) = f ′(x) and thus there exists a c so that g(x) = f(x) + c.
Prove, c = log(a) and thus log(ax) = log(a) + log(x). (See Exercise
10.4.)

Problem 11.13. Prove for a ∈ Q and x ∈ R+ (meaning x is a positive
real number), that log(xa) = a log(x). Suggestion, consider g(x) =
log(xa) and compute g′(x).

It now makes sense to define xr = exp(r log(x)) for r ∈ R.

Problem 11.14. Prove exp(a+ b) = exp(a) exp(b) and exp(ab) =
exp(a)b.

Problem 11.15. Suppose f, g : [a, b] → R and f and g are equal
except possible at a point c with a < c < b. Show, if f is Riemann
integrable, then so is g and moreover,∫ b

a

f dx =

∫ b

a

g dx.

Note that, by induction, the result holds if f and g agree except possibly
at finitely many points. Compare with Exercise 11.4 and Proposition
11.13.

Problem 11.16. Returning to Problem 11.5, give an example where
the conclusion fails if f is not assumed continuous at 0.

Consider the following variant of the function from Example (8.2)
(e) Define f : [0, 1] → R by f(x) = 1 if x /∈ Q and f(x) = 1

q
, where

x = p
q
, p ∈ N, q ∈ N+, and gcd(p, q) = 1. Show that f takes only

positive values, yet the lower integral of f is 0. Show f is not Riemann
integrable.

Suppose now that f : [a, b]→ R is bounded. Show, if f ≥ 0 and the
upper integral of f is 0, then f is zero on a dense subset of [a, b] by
completing the following outline.

(i) Show, if I = [α, β] ⊂ [a, b] is any nontrivial (meaning α < β)
closed subinterval, and ε > 0, then there is a further nontrivial
closed subinterval J of I on which 0 ≤ f ≤ ε.

(ii) Starting with I = I0, construct a nested sequence In of nontrivial
closed subintervals, I0 ⊃ I1 ⊃ I2 ⊃ . . . such that 0 ≤ f(x) ≤ 1

n
for x ∈ In.

(iii) Conclude that there is a point y ∈ ∩∞n=0In and moreover, f(y) = 0.
(iv) Conclude that every open interval in [a, b] contains a point y such

that f(y) = 0.
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(v) Conclude that the set Z(f) = {y ∈ [a, b] : f(y) = 0} is dense in
[a, b].

12. Series

Numerical series and power series are the subjects of this section.
While it is possible to work over the complex numbers C or even in
a normed vector space, the exposition here focuses on real-valued se-
quences and series. In particular, throughout this section a sequence
(an) is a numerical sequence; i.e., an ∈ R.

Much of the theory depends on the following elementary identity for
r ∈ R. Namely,

(12) (1− r)
n∑
j=0

rj = 1− rn+1.

Use will also be made of the inequalities

2n−1∑
j=1

1

jp
≤

n−1∑
m=0

(
1

2p−1
)m

1

2p

n−1∑
m=0

(
1

2p−1
)m ≤

2n∑
j=2

1

jp

(13)

valid for natural numbers n and positive real numbers p. Both inequal-
ities are obtained by grouping the terms as follows:

2n−1∑
j=1

1

jp
=

1

1
+(

1

2p
+

1

3p
)+(

1

22p
+· · ·+ 1

7p
)+· · ·+(

1

2(n−1)p+· · ·+ 1

(2n − 1)p
).

and
2n∑
j=2

1

jp
=

1

2p
+(

1

3p
+

1

22p
)+(

1

5p
+· · ·+ 1

23p
)+· · ·+(

1

(2(n−1) + 1)p
+· · ·+ 1

2np
).

Do Problem 12.1.

12.1. Some Numerical Sequences. Recall that the sequence (an)
from R converges if there is an A ∈ R such that for every ε > 0 there is
an N such that if n ≥ N , then |an − A| < ε. In this case the sequence
is said to converge to A and A is the limit of the sequence, written

lim
n→∞

an = lim an = A.

Recall also, that if a sequence converges, then its limit is unique.

Proposition 12.1. Suppose r, ρ ∈ R and 0 ≤ r < 1 and 0 < ρ.
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(a) The sequence (rn) converges to 0;
(b) For each k ∈ N, the sequence (nkrn) converges to 0;

(c) The sequence (ρ
1
n ) converges to 1;

(d) The sequence ( log(n)
n

) converges to 0;

(e) For p real, the sequence (n
p
n ) converges to 1.

†

The proofs use Theorem 4.11 (a bounded increasing sequence of real
numbers converges) in several parts.

Proof. Item (a) and item (b) in the case that k = 1 is the content of
Proposition 4.13. Problem 4.9 handles the case k > 1 in item (b).

To prove (c), first suppose ρ > 1. Using equation (12) with r = ρ
1
m

and n = m− 1 gives

1− ρ
1
m =

1− ρ∑m−1
j=0 ρ

j
m

.

Thus

|1− ρ
1
m | < ρ− 1

m
.

Hence (ρ
1
m ) converges to 1. If 0 < ρ < 1, then σ = 1

ρ
> 1 and the result

follows by applying what has already been proved to σ and standard
facts about limits of numerical sequences.

Moving on to part (d), a standard estimate based on considerations
of upper sums gives

log(n) ≤
n∑
j=1

1

j
.

Thus it suffices to observe that the sequence

an =
1

n

n∑
j=1

1

j

converges to 0 by the relation between the limit of a sequence and the
limit of the corresponding Cesaro means found in Problem 12.6.

Item (e) follows from the identity

n
1
n = exp(

1

n
log(n)),

part (d), and the continuity of the function exp. �
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12.2. Numerical Series. Given a sequence (an)∞n=k, the series

(14)
∞∑
j=k

aj =
∑

aj,

is the sequence (sn) of partial sums,

(15) sn =
n∑
j=k

aj.

The series converges if the sequence (sn) converges and in this case we
write

∞∑
j=k

aj = lim sn.

Thus we have used the same symbol to denote the sequence (sn) and,
if it converges, its limit.

If, for every C > 0 there is an N such that if n ≥ N, then sn ≥ C,
then the series converges to infinity, written∑

aj =∞.

Example 12.2 (The Geometric Series). The series
∑
rj is known as

the geometric series. Using (12), it is easy to show, if |r| < 1, then
∞∑
j=0

rj =
1

1− r
;

if r ≥ 1, then ∑
rj =∞;

and if r ≤ −1, then the series
∑
rj does not converge. 4

Do Problem 12.3.

Proposition 12.3. Consider the series (14) and its partial sums (15)

(a) If there is an ` ≥ k such that the series
∑∞

j=` aj converges, then

(14) converges;
(b) If aj ≥ 0 for all j, then the series (14) converges if and only if the

partial sums (sn) form a bounded sequence; i.e., if and only if there
exists a constant M such that sn ≤M for all n;

(c) If there exists an ` ≥ k and a sequence (bj) such that bj ≥ aj ≥ 0
for all j ≥ ` and

∞∑
j=`

bj

converges, then the series (14) converges;
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(d) If there exists an ` ≥ k and a sequence (bj) such that aj ≥ bj ≥ 0
for all j ≥ ` and

∞∑
j=`

bj

diverges to infinity, then the series (14) converges to infinity;
(e) The series (14) converges if and only if for every ε > 0 there is an

N such that for all n > m ≥ N ,

|
n∑

j=m+1

aj| < ε.

(f) If the series
∞∑
j=k

|aj|

converges, then so does the series (14) and moreover,

|
∞∑
j=k

aj| ≤
∞∑
j=k

|aj|;

(g) If the series (14) converges, then (an) converges to 0.

†

Remark 12.4. Item (b) is known as the Weierstrass M-test.
Items (c) and (d) together are the comparison test.
If the series (14) converges, but the series

∑
|aj| =∞, then

∑
aj is

said to converge conditionally . An example of a conditionally conver-
gent series is the alternating harmonic series, see Example 12.14 below.
If
∑
|aj| converges, then

∑
aj converges absolutely. �

Proof. To prove (a), note that the sequence of partial sums

tn =
n∑
j=`

aj

for the series
∑∞

j=` aj are related to the partial sums sn for the original
series by,

tn = sn − c,
where c =

∑`−1
j=k aj. Hence (tn) converges if and only if (sn) converges.

For item (b), if aj ≥ 0 for all j, then (sn) is an increasing sequence.
Thus (sn) converges if and only if it is a bounded sequence.



D
RA
FT

108

To prove item (c), let s′n denote the partial of the series,
∞∑
j=`

aj.

Since the corresponding series with terms bj converges, its partial sums
are bounded by some positive number M . Hence,

s′n ≤
∞∑
j=`

bj ≤M

Thus (s′n) is bounded and by part (b) converges. Hence the original
series converges by item (a).

Item (d) is essentially the contrapositive of item (c). The details of
the proof are left to the reader.

Item (e) is just a restatement of the Cauchy criteria.
To prove item (f), let tn denote the partial sums

tn =
n∑
j=k

|aj|.

Observe that, for n > m,

|sn − sm| =|
n∑

j=m+1

aj|

≤
n∑

j=m+1

|aj|

=|tn − tm|.
Since (tn) converges, it is a Cauchy sequence. It follows from the in-
equality above that (sn) is Cauchy. Hence (sn) converges and item (f)
is proved.

If (sn) converges, then it is Cauchy. Hence, given ε > 0 there is an
N such that if n > m ≥ N , then |sn− sm| < ε. In particular, if n > N
and m = n− 1, then |an| < ε. This shows (an) converges to 0. �

Example 12.5 (The Harmonic Series). The series
∞∑
j=1

1

j

is the harmonic series.
Since its sequence (sn) of partial sums is increasing and, from the

second inequality in equation (13), the subsequence (s2n) is unbounded,
the harmonic series converges to infinity. 4
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Example 12.6 (p-series). More generally, for 0 < p, the series
∞∑
j=1

1

jp

is a p-series.
As we have already seen, the series converges to infinity for p = 1 and

thus converges to infinity for p < 1 by the comparison test, Proposition
12.3 part (e).

For p > 1, the first estimate of equation (13) shows that the partial
sums are bounded above by

∞∑
m=0

(
1

2p−1
)m =

2p−1

2p−1 − 1
.

Thus, by Proposition 12.3 part (b), the series converges. 4

Do Problems 12.2, 12.4, 12.5, and 12.7.

12.3. The Root Test. In preparation for the proof of the root test
below recall the notion of the limit superior (lim sup) of a sequence of
non-negative real numbers (an).

Definition 12.7. Let (an) be a non-negative sequence of real numbers.
If (an) is unbounded, then lim sup an =∞. If (an) is bounded, let

bn = sup{am : m ≥ n}.
Thus, (bn) is a decreasing sequence which is bounded below by 0 and
hence converges to some L. Set lim sup an = L. /

Remark 12.8. If ρ > L, then there is an N so that if n ≥ N , then
an < ρ. On the other hand, if ρ < L, then for every n there is an
m ≥ n such that am ≥ ρ. �

Lemma 12.9. If (an) is a sequence of non-negative real numbers, and
if (cn) is a sequence of positive reals which converges to the positive
number c, then lim sup cnan = c lim sup an (interpreted in the obvious
way if lim sup an =∞). †

The proof is left to the gentle reader as Problem 12.8.

Theorem 12.10. [root test] Consider the series (14) and let

L = lim sup(|an|)
1
n .

(a) If L < 1, then the series converges;
(b) If L > 1, then (an) doesn’t converge to 0 and thus the series

does not converge;
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(c) If L = 1, then the test fails.

Proof. Suppose L < 1. Choose L < ρ < 1. There is an N so that if
n ≥ N , then

(|an|)
1
n < ρ.

Thus, |an| < ρn for n ≥ N . Hence the series converges by comparison
to the geometric series

∑
ρj.

Suppose L > 1. Choose L > ρ > 1. For each n there is an m ≥ n
such that |am| > ρm. It follows that (an) does not converge to 0. Hence,
by Proposition 12.3(f), the series diverges.

The sequence (( 1
np

)
1
n ) = (n

−p
n ) converges to 1 by Proposition 12.1(e).

It follows that hypothesis of part (c) prevails for all p-series; however
some p series converge (p > 1), while others diverge to infinity (0 <
p ≤ 1). Hence, if L = 1, the root test fails. �

12.4. Series Squibs. A squib (among other meanings) refers to a
short, sometimes humorous piece in a newspaper or magazine, usu-
ally used as a filler. It also can mean a firecracker which burns out
without exploding (a dud).

Theorem 12.11. [Ratio test] Let (cn) be a sequence of positive real
numbers and let

an =
cn
cn−1

.

(a) If lim sup an < 1, then the series
∑
cn converges; and

(b) If lim inf an > 1, then the sequence (cn) does not converge to 0
and hence the series

∑
cn converges to infinity.

Note the asymmetry between the hypotheses of the root and ratio
tests. Problem 12.14 shows that the root test is a stronger result than
the ratio test, though of course when it does apply, often the ratio test
is easier to use. In the case that the sequence ( cn+1

cn
) converges, say to

L, then the series converges if L < 1 and diverges if L > 1. In the case
that L = 1, the test fails.

Proof. Suppose L = lim sup an < 1. Choose L < ρ < 1. There is an N
so that if n ≥ N , then an ≤ ρ. It follows that

cn ≤ ρcn−1.

Iterating this inequality and writing n = N +m give

cn ≤ ρmcN = ρn(ρ−NcN)

Thus
∑
cn converges by comparison to the geometric series

∑
ρn.
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Now suppose L = lim inf an > 1. Choose L > ρ > 1. There is an N
so that bN ≥ 1, where

bN = inf{an : n ≥ N}.

Arguing as before,

cn+N ≥ ρncN ,

which tends to infinity. �

Remark 12.12. The root and ratio tests are rather crude tests for di-
vergence. Indeed, the sufficient condition in each case implies the terms
of the series do not converge to 0. On the other hand, the root and
ratio test can be used to determine whether a sequence (an) of positive

terms converges to 0. Indeed, if either lim sup |an|
1
n or lim sup an+1

an
is

(strictly) less than 1, then lim an = 0.
As an example, for r > 0 and fixed,

lim
n→∞

rn

n!
= 0.

�

Theorem 12.13. [Alternating Series] If an is a decreasing sequence of
positive numbers which converges to 0, then the alternating series

∞∑
j=k

(−1)jaj

converges.

Proof. Let sn denote the partial sums. For a natural numbers m, k
with k even,

|sm+k − sm| = |
m+k∑
j=m+1

(−1)jaj|

=|(am+1 − am+2) + (am+3 − am+4) + · · ·+ (am+k−1 − am+k)|
=(am+1 − am+2) + (am+3 − am+4) + · · ·+ (am+k−1 − am+k)

=am+1 − (am+2 − am+3)− · · · − (am+k−2 − am+k−1)− am+k

≤am+1,

where the decreasing hypothesis is used in the third equality and the
inequality.
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For k odd,

|sm+k − sm| = |
m+k∑
j=m+1

(−1)jaj|

=|(am+1 − am+2) + (am+3 − am+4) + · · ·+ (am+k−2 − am+k−1) + am+k|
=(am+1 − am+2) + (am+3 − am+4) + · · ·+ (am+k−2 − am+k−1) + am+k

=am+1 − (am+2 − am+3)− · · · − (am+k−1 − am+k) ≤ am+1.

Since an converges to 0, the sequence (sn) is Cauchy and thus converges.
�

Example 12.14. The alternating harmonic series
∞∑
j=1

(−1)j+11

j

converges, but not absolutely. Thus it is a conditionally convergent
series. 4

12.5. Power Series.

Definition 12.15. Let (an) be a sequence of real numbers. The ex-
pression

(16)
∞∑
j=0

ajx
j

is a power series. /

Remark 12.16. LetD denote those real numbers x for which the series
(16) converges. The power series (16) determines a function s : D → R
defined by

(17) s(x) =
∞∑
j=0

ajx
j.

Let

(18) sn =
n∑
j=0

ajx
j.

denote the partial sums of the power series. The sn can be thought of
as either functions on D or on all of R, as dictated by context.

The following theorem says that D is not too complicated. �

Theorem 12.17. Given the power series (16), let L = lim sup |an|
1
n

and let R = 1
L

(interpreted as 0 if L =∞, and ∞ if L = 0).
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(i) The series converges absolutely for |x| < R and diverges for |x| >
R;

(ii) (−R,R) ⊂ D ⊂ [−R,R] and thus D is an interval;
(iii) If

∑
ajy

j converges, then R ≥ |y|; and
(iv) If R′ ∈ [0,∞] and the series converges absolutely for |x| < R′ and

diverges for |x| > R′, then R = R′.

Definition 12.18. The number R is the radius of convergence and the
set D is the interval of convergence. /

Problem 12.11 provides examples showing there is no more general
statement possible about the interval of convergence (domain) of a
power series. Do Problem 12.10.

Proof. Let the real number x be given. Let cn = anx
n and note that

an application of Lemma 12.9 gives,

lim sup |cn|
1
n = |x| lim sup |an|

1
n = |x|L.

By the root test if |x|L < 1, then the series converges absolutely, and
if |x|L > 1, then the series does not converge. �

Lemma 12.19. If the power series s has radius of convergence R > 0
and 0 < u < R, then the sequence (sn) converges uniformly on [−u, u].
In particular the limit s is continuous on |x| < R. †

Remark 12.20. It is natural to ask, as Abel did, if say the interval of
convergence is I = (−R,R], is then the function f : I → R of Remark
12.16 continuous; i.e., continuous at R. The answer is yes. See Problem
12.12 �

Proof. Since u is within the radius of convergence of the series, the
sequence

tn =
n∑
j=0

|ajuj|

converges and thus satisfies the Cauchy condition of Proposition 12.3(e).
In particular, given ε > 0 there is an N so that if n > m ≥ N , then

ε > |tn − tm| =
n∑

j=m+1

|aj|uj.
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If |x| ≤ u and n > m ≥ N , then

|sn(x)− sm(x)| =|
n∑

j=m+1

ajx
j |

≤
n∑

j=m+1

|aj||x|j

≤
n∑

j=m+1

|aj|uj

<ε.

Thus (sn) converges uniformly on [−u, u] and thus converges uniformly
to its pointwise limit s on this interval. Since each sn is continuous, so
is the limit on the interval [−u, u]. Thus the limit s is continuous on
(−R,R). �

Lemma 12.21. If the series (16) has radius of convergence R, then
both of the series

(i)
∑∞

n=0(n+ 1)an+1x
n and;

(ii)
∑∞

n=0
an
n+1

xn have radius of convergence R too.

†

To prove the lemma, note that, by Lemma 12.9 and by Proposition
12.1(d), that

lim sup |nan|
1
n = lim sup |an|

1
n = lim sup | an

n+ 1
|
1
n .

Remark 12.22. It can of course happen that the interval of conver-
gence of the these series is different than that for the original series.
See Exercise 12.2. It turns out that, compared to the interval of conver-
gence for the original series, the interval in (i) could only possibly lose
endpoints; and that in (ii) could only possibly gain endpoints. Sum-
mation by parts can be used to prove this assertion. See Lemma 13.15
and Problem 13.5. �

Proposition 12.23. Suppose the power series (16) has radius of con-
vergence R > 0. If 0 ≤ u < R, then s, the sum of the series, is
integrable on [0, u] and∫ u

0

s dx =
∞∑
n=0

an
n+ 1

un+1.
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The function s is differentiable on |x| < R and

s′(x) =
∞∑
j=0

(j + 1)aj+1x
j

†

Proof. On the interval [0, u] the sequence (sn) converges uniformly to
s. Thus, by Problem 11.9,∫ u

0

s dx = lim
n→∞

∫ u

0

sn dx

= lim
n→∞

n∑
j=0

∫ u

0

ajx
j dx

=
∞∑
j=0

aju
j+1

j + 1
.

Let (tn) denote the partial sums of the series

t(x) =
∞∑
j=0

(j + 1)aj+1x
j.

By Lemma 12.21, this series has radius of convergences R and by
Lemma 12.19, the sequence (tn) converges uniformly to t on each
bounded interval. Since also s′n = tn−1, Theorem 11.33 applies with
the conclusion that s is differentiable and s′ = t. �

Remark 12.24. Thus power series can be integrated and differentiated
term by term. In particular, a power series (16) is infinitely differen-
tiable within its radius of convergence. Moreover,

s(m)(0) = amm!

�

12.6. Functions as Power Series. From the geometric series

(19)
1

1− x
=
∞∑
j=0

xj, |x| < 1,

it is possible to derive a number of other series representations.
Differentiating (19) term by term gives

1

(1− x)2
=
∞∑
j=0

(j + 1)xj, |x| < 1.
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Replacing x by −t2 in (19) gives,

1

1 + t2
=
∞∑
j=0

(−1)jt2j, |t| < 1.

Integrating this last series term by term gives

arctan(x) =
∞∑
j=0

(−1)j
x2j+1

2j + 1
, |x| < 1.

Likewise integrating (19) term by term gives

− log(1− x) =
∞∑
j=0

xj+1

j + 1
, |x| < 1.

12.7. Taylor Series. The following consequence of Taylor’s Theorem
is suitable for establishing power series representations for the expo-
nential, sine and cosine functions.

Theorem 12.25. Suppose f : R → R. If f is infinitely differentiable
and for each x there is a Cx such that

|f (j)(y)| ≤ Cx

for all j ∈ N and |y| ≤ |x|, then the power series

s(x) =
∞∑
j=0

f (j)(0)

j!
xj

has infinite radius of convergence and f(x) = s(x). Moreover, this
series for f converges uniformly on bounded sets (to f).

Proof. Given n ∈ N and x ∈ R, from Taylor’s Theorem there is a c
between 0 and x such that

f(x) = sn(x) +
f (n+1)(c)xn+1

(n+ 1)!

Thus,

|f(x)− sn(x)| ≤ Cx
|x|n+1

(n+ 1)!
,

where Cx depends only upon x (and not on n). Thus it suffices to show
that, for a given x, the right hand side converges to 0 (see Remark
12.12). Hence, for each x, the sequence (sn(x)) converges to f(x).
Consequently s has infinite radius of convergence and thus, by Lemma
12.19, (sn) converges to f uniformly on every bounded interval (and
hence uniformly on every bounded set). �
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Example 12.26. Let f(x) = exp(x) and note f (n)(x) = exp(x). Since
if |y| ≤ |x|, then exp(y) ≤ exp(|x|) and hence |f (n)(y)| ≤ exp(|x|).
Theorem 12.25 implies

exp(x) =
∞∑
j=0

xn

n!
, x ∈ R.

Let g(x) = sin(x). Then |g(n)(x)| ≤ 1 for all n and x. It follows that

sin(x) =
∞∑
j=0

(−1)jx2j+1

(2j + 1)!
.

4

Remark 12.27. If f : R→ R is infinitely differentiable and the series

s(x) =
∞∑
n=0

f (n)(0)

n!
xn

has infinite radius of convergence, it is natural to ask if f = s. The
answer is, without hypotheses such as those in Theorem 12.25, no as
can be seen from the following example (found in nearly every Calculus
text). For the function f given by

f(x) =

{
e−

1
x x > 0

0 x ≤ 0

(http://en.wikipedia.org/wiki/Non-analytic_smooth_function)
it can be shown that f (j)(0) = 0 for all j. Thus s has infinite radius of
convergence, but s = 0 6= f.

�

12.8. Exercises.

Exercise 12.1. Test the following series for convergence.

(a)
∞∑
n=1

(
n

n+ 2
)n

2

.

(b)
∞∑
n=1

1 · 3 · 5 · · · (2n− 1)

2 · 4 · · · 2n
.

(c)
∞∑
n=1

1 · 32 · 52 · · · (2n− 1)2

22 · 42 · · · (2n)2
.

http://en.wikipedia.org/wiki/Non-analytic_smooth_function
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Exercise 12.2. For the power series,

f(x) =
∞∑
n=1

xn

n
,

let A,B,C denote the interval of convergence of f and the series (i)
and (ii) respectively in Lemma 12.21. Verify, B ( A ( C.

Exercise 12.3. Find a power series representation for cos(x) and verify
that it converges uniformly to cos(x) on every bounded interval.

Exercise 12.4. Find a power series representation for the error func-
tion

erf(x) =
2√
π

∫ x

0

exp(−t2) dt.

http://en.wikipedia.org/wiki/Error_function

Exercise 12.5. Show, if (an) is a sequence of nonnegative numbers
and the series

∞∑
j=0

aj

converges, then for every ε > 0 there is an M so that if M ≤ N , then
∞∑
j=N

aj < ε.

Exercise 12.6. Given a sequence (bn)∞n=0, let an = bn+1 − bn. The
series,

∞∑
j=0

aj

is a telescoping series. What are its partial sums? When does the series
converge.

Exercise 12.7. Show, if (an) is a bounded sequence, then the radius
of convergence of the series (16) has radius of convergence at least 1.

Exercise 12.8. Explain why the series,
∞∑
n=1

(−1)nn−s

converges for s > 0 and diverges for s ≤ 0. It thus determines a function
η(s) with domain (0,∞). Explain why series converges absolutely for
s > 1 and conditionally for 0 < s ≤ 1 and compare with the situation
for a power series, where there are at most two points where the series
converges conditionally. The series here is a Dirichlet Series (which are
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more natural thought of as a function of a complex variable s). For
more on Dirichlet Series see Subsection 13.3.

12.9. Problems.

Problem 12.1. Suppose (an) a decreasing sequence of positive num-
bers. Show, for positive integers n,

2n−1∑
j=1

aj ≤
n−1∑
k=0

2ka2k

and likewise,
2n∑
j=2

aj ≥
1

2

n∑
k=1

2ka2k .

Verify the inequalities in Equation (13) are special cases.

Problem 12.2. Suppose (an) a decreasing sequence of positive num-
bers. Use Problem 12.1 to show the series

∑∞
j=0 aj converges if and

only if the series
∞∑
j=0

2ja2j

converges.
Determine the convergence of the series

(a)
∞∑
n=2

1

n log(n)
;

(b)
∞∑
n=2

1

n(log(n))2
.

Problem 12.3. Show, if (an) is a decreasing sequence of positive real
numbers and

∞∑
j=0

aj

converges, then limnan = 0. [Suggestion: Observe, limn→∞ an = 0, for
each N and each n > N ,

n∑
j=N

aj ≥ (n−N)an,

and use Exercise 12.5.
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Problem 12.4. Suppose (aj) and (bj) are sequences of real numbers.
Show, if both ∑

a2j , and
∑

b2j

converge, then so does ∑
ajbj.

[Suggestion: Use the inequality 2|ab| ≤ a2 + b2, or apply the Cauchy-
Schwarz inequality at the level of partial sums.]

Problem 12.5. Show, if (an) is a sequence of non-negative numbers
and the series

∑
aj converges, then so does the series

∑
a2j .

Problem 12.6. Suppose (an)∞n=1 converges to L. Let

σn =
1

n

n∑
j=1

aj,

denote the corresponding Cesaro means. Prove (σn) converges to L.

Problem 12.7 (Integral Test). Suppose f : [0,∞)→ [0,∞) is contin-
uous and decreasing. Show,

∞∑
j=0

f(j)

converges if and only if

F (x) =

∫ x

0

f dt

is bounded above independent of x (meaning there is an M such that
F (x) ≤M for all x ≥ 0).

Problem 12.8. Prove Lemma 12.9.

Problem 12.9. Suppose (aj) is a sequence from Rk. Show, if∑
‖aj‖

converges, then ∑
aj

converges in Rk.

Problem 12.10. Show, if (an) is a sequence of non-zero real numbers
and

lim
n→∞

|an+1

an
|

converges with limit L, then the radius of convergence of the power
series

∑
ajx

j is R = 1
L

(properly interpreted).
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Problem 12.11. Find the interval of convergence for the following
power series.

(i)
∑
n−nxn;

(ii)
∑

xn

n2 ;

(iii)
∑

xn

n
;

(iv)
∑
nnxn.

Problem 12.12 (Abel’s Theorem). Suppose the series s of (16) has
radius of convergence 1 and suppose

∞∑
j=0

aj

converges. Prove

lim
r→1−

∞∑
j=0

ajr
j =

∞∑
j=0

aj.

Thus, the (function defined by the) series s is continuous at 1.
Here is an outline to follow if you like.

(i) It can be assumed that
∑∞

j=0 aj = 0.

(ii) With tn =
∑n

j=0 aj, show if N is a positive integer and |tj| ≤ C
for all j ≥ N , then for n ≥ N ,

|
n∑

j=N+1

tjx
j| ≤ C

xN

1− x
.

In particular, the series

g(x) =
∞∑
n=0

tnx
n

has radius of convergence at least one.
(iii) Show

s(x) = (1− x)g(x), |x| < 1.

(iv) Given ε > 0, choose N such |tj| < ε for j ≥ N and use, for
0 < x < 1,

(1− x)gn(x) = (1− x)[
N−1∑
j=0

tjx
j +

n∑
j=N

tjx
j] ≤ (1− x)[CN +

ε

1− x
],

where gn are the partial sums of the series g and C is an bound
on the {|tj| : j ∈ N}, to complete the proof.
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Problem 12.13. Use Abel’s theorem and the power series representa-
tion for arctan(x) to show

π

4
=
∞∑
j=0

(−1)j

2j + 1
.

Problem 12.14. Let (an) be a sequence of positive reals. Show,

lim sup
an+1

an
≥ lim sup |an|

1
n

and also

lim inf
an+1

an
≤ lim inf |an|

1
n .

[Suggestion: Follow the proof of the ratio test.]

Problem 12.15. Prove, Bernoulli’s inequality,

(1 + x)n ≥ 1 + nx,

for positive integers n and x ≥ −1. [Suggestion: Induct.]
Prove, the sequence (en = (1 + 1

n
)n) is increasing. [Suggestion: Ob-

serve (
1 + 1

n+1

1 + 1
n

)n+1

= (1− 1

(n+ 1)2
)n+1

and apply Bernoulli’s inequality.]
Prove the sequence (fn = (1 + 1

n
)n+x) is decreasing. [Suggestion:

Simplify (
1 + 1

n

1 + 1
n+1

)n+2

and apply Bernoulli’s inequality.
Show,

en ≤
n∑
j=0

1

n!
≤ fn.

Conclude (en) and (fn) converge to exp(1). Thus,

e = lim
n→∞

(1 +
1

n
)n.

Problem 12.16. Prove, for x real and x ≥ −2 and positive integers n
that

(1 + x)n ≥ 1 + nx.
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[Suggestion: Note that the result is true for n = 1, 2 by direct veri-
fication. Now suppose, arguing by induction, that x ≥ −2 and that
(1 + x)m ≥ 1 +mx for all m ≤ n. Write

(1 + x)n+1 = (1 + x)n−1(1 + x)2

and apply the induction hypothesis the first term in the product on
the right hand side.]

Problem 12.17. Let rn =
∑n

j=1
1
j
− log(n). Show that the sequence

is bounded below (by 0) and decreasing. It thus has a limit known
as the Euler-Mascheroni constant (http://en.wikipedia.org/wiki/
Euler%E2%80%93Mascheroni_constant).

Problem 12.18. Show, if (an) is a sequence of real numbers and 0 <
an ≤ a2n + a2n+1, then the series

∑∞
n=1 an diverges.

13. Complex Numbers and Series∗

The ∗ here indicates that this section is optional. Subsection 13.1 is
needed for Section 18. Let V = (V, ‖ · ‖) be a complete normed vector
space. Thus, V is a vector space, ‖ · ‖ is a norm on V and the vector
space V = (V, d) with d(x, y) = ‖x− y‖ is complete. An example is of
course Rk with the usual Euclidean norm. To a sequence (an) from V
there is the naturally associated series (sn) with

sn =
n∑
j=0

aj.

As before, let

(20)
∞∑
j=0

aj

denote both the sequence of partial sums and its limit, should it exist.

Definition 13.1. The series of Equation (20) converges absolutely if
the numerical series

∞∑
j=0

‖aj‖

converges. /

Most of the facts about numerical series carry over to series from V .
The following proposition gives a sampling of such results.

http://en.wikipedia.org/wiki/Euler%E2%80%93Mascheroni_constant
http://en.wikipedia.org/wiki/Euler%E2%80%93Mascheroni_constant
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Proposition 13.2. For the series S from Equation (20) the results of
Proposition 12.3 hold, with the obvious exceptions. In particular, if S
converges absolutely, then S converges.

For V = Rk, write aj = (aj(1), . . . , aj(k)), where aj(`) denotes the
`-th entry of aj. In this case the series S converges if and only if for
each ` the series

∑
aj(`) converges. Moreover, in this case,∑

aj =
(∑

aj(1) . . . aj(k)
)
.

†

13.1. Complex Numbers. This section contains a review of the basic
facts about the field of complex numbers. Recall that C, the complex
plane, is, as a (real) vector space, R2. A point (a, b) ∈ R2 is identified
with the complex number a+ ıb ∈ C and the product of z = a+ ıb and
w = u+ ıv is

zw = (au− bv) + ı(av + bu).

Thus, ı2 = −1.
Given z = a + ıb 6= 0, it is natural to write z = r(a

r
+ ı b

r
), where

r =
√
a2 + b2. The point (a

r
, b
r
) lies on the unit circle and thus has the

form (cos(t), sin(t)). Hence, the complex number z can be written as

(21) z = r(cos(t) + ı sin(t)).

The number r =
√
a2 + b2 is the modulus of z and is denoted |z|; the

number t is the argument of z; and the representation (21) is the polar
decomposition of z.

If z = a + ıb is a complex number, we sometimes write a = <z
and b = =z; these are called the real part and imaginary part of z,
respectively. The complex conjugate of z = a + ib is defined to be
z := a− ıb. Notice that <z and =z can be recovered from z and z by
the formulas

<z =
z + z

2
, =z =

z − z
2ı

.

The useful formula
zz = |z|2

is readily verified.
Given two complex numbers z = |z|(cos(t) + i sin(t)) and w =

|w|(cos(s) + i sin(s)) a routine calculation using angle sum formulas
for sine and cosine shows,

zw = |z| |w|(cos(s+ t) + ı sin(s+ t)).

Thus complex multiplication can be interpreted geometrically in terms
of the product of the moduli and sum of the arguments.
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A function f : X → C can be expressed in terms of its real and
imaginary parts as f = u + ıv, where u, v : X → R. The pointwise
complex conjugate of f , denoted f, is given by f = u− ıv.

13.2. Power Series and Complex Numbers. Since, as a real vector
space, C it is nothing more than R2, the discussion at the outset of this
section applies.

Let (an) be a sequence of complex numbers. The expression, for
complex numbers z,

(22)
∞∑
j=0

ajz
j,

is the complex version of a power series.

Theorem 13.3. Either the series of Equation (22) converges absolutely
for every complex number z or there is a real number R such that if
|z| < R then the series converges and if |z| > R, then the series diverges.

In the case that the series converges for all z, its radius of convergence
is ∞ and otherwise R of the theorem is the radius of convergence.

Example 13.4. The power series

∞∑
j=0

zn

has radius of convergence 1 and for |z| < 1 converges to 1
1−z . For |z| ≥ 1

the series diverges.
The power series

∞∑
j=0

zn

n

also has radius of convergence 1 and evidently diverges if z = 1. In
particular, the series does not converge absolutely for |z| ≥ 1. On the
other hand, a generalization of the alternating series test (which will
not be discussed) can be used to show that if |z| = 1, but z 6= 1, then
the series converges (conditionally).

The power series,

E(z) =
∞∑
j=0

zj

j!

converges for all z and thus has an infinite radius of convergence. It
defines a function E : C → C. Note that, in view of Example 12.26,
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E(x) = exp(x) for x ∈ R. Accordingly E is the complex exponential
and will be denoted by exp or ez. Thus,

E(z) = exp(z) = ez.

4

Proposition 13.5. E(z + w) = E(z)E(w) for z, w ∈ C. †

The proof of the proposition uses the following lemma which is of
independent interest.

Lemma 13.6. Suppose
∑
aj and

∑
bj converge to A and B respec-

tively and let

cm =
m∑
j=0

ajbm−j.

If
∑
aj converge absolutely, then

∑
cm converges to AB. †

If both
∑
aj and

∑
bj converge absolutely, then so does

∑
cm.

Proof. Let tk denote the partial sums of the series
∑∞

j=0 bj and observe,

n∑
m=0

cm =
n∑
j=0

ajtn−j = B
n∑
j=0

aj +
n∑
j=0

aj(tn−j −B).

To complete the proof, it suffices to show that the last term on the
right hand side above converges to 0. To this end, let ε > 0 be given.
There is an N so that |B − tk| < ε for k ≥ N because (tk) converges
to B and at the same time

∞∑
j=N

|aj| ≤ ε,

since the series
∑
aj is assumed to converge absolutely. Since |B − tj|

converges, there is an M such that |B− tj| ≤M for all j. For n ≥ 2N ,

|
n∑
j=0

an−j(B − tj)| ≤|
n−N∑
j=0

an−j(B − tj)|+ |
n∑

j=n−N+1

an−j(B − tj)|

≤
n∑

j=N

M |aj|+ (
∞∑
j=0

|aj|)ε

≤ε(M +
∑
|aj|).

�
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Proof of Proposition 13.5. From the Lemma,

E(z)E(w) =
∞∑
m=0

(
m∑
j=0

zjwm−j

j!(m− j)!
)

=
∞∑
m=0

1

m!

m∑
j=0

(
m
j

)
zjwm−j

=
∞∑
m=0

(z + w)m

m!
= E(z + w).

�

Remark 13.7. The polar decomposition of Equation (21) can be ex-
pressed in terms of the exponential function using the formula,

eit = exp(it) = cos(t) + ı sin(t),

valid for t real. See Problem 13.3. �

13.3. Dirichlet Series. For positive integers n and complex numbers
s, let

n−s = exp(−s log(n)).

For n fixed, n−s is thus defined for all s ∈ C. Note that

|n−s| = n−<s.

Given a sequence a = (an)∞n=1 of complex numbers, the expression

(23) f(s) =
∞∑
n=1

ann
−s

is a Dirichlet series. Of course, this series determines a function with
domain equal Da, the set of those s ∈ C for which the series converges.
Writing s = σ + ıt in terms of its real and imaginary parts, the series
converges absolutely if and only if,

∞∑
n=1

|an|n−σ

converges.
The following proposition collects some elementary facts about con-

vergence of Dirichlet series. The proof are left as an Exercise for the
gentle reader. See Problem 13.4.

Proposition 13.8. Suppose C > 0 and σ0 is real. If |an|n−σ0 ≤ C
for all n, then the Dirichlet series f(s) of Equation (23) converges
absolutely for σ = <s > σ0 + 1.
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If the series f(s) converges absolutely at s0 = σ0+ ıt0, then the series
converges absolutely for every s with <s ≥ σ0. Further, in this case,
the series converges uniformly on {s ∈ C : <s ≥ σ0}.

Either the series f(s) converges absolutely for all s; fails to converge
for all s; or there is a real number σa such that the series converges
absolutely for <s > σa and does not converge absolutely for <s <
σa. †

Definition 13.9. Interpreting σa as either ±∞ if needed, the number
σa is the abscissa of absolute convergence of the Dirichlet series f(s). /

Example 13.10. For an = 1, the resulting series is known as the
Riemann zeta function,

ζ(s) =
∞∑
n=1

n−s.

It converges absolutely for σ = <s > 1. It turns out that it diverges
if σ ≤ 1. For σ < 1 the divergence follows from Theorem 13.12. The
case σ = 1 will not be dealt with here. 4

Example 13.11. The Dirichlet series

η(s) =
∞∑
n=1

(−1)nn−s

converges absolutely for σ > 1, conditionally for 0 < σ ≤ 1 and diverges
otherwise. Here, as usual, s = σ+ ıt. Thus η(s) determines a function,
known as the Dirichlet η (or alternating ζ) function with domain {s ∈
C : <s > 0}. 4

Theorem 13.12. The Dirichlet series of Equation (23) either con-
verges for all s; converges for no s; or there is a real number σc such
that the series converges for <s > σc and diverges for <s < σc. More-
over, σc + 1 ≥ σa.

Definition 13.13. Again, allowing σc = ±∞ if needed, σc is the ab-
scissa of (simple) convergence of the Dirichlet series f(s). /

Remark 13.14. Evidently σc ≤ σa The inequality σa ≤ σc + 1 follows
immediately from Proposition 13.8. The examples of the zeta and eta
functions show that the inequalities are the best possible. �

The proof of Theorem 13.12 requires a couple of Lemmas, the first
of which is known, for obvious reasons, as summation by parts.
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Lemma 13.15. [Summation by Parts] Given complex numbers a1, . . . , an; b1, . . . , bn,

let Bk =
∑k

j=1 bj. For m ≥ 2,

n∑
j=m

ajbj = anBn − amBm−1 −
n−1∑
j=m

Bj(aj+1 − aj).

†

Proof. Observe,

n∑
j=m

ajbj =ambm +
n∑

j=m+1

aj(Bj −Bj−1)

=ambm +
n∑

j=m+1

ajBj −
n−1∑
j=m

aj+1Bj

=ambm + anBn − am+1Bm −
n−1∑

j=m+1

(aj+1 − aj)Bj

=anBn − amBm−1 − (am+1 − am)Bm −
n−1∑

j=m+1

(aj+1 − aj)Bj

=anBn − amBm−1 −
n−1∑
j=m

(aj+1 − aj)Bj

�

Lemma 13.16. Suppose s0 = σ0 + ıt0 and there exists a C such that
for all N ∈ N+,

|
N∑
n=1

ann
−s0 | ≤ C.

If s = σ + ıt and σ > σ0, then for all m and N ,

|
N∑

n=m

ann
−s0 | ≤ 4Cmσ0−σ.

†

Proof. Applying Lemma 13.15 (summation by parts) to nσ0−σ and
ann

σ0 gives,

N∑
n=m

ann
σnσ0−σ = Nσ0−σBN−mσ0−σBm−1−

N−1∑
n=m

((n+1)σ0−σ−nσ0−σ)Bn,
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where

Bn =
n∑
j=1

ann
σ0 .

From the hypothesis, (Bn) is bounded by C. Hence,

|
N∑

n=m

ann
σnσ0−σ| ≤ C[Nσ0−σ +mσ0−σ +

N−1∑
n=m

|(n+ 1)σ0−σ − nσ0−σ|].

Observe by its telescoping nature,

N−1∑
n=m

|(n+ 1)σ0−σ − nσ0−σ| =mσ0−σ −Nσ0−σ

=mσ0−σ|(N
m

)σ0−σ − 1| ≤ 2mσ0−σ.

Since also Nσ0−σ ≤ mσ0−σ, the conclusion of the lemma follows. �

Lemma 13.17. Suppose the series f(s) of (23) converges at s0 =
σ0 + ıt0. If s = σ + ıt and σ > σ0, then the series converges at s. †

Proof. Here is a sketch of the proof. Let Sk(s) denote the partial sums
of f(s). If the series converges at s0 the partials sums (Sk(s0)) are
bounded, say by C. The sequence (mσ0−σ)m converges to 0 as σ0−σ <
0. It follows that the partial sums of f(s) are Cauchy by Lemma 13.16.
Thus the series converges at s. �

Proof of Theorem 13.12. Suppose f(s) converges for some, but not all
s. Let

τ = inf{σ ∈ R : there exists a t such that f(s = σ + ıt) converges}.

Given σ > τ , there exists a σ > σ0 > τ, by the definition of τ as an
infimum. There exists a t0 such that f converges at s0 = σ0 + ıt0. By
Lemma 13.17, the series converges for every s with <s > σ0 and for
σ + ıt.

On the other hand, if σ < τ and t ∈ R, then f(σ + ıt) doesn’t
converge by the choice of τ and the proof is complete. �

Returning to complete the Example 13.10 of the zeta function ζ(s),
note that the series diverges for s = σ < 1, but converges absolutely
for s = σ + ıt when σ > 1. Hence, its abscissa of convergence is
σc = 1 = σa.
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13.4. Problems.

Problem 13.1. Determine the radius of convergence and the set of
z ∈ C for which the power series,

∞∑
j=0

zj

j2 + 1

converges.

Problem 13.2. Fix a positive integer m. Show that the expression,
for z ∈ C,

∞∑
j=0

zmj

is a power series. Using the result stated (without proof) in Example
13.4, determine the set of z for which this series converges.

Problem 13.3. Prove, for x ∈ R,

exp(ıx) + exp(−ıx) = 2 cos(x).

Find a similar formula for sin(x).
Conclude,

exp(it) = cos(t) + ı sin(t)

and thus the representation of Equation (21) can be written as

z = reit.

Problem 13.4. Prove Proposition 13.8.

Problem 13.5. Prove the assertion in Remark 12.22.

14. Linear Algebra Review

This section reviews linear algebra in the Euclidean spaces Rn in
preparation for studying the derivative of mappings from one Euclidean
space to another. It is assumed that the reader has had a course in
linear algebra and is conversant with matrix computations.

14.1. Matrices and Linear Maps Between Euclidean Spaces.

Definition 14.1. A mapping T : Rn → Rm is linear if, for all x, y ∈ Rn

and c ∈ R,

(i) T (x+ y) = T (x) + T (y); and
(ii) T (cx) = cT (x).

In this case it is customary to write Tx instead of T (x). /
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Example 14.2. Verify that the mapping T : R2 → R2 defined by

T (x1, x2) = (2x1, x1 + x2)

is linear.
Verify that the functions f, g : R2 → R2 defined by

f(x1, x2) =(x1x2, x1 + x2) and;

g(x1, x2) =(2x1, x1 + x2 + 1)

are not linear. 4

Definition 14.3. Let a1, . . . , an ∈ Rm denote the columns of the m×n
matrix A so that

A =
(
a1 a2 . . . an

)
.

If x ∈ Rn, then the product of A and x is

Ax =
∑

xjaj ∈ Rm.

In particular, aj = Aej, where ej ∈ Rn is the j-th standard basis vector,
namely the vector with a 1 in the j-th position and 0 elsewhere.

Given an m×n matrix A, let TA denote the mapping TA : Rn → Rm

defined by

TAx = Ax.

/

Lemma 14.4. If A is an m× n matrix, then the mapping TA : Rn →
Rm is linear. †

Definition 14.5. Given a linear map T : Rn → Rm, let AT denote the
matrix

AT =
(
Te1 Te2 . . . T en

)
.

Thus AT is the m × n matrix with j-th column Tej and is called the
matrix representation of T . /

Example 14.6. Compute the matrix representation AT for the linear
transformation in Example 14.2. 4

The following proposition justifies identifying m × n matrices with
linear maps from Rn to Rm.

Proposition 14.7. (i) If A is an m× n matrix, then ATA = A.
(ii) If T : Rn → Rm is linear, then TAT = T .

†
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If S, T : Rn → Rm are linear maps and c ∈ R, then cS+T : Rn → Rm

is naturally defined by

(cS + T )x = cSx+ Tx.

If T : Rn → Rm and S : Rm → Rp are both linear, then the composi-
tion S◦T is written ST , notation justified by the following proposition.

Proposition 14.8. The correspondence between matrices and linear
maps enjoys the following properties.

(i) If A and B are m× n matrices and c ∈ R, then

TcA+B = cTA + TB.

(ii) If S, T : Rn → Rm are linear and c ∈ R, then cS + T is linear and
moreover,

AcS+T = cAS + AT .

(iii) If A and B are m× n and p×m matrices respectively, then

TBA = TBTA.

(iv) If T : Rn → Rm and S : Rm → Rp are linear, then so is ST .
Moreover,

AST = ASAT .

(v) If m = n and T is invertible, then its inverse, T−1 : Rn → Rn is
also linear, the matrix AT is invertible, and

A−1T = AT−1 .

(vi) Likewise, if A is an invertible n× n matrix, then TA is invertible
and

T−1A = TA−1 .

†
Proof. The first two items are left to the gentle reader as Problem 14.1.
The arguments are similar to those of item (iii) and (iv) to follow.

To prove item (iii), let A and B as in the statement of the proposition
be given and note that, for x ∈ Rn,

TBAx = BAx = BTAx = TB(TAx) = TBTAx.

For item (iv), given S, T , observe by item (iii) and Proposition
14.7(ii),

TASAT = TASTAT = ST.

In particular, ST is linear. Moreover, applying Proposition 14.7(i),

ASAT = ATASAT
= AST

The remainder of the proof - items (v) and (vi) - is left to the gentle
reader as Problem 14.2. �
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Now that matrices and linear maps from Rn to Rm have been iden-
tified, often speak of a matrix as a linear map and conversely. Let In
denote the n×n identity matrix. The linear map it induces is of course
the identity mapping AInx = x. Occasionally, we will write I in place
of In when the size n is apparent from the context.

Proposition 14.9. Suppose A is an m× n matrix. If m > n, then A
is not onto. If m < n, then A is not one-one.

The matrix A is one-one if and only if Ax = 0 implies x = 0.
For an n× n matrix A, the following are equivalent.

(i) A is invertible;
(ii) A is one-one;
(iii) A is onto;
(iv) there exists an n × n matrix B such that BA = In (and in this

case B = A−1);
(v) there exists an n × n matrix C such that AC = In (and in this

case C = A−1);
(vi) det(A) 6= 0;

†

Example 14.10. Let T denote the linear transformation from Exam-
ple 14.2. Verify that T is one-one and hence invertible. Find T−1. 4

14.2. Norms on Rn. Let ‖ · ‖2 denote the usual Euclidean norm on
Rn. Thus, for x = (x1, . . . , xn),

‖x‖22 =
n∑
j=1

x2j .

In the usual way (Rn, d2) is a metric space, where d2(x, y) = ‖x− y‖2.
Let {e1, . . . , en} denote the standard basis for Rn; i.e., ej has a 1 in the
j-th entry and zeros elsewhere and

x =
n∑
j=1

xjej.

Let Sn = {x ∈ Rn : ‖x‖2 = 1}, the unit sphere in Rn. Note that it is
a compact set.

Lemma 14.11. Let ‖ · ‖ be a norm on Rn and let d(x, y) = ‖x − y‖
denote the resulting metric. If T : (Rn, d2)→ (Rn, d) is linear, then

(i) there is a C > 0 such that

‖Tx‖ ≤ C‖x‖2;
(ii) T is continuous;
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(iii) the mapping FT : Rn → R defined by FT (x) = ‖Tx‖ is continuous
and hence attains both its infimum and supremum on Sn; and

(iv) if T is invertible, then there is a c > 0 such that

c‖x‖2 ≤ ‖Tx‖. †
Finally,

inf{C ′ : ‖Tx‖ ≤ C ′‖x‖2 for all x ∈ Rn} = sup{‖Tx‖ : x ∈ Rn, ‖x‖2 = 1}
and both the infimum and supremum are attained.

Recall the 1-norm ‖ · ‖1 on Rn is defined by

‖x‖1 =
n∑
j=1

|xj|

and the inequality (which follows from the Cauchy-Schwarz inequality),

‖x‖1 ≤
√
n‖x‖2.

Proof. Let
K = max{‖Tej‖ : 1 ≤ j ≤ n}.

Given x =
∑n

j=1 xjej,

‖Tx‖ ≤
n∑
j=1

|xj| ‖Tej‖

≤K‖x‖1
≤K
√
n‖x‖2.

Choosing C = K
√
n proves item (i).

Now suppose (i) holds (for a given C ≥ 0). To show that T is
(uniformly) continuous, given ε > 0 choose δ = ε

C+1
. If d2(x, y) ≤ δ,

then

d(Tx, Ty) =‖Tx− Ty‖
=‖T (x− y)‖
≤C‖x− y‖2
=Cd2(x, y) < ε.

Note further that the mapping FT : (Rn, d2)→ R given by

FT (x) = ‖Tx‖
is continuous because it is the composition of the continuous map T
with the continuous map ‖ · ‖ : (Rn, d)→ R.

Since Sn is a closed bounded subset of Rn, it is compact. Since
FT is continuous, FT attains both its supremum and infimum on Sn;
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i.e., there exists a y, z ∈ Sn such that FT (z) ≥ FT (x) ≥ FT (y) for all
x ∈ Sn. In particular, to prove the moreover part of the statement
of the lemma, it suffices to show that C = FT (z) has the property
that ‖Tx‖ ≤ C‖x‖2 for all x ∈ Rn, which is readily accomplished by
considering, for x 6= 0, the unit vector u = x

‖x‖2 .

Finally, to prove item (iv), assuming T is invertible, Let c = FT (y) >
0 and for all x ∈ Sn,

FT (x) = ‖Tx‖ ≥ c.

Now suppose 0 6= x ∈ Rn. Let u denote the unit vector in the direction
x. From the inequality above,

‖Tx‖ = ‖x‖2‖Tu‖ ≥ c‖x‖2.
�

Definition 14.12. Two norms ‖ · ‖ and ‖ · ‖∗ on Rn are equivalent
norms if there exists 0 < c < C such that

c‖x‖ ≤ ‖x‖∗ ≤ C‖x‖
for all x ∈ Rn. /

Remark 14.13. The metric properties of equivalent norms are the
same; i.e., notions of convergence and continuity are the same. Accord-
ingly, we can freely move between equivalent norms for many purposes
of analysis. �

Theorem 14.14. All norms on Rn are equivalent.

This theorem depends upon the fact that Rn is a finite dimensional
vector space. There are examples of inequivalent norms on infinite
dimensional vector spaces (see Problem 14.6).

Proof. Let ‖ · ‖ and ‖ · ‖∗ be given norms and let d and d∗ denote
the resulting metrics. Let T : (Rn, d2) → (Rn, d) denote the identity
mapping, Tx = x. From Lemma 14.11 there exists constants 0 < c ≤ C
such that

c‖x‖2 ≤ ‖Tx‖ = ‖x‖ ≤ C‖x‖2.
By precisely the same reasoning, there exists 0 < c∗ ≤ C∗ such that

c∗‖x‖2 ≤ ‖Tx‖∗ = ‖x‖∗ ≤ C∗‖x‖2.
It now follows that

c∗
C
‖x‖ ≤ ‖x‖∗ ≤

C∗
c
‖x‖

and the proof is complete. �
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14.3. The vector space of m× n matrices. Let L(Rn,Rm) denote
the set of linear maps from Rn to Rm. Propositions 14.7 and 14.8
describe the canonical identification of L(Rn,Rm) with the set Mm,n

of m × n matrices. Both L(Rn,Rm) and Mm,n are vector spaces and,
as vector spaces, can identified with Rmn. In particular, Mm,n can be
given the Euclidean norm by defining, for X = (xj,k) ∈Mm,n,

‖X‖22 =
∑
j,k

|xj,k|2,

which is often called the Frobenius norm. However, there is another
norm on Mm,n (of course equivalent to the Frobenius norm by Theorem
14.14) which, for many purposes, is more natural - and easier to work
with. Given an m×n matrix T, (equivalently a linear map from Rn to
Rm) by Lemma 14.11, there is a C such that

‖Tx‖2 ≤ C‖x‖2
for all x ∈ Rn.

Proposition 14.15. The mapping ‖ · ‖ : Mm,n → R defined by

‖T‖ = inf{C : ‖Tx‖2 ≤ C‖x‖2 for all x ∈ Rn}
is a norm on Mm,n. †

Note that by Lemma 14.11, ‖T‖ = sup{‖Tx‖2 : x ∈ Rn, ‖x‖2 =
1}. This norm is called the operator norm (or sometimes the matrix
norm) and is also denoted by ‖T‖op. That this infimum is actually
attained and defines a norm is left to the gentle reader as Problem
14.5. The following Proposition collects some immediate properties of
the operator norm. Recall, the function FT of Lemma 14.11 attains its
supremum on Sn.

Proposition 14.16. Let T be an m× n matrix.

(i) The norm of an m× n matrix T is also given by

‖T‖ = max{‖Tx‖2 : ‖x‖2 = 1}.
(ii) If y ∈ Rn, then,

‖Ty‖2 ≤ ‖T‖ ‖y‖2.
(iii) Conversely, if C > 0 and

‖Ty‖2 ≤ C‖y‖2
for all y ∈ Rn, then ‖T‖ ≤ C.

(iv) If S is an n× p matrix, then ‖TS‖ ≤ ‖T‖ ‖S‖.
†
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14.4. The set of invertible matrices. This section closes by re-
viewing some basic facts about inverse of matrices (equivalently linear
transformations on Euclidean space). Throughout, unless otherwise
indicated, ‖ · ‖ stands for the Euclidean norm ‖ · ‖2.

Given n ∈ N+, recall I = In denotes the n × n identity matrix and
TI is the identity mapping, TIx = x.

Lemma 14.17. If A is an n × n matrix and ‖A‖ < 1, then I − A is
invertible. Moreover,

‖(I − A)−1‖ ≤ 1

1− ‖A‖
.

†

Proof. Observe, for x ∈ Rn, that

‖(I − A)x‖ ≥ ‖x‖ − ‖Ax‖ ≥ ‖x‖ − ‖A‖‖x‖ = ‖x‖(1− ‖A‖).
In particular, if x 6= 0, then (I − A)x 6= 0 and thus, by Proposition
14.9 (the equivalence of items (i) and (ii)), I − A is invertible.

Given x ∈ Rn, note that

‖x‖ = ‖(I − A)(I − A)−1x‖ ≥ ‖(I − A)−1x‖(1− ‖A‖).
Thus,

‖(I − A)−1x‖ ≤ 1

1− ‖A‖
‖x‖.

Hence ‖(I − A)−1‖ ≤ (1− ‖A‖)−1 by Proposition 14.16(iii). �

Proposition 14.18. Fix n. The set In of invertible n× n matrices is
an open subset of Mn and the mapping F : In → In

F (A) = A−1

is continuous. †

Proof. Fix A ∈ In. Choose η = 1
2‖A−1‖ and suppose ‖H‖ < η. In this

case,

‖ − A−1H‖ ≤ ‖A−1‖ ‖H‖ < 1

2
and hence I + A−1H is invertible by Lemma 14.17. Consequently,

A+H = A(I + A−1H)

is invertible, proving that the η neighborhood of A lies in In (since if
B is in this η neighborhood, then H = B − A has (operator) norm at
most η). Lemma 14.17 also gives

‖(A+H)−1‖ ≤ ‖A−1‖ 1

1− ‖A−1H‖
≤ 2‖A−1‖.
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To see that F is continuous, again suppose ‖H‖ < η and note

‖F (A+H)− F (A)‖ =‖(A+H)−1[A− (A+H)]A−1‖
≤‖A+H‖−1 ‖H‖ ‖A−1‖
≤2‖A−1‖2 ‖H‖.

To complete the proof, given ε > 0, choose 0 < δ ≤ η and such that
δ < ε

2‖A−1‖ . �

14.5. Exercises.

Exercise 14.1. Show, if T : Rn → Rm is linear, then T0 = 0. (Here
the first 0 is the zero vector in Rn and the second is the zero vector in
Rm.)

Exercise 14.2. Define T : R3 → R2 by

T (x1, x2, x3) = (2x1 − x2 + 3x3, x3 − x1).

Find a matrix A such that T = TA and explain how doing so shows
that T is linear and A = AT .

Exercise 14.3. Prove that the relation of equivalence of norms is an
equivalence relation (symmetric, reflexive, and transitive).

Exercise 14.4. Suppose D is an n× n diagonal matrix with diagonal
entries λ1, . . . , λn. Show ‖D‖ = max{|λj| : 1 ≤ j ≤ n} (the operator
norm).

Show D is invertible if and only if all the diagonal entries are different
from 0.

Exercise 14.5. Given n and y1, . . . , yn, the (row) 1× n matrix

Y =
(
y1 . . . yn

)
is identified with the corresponding linear map Y : Rn → R. Find ‖Y ‖
(the operator norm).

Exercise 14.6. Fix c > 0 and let

S = c

0 1 0
0 0 1
0 0 0

 .

Show ‖S‖ = c. Show also that I −S is invertible (even if c ≥ 1) and
compare with Lemma 14.17
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14.6. Problems.

Problem 14.1. If T, S : Rn → Rm, then T + S : Rn → Rm is defined
by (T + S)x = Tx + Sx as one would expect. Show, if S and T are
linear, then T + S is linear and

AT+S = AT + AS.

Show further, if c ∈ R, then cT : Rn → Rm defined by cT (x) = c(Tx)
(and denoted simply cTx) is a linear map and further

AcT = cAT .

In the other direction, show, if A and B are m× n matrices, then

TA+B = TA + TB

and also
TcA = cTA.

Problem 14.2. Complete the proof of Proposition 14.8.

Problem 14.3. Show if ‖ · ‖ is a norm on Rm and T : Rn → Rm is
linear and one-one, then the function ‖ · ‖∗ : Rn → R given by

‖x‖∗ = ‖Tx‖
is a norm on Rn.

Problem 14.4. Suppose A and B are n × n and m × m matrices
respectively and that C is an n×m matrix. Let

X =

(
A C
0 B

)
.

Prove X is invertible if and only if both A and B are.

Problem 14.5. Prove Proposition 14.15.

Problem 14.6. Consider the vector space C([0, 1]) with the norms,

‖f‖22 =

∫ 1

0

|f |2dt

and
‖f‖∞ = max{|f(t)| : 0 ≤ t ≤ 1}.

Let fn(t) = tn (defined on [0, 1]) and show that

lim
n→∞

‖fn‖2 = 0,

whereas ‖fn‖∞ = 1 for all n. Conclude the norms ‖ · ‖2 and ‖ · ‖∞ are
not equivalent.
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Problem 14.7. Show, if 0 ≤ an ≤ 1 and the series
∑∞

n=0 an(1 − an)
converges, then (exactly) one of the series

∑∞
n=0 an or

∑∞
n=0(1 − an)

converges.

15. Derivatives of Mappings Between Euclidean Spaces

The calculus of functions f : U → Rm, where U is an open set
in Rn, is the topic of this section. Here Rn denotes n-dimensional
Euclidean space. Thus Rn is the space of (column) n-vectors, x =
(x1, . . . , xn)T , (here T denotes transpose) with real entries, the usual
pointwise operations and the standard Euclidean norm,

‖x‖2 =
n∑
j=1

x2j .

(Note this notation differs slightly from that in some earlier sections
where ‖ · ‖2 was used for the Euclidean norm.) Of course, by Theorem
14.14 we could work with any pair of norms on Rn and Rm.

The derivative is a linear map from Rn to Rm and Subsection 14.1
reviewed the connection between matrices and linear maps between
Euclidean spaces. The definition and basic examples of derivatives
are given in Subsection 15.1. Properties of the derivative appear in
Subsection 15.2. Directional derivatives and the connections between
partial derivatives and the derivative are detailed in Subsections 15.3
and 15.4 respectively.

15.1. The Derivative: definition and examples. A linear map T :
R → R can be identified with the real number t = T1 and conversely.
Indeed, Th = hT1 = th; i.e., T corresponds to the 1× 1 matrix [T1].

By definition, f : (a, b)→ R is differentiable at a < c < b if there is
a number t so that

lim
x→c

f(x)− f(c)

x− c
= t.

Rewriting, f is differentiable at c if and only if there is a t such that

lim
h→0

|f(c+ h)− f(c)− th|
|h|

= 0.

Note that U ⊂ Rn is open if and only if for each c ∈ U there is an
η > 0 such that if h ∈ Rn and ‖h‖ < η, then c+ h ∈ U . In particular,

Nη(c) = Nη(0) + c := {h+ c : ‖h‖ < η}.
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Definition 15.1. Suppose U is an open subset of Rn, c ∈ U and
f : U → Rm. The function f is differentiable at c if there is a linear
map T : Rn → Rm such that

(24) lim
h→0

‖f(c+ h)− f(c)− Th‖
‖h‖

= 0.

If f is differentiable at each c ∈ U , then f is differentiable /

Proposition 15.2. Suppose U is an open subset of Rn, c ∈ U , and
f : U → Rm. If S, T : Rn → Rm are linear maps and both

lim
h→0

‖f(c+ h)− f(c)− Th‖
‖h‖

= 0 = lim
h→0

‖f(c+ h)− f(c)− Sh‖
‖h‖

,

then S = T . †
Proof. Given ε > 0 there is a δ such that if 0 < ‖h‖ < δ, then c+h ∈ U
and both

‖f(c+ h)− f(c)− Th‖ <ε‖h‖
‖f(c+ h)− f(c)− Sh‖ <ε‖h‖.

Hence,

‖Th−Sh‖ ≤ ‖f(c+h)−f(c)−Sh‖+‖f(c+h)−f(c)−Th‖ < 2ε‖h‖.
Now suppose k ∈ Rn is given. For t real and |t| < δ

‖k‖+1
, the vector

h = tk satisfies ‖h‖ < δ and thus,

‖T (tk)− S(tk)‖ = |t| ‖Tk − Sk‖ < 2ε|t|‖k‖.
Since ε > 0 is arbitrary, it follows that Tk = Sk. �

Definition 15.3. If f is differentiable at c, then the unique linear map
T satisfying (24) is the derivative of f at c , written

f ′(c) = Df(c) = T.

/

Example 15.4. Consider the function f : R2 → R2 defined by f(x1, x2) =
(x21, x1x2). With c = (x1, x2) fixed, let X denote the matrix,

X =

(
2x1 0
x2 x1

)
.

Given a vector h = (h1, h2) ∈ R2,

‖f(x1 + h1, x2 + h2)− f(x1, x2)−Xh‖ = ‖(h21, h1h2)‖ ≤ |h1|‖h‖.
It follows that f is differentiable at (x1, x2) and X (really the linear
map TX it determines) is Df(x1, x2). 4

Do Exercise 15.1.
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15.2. Properties of the Derivative.

Proposition 15.5. Suppose U ⊂ Rn is open and f : U → Rm. If f is
differentiable at c, then f is continuous at c. †

The proof of this proposition is left to the reader as Problem 15.1.

Proposition 15.6. [Chain Rule] Suppose U ⊂ Rn and V ⊂ Rm are
open and that f : U → V and g : V → Rk. If f is differentiable at
c ∈ U and g is differentiable at d = f(c), then ψ = g◦f is differentiable
at c and

Dψ(c) = Dg(f(c))Df(c).

†

Proof. For notational ease, let S = Df(c) and T = Dg(f(c)). Also, for
h ∈ Rn and k ∈ Rm such that c+ h ∈ U and d+ k ∈ V , let

γ(k) =g(d+ k)− g(d)− Tk
η(h) =f(c+ h)− f(c)− Sh
Γ(h) =η(h) + Sh = f(c+ h)− f(c).

With these notations,

ψ(c+ h)− ψ(c)− TSh =g(f(c+ h))− g(f(c))− TSh
=g(f(c) + Γ(h))− g(f(c))− T (Γ(h)− η(h))

=γ(Γ(h)) + Tη(h).

Now let 1 ≥ ε > 0 be given. Since g is differentiable at d, there
exists a δ > 0 such that if ‖k‖ < δ, then ‖γ(k)‖ < ε‖k‖. Since f is
differentiable at c, there exists a µ > 0 such that if ‖h‖ < µ, then
‖η(h)‖ < ε‖h‖ ≤ ‖h‖ and at the same time

‖Γ(h)‖ ≤‖η(h)‖+ ‖S‖‖h‖
≤(1 + ‖S‖)‖h‖ < δ.

Thus for ‖h‖ < µ,

‖γ(Γ(h)) + Tη(h)‖ ≤ε‖Γ(h)‖+ ‖T‖ ‖η(h)‖
≤ε(1 + ‖S‖)‖h‖+ ‖T‖ε‖h‖
≤ε(1 + ‖S‖+ ‖T‖)‖h‖.

Thus,

lim
h→0

‖ψ(c+ h)− ψ(c)− TSh‖
‖h‖

= 0

and the proof is complete. �
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As is easy to prove, the derivative is also linear in the sense that if U
is an open set in Rn, the point c lies in U , the functions f, g : U → Rm

are differentiable at c and r ∈ R, then rf + g is differentiable at c and

D(rf + g)(c) = rDf(c) +Dg(c).

15.3. Directional Derivatives. A subset C of Rn is convex if a, b ∈ C
and 0 ≤ t ≤ 1 implies (1 − t)a + tb ∈ C. For c ∈ Rn and r > 0, the
neighborhood Nr(c) is evidently convex. In fact, because neighbor-
hoods are open sets, given a, b ∈ Nr(c), there exists a δ > 0 such that
(1− t)a+ tb ∈ Nr(c) for −δ < t < 1 + δ. Thus, given an open subset U
of Rn a function f : U → Rm and a point c ∈ U and an r > 0 such that
Nr(c) ⊂ U , if a, b ∈ Nr(c) then, for some δ > 0, we can consider the
function h : (−δ, 1+δ)→ U defined by h(t) = (1−t)a+tb = a+t(b−a)
and the composition g : (−δ, 1 + δ)→ Rm,

g(t) = f(h(t)) = f(a+ t(b− a)).

Definition 15.7. Suppose

(i) U is an open subset of Rn;
(ii) c is in U ;

(iii) u ∈ Rn is a unit vector;
(iv) f : U → Rm.

In this case there is a δ > 0 such that c + tu ∈ U whenever t ∈ R
and |t| < δ. The directional derivative of f in the direction u is the
derivative of g : (−δ, δ) → Rm defined by g(t) = f(c + tu) at 0, if it
exists. It is denoted Duf(c). Thus,

Duf(c) = lim
t→0

f(c+ tu)− f(c)

t
,

if this limit exists. /

Remark 15.8. If it exists, Duf(c) ∈ Rm. (It is a vector.) �

The following simple corollary of the chain rule relates the derivative
to directional derivatives.

Corollary 15.9. Suppose U ⊂ Rn is open, c ∈ U, f : U → Rm. For
each h ∈ Rn, there is a δ > 0 such that c + th ∈ U for |t| < δ. If f
is differentiable at c, then the function g : (−δ, δ) → Rm defined by
g(t) = f(c+ th) is differentiable at 0 and

g′(0) = Df(c)h.

Further, if f is differentiable, then so is g and

g′(t) = Df(c+ th)h.
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In particular, if f is differentiable at c and u ∈ Rn is a unit vector,
then

Duf(c) = Df(c)u ∈ Rm.

†

Proof. Since U is open and c ∈ U , there is a δ > 0 such that c+ tu ∈ U
for |t| < δ. Define h : (−δ, δ) → Rn by h(t) = c + tu. Then h is
differentiable at 0 and h′(0) = u. Thus, by the chain rule, g = f ◦ h is
differentiable at 0 and g′(0) = f ′(h(0))h′(0). �

It can happen that all directional derivatives can exist, even though
f is not differentiable at c as the following example shows.

Example 15.10. Define f : R2 → R by f(0, 0) = 0 and otherwise

f(x, y) =
x3

x2 + y2
.

Then all the directional derivatives of f exist; however, f is not
differentiable at 0. To prove this last assertion, suppose T : R2 → R is
a linear and both

lim
t→0

|f(te1)− f(0)− T (te1)|
|t|

= 0 = lim
s→0

|f(se2)− f(0)− T (se2)|
|s|

.

In this case Te1 = 1 and Te2 = 0. In particular, as a matrix,

T =
(
1 0

)
= eT1 .

But then, with h = (e1 + e2),

lim
t→0

|f(th)− f(0)− T (th)|
‖th‖

=
1

2
√

2
.

It follows that

lim
h→0

|f(h)− f(0)− Th|
‖h‖

6= 0.

Hence f is not differentiable at 0. �
In Problem 15.4 you will show that in fact the composition of f with

any differentiable curve is differentiable at 0. 4

15.4. Partial derivatives and the derivative. This subsection be-
gins with the familiar definition of the partial derivative.

Definition 15.11. Suppose U is an open subset of Rn, c ∈ U and
f : U → Rm. The partial derivative of f with respect to xj at c is the
directional derivative of f in the direction ej at c (where {e1, . . . , en}
is the standard basis for Rn) and is denoted by Djf(c).
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In the case that f : Rn → R (m = 1), it is customary to write

∂f

∂xj

instead of Djf . /

Remark 15.12. Given U ⊂ Rn and f : U → Rm, for 1 ≤ i ≤ m, let
fi : U → R denote the function fi(x) = 〈f(x), ei〉; i.e.,

f(x) =


f1
f2
...
fm

 .

Assuming f is differentiable at c ∈ U , each fi is differentiable at c
since fi is the composition of the differentiable mapping Ei : Rm → R
defined by

Ei(y) = 〈y, ei〉 = eTi y

with the mapping f which is differentiable at c. Using fi = Ei ◦ f
and the fact that DEi(c)h = Ei(h) (see Exercise 15.8), the chain rule
implies, for 1 ≤ j ≤ n,

∂fi
∂xj

(c) = Djfi(c) = Dfi(c)ej = Ei(f(c))Df(c)ej = 〈Df(c)ej, ei〉.

�

Proposition 15.13. If f , as in the definition, is differentiable at c,
then the matrix representation of Df(c), in terms of its columns, is(

D1f(c) · · · Dnf(c)
)

and moreover,

Df(c)i,j = 〈Df(c)ej, ei〉 = 〈Djf(c), ei〉.
Thus, the matrix representation for Df(c) is

Df(c) =
(
∂fi
∂xj

(c)
)m,n
i,j=1

.

†

Example 15.14. Returning to Example 15.4, f1(x1, x2) = x21 and
f2(x1, x2) = x1x2. Thus,(

∂f1
∂x1

(a, b) ∂f1
∂x2

(a, b)
∂f2
∂x1

(a, b) ∂f2
∂x2

(a, b)

)
=

(
2a 0
b a

)
.

4
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Definition 15.15. If U is an open subset of Rn and f : U → R is
differentiable at c ∈ U , then Df(c) is identified with the gradient of f ,
which is the 1× n matrix

∇f(c) =
(
∂f
∂x1

. . . ∂f
∂xn

)
.

/

Proposition 15.16. Suppose U ⊂ Rn is open, c ∈ U and f : U → R.
If η > 0, the neighborhood Nη(c) = {x ∈ Rn : ‖x − c‖ < η} lies in

U and if each ∂f
∂xj

exists on Nη(c) and is continuous at c, then f is

differentiable at c. †

Proof. The case n = 2 is proved. The details for the general case can
easily be filled in by the gentle reader.

Let ε > 0 be given. By continuity of the partial derivatives, there is
an η > δ > 0 such that if ‖k‖ < δ, then

|Djf(c+ k)−Djf(c)| < ε.

Write c = c1e1 + c2e2. Let h = h1e1 + h2e2 with ‖h‖ < η be given.
Observe, that c+ h1e1 ∈ U and

f(c+ h)− f(c) = f(c+ h)− f(c+ h1e1) + f(c+ h1e1)− f(c).

Next, note that for 0 ≤ s ≤ 1 that c + sh1e1 ∈ Nδ(c) and c + h1e1 +
sh2e2 ∈ Nδ(c). By the mean value theorem applied to the functions
g2(s) = f(c + h1e1 + sh2e2) and g1(s) = f(c + sh1e1) on the interval
[0, 1] there exists points tj ∈ (0, 1) such that, after (two) applications
of the chain rule,

f(c+ h)− f(c+ h1e1) =h2D2f(c+ h1e1 + t2h2e2)

f(c+ h1e1)− f(c) =h1D1f(c+ t1h1e1).

Thus, if ‖h‖ < δ, then

|f(c+ h)− f(c)−∇fh|
≤|f(c+ h)− f(c+ h1e1)− h2D2f(c+ h1e1 + t2e2)|
+|h2D2f(c+ h1e1 + t2e2)− h2D2f(c)|
+|f(c+ h1e1)− f(c)− h1D1f(c+ t1e1)|
+|h1D1f(c+ t1e1)− h1D1f(c)|
≤ε(|h2|+ |h1|)
≤2ε‖h‖.

This proves that f is differentiable at c (and of course Df(c) = ∇f(c)).
�
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Proposition 15.17. Suppose U is an open subset of Rn and f : U →
Rm. If all the partials Djfi exist on U and are continuous at c, then f
is differentiable at c. †

Proof. From the preceding proposition, each fi, defined by fi(x) =
〈f(x), ei〉 is differentiable and Dfi = ∇fi.

Fix c ∈ U and let T denote the matrix with (i, j) entry Djfi(c). For
‖h‖ sufficiently small,

‖f(c+ h)− f(c)− Th‖ =‖
∑
〈f(c+ h)− f(c)− Th, ei〉ei‖

≤
∑
|〈f(c+ h)− f(c)− Th, ei〉|

≤
∑
|fi(c+ h)− fi(c)−Dfih|

≤mε‖h‖.

�

Remark 15.18. Given U ⊂ Rn an open set and f : U → R, if f is dif-
ferentiable and Df : U → L(Rn,Rm) is continuous, then f is said to be
continuously differentiable. Note that f is continuously differentiable
if and only if all its partials are.

Summarizing, if all the partials of f exists in a neighborhood of a
point c and are continuous at c, then f is differentiable and its deriv-
ative is identified with its matrix of partial derivatives. If further, all
the partials are continuous, then f is continuously differentiable. �

15.5. Exercises.

Exercise 15.1. Show, directly from the definition, that f : R2 → R2

defined by

f(x1, x2) = (x21 − x22, 2x1x2)
is differentiable and compute its derivative (at each point).

At which points c does the derivative Df(c) fail to be invertible?

Exercise 15.2. Show that f : R2 → R2 defined by

f(r, t) = (r cos(t), r sin(t))

is differentiable and compute its derivative using Propositions 15.13
and 15.17 (and the well known rules of calculus for sin and cos).

At which points c does Df(c) fail to be invertible?

Exercise 15.3. Suppose f : Rn → R is differentiable. For c ∈ Rn, find
u which maximizes Duf(c) (over unit vectors u). This direction is the
direction of maximum increase of f at c.
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Exercise 15.4. Suppose f : R→ Rn and g : Rn → R have continuous
(partial) derivatives. Write out the chain rule for h = g ◦ f explicitly
in terms of these (partial) derivatives.

Exercise 15.5. Same as Exercise 15.4, but with f, g : R2 → R2.

Exercise 15.6. Define F : R4 → R2 by

F (x, y, u, v) = (x2 − y2 + u2 − v2 − 1, xy + uv).

Compute the derivative of F .
Determine the rank of DF (c) at a point c where F (c) = 0. (There

are numerous equivalent definitions of the rank of a matrix. Feel free to
use any that you are comfortable with. If you don’t know a definition,
you might choose to use the rank is the largest k such a (principal)
k × k submatrix has non-zero determinant. In particular, the rank of
DF (c) is at most two.)

Exercise 15.7. Verify the chain rule for f ◦ F , where F is defined in
Exercise 15.6 and f is given in example 15.4.

Exercise 15.8. Suppose A is an m×n matrix and a is a vector in Rm.
Show that f : Rn → Rm defined by

f(x) = Ax+ a

is differentiable and Df(c) = A (for all c).

Exercise 15.9. Suppose f : R3 → R2 is differentiable at 0 and

Df(0) =

(
1 0 2
3 2 1

)
.

Find the directional derivative in the direction

v =
(
3 1 5

)T
.

15.6. Problems.

Problem 15.1. Prove Proposition 15.5.

Problem 15.2. Suppose U ⊂ Rn is open and f : U → R. Define f
has a local minimum at c and prove, if f has a local minimum at c and
f is differentiable at c, then Df(c) = 0.

Problem 15.3. Suppose U ⊂ Rn is open and connected. Show, if
f : U → R is differentiable and Df = 0 (Df(x) = 0 for all x ∈ U),
then f is constant. You may wish to use the following outline.

(i) Suppose a ∈ U the vector h ∈ Rn and there is a δ > 0 such that
a+ th ∈ U for −δ < t < 1 + δ. Show f(a) = f(a+ h).

(ii) Show, if r > 0 and Nr(a) ⊂ U, then f(x) = f(a) for all x ∈ Nr(a).
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(iii) Fix b ∈ U and let S = {x ∈ U : f(x) = f(b)}. Show, S is both
open and closed.

Show the same result holds with the codomain of f replaced by Rm.

Problem 15.4. Show, in Example 15.10, if γ : (−δ, δ) → R2 is dif-
ferentiable, γ(0) = 0, and γ′(0) 6= 0, then f ◦ γ is differentiable at
0.

Problem 15.5. Define f(x, y) = xy
x2+y2

for (x, y) 6= (0, 0) and f(0, 0) =

0. Show the partial derivatives Djf(0, 0) exist, even though f is not
continuous at 0.

Problem 15.6. Suppose U ⊂ R2 is open and f : U → R. Prove if the
partial derivatives of f exist and are bounded, then f is continuous.

16. The Inverse and Implicit Function Theorems

In this section the Inverse and Implicit Function Theorems are estab-
lished. The approach here is to prove the Inverse Function Theorem
first and then use it to prove the Implicit Function Theorem. It is
possible to do things the other way around.

16.1. Lipschitz Continuity. This subsection collects a couple of facts
used in the proof of the inverse function theorem.

Suppose U is an open set in Rn. A function f : U → Rm is Lipschitz
continuous if there is an M such that

‖f(x)− f(y)‖ ≤M‖x− y‖

for all x, y ∈ U .
Recall, a subset C of a vector space V is convex if x, y ∈ C and

s, t ≥ 0, s+ t = 1 implies

sx+ ty ∈ C.

Note that, given c ∈ Rn and ε > 0,

Nε(c) = {x ∈ V : ‖c− x‖ < ε},

is an open convex set.

Proposition 16.1. Suppose U ⊂ Rn is open and convex. If f :
U → Rm is continuously differentiable and if Df : U → L(Rn,Rm)
is bounded, say ‖Df(x)‖ ≤ M for all x ∈ U , then f is Lipschitz con-
tinuous with constant M .

In particular, if O ⊂ O ⊂ U and O is open, convex and bounded,
then f is Lipschitz continuous on O. †
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Proof. Given x, y ∈ U , since U is open and convex there is a δ > 0 such
that ty + (1− t)x ∈ U for −δ < t < 1 + δ. Define ψ : (−δ, 1 + δ)→ U
by

ψ(t) = ty + (1− t)x
and let g(t) = f ◦ ψ(t). Since both f and ψ are differentiable, by the
chain rule g is differentiable and

g′(t) = Df(ψ(t))ψ′(t) = Df(ty + (1− t)x)(y − x).

Hence,

‖g′(t)‖ ≤ ‖Df(ty + (1− t)x)‖ ‖y − x‖ ≤M‖y − x‖.

From the First Fundamental Theorem of Calculus, Theorem 11.31,

f(y)− f(x) = g(1)− g(0) =

∫ 1

0

g′(t) dt.

By Proposition 11.32,

‖f(y)− f(x)‖ ≤
∫ 1

0

‖g′(t)‖ dt ≤M‖y − x‖.

�

Lemma 16.2. The function g : Rn → R defined by g(x) = ‖x‖2 =
〈x, x〉 is differentiable and ∇g(z) = 2zT . †

Proof. Writing g(x) = xTx, note that

g(x+ h)− g(x)− 2xTh = hTh

from which it easily follows that Dg(x)h = 2xTh. �

16.2. The Inverse Function Theorem.

Theorem 16.3. [Inverse Function] Suppose U is an open subset of Rn,
c ∈ U , and f : U → Rn. If f is continuously differentiable on U and
Df(c) is invertible, then there is an open subset O ⊂ U containing c
such that

(i) f(O) is open;

(ii) f̃ = f |O : O → f(O) is a bijection; and

(iii) the inverse of f̃ is continuously differentiable.

Proof. The statement is proved first under the additional assumption
that c = 0 and Df(0) = I.

Consider the function g : U → Rn defined by g(x) = x− f(x). Since
Dg(0) = 0, and Dg is continuous, there is a δ > 0 such that Nδ(0) ⊂ U
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and ‖Dg(x)‖ ≤ 1
2

for ‖x‖ < δ. By Proposition 16.1, if ‖x‖, ‖y‖ < δ,
then

‖g(y)− g(x)‖ ≤ 1

2
‖y − x‖.

Hence,

‖y − x‖ ≤‖(y − x)− (f(y)− f(x))‖+ ‖f(y)− f(x)‖
=‖g(y)− g(x)‖+ ‖f(y)− f(x)‖

≤1

2
‖y − x‖+ ‖f(y)− f(x)‖.

Rearranging gives

(25) ‖y − x‖ ≤ 2‖f(y)− f(x)‖.
This proves that f is one-one on Nδ(0). It also shows that the inverse
of the mapping f : Nδ(0)→ f(Nδ(0)) is continuous.

Note that Dg(x) = I −Df(x) and since ‖Dg(x)‖ ≤ 1
2

on Nδ(0), it
follows from Lemma 14.17 that Df(x) is invertible on Nδ(0).

Choose 0 < η < δ. The set Sη = {x : ‖x‖ = η} is closed in Rn and
hence compact. The function Sη 3 x 7→ ‖f(x) − f(0)‖2 is continuous
and, since f is one-one on Nδ(0), never 0. It follows that there is a
d > 0 such that ‖f(x)− f(0)‖ ≥ 2d for all x ∈ Sη.

Let K = Bη(0), the η ball centered at 0. In particular, K is the
closure of Nη(0) and is compact since it is a closed bounded subset of
Rn. Moreover, Sη is the boundary of K. Given y ∈ Nd(f(0)), let

ϕ(x) = 〈f(x)− y, f(x)− y〉 = ‖f(x)− y‖2.
The function ϕ is continuous on K and hence attains its minimum at
some z ∈ K. This minimum is not on the boundary Sη since ‖y −
f(0)‖ < d and at the same time, for x ∈ Sη,

‖f(x)− y‖ ≥ ‖f(x)− f(0)‖ − ‖f(0)− y‖ ≥ 2d− d = d.

Now, by Problem 15.2, ∇ϕ(z) = 0 and on the other hand, by the chain
rule, Proposition 15.6, and Lemma 16.2

0 = ∇ϕ(z) = 2(f(z)− y)TDf(z).

Since Df(z) is invertible, it follows that f(z)− y = 0 and we conclude
that y = f(z) for some z ∈ Nη(0). Hence, for each y ∈ Nd(f(0)), there
is z ∈ Nη(0) such that f(z) = y.

Let O = Nη(0) ∩ f−1(Nd(f(0))). Then O is open, 0 ∈ O, and
f : O → Nd(f(0)) is one-one and onto. The first two items are now
proved (under some additional hypotheses).

Let ψ denote the inverse to f : O → Nd(f(0)). The inequality (25)
says that ψ is continuous (in fact Lipschitz).
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To prove (iii), let y ∈ Nd(f(0)) be given. By (ii) there is an x ∈ O
such that f(x) = y. There is a σ > 0 such that if ‖k‖ < σ, then
y + k ∈ Nd(f(0)). By (i) there there is an h such that x + h ∈ O and
f(x+ h) = y + k. In particular, ψ(y + k)− ψ(y) = x+ h− x = h. Let
T = Df(x) which, by the choice of η, is invertible. We have,

ψ(y + k)− ψ(y)− T−1k =h− T−1k
=− T−1(k − Th)

=− T−1(f(x+ h)− y − Th)

=− T−1(f(x+ h)− f(x)− Th).

Thus,

‖ψ(y + k)− ψ(y)− T−1k‖ ≤ ‖T−1‖ ‖f(x+ h)− f(x)− Th‖.

Since also

‖h‖ = ‖x+ h− x‖ ≤ 2‖f(x+ h)− f(x)‖ = 2‖y + k − y‖ = 2‖k‖,

it follows that

‖ψ(y + k)− ψ(y)− T−1k‖
‖k‖

≤ 2‖T−1‖‖f(x+ h)− f(x)− Th‖
‖h‖

.

This last estimate shows that ψ is differentiable at y and Dψ(y) =
T−1 = Df(ψ(y))−1. Finally, the mapping y 7→ Df(ψ(y)) is continuous
as is the mapping taking a matrix to its inverse (see Proposition 14.18).
Thus Dψ is the composition of continuous maps and hence continuous.
The proof of (iii) is complete.

Now suppose still that c = 0, but assume only that Df(0) is invert-
ible. Let A = Df(0) and let G denote the mapping G(x) = Ax. Since
A is invertible, G is invertible and continuous and moreover both G
and G−1 are continuously differentiable (see Exercise 15.8). Indeed,
G−1(x) = A−1x and, for instance DG(x) is constantly equal to A. Let
F = A−1f = G−1 ◦ f . Then F is continuously differentiable on U and
DF (0) = A−1Df(0) = I. Hence, by what has already been proved,
there is an open set O such that F (O) is open and F restricted to O is
a continuous bijection between O and F (O) whose inverse is continu-
ously differentiable. It now follows that f = G ◦ F maps O bijectively
onto the open set f(0) = G(F (0)) = (G−1)−1(F (O)) and the inverse of
f restricted to f(O) is the composition of continuously differentiable
functions and is thus continuously differentiable.

The passage for c = 0 to a general c is left to the gentle reader. �
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Corollary 16.4. Suppose U is an open subset of Rn, f : U → Rn is
continuously differentiable, and Df(x) is invertible for each x ∈ U . If
V ⊂ U is open, then f(V ) is open. †

Example 16.5. Consider the the mapping given by

(r, t) 7→ er(cos(t), sin(t)).

In particular, it maps the line (r0, t) to the circle of radius r0 (many
times over). Similarly, it maps the line (r, t0) to the ray (emanating at,
but not containing, the origin) er(cos(t0), sin(t0)).

The derivative of F is the 2× 2 matrix,

DF (r, t) =

(
er cos(t) −er sin(t)
er sin(t) er cos(t)

)
which is easily seen to be invertible (its determinant is e2r). Thus, for
each point (r0, t0) there is open set U of (r0, t0) on which F is one-one
and F (U) is open.

From the corollary, if V is any open subset of R2, then F (V ) is open.
In particular, the range of F is an open set. Of course, the range of F
is R2 \ {(0, 0)} which is evidently open.

As an exercise, find an open set U containing (0, 0) on which F is
one-one and compute the inverse of F : U → F (U); likewise find an
open set V containing (0, π

2
) on which F is one-one and determine the

inverse of F : V → F (V ). Ditto for (0, π).
By comparison, consider the function f of Example 16.5. Determine

the image of the lines {(r0, t) : t} and {(r, t0) : r} under f . Note that
Df is invertible at (r0, t0) precisely when r0 6= 0. See Exercise 15.2. 4

16.3. The Implicit Function Theorem. It will be convenient to
think of the Euclidean space Rn+m as the direct sum Rn⊕Rm which is
the set

Rn ⊕ Rm = {(x, y) : x ∈ Rn, y ∈ Rm}
with coordinate-wise addition

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2),

scalar multiplication
c(x, y) = (cx, cy)

and (Euclidean) norm,

‖(x, y)‖2 = ‖x‖2 + ‖y‖2.
If L ∈ L(Rn+m,Rm) and J : Rm 7→ Rn+m is the inclusion

(26) Jy = 0⊕ y =

(
0
y

)
,
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then LJ ∈ L(Rm). Suppose U ⊂ Rn ⊕ Rm is open, c = (a, b) ∈ U
(so that a ∈ Rn and b ∈ Rm), and f : U → Rm. Writing z ∈ U as
z = x⊕ y, if f is differentiable at c, then the matrix representation of
Df(c) is 

∂f1
∂x1

. . . ∂f1
∂xn

...
...

...
∂fm
∂x1

. . . ∂fm
∂xn

|

∂f1
∂y1

. . . ∂f1
∂ym

...
...

...
∂fm
∂y1

. . . ∂fm
∂ym

 .

As short hand, write (
∂f
∂x
| ∂f

∂y

)
.

With a similar short hand, the matrix representation for J has the
form,

J =

0n,m
−
Im


and thus,

Df(c)J =
∂f

∂y
:=


∂f1
∂y1

. . . ∂f1
∂ym

...
...

...
∂fm
∂y1

. . . ∂fm
∂ym

 .

Theorem 16.6. [Implicit Function] Suppose U ⊂ Rn+m = Rn ⊕ Rm

is open, (a, b) ∈ U , and f : U → Rm. If

(a) f is continuously differentiable;
(b) f(a, b) = 0; and
(c) Df(a, b)J is invertible,

then there is

(i) an open set (a, b) ∈ O ⊂ Rn+m;
(ii) an open set a ∈ W ⊂ Rn; and

(iii) a unique function g : W → Rm such that
(a) G(x) = (x, g(x)) maps W into O;
(b)

{(x, y) : f(x, y) = 0} ∩O = {G(x) : x ∈ W}; and;

(c)
f(x, g(x)) = 0 = f(G(x)).

Moreover, W and O can be chosen so that g is continuously differen-
tiable.

When the conclusion of the implicit function theorem holds we say
that f(x, y) = 0 defines y as a function of x near the point (a, b).
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Proof. Define F : U → Rn+m by

F (x, y) = (x, f(x, y)).

It is readily checked that F is continuously differentiable and further

DF (x, y) =

(
I 0
∗ Df(x, y)J

)
.

By Problem 14.4 and the hypothesis that Df(a, b)J is invertible, the
matrix DF (a, b) is invertible.

By the Inverse Function Theorem, there is an open set O containing
(a, b) such that F is one-one on O, the set F (O) is open, and F :
O → F (O) has a continuously differentiable inverse H : F (O) → O.
In particular, H(x, f(x, y)) = (x, y) for (x, y) ∈ O. Writing H(u, v) =
(h1(u, v), h2(u, v)), it follows that

(x, y) = H(x, f(x, y)) = (h1(x, f(x, y)), h2(x, f(x, y))).

Thus, for (x, 0) ∈ O, we have (x, 0) = (h1(x, 0), h2(x, 0)) and hence
h1(x, 0) = x. Finally H(x, 0) = (x, h2(x, 0)).

Let W = {u ∈ Rn : (u, 0) ∈ F (O)}. Note that W is open and
a ∈ W since both (a, b) ∈ O and F (a, b) = (a, f(a, b)) = (a, 0) ∈ F (O).
Consider the mappings g : W → Rm given by g(x) = h2(x, 0) and
g̃ : W → Rn+m defined by g̃(x) = H(x, 0) = (x, g(x)) = G(x). Since
H maps into O, condition (a) of item (iii) holds. Since g is the compo-
sition of continuously differentiable mappings (inclusion, then H, then
projection onto the last m-coordinates), g is continuously differentiable.
Moreover, if x ∈ W , then

(x, 0) = F ◦H(x, 0) = F (x, g(x)) = (x, f(x, g(x))).

Thus f(G(x)) = 0 for all x ∈ W and condition (c) in item (iii) holds
as does the reverse inclusion in (b). On the other hand, if (x, y) ∈ O
and f(x, y) = 0, then x ∈ W and thus F (x, g(x)) = (x, 0) = F (x, y).
Since F is one-one, it follows that y = g(x). Hence, condition (b) in
item (iii) holds and moreover, g is uniquely determined.

�

Example 16.7. Define f : R2 → R by f(x, y) = x2 + y2 − 1. The
derivative (gradient) of f is then,

∇f(x, y) = 2(x y).

In particular, ∇f 6= 0 on the set f(x, y) = 0. If f(a, b) = 0 and
b 6= 0, then there is an open set W containing a (in R), an open set O
containing (a, b) and a continuously differentiable function g : W → R
such that g(a) = b and f(x, g(x)) = 0. In fact, (x, y) ∈ O and f(x, y) =
0 if and only if y = g(x).
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Likewise, if a 6= 0, then there is an open set V containing b (in R) and
a continuously differentiable function h : V → R such that h(b) = a
and f(h(y), y) = 0.

Of course in this example it is a simple matter to actually solve g
and h. 4

Example 16.8. Consider the lemniscate

f(x, y) = (x2 + y2)2 − 2(x2 − y2) = 0.

(See en.wikipedia.org/wiki/Lemniscate of Bernoulli for a pic-
ture.) In polar coordinates it takes the form r2 = 2 cos(2θ), from which
it can be seen to look like a (horizontal) figure eight. The gradient of
f is

∇f(x, y) = (4x3 + 4xy2 − 4x, 4y3 + 4x2y + 4y)

which can vanish only for y = 0 in which case x = 0 or x = ±1. Since
the points (±1, 0) are not on the lemniscate, except for the point (0, 0),
the Implicit Function Theorem says that the lemniscate is (locally) the
graph of a function (either y = g(x) of x = h(y)). The theorem is silent
on whether this is possible near (0, 0); however from the picture it is
evident that the lemniscate is not the graph of a function in any open
set containing (0, 0). 4

Example 16.9. Let f(x, y) = y − x3. The set f(x, y) = 0 is just the
graph of a continuously differentiable function, namely y = x3. It is
also the graph of x = y

1
3 which is not continuously differentiable at

0. Note that ∇f(0, 0) = (0, 1) so that the implicit function theorem is
silent on writing x as a function of y near (0, 0) 4

Example 16.10. The solution set of x2 = y3 is the Neile parabola
(see
en.wikipedia.org/wiki/Neile parabola). Let f(x, y) = x2 − y3.
Then the gradient of f vanishes at (0, 0). In this case the set f(x, y) = 0

is the graph of a function y = x
2
3 = g(x), but g(x) is not differentiable

at 0. On the other hand, this set is not the graph of a function x = h(y)
near (0, 0). 4

Example 16.11. Define F : R4 → R2 by

F (x, y, u, v) = ((x2 − y2)− (u3 − 3uv2), 2xy − (3u2v − v3)).

Verify that near any point, except for 0, on the set F (x, y, u, v) = 0 it
is possible to solve for either (u, v) = g(x, y) or (x, y) = h(u, v). (Note:
using complex numbers, this example can be written as z2 = w3 and
so is the complex version of the Neile parabola). 4
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The discussion of the Implicit Function Theorem continues in the
following subsection.

16.4. Immersions, Embeddings, and Surfaces∗. As indicated by
the ∗ this section is optional. It contains an informal introduction to
surfaces. The main technical tool is the Implicit Function Theorem.

Suppose T is an m × k matrix. Viewed as a linear mapping, T is
one-one if and only if the columns of T form a linearly independent set
(and of course necessarily m ≥ k). Likewise, T is onto if and only if the
columns of T span Rm (and of course necessarily k ≥ m). In particular,
T is onto if and only if T has an m×m invertible submatrix.

Definition 16.12. Let W ⊂ Rn be an open set. An immersion f :
W → Rk is a continuously differentiable function such that Df(x) is
one-one at each point x ∈ W . Note that necessarily k ≥ n. /

Example 16.13. The map f : R→ R2 given by f(t) = (cos(t), sin(t))
is an immersion. 4

Definition 16.14. The immersion f : W → Rk is an embedding if it
is one-one and the inverse of f : W → f(W ) is continuous. /

Example 16.15. Define ψ : (−1, 2π) → R2 as follows. Let ψ(t) =
(1, t) for −1 < t ≤ 0; and ψ(t) = (cos(t), sin(t)) for 0 ≤ t < 2π. Then
ψ is a one-one immersion. However, it is not an embedding, since the
inverse is not continuous at (1, 0). 4

Example 16.16. The function g1 : (−π, π) → R2 defined by g1(t) =
(cos(t), sin(t)) is an embedding; as is g2 : (0, 2π) defined by g2(t) =
(cos(t), sin(t)). Thus, the circle x2 + y2 = 1 is locally the image of an
embedding. 4

If W ⊂ Rn is open and f : W → Rm is continuously differentiable,
then the mapping G : W → Rn+m defined by

G(x) = (x, f(x))

is a embedding. Indeed, in block matrix form,

DG(x) =

 In
−

Df(x)


and hence DG(x) is one-one. Further, the projection mapping π :
Rn+m = Rn ⊕ Rm → Rn defined by π(x, y) = x is continuous and
its restriction to the range of G is the inverse of G. Hence G has a
continuous inverse.
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Definition 16.17. An n dimensional surface in Rk is a (non-empty) set
S ⊂ Rk such that for each point s ∈ S there is an open set O containing
s in Rk, an open subset W ⊂ Rn, and an embedding G : W → Rk such
that G(W ) = O ∩ S. /

Example 16.18. The discussion preceeding the definition shows that
the graph of a continuously differentiable function is a surface.

Example 16.15 shows that the circle x2 + y2 = 1 in R2 is a 1-
dimensional surface in R2. 4

Theorem 16.19. Suppose U ⊂ Rk is an open set, f : U → Rm is
continuously differentiable, and S = {z ∈ U : f(z) = 0} is non-empty.

If Df(z) is onto for each z ∈ S, then S is a k − m dimensional
surface.

Note that the onto hypotheses implies k ≥ m. Let n = k − m so
that k = n+m.

Proof. Let s ∈ S be given. Since Df(s) is onto, by relabeling the
variables if needed, it can be assumed that Df(s)J : Rm → Rm is
invertible, where J is define in Equation (26). By the Implicit Function
Theorem (Theorem 16.6), there exists open sets a ∈ W ⊂ Rn and
(a, b) ∈ O ⊂ Rn+m and a (unique) continuously differentiable function
g : W → Rm such that

{z = (x, y) : f(x, y) = 0} ∩O = {(x, g(x)) : x ∈ W}.
To see that G : W → O given by G(x) = (x, g(x)) is the desired
embedding, note that its inverse (on its range) is given by (x, g(x)) 7→ x
and is thus continuous (as it is the restriction of a coordinate projection
to the range of G). �

Example 16.20. The following example shows that the converse of the
preceding theorem is false. Define f : R2 → R by f(x, y) = x2 + y2−1,
let h = f 2. The curve f(x, y) = 0 is of course the unit circle as is the
curve h(x, y) = 0. Thus h(x, y) = 0 defines a surface. On the other
hand,

∇(h) = 4f(x, y)∇(f)

which vanishes at every point on f(x, y) = 0.
For a more subtle example, consider 0 = p(x, y) = y3 + 2x2y − x4.

The gradient of p at (0, 0) is (0, 0). On the other hand, near (0, 0) this
curve can also be expressed as 0 = g(x, y) = x2 − y(1 +

√
1 + y) and

∇(g)(0, 0) = (0 1) 6= 0. 4

Example 16.21. Define F : R4 → R2 by

F (x, y, u, v) = (x2 − y2 + u2 − v2 − 1, 2xy + 2uv).
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Verify that F (x, y, u, v) = 0 is a 2 dimensional surface (in R4). (Note,
this is the complex sphere z2 + w2 = 1.) 4

16.5. Exercises.

Exercise 16.1. Consider the function f : R2 → R2 defined by

f(x, y) = (xy, x− y).

Compute Df(x, y). Verify that the inverse function theorem applies at
the point (1, 1). What is the conclusion? Find an open set U containing
(1, 1) on which f is one-one and find the inverse of f restricted to
U (viewed as a map onto its range). [Hint: Note if xy = ab and
x− y = a− b, then x2 + y2 = a2 + b2 and hence both (x, y) and (a, b)
are points of intersection of the same line and circle.]

Find the image of the set {(x, y) : 1
2
< x < 2, 1

2
< y < 2} under f .

Exercise 16.2. What does the inverse function theorem say about the
mapping F : R3 → R3 defined by

F (ρ, θ, φ) = ρ(sin(θ) sin(φ), sin(θ) sin(φ), cos(φ)).

Fixing ρ = 1 gives a mapping G : R2 → R3 defined by

G(θ, φ) = (sin(θ) cos(φ), sin(θ) sin(φ), cos(φ)).

What is the image of G?

Exercise 16.3. Consider the mapping f : R3 → R defined by

f(x, y, z) = 1− (x2 + y2 + z2).

Show that the set S = {(x, y, z) ∈ R3 : f(x, y, z) = 0} is a surface.
Find, for each point s ∈ S, an open set U ⊂ R2 and an embedding
g : U → S onto an open set in S containing s. The collection (g, U) is
a set of local parameterizations.

16.6. Problems.

Problem 16.1. In real coordinates, the complex function z 7→ z2

takes the form F : R2 → R2, F (x, y) = (x2 − y2, 2xy). Prove that if
(a, b) 6= (0, 0), then there is an open set U containing (a, b) such that
F (U) is open and F |U : U → F (U) is one-one.

In the case that (a, b) = (1, 0) find such a U and compute the inverse
of F : U → F (U).

As above, with (a, b) = (−1, 0).

Problem 16.2. Suppose f = f(x, y, z) : R3 → R is continuously
differentiable. Show, if f(a, b, c) = 0 and ∂f

∂z
(a, b, c) 6= 0, then the



D
RA
FT

161

relation f(x, y, z) = 0 defines z = g(x, y) near the point (a, b, c). Show
further that, at the point (a, b, c),

∂g

∂x
= −

∂f
∂x
∂f
∂z

.

This is implicit differentiation. Note that the necessary assumption
that the denominator above is not 0 (at (a, b, c)) is sufficient to establish
that, at least locally, z is indeed a function of (x, y) (an issue which is
not directly addressed in most calculus texts).

Show yz = log(x + z) − log(3) defines z as a function of (x, y) near
(2, 0, 1) and find ∂z

∂x
at this point.

Problem 16.3. Fix R > r > 0 and define F : R3 → R by

F (x, y, z) = (R2 − r2 + x2 + y2 + z2)2 − 4R2(x2 + y2).

Show the set F (x, y, z) = 0 is a surface - called a torus.
Use

x(u, v) =(R + r cos v) cosu

y(u, v) =(R + r cos v) sinu

z(u, v) =r sin v,

to informally identify a set of local parametrizations (see Exercise 16.3).

Problem 16.4. Note that the point (x, y, u, v, w) = (1, 1, 1, 1,−1) sat-
isfies the system of equations

u5 − xv2 + y + w =0

v5 − yu2 + x+ w =0

w4 + y5 − x4 − 1 =0

Explain why there exists an open set containing (x, y) = (1, 1) and
continuously differentiable functions u(x, y), v(x, y) and w(x, y) such
that u(1, 1) = 1 = v(1, 1) and w(1, 1) = −1 and such that (x, y, u, v, w)
satisfy the system of equations.

Problem 16.5. Consider the folium of Descartes, described implicitly
as

f(x, y) = x3 + y3 − 3axy = 0,

(for a fixed a > 0). Show that the implicit function theorem says that
f is locally the graph of a function for any point (x0, y0) 6= (0, 0) with
f(x0, y0) = 0. Hence it is in principle possible to solve for x as a func-
tion of y or y as a function of x near any point, except possibly (0, 0),
on the curve. A couple of parametric representations can be found at
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http://en.wikipedia.org/wiki/Folium_of_Descartes

from which it is evident that near (0, 0) the curve f(x, y) = 0 is not
the graph of function.

Problem 16.6. The parabolic folium is described implicitly as

x3 = a(x2 − y2) + bxy

(for a, b > 0). What does the implicit function theorem say?

Problem 16.7. What can be said about solving the system

x2 − y2 + 2u3 + v2 =3

2xy + y2 − u2 + 3v4 =5

for (u, v) in terms of (x, y) near the point (x, y, u, v) = (1, 1, 1, 1)?

17. Mappings Between Matrix Algebras∗

This optional section considers some examples of mappings f : Mn →
Mn such as f(X) = X2. Recall Mn is the set of n× n matrices. As a

vector space it can be identified with Rn2
, but it is more convenient to

view it as a vector space with the operator norm.
For a mapping f : Mn →Mn, the definition of the derivative reduces

to the following.

Definition 17.1. Given f : Mn → Mn and a T ∈ Mn, the function f
is differentiable at T if there is a linear map L : Mn →Mn such that

lim
H→0

‖f(T +H)− f(T )− L(H)‖
‖H‖

= 0.

In this case L is unique and is the derivative of f at T denoted, Df(T ).
Thus Df(T ) : Mn →Mn and its value at H is denoted Df(T )[H]. /

Example 17.2. Define f : Mn →Mn by f(X) = X2 and fix T ∈Mn.
Observe that

f(T +H)− f(T ) = TH +HT +H2.

We are thus led to define L : Mn →Mn by

L(H) = TH +HT.

As an exercise, verify that L is linear. Since,

‖f(T +H)− f(T )− L(H)‖
‖H‖

=
‖H2‖
‖H‖

≤ ‖H‖
2

‖H‖
,

it follows that f is differentiable at T and Df(T )[H] = TH + HT .
In particular, it is not convenient (or easy) to identify Df(T ) with its
matrix representation. 4
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Example 17.3. Define g : Mn → Mn by g(X) = XTX, where XT is
the transpose of X. An argument much like in the last example shows
that g is differentiable at every point T ∈Mn and

Dg(T )[H] = T TH +HTT.

4
Fix a positive integer n and let In denote the invertible n×n matrices

and let h : In → In denote the mapping h(X) = X−1. Lemma 14.17
and Proposition 14.18 say that In is open and h is continuous.

Example 17.4. The mapping h is differentiable at each T ∈ In and
moreover,

Dh(T )[H] = −T−1HT−1.
The conclusion follows from the identity

(T +H)−1−T−1 + T−1HT−1

=(T +H)−1(T − (T +H) + (T +H)T−1H)T−1

=− (T +H)−1HT−1HT−1

=− h(T +H)Hh(T )Hh(T ),

continuity of h at T , and the fact that L(H) = −T−1HT−1 is a linear
mapping L : Mn →Mn. 4
17.1. The product rule. Let Mm,n denote the vector space of m× n
matrices (identified as usual with L(Rn,Rm) the set of linear maps from
Rn to Rm). Given U ⊂ Rk open and c ∈ U, a function f : U → Mm,n

is differentiable at c if there exists a linear map T : Rk → Mm,n such
that the limit

lim
h→0

f(c+ h)− f(c)− Th
‖h‖

exists and equals 0.

Proposition 17.5. Suppose U is an open set in Rk and c ∈ U . If
f : U → Mm,n and g : U → Mp,m are both differentiable at c, then
gf : U →Mp,n is differentiable at c and, for h ∈ Rk,

Dgf(c)h = Dg(c)hf(c) + g(c)Df(c)h.

†
Example 17.6. Returning to the function q : Mn → Mn given by
q(T ) = T 2, define ι : Mn → Mn by ι(T ) = T . Then q(T ) = ι(T )ι(T )
and Dι(T )H = H. Hence

Dq(T )H = Dι(T )Hι(T ) + ι(T )Dι(T )H = HT + TH.

4
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Proof. For notational purposes, let F = gf . Thus, F : U → Mp,n.
Estimate, for h ∈ Rk,

‖F (c+ h)− F (c)− [Dg(c)hf(c) + g(c)Df(c)h]‖
=‖g(c+ h)f(c+ h)− g(c)f(c+ h) + g(c)f(c+ h)− g(c)f(c)−

[Dg(c)hf(c) + g(c)Df(c)h]‖
≤‖[g(c+ h)− g(c)−Dg(c)h]‖ ‖f(c+ h)‖+
‖Dg(c)‖ ‖h‖ ‖[f(c+ h)− f(c)]‖

+‖g(c)‖ ‖[f(c+ h)− f(c)−Df(c)h]‖

Because of the continuity of f at c (since it is differentiable there), by
restricting to a neighborhood of c, it can be assumed that ‖f(c+h)‖ is
bounded independent of h. Likewise ‖f(c+h)−f(c)‖ is also bounded.
Consequently, dividing by ‖h‖ and taking the limit as ‖h‖ tends to 0
gives 0 and thus F is differentiable and its derivative has the indicated
form. �

17.2. Exercises.

Exercise 17.1. Given T ∈ Mn fixed, verify that the mappings Lj :
Mn →Mn defined by

(i) L1(H) = TH +HT ;
(ii) L2(H) = T TH +HTT ;

(iii) L3(H) = −T−1HT−1; and
(iv) L4(H) = T 2H + THT +HT 2

are all linear.

Exercise 17.2. A matrix S ∈ Mn is symmetric if ST = S. Let Sn
denote the set of symmetric n × n matrices. A matrix T ∈ Mn is
orthogonal if T TT = In. Assuming T is orthogonal, show that L :
Mn → Sn defined by L(H) = T TH + HTT is onto. [Suggestion: Let
H = (T T )−1Y .]

Exercise 17.3. Verify the claims in Examples 17.2, 17.3 and 17.4.

Exercise 17.4. Show that the mapping ι : Mn → Mn defined by
ι(X) = X is differentiable and find its derivative.

17.3. Problems.

Problem 17.1. Verify the mapping f : Mn →Mn defined by f(X) =
X3 is differentiable and find, for T ∈ Mn, the derivative Df(T )[H].
(See exercise 17.1 (iv).)
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Problem 17.2. Show that the set of n× n orthogonal matrices (ma-
trices P such that P TP = In) is a one dimensional surface. Suggestion,
consider the map f : Mn → Sn defined by f(X) = XTX − I2. Now

identify Mn with Rn2
and Sn with Rν for ν = n(n+1)

2
, use Exercise 17.2

and apply Theorem 16.6.

18. Fourier Series∗

Fourier series is a natural and important application of the theory
developed in earlier sections and this section contains a brief and op-
tional introduction to the subject. The exposition is greatly simplified
by the use of complex numbers. See Subsection 13.1.

Recall, a function f : [a, b] → C can be expressed in terms of its
real and imaginary parts as f = u + ıv, where u, v : [a, b] → R. The
pointwise complex conjugate of f , denoted f, is given by f = u − ıv.
The function f is continuous (Riemann integrable) if and only if both
u and v are and in this case,∫ b

a

f dt =

∫ b

a

u dt+ ı

∫ b

a

v dt

and ∫ b

a

f dt =

∫ b

a

f dt;

i.e., the integral of the pointwise complex conjugate of f is the complex
conjugate of the integral.

18.1. The Fourier Transform. Given a Riemann integrable function
f : [−π, π]→ C, the function f̂ : Z→ C defined by

f̂(n) =
1

2π

∫ π

−π
f(t)e−ıntdt

is the Fourier Transform of f . The Fourier Series of f is the infinite
series

∞∑
j=−∞

f̂(j)eıjx

It must be stressed that at this point this is only a formal series; we
know nothing yet about its convergence for any x. Indeed the central
problem in the theory of Fourier Series is to what extent and in what
sense does the Fourier series of f represent the function f . It is then
natural to introduce the sequence of partial sums

sn(x) =
n∑

j=−n

f̂(j)eıjx.
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To avoid measure theoretic constructs, in these notes attention will
be restricted to continuous periodic functions f on [−π, π]. The com-
plex vector space of such functions will be denoted Cp([−π, π]). For
f ∈ Cp([−π, π]), three natural questions are

(pw) when does (sn(x)) converge pointwise to f?
(u) when does (sn(x)) converge uniformly to f?

(L2) when does (sn) converge to f in the L2 norm?

Recall that the L2 norm on Cp([−π, π]) is defined by

‖f‖22 =
1

2π

∫ π

−π
|f(t)|2 dt.

Moreover, this norm comes from the inner product,

〈f, g〉 =
1

2π

∫ π

−π
fg dt.

Item (u) is equivalent to asking when does sn converge to f in the
supremum norm,

‖f‖∞ = max{|f(t)| : −π ≤ t ≤ π},
on Cp([−π, π]).

It turns out that fairly strong conditions are needed to obtain positive
answers to (pw) and (u) and there are variants of these questions with
cleaner answers. The answer to the last question is always.

18.2. The L2 inner product. As a preliminary to the proof, given
in the next subsection, that the Fourier Series of f ∈ Cp([−π, π]) con-
verges to f in the L2 norm, this section presents terminology and basic
facts about L2 including Bessel’s inequality and the Riemann-Lebesgue
Lemma.

For f, g ∈ Cp([−π, π]), define the inner product by

〈f, g〉 =
1

2π

∫ π

−π
f(t)g(t) dt.

Thus 〈f, g〉 ∈ C.
The basic properties of this (and any) inner product are recorded in

the following proposition.

Proposition 18.1. Given f, g, h ∈ Cp([−π, π]) and c, d ∈ C,

(i) 0 ≤ 〈f, f〉 with equality if and only if f = 0;
(ii) 〈f + cg, h〉 = 〈f, h〉+ c〈g, h〉; and

(iii) 〈h, f〉 = 〈f, h〉.
†



D
RA
FT

167

Note that
〈f, f〉 = ‖f‖22

and moreover properties of the inner product give

‖f + g‖22 = ‖f‖22 + 〈f, g〉+ 〈g, f〉+ ‖g‖22.
The functions f and g are orthogonal if

〈f, g〉 = 0.

In this case,
‖f + g‖22 = ‖f‖22 + ‖g‖22.

A sequence (en) from Cp([−π, π]) is an orthonormal sequence (set)
if it is pairwise orthogonal and each vector (function) has (L2) norm
one. In this case,

(27) ‖
n∑
j=0

ej‖22 =
n∑
j=0

‖ej‖22

for each n.
Straightforward computations show that (eınt)∞n=−∞ is an orthonor-

mal sequence. The following Lemma is a version of Bessel’s inequality.

Lemma 18.2. If f ∈ Cp([−π, π]) and (sn) are the partial sums of the
Fourier Series of f , then, for all n,

(i) ‖sn‖22 =
∑n

j=−n |f̂(j)|2;
(ii) 〈f, sn〉 = ‖sn‖22; and
(iii) ‖sn‖2 ≤ ‖f‖2;
(iv) ‖sn − sm‖ =

∑
m≥|j|>n |f̂(j)|2.

Moreover, the sequence (sn) is Cauchy. †

Proof. Items (i) and (iv) follow immediately from Equation (27) and
(ii) is a straightforward calculation using the orthonormality of the
sequence (exp(ınt)).

To prove item (iii), observe, using item (ii),

0 ≤ 〈f − sn, f − sn〉 =‖f‖22 − 〈f, sn〉 − 〈sn, f〉+ ‖sn‖22
=‖f‖22 − ‖sn‖22.

Items (i) and (iii) together imply that the series,
∞∑

j=−∞

|f̂(j)|2

converges. An application of item (iv) thus shows (sn) is Cauchy. �

The following is a version of the Riemann-Lebesgue Lemma.
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Lemma 18.3. If f ∈ Cp([−π, π]), then (f̂(n)) converges to 0 as |n|
tends to infinity; i.e., given ε > 0 there is an N so that if |n| ≥ N , then

|f̂(n)| < ε. †

The proof is left as an exercise. See problem 18.4.

18.3. Fejer’s Theorem and L2 convergence. Fejer’s Theorem, which
says if f ∈ Cp([−π, π]), then the Cesaro means of the Fourier Series of
f converges uniformly to f , is proved in this section. The important
consequence that the Fourier Series for f converges to f in the L2 norm
is a fairly immediate consequence.

Define, for n ∈ N, the Dirichlet kernel,

Dn(x) =
n∑

j=−n

eıjx

and the Fejer kernel,

Kn(x) =
1

n+ 1

n∑
j=0

Dj(x).

Thus (Kn) are the Cesaro means of (Dn).

Lemma 18.4. The kernels Dn and Kn have the closed form represen-
tations,

Dn(x) =
sin((n+ 1

2
)x)

sin(x
2
)

and

Kn(x) =
1

n+ 1
[
1− cos((n+ 1)x)

1− cos(x)
].

†

Proof. To prove the first identity, observe

(eı
1
2
x − e−ı

1
2
x)Dn(x) = eı(n+

1
2
)x − e−ı(n+

1
2
)x.
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For the second, we have

(n+ 1)Kn(x) =
n∑
j=0

Dj(x)

=
n∑
j=0

sin((j + 1
2
)x)

sin x
2

=
1

sin(x
2
)

n∑
j=0

=
{
eı(j+1/2)x

}
=

1

sin(x
2
)
=
{
eıx/2

eı(n+1)x − 1

eıx − 1

}
=

1

sin(x
2
)
=
{
eı(n+1)x − 1

eıx/2 − e−ıx/2

}
=

1− cos((n+ 1)x)

2 sin2(x
2
)

=
1− cos((n+ 1)x)

1− cosx
�

Lemma 18.5. For each n ∈ N,

(i) Kn ≥ 0;
(ii)

∫ π
−πKn(t) dt = 2π; and

(iii) if π ≥ |x| ≥ y > 0, then Kn(x) ≤ 1
n+1

2
1−cos(y) .

†

Proof. Item (i) follows immediately from the representation for Kn in
Lemma 18.4.

Item (ii) is an immediate consequence of the fact that∫ π

−π
eıjt dt =

{
1 if j = 0

0 if j 6= 0.

Item (iii) is a simple consequence of basic properties of the cosine
function. �

Theorem 18.6. [Fejer] Given f ∈ Cp([−π, π]), let (sn) denote the
partial sums of the Fourier Series for f and let (σn) denote the Cesaro
means of (sn) so that

σn =
1

n+ 1

n∑
j=0

sj.
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Then,

(i) extending f to a 2π periodic function on all of R,

σn(x) =
1

2π

∫ π

−π
f(x− t)Kn(t) dt; and

(ii) (σn(x)) converges uniformly to f .

The proof uses the evident formulas sn(x) = 1
2π

∫ 2π

0
f(t)Dn(x− t) dt

and σn(x) = 1
2π

∫ 2π

0
f(t)Kn(x− t) dt.

Proof. To prove (i), observe,∫ π

−π
f(t)eıj(x−t) dt =eijx

∫ +π

−π
f(u)e−ıjt dt

=eıjxf̂(j).

Consequently,

1

2π

∫ π

−π
f(t)Dn(x− t) dt =

n∑
j=−n

f̂(j)eıjt = sn(x).

A change of variable and the 2π peridocity of the functions involved
then yields ∫ π

−π
f(t)Kn(x− t) dt =

∫ π

−π
f(x− u)Kn(u) du.

To show that (σn) converges uniformly to f , consider the estimate,
valid for any real x and π > δ > 0,

2π|σn(x)− f(x)| =|
∫ π

−π
[f(x− t)Kn(t)− f(x)] dt|

=|
∫ π

−π
[f(x− t)− f(x)]Kn(t) dt|

≤
∫ π

−π
|f(x− t)− f(x)|Kn(t) dt

=

∫ −δ
−π

+

∫ δ

−δ
+

∫ π

δ

≤4π‖f‖∞
1

n+ 1

2

1− cos(δ)
+

∫ δ

−δ
|f(x− t)− f(x)|Kn(t) dt,

where we have used Lemma 18.5 item (ii) in the second equality; item
(i) in the first inequality; and item (iii) in the last inequality.

Now let ε > 0 be given. By uniform continuity of f there is a
1 > δ > 0 such that if |x − t| ≤ δ, then |f(x) − f(t)| < ε. With this
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choice of δ, the estimate above together with item (ii) of Lemma 18.5
imply

|σn(x)− f(x)| ≤ 2‖f‖∞
1

n+ 1

2

1− cos(δ)
+ ε,

from which it is readily seen there is an N so that if n ≥ N , then

|σn(x)− f(x)| < ε

independent of x. Thus, (σn) converges uniformly to f . �

The following is a fundamental theorem of Fourier Series.

Theorem 18.7. If f ∈ Cp([−π, π]), then the partial sums of the
Fourier Series (sn) of f converge to f in L2; i.e.,

‖f − sn‖22 =
1

2π

∫ π

−π
|f(x)− sn(x)|2 dx

tends to 0 with n.

Proof. Suppose (V, ‖ · ‖) is a normed vector space (over C). If (aj)
∞
j=0

is a Cauchy sequence from V and if the Cesaro means,

σn =
1

n+ 1

n∑
j=0

aj

converge to f ∈ V , then the sequence (an) converges to f . The proof of
this statement is left to the gentle reader as Problem 18.1 and is very
similar to Problem 4.2.

Letting aj denote the partial sums of the Fourier Series for f , Theo-
rem 18.6 implies that the corresponding Cesaro means σn converge to
f . Lemma 18.2 says that (aj) is a Cauchy sequence. An application of
Problem 4.2 thus completes the proof. �

With Theorem 18.7 in place, Bessel’s inequality can be strengthened
to Parseval’s theorem.

Theorem 18.8. If f ∈ Cp([−π, π]), then

‖f‖22 =
∞∑

n=−∞

|f̂(n)|2.

In particular, if f, g ∈ Cp([−π, π]) and f̂ = ĝ (as functions on Z),
then f = g.



D
RA
FT

172

18.4. Uniform Convergence. As has already been seen, the Cesaro
means of the Fourier Series of an f ∈ Cp([−π, π]) converge to f uni-
formly. In this subsection the problem of finding interesting sufficient
conditions which imply that the Fourier Series itself converges to f
uniformly are considered.

Theorem 18.9. If f ∈ Cp([−π, π]) and
∞∑

j=−∞

|f̂(j)|

converges, then the partial sums of the Fourier Series for f converges
to f uniformly.

Proof. As usual, let

sn(x) =
n∑

j=−n

f̂(j)eıjx.

If m > n, then for all x,

|sm(x)− sn(x)| =|
m∑

j=n+1

f̂(j)eıjx|

≤
m∑

j=n+1

|f̂(j)eıjx|

=
m∑

j=n+1

|f̂(j)|.

The summability hypothesis now shows that (sn) is uniformly Cauchy
and hence converges uniformly to some continuous function g. In par-
ticular, (sn) converges in L2 to g. On the other hand (sn) converges in
L2 to f by Theorem 18.7. It follows that ‖f − g‖22 = 0; i.e.,∫ π

−π
|f − g|2 dt = 0.

Since h = |f−g|2 is continuous and non-negative, Problem 11.5 implies
h = 0 and thus f = g. �

An important, and basic property, of the Fourier Transform in its
many guises is that it takes differentiation to multiplication by the in-
dependent variable. The following Proposition is the precise statement
in the present setting. If f ∈ Cp([−π, π]), then f can be viewed as a
continuous 2π periodic function on all of R. In particular, if f ′ is con-
tinuous, then f ′ ∈ Cp([−π, π]). Let Ck

p ([−π, π]) denote those functions
f such that the first k derivatives of f exist and are 2π periodic.
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Proposition 18.10. If f ∈ C1
p([−π, π]), then

f̂ ′(n) = inf̂(n).

†

The proof is an exercise in integration by parts and the details left
to the reader. See problem 18.5. Note, by a repeated application of

the proposition, if f ∈ C2
p([−π, π]), then f̂ ′′(n) = −n2f̂(n).

Lemma 18.11. If f ∈ C2
p([−π, π]), then

lim
|n|→∞

n2|f̂(n)| = 0.

In particular,
∞∑

n=−∞

|f̂(n)|

converges. †

To begin the proof of the lemma, use the fact that f ′′ ∈ Cp([−π, π]),
and apply the Riemann-Lebesgue lemma. The remaining details are
left to the reader. See Problem 18.6.

Corollary 18.12. If f ∈ C2
p([−π, π]), then the partial sums of the

Fourier Series of f converges to f uniformly. †

Proof. Combine Lemma 18.11 and Theorem 18.9. �

18.5. Pointwise convergence. It can be shown that given any point
x ∈ [−π, π] there exists a continuous function f whose Fourier series
diverges at x. (This can be proved either by an indirect existence proof
or by a (rather complicated) explicit construction; both are beyond the
scope of these notes). So, some additional assumption on f is needed.
The next proposition gives a sufficient condition for convergence of the
Fourier series at a point.

Proposition 18.13. Suppose f ∈ Cp([−π, π]) and −π < y < π. If
there is a δ > 0 and an C so that for |t| < δ,

|f(y)− f(y − t)| ≤ C|t|,
then sn(y) converges to f(y). Here, as usual, (sn) is the partial sums
of the Fourier Series of f . †

Proof sketch. Recall the formula for Dn from Lemma 18.4. For the
present purpose, it is conveniently written as

Dn(t) =
eınt − e−ı(n+1)t

1− e−ıt
.



D
RA
FT

174

Let

h(t) =
f(y − t)− f(y)

1− e−ıt
.

From properties of trigonometric functions there exits η > 0 and
C ′ > 0 such that if |t| < η, then |1 − e−ıt| ≥ C ′t. It follows that h is
bounded and continuous, except possibly at 0.

Choose M so that M ≥ |h(t)| for all t. Given ε > 0, choose a
function g ∈ Cp([−π, π]) such that g(t) = h(t) for |t| > ε and |g| ≤M .
In particular,

|
∫ π

−π
Dn(t)[f(y − t)− f(y)] dt−

∫ π

−π
g(t)[eınt − e−ınt] dt|

=|
∫ π

−π
[h(t)− g(t)][eınt − e−ınt] dt

≤2

∫ π

−π
|h− g| dt

=

∫ ε

−ε
|h− g| dt

≤Mε.

Since ∫ π

−π
Dn(t) dt = 1

and

sn(y) =
1

2π

∫ π

−π
Dn(t)f(y − t) dt,

it follows that

|sn(y)− f(y)− ρn| ≤
M

2π
ε

for all n, where

ρn =
1

2π

∫ π

−π
g(t)[eınt − e−ı(n+1)t] dt.

By the Riemann Lebesgue Lemma (Lemma 18.3), lim ρn = 0. Thus,
there is an N so that if |n| ≥ N , then

|sn(y)− f(y)| ≤ |sn(y)− f(y)− ρn|+ |ρn| < 2ε+ ε

and (sn(y)) converges to f(y). �

Corollary 18.14. If f ∈ Cp([−π, π]) and f is differentiable at a point
y, then sn(y) → f(y). In particular, if f ∈ C1

p([−π, π]), then sn → f
pointwise. †
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Proof. Problem 18.7 �

Corollary 18.15. If f ∈ Cp([−π, π]) and f is zero on (a, b), then the
Fourier Series of f converges to 0 on (a, b). †

We close this section on the Fourier Transform with a discussion of
a deep theorem of Carleson. The question is: if f ∈ Cp([−π, π]), then
on how large a set of points can sn(x), the partial sums of the Fourier
Series of f , fail to converge to f(x)? Carleson’s answer is that the
exceptional set has measure zero:

Definition 18.16. A subset Z ⊂ R has measure zero if for every ε > 0
there exists a sequence of open intervals ((aj, bj))

∞
j=1 such that

(a) Z ⊂ ∪∞j=1(aj, bj); and
(b)

∑
j(bj − aj) < ε.

/

Example 18.17. The set Q has measure zero. 4

The first part of the following proposition generalizes the example
above.

Proposition 18.18. If Z1, Z2, . . . is a sequence of sets of measure zero,
then Z = ∪Zj has measure zero.

If W ⊂ Z and Z has measure zero, then so does W . †

18.6. Problems.

Problem 18.1. Prove the statement at the outset of the proof of The-
orem 18.7.

Problem 18.2. Show, if f ∈ Cp([−π, π]) is even, so that f(t) = f(−t),
then the Fourier Series of f takes the form,

f̂(0) + 2
∞∑
n=1

f̂(n) cos(nx)

Problem 18.3. Find the Fourier Series for

f(x) = (π − |x|)2.
Explain why this series converges at 0 to f(0) = π2. What formula
does this give for π2?

What formula for π4 follows from an application of Parseval’s The-
orem (Theorem 18.8) to this Fourier Series?

Problem 18.4. Prove Lemma 18.3.

Problem 18.5. Prove Proposition 18.10.
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Problem 18.6. Prove Lemma 18.11.

Problem 18.7. Prove Corollary 18.14

Problem 18.8. Given f, g ∈ Cp([−π, π]), define the convolution of f
and g by

(f ∗ g)(u) =
1

2π

∫ π

−π
f(t)g(u− t) dt.

Show that
(f ∗ g)(u) = (g ∗ f)(u).

Explain why it should be the case that

(f ∗ g)ˆ(n) = f̂(n)ĝ(n).

A proof requires an interchange of integrals theorem. This is an exam-
ple of the general principle that a Fourier Transform takes convolution
to multiplication.

19. First Order Initial Value Problems∗

This optional section contains a proof of the existence and uniqueness
of first order initial value problems as studied in a lower division course
in ordinary differential equations.

Theorem 19.1. Let R = (−a, a) × (−b, b) denote a rectangle in R2

and suppose f : R→ R is continuous. If

(i) there is an M such that |f(x, y)| ≤M and Ma < b; and
(ii) there is a K such that

|f(x, t)− f(x, s)| ≤ K|s− t|
for all −a < x < a and −b < s, t < b, then there is a unique
continuously differentiable function ϕ : (−a, a)→ (−b, b) satis-
fying

ϕ(x) =

∫ x

0

f(t, ϕ(t)) dt.

Remark 19.2. Assuming f is continuous, requirement (i) can always
be achieved by replacing a given a by a perhaps smaller a.

If f has a continuous partial derivative with respect to y, then condi-
tion (ii) is satisfied on any compact subrectangle of the given rectangle.

Continuity and boundedness of f suffice to give the existence of a so-
lution to the differential equation, though the proof below uses strongly
the condition (ii). On the other hand, continuity and boundedness of f
is not enough to imply uniqueness as the following example shows. �
Example 19.3. The initial value problem y′ = 3y

2
3 , y(0) = 0 has at

least two solutions. Namely, y = 0 and y = x3. 4
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19.1. Proof of Existence. The proof of the existence of a solution to
our first order ordinary differential equation begins with the following
lemma.

Lemma 19.4. Suppose gn : (−a, a) → R, for n = 0, 1, 2, . . . is a
sequence of functions with g0 = 0. If there are constants K > 0 and
M such that, for all −a < x < a and n ∈ N,

|gn+1(x)− gn(x)| ≤M
Kn|x|n+1

(n+ 1)!
,

then (gn) converges uniformly to some g. Further,

|g(x)| ≤ M

K
(exp(K|x|)− 1).

†

Proof. Let hn = gn+1 − gn and let

sn(x) =
n∑
j=0

hj(x).

Let

tn(x) =
n∑
j=0

|Kx|j

j!
.

Note that the sequence tn(x) is uniformly Cauchy on [−a, a] because it
is the partial sums of the series for exp(K|x|).

For n > m and |x| ≤ a, estimate

|sn(x)− sm(x)| =|
n∑

j=m+1

hj(x)|

≤
n∑

j=m+1

|hj(x)|

≤M
n∑

j=m+1

|Kx|j

j!

≤|tn(x)− tm(x)|.

Thus, since (tn) is uniformly Cauchy, so is (sn). It follows that (sn)
converges uniformly to some g. Because of the telescoping nature of
the sn,

sn(x) = gn+1(x)− g0(x).

It follows that (gn) converges uniformly to g.
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Moreover,

|gn+1(x)| ≤
n∑
j=0

|gj+1(x)− gj(x)|

≤M
n∑
j=0

Kj|x|j+1

(n+ 1)!

≤M
K

(exp(K|x|)− 1)

�

Proof of existence. The strategy is to construct a sequence of continu-
ous functions which converge uniformly to the solution.

Let ϕ0 = 0. Assuming that continuous functions ϕj : (−a, a) →
(−b, b) have been constructed for j ≤ n, define

ϕn+1(x) =

∫ x

0

f(t, ϕn(t)) dt.

Note that, because ψn(t) = f(t, ϕn(t)) is continuous, the integral is
defined and ϕn+1(x) is continuous. The estimate,

|
∫ x

0

f(t, ϕn(t)) dt| ≤ ±
∫ x

0

|f(t, ϕn(t))| dt ≤M |x| < Ma ≤ b

verifies that ϕn+1 maps into (−b, b) so that the recursive definition may
continue. It also shows

|ϕ1(x)− ϕ0(x)| ≤M |x|.
Now suppose

(28) |ϕn+1(x)− ϕn(x)| ≤M
Kn|x|n+1

(n+ 1)!
.

Then,

|ϕn+2(x)− ϕn+1(x)| =|
∫ x

0

f(t, ϕn+1(t))− f(t, ϕn(t)) dt|

≤ ±
∫ x

0

|f(t, ϕn+1(t)− f(t, ϕn(t))| dt

≤±
∫ x

0

K|ϕn+1(t)− ϕn(t)| dt

≤±
∫ x

0

MK
Kn|t|n+1

(n+ 1)!

=M
Kn+1|x|n+2

(n+ 2)!
.
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By induction the inequality (28) holds for all n.
From Lemma 19.4, it follows that ϕn converges uniformly to a con-

tinuous function ϕ : (−a, a)→ [−Ma,Ma] ⊂ (−b, b).
Let ψn(t) = f(t, ϕn(t)) and let ψ = f(t, ϕ(t)). The estimate

|ψn(t)− ψ(t)| = |f(t, ϕn(t))− f(t, ϕ(t))| ≤ K|ϕn(t)− ϕ(t)|

shows that ψn converges uniformly on (−a, a) to to ψ. Hence, for each
x, the integral ∫ x

0

ψn(t) dt

converges to ∫ x

0

ψ(t) dt,

and the conclusion

ϕ(x) =

∫ x

0

f(t, ϕ(t)) dt

follows.
Because both f and ϕ are continuous, f(t, ϕ(t)) is continuous. It

follows that ϕ(t) is in fact differentiable with derivative f(t, ϕ(t)) (con-
tinuous). �

19.2. Uniqueness. The uniqueness of the solution to the initial value
problem follows from the following lemma.

Lemma 19.5. Suppose f : (−a, a)→ R is differentiable and f(0) = 0.
If there is a constantK > 0 such that |f ′(x)| ≤ K|f(x)| for−a < x < a,
then f(x) = 0 for all −a < x < a. †

Proof. First we will show that f(x) = 0 for 0 ≤ x < m, where m is the
minimum of a and 1

K
. Accordingly, fix 1

K
> y > 0. Let M denote the

maximum of |f | on the interval [0, y]. Let L denote the supremum of
|f ′| on the interval [0, y]. From the mean value theorem, for 0 < x < y,

|f(x)| ≤ Lx ≤MKy.

Since Ky < 1, it follows that M = 0.
A similar argument prevails on the interval (−m, 0). Thus f is zero

on (−m,m). If m = a, the proof is complete. Otherwise f is 0 on the
interval [−C,C], where C = 1

K
.

Repeating the above argument with 0 replaced by C, it follows that
f is 0 on the whole interval (−2C, 2C), or on the whole interval (−a, a).
Continuing in this manner completes the proof. �
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Proof of uniqueness. Suppose ϕ and ψ both solve the differential equa-
tion; i.e., each is continuously differentiable, ϕ(x) = 0 = ψ(x), and

ϕ′(x) =f(x, ϕ(x))

ψ′(x) =f(x, ψ(x)).

Let h(x) = ϕ(x)− ψ(x). Then, h(0) = 0 and

|h′(x)| = |f(x, ϕ(x))− f(x, ψ(x))| ≤ K|h(x)|.
From the lemma, h(x) = 0 for all x. �

19.3. Problems.

Problem 19.1. Given c > 0, solve the initial value problem

y′ = 2xy2, y(0) =
1

c2
.

What does this say about the domain of the unique solution of Theorem
19.1?

Problem 19.2. Suppose P,Q are continuous functions on the interval
(−a, a). Let

µ(x) = exp(

∫ x

0

P (t)dt).

Show

ϕ(x) =
1

µ(x)
[

∫ x

0

Q(t)µ(t) dt+ C]

solves the differential equation

y′ + Py = Q.

What do you conclude about the domain of the solution to this ode?

Problem 19.3. Consider the logistic equation,

y′ = y(y − 1)(2− y).

Show that y = 0, y = 1, and y = 2 are solutions. Could a solution
which takes the value 3 ever take the value 3

2
?

20. Notes

The first eleven sections, up through the section on Riemann inte-
gration (Section 11) are intended to be done in order. Section 12 is
essentially stand alone. The following Section 13 depends on the pre-
vious section. Once the first subsection of this Section is covered, it is
then possible to proceed to the Section 18 on Fourier Series. Section 19
can be covered immediately after Section Riemann Integration. This
material on ODEs provides an important application of the preceeding
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material and ideas. Sections 14 through 17 on differentiation of map-
pings between Euclidean spaces forms a unit that is intended to come
after Riemann integration, but with a little care could be done after
Section 10.

Sections 1-12 and then 14-16 consitute a basic course. Sections - and
subsections - marked with ∗ could be considered optional.

Thanks to all those who pointed out typos and suggested improve-
ment. A special thanks to Nicholas Miller.
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converge conditionally, 107
convergent sequence, 31
converges, 104
converges absolutely, 107, 123
converges to L, 31
converges to infinity, 106
converges uniformly, 73
convex, 144, 150
countable, 8

decreasing sequence, 34
derivative, 78
derivative at a, 78
derivative of f , 142
derivative of f at T , 162
diameter of a set, 47
differentiable, 78, 142, 162
differentiable at a point, 142
direct sum, 154
directional derivative, 144
Dirichlet Series, 118
Dirichlet series, 127
discrete metric, 21, 25
discrete metric space, 29, 51, 55, 69
distance function, 21
diverge, 31
domain, 5
dot product, 17

embedding, 158
equicontinuous, 76
equivalent norms, 136
equivalent sets, 7
error function, 118
Euclidean distance, 22
Euclidean norm, 18
Euclidean space, 18
eventually increasing, 34
extreme value theorem, 65

Fejer’s Theorem, 169
field, 10
field isomorphism, 12
finite, 8
fixed point, 71
Fourier Series, 165
Fourier Transform, 165
Frobenius norm, 137

Fundamental Theorem of Calculus,
First, 97

Fundamental Theorem of Calculus,
Second, 96

geometric series, 106
glb, 14
graph, 5, 9
greatest lower bound, 14

Harmonic series, 108
harmonic series, 108
Heine-Borel Theorem, 54

identity function, 6
image of C under f , 6
imaginary part, 124
immersion, 158
Implicit Function Theorem, 155
increasing, 34, 67
increasing, eventually, 34
increasing, strictly, 34
inf, 14
infimum, 14
infinite, 8
infinite decimal expansion, 35
inner product, 17, 166
integers, 10
interior of a set, 27
interior point, 27
Intermediate Value Theorem, 67
intersection, 4, 5
interval, 60
interval of convergence, 113
Inverse Function Theorem, 80, 151
inverse image, 5
invertible function, 7
isolated point, 62, 77

L’Hopital, 82, 85
least upper bound, 13
Lebesgue number lemma, 52
limit, 31
limit at infinity, 70
limit of a function, 62
limit point, 42, 62
limit superior, 39
limsup, 39, 109
linear, 131
local maximum, 81
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local parameterizations, 160
lower bound, 14
lower Riemann integral, 88
lower sum, 88
lub, 14

matrix norm, 137
matrix representation, 132
Mean Value Theorem, 82
metric, 21
metric space, 21
modulus, 124
monotone, 34
monotone convergence theorem, 33

natural numbers, 10
near, 155
neighborhood, 22
non-decreasing, 34, 67
norm, 16
normality, 67
numerical sequences, 33

one-one, 5
onto, 5
open ball, 22
open cover, 48
open set, 22
operator norm, 137
ordered field, 12
ordered field isomorphism, 14
ordered set, 12
orthogonal, 164
orthonormal sequence (set), 167

p-series, 109
parallelogram law, 20
partial derivative, 145
partial sums, 106, 112
partition, 87
Pasting Lemma, 72
pointwise convergence, 72
polar decomposition, 124
positive definite, 21
power series, 112
power set, 4

radius of convergence, 113, 125
range, 5
rank, 149

ratio test, 110
rational numbers, 10
real part, 124
refinement, 89
relative complement, 4
relatively open, 25
restriction, 6
Riemann integrable, 88, 98
Riemann integral, 88, 98
Riemann sum, 101
Riemann-Lebesgue Lemma, 167
Rolle’s Theorem, 81
root test, 109

scalar product, 17
scalars, 16
semi-inner product, 94
sequence, 31
sequence from X, 31
sequence of partial sums, 43
sequential compactness, 52
sequentially compact, 52
series, 43, 106
series converges, 106
set difference, 4
squeeze theorem, 34, 42
squib, 110
standard basis, 134
standard basis vector, 132
strictly increasing, 34, 67
subcover, 48
subcover, countable, 55
subsequence, 38
subspace, 21
summation by parts, 129
sup, 14
super Cauchy, 45
supremum, 14
surface, 159
symmetric, 164

Taylor’s Theorem, 83
telescoping series, 118
The finite intersection property (fip),

55
torus, 161
totally bounded, 53
transitivity, 12
transpose, 141
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triangle inequality, 16, 21
trichotomy, 12

uncountable, 8, 35
uniform convergence, 73
uniform metric, 74
uniformly continuous, 66
union, 4, 5
unit sphere, 134
upper bound, 13
upper Riemann integral, 88
upper sum, 88

vector space, 16, 17
vector valued functions, 98

zero set, 69
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