MAP 2302 Sample Exam 1, Fall 2017

- 1. Classify each as an ordinary differential equation (ODE) or a partial differential equation (PDE), give the order, and indicate the independent and dependent variables. If the equation is an ordinary differential equation, indicate whether the equation is linear or nonlinear.
 - (a) $y'' + xy' + \sin(x)y = \cos(x)$.
 - (b) $\frac{\partial^2 u}{\partial x^2} c \frac{\partial^2 u}{\partial t^2} = 0.$ (The wave equation.)
 - (c) $\frac{dp}{dt} = 5p(2-p).$
- 2. In each case determine if the given function ϕ is a solution to the given ODE.
 - (a) $\phi(x) = x^2 x^{-1}$ and the ODE $y^2 \frac{d^2 y}{dx^2} = 2y$.
 - (b) $\phi(x) = e^x$ and the ODE y'' + 2y' 4y = 0.
- 3. In each determine if the equation G(x, y) = 0 determines a solution to the given ODE.

(a)
$$G(x,y) = e^{xy}y + x - y + 1$$
 and the ODE $\frac{dy}{dx} = \frac{e^{-xy} - y}{e^{-xy} + x}$.

(b) $G(x,y) = x^2 + y^2 - 4$ and the ODE $\frac{dy}{dx} = \frac{x}{y}$.

- 4. Give a sketch of the isoclines and direction field for y' = x y. Give enough detail to give a rough sketch of the solutions with initial conditions y(0) = 0 and y(0) = 1. Explain carefully why the graphs of these two solutions can not intersect.
- 5. Apply the method of Euler with h = .1 to the initial value problem y' = x y and y(0) = 0 to approximate y(.2).