Tridiagonal Kernels and Subnormality

Gregory Adams, Nathan Feldman, Paul McGuire John Conway Day, March 17, 2011

Main Question:

- If H is a Hilbert space of analytic functions on the unit disk \mathbb{D} with o.n. basis $\left\{f_{n}(z)=\left(a_{n}+b_{n} z\right) z^{n}: n \geq 0\right\}$, when is $S=M_{z}$ a bounded subnormal operator on H ?
- Recall $S \in B(X)$ is a subnormal operator if there is a normal operator $N \in B(Y)$ where $X \subset Y$ such that $S=\left.N\right|_{X}$.
- In the above setting $H=H(K)$ is an analytic reproducing kernel Hilbert space with kernel $K(z, w)=\sum_{i, j=0}^{\infty} f_{n}(z) \overline{f_{n}(w)}$.
$\operatorname{Dom}(K)=\mathcal{D}(K) \cup\left\{z_{0}\right\}$ where $\mathcal{D}(K)$ is the disc

$$
\mathcal{D}(K)=\left\{z: \sum_{n}\left[|z|^{n}\left(\left|a_{n}\right|+\left|b_{n}\right|\right)\right]^{2}<\infty\right\}
$$

- When $f_{n}(z)=\sqrt{a_{n}} z^{n}, H(K)$ is a diagonal space and
- M_{z} is a weighted shift with weight sequence $\left\{\alpha_{n}\right\}=\left\{\sqrt{\frac{a_{n}}{a_{n+1}}}\right\}$.
- Given $a_{0}=1$ and $\alpha_{n} \nearrow 1$, subnormality means there is a Berger measure μ on $[0,1]$ such that

$$
\left(\alpha_{0} \alpha_{1} \cdots \alpha_{n-1}\right)^{2}=\frac{1}{a_{n}}=\int_{0}^{1} t^{2 n} d \mu(t)
$$

- Classical and truncated moment problem: Hausdorff, Stieltjes, Hamburger, Bernstein, Widder, Akheizer, Curto, Fialkow, Putinar, Stochel, Szafraniec, Atzmon, Ando, ... (a hundred year history). The Hankel matrix below must be positive for all n

$$
H_{\left\{a_{n}\right\}}=\left(\begin{array}{cccc}
\frac{1}{a_{0}} & \frac{1}{a_{1}} & \cdots & \frac{1}{a_{n}} \\
\frac{1}{a_{1}} & \frac{1}{a_{2}} & \cdots & \frac{1}{a_{n+1}} \\
\vdots & \vdots & \vdots & \vdots \\
\frac{1}{a_{n}} & \frac{1}{a_{n+1}} & \cdots & \frac{1}{a_{2 n}}
\end{array}\right)
$$

- Hardy space $H^{2}, a_{n}=1, d \mu\left(t e^{i \theta}\right)=\delta_{1}(t) \frac{d t d \theta}{2 \pi}$,

$$
K(z, w)=\frac{1}{1-\bar{w} z}=\sum_{n=0}^{\infty}(\bar{w} z)^{n}
$$

- Bergman space $L_{a}^{2}, a_{n}=\sqrt{n+1}, d \mu\left(t e^{i \theta}\right)=2 t \frac{d t d \theta}{2 \pi}$,

$$
K(z, w)=\frac{1}{(1-\bar{w} z)^{2}}=\sum_{n=0}^{\infty}(n+1)(\bar{w} z)^{n}
$$

- "Bergman" s-space $L_{s}^{2}, a_{n}=\sqrt{\frac{(s+n-1)!}{n!}}$,

$$
\begin{aligned}
d \mu\left(t e^{i \theta}\right)= & \frac{2}{(s-2)!} t\left(1-t^{2}\right)^{s-2} \frac{d t d \theta}{2 \pi} \\
& K(z, w)=\frac{1}{(1-\bar{w} z)^{s}}=\sum_{n=0}^{\infty} \frac{(s+n-1)!}{n!}(\bar{w} z)^{n}
\end{aligned}
$$

- (Aronszajn, 1950) If K_{1} and K_{2} are reproducing kernels on a common domain Ω, then $K=K_{1}+K_{2}$ is a reproducing kernel and

$$
H(K)=H\left(K_{1}\right) \widehat{\oplus} H\left(K_{2}\right)=\left\{f_{1}+f_{2}: f_{i} \in H\left(K_{i}\right)\right\}
$$

with

$$
\|f\|^{2}=\inf \left\{\left\|f_{1}\right\|^{2}+\left\|f_{2}\right\|^{2}: f=f_{1}+f_{2}\right\} .
$$

- Question: How do changes in K affect subnormality and measures?
- $K(z, w)=\frac{1+\alpha \bar{w} z}{1-\bar{w} z}$ adds a point mass at the origin and

$$
H(K)=H^{2} \widehat{\oplus} \sqrt{\alpha} z H^{2} .
$$

- $K(z, w)=\frac{1+\alpha \bar{w} z}{(1-\bar{w} z)^{2}}$ has measure

$$
d \mu\left(t e^{i \theta}\right)=\frac{2 t}{1+\alpha} t^{\frac{1-\alpha}{1+\alpha}} \frac{d t d \theta}{2 \pi}
$$

and

$$
H(K)=L_{a}^{2} \widehat{\oplus} \sqrt{\alpha} z L_{a}^{2}
$$

- $K(z, w)=\frac{1}{2}\left(\frac{1}{(1-\bar{w} z)^{2}}+\frac{1}{(1-\bar{w} z)^{3}}\right)$ has measure

$$
\left.d \mu\left(t e^{i \theta}\right)=\frac{4}{3} t\left(1-t^{6}\right)\right) \frac{d t d \theta}{2 \pi} .
$$

and

$$
H(K)=L_{a}^{2} \widehat{\oplus} L_{s}^{2}
$$

- M_{z} on $K(z, w)=\frac{1+(\bar{w} z)^{2}}{1-\bar{w} z}$ is not a subnormal operator and

$$
H(K)=H^{2} \widehat{\oplus} z^{2} H^{2} .
$$

- M_{z} on $K(z, w)=\frac{1}{1-\bar{w} z}+\frac{1}{(1-\bar{w} z)^{3}}$ is not subnormal and

$$
H(K)=H^{2} \widehat{\oplus} L_{s}^{2} .
$$

With $v(z)=\left(1, z, z^{2}, \cdots\right)$, a tridiagonal kernel has the form

$$
K(z, w)=\sum_{n=0}^{\infty} f_{n}(z) \overline{f_{n}(w)}=v(z) L L^{*} v(w)^{*}
$$

where

$$
L=\left(\begin{array}{cccc}
a_{0} & 0 & 0 & \cdots \\
b_{0} & a_{1} & 0 & \ddots \\
0 & b_{1} & a_{2} & \ddots \\
\vdots & \vdots & b_{2} & \ddots
\end{array}\right)
$$

Here $A=L L^{*}$ is the coefficient matrix of the Taylor series expansion of K about $(0,0)$ and $H(K)$ is unitarily equivalent to the range space of L in l_{+}^{2} which is $\left\{L \vec{x}: \vec{x} \in l_{+}^{2}\right\}$ with $\|L \vec{x}\|=\|\vec{x}\|$.

- When $H(K)$ contains the polynomials, the Grammian matrix

$$
G=\left[\left\langle z^{i}, z^{j}\right\rangle\right]=A^{-1}=\left(L L^{*}\right)^{-1}=L^{-1 *} L^{-1}
$$

- $H\left(L L^{*}\right)$ contains the polynomials if and only if the sequence

$$
\left\{1, \frac{b_{n}}{a_{n+1}}, \frac{b_{n} b_{n+1}}{a_{n+1} a_{n+2}}, \frac{b_{n} b_{n+1} b_{n+2}}{a_{n+1} a_{n+2} a_{n+3}}, \ldots\right\}
$$

is square summable for each n.

- Note that if $K_{2}(z, w)=f(z) \overline{f(w)} K_{1}(z, w)$, then $H\left(K_{2}\right)=f(z) H\left(K_{1}\right)$ and $\|f g\|_{2}=\|g\|_{1}$.

Trivial case: If M_{z} is subnormal on a diagonal space $H\left(K_{1}\right)$ and $f(z)=a+b z$, then M_{z} on $H\left(K_{2}\right)=f(z) H\left(K_{1}\right)$ is subnormal where $K_{2}(z, w)=f(z) \overline{f(w)} K_{1}(z, w)$ is tridiagonal.
$\widehat{M}=\left(\begin{array}{ccccc}0 & 0 & 0 & 0 & \cdots \\ \frac{a_{0}}{a_{1}} & 0 & 0 & 0 & \cdots \\ c_{0} & \frac{a_{1}}{a_{2}} & 0 & 0 & \cdots \\ \frac{-c_{0} b_{2}}{a_{3}} & c_{1} & \frac{a_{2}}{a_{3}} & 0 & \ddots \\ \frac{c_{0} b_{2} b_{3}}{a_{3} a_{4}} & \frac{-c_{1} b_{3}}{a_{4}} & c_{2} & \frac{a_{3}}{a_{4}} & \cdots \\ \frac{-c_{0} b_{2} b_{3} b_{4}}{a_{3} a_{4} a_{5}} & \frac{c_{1} b_{3} b_{4}}{a_{4} a_{5}} & \frac{-c_{2} b_{4}}{a_{5}} & c_{3} & \cdots \\ \vdots & \cdots & \cdots & \ddots & \cdots\end{array}\right)$ where $c_{n}=\frac{b_{n}}{a_{n+2}}-\frac{a_{n}}{a_{n+1}} \frac{b_{n+1}}{a_{n+2}}$.
Formally, $\quad \widehat{M}_{z}=S_{\psi}+S^{2}\left(I+S_{\omega}\right)^{-1} D$
Note $c_{n}=0$ means $H(K)=(1+\alpha z) H\left(K_{\text {diag }}\right)$ and $\widehat{M_{z}}=S_{\psi}$.

- Consider

$$
\begin{aligned}
& K(z, w)=\frac{1+(1-z)(1-\bar{w})}{1-\bar{w} z}=v(z) A v(w)^{*} \\
& =\left(1, z, z^{2}, \cdots\right)\left(\begin{array}{ccccc}
2 & -1 & 0 & 0 & \cdots \\
-1 & 3 & -1 & 0 & \ddots \\
0 & -1 & 3 & -1 & \ddots \\
0 & 0 & -1 & 3 & \ddots \\
\vdots & \vdots & \ddots & \ddots & \ddots
\end{array}\right)\left(\begin{array}{c}
1 \\
\bar{w} \\
\bar{w}^{2} \\
\vdots
\end{array}\right) .
\end{aligned}
$$

Here

$$
H(K)=H^{2} \widehat{\oplus}(1-z) H^{2} .
$$

Factoring $A=L L^{*}$ where

$$
L=\left(\begin{array}{cccc}
a_{0} & 0 & 0 & \ldots \\
b_{0} & a_{1} & 0 & \cdots \\
0 & b_{1} & a_{2} & \ddots \\
0 & 0 & b_{2} & \ddots \\
\vdots & \vdots & \ddots & \ddots
\end{array}\right),
$$

we arrive at the recursion $a_{0}=\sqrt{2}, b_{n}=\frac{-1}{a_{n}}$, and $a_{n}^{2}+\frac{1}{a_{n-1}^{2}}=3$.
This is easily solved to produce $a_{n}=\frac{\alpha_{2(n+1)}}{\alpha_{2 n}}$ where α_{n} is the n-th Fibonacci number.

In this case the zeros of $f_{n}(z)$ are 0 and $\frac{-a_{n}}{b_{n}}=a_{n}^{2}$. The latter converges to ϕ^{2} where $\phi=\frac{1+\sqrt{5}}{2}$ is the Golden Ratio. Let
$\lambda=\frac{1}{\phi^{2}}=\frac{(3-\sqrt{5})}{2}$ and $\zeta=S(z)=\frac{z-\lambda}{1-\lambda z}$. With
$z=S^{-1}(\zeta)=\frac{z+\lambda}{1+\lambda z}$ and $w=S^{-1}(\omega)=\frac{\omega+\lambda}{1+\lambda \omega}$,

$$
K(z, \bar{w})=K\left(S^{-1}(\zeta), S^{-1}(\bar{\omega})\right)=\frac{\frac{\sqrt{5}-1}{2}+\frac{\sqrt{5}+1}{2} \bar{\omega} \zeta}{1-\bar{\omega} \zeta} .
$$

So $K(z, w)$ is the composition of a diagonal kernel and a Mobius map and the resulting measure turns out to be $P_{\lambda}(\theta) d \theta+c \delta_{\lambda}$, where $P_{\lambda}(\theta)$ is the Poisson kernel and δ_{λ} is a point mass at λ.

- Now consider

$$
\begin{aligned}
& K(z, w)=\frac{1+(1-z)(1-\bar{w})}{(1-\bar{w} z)^{2}}=v(z) A v(w)^{*} \\
& =\left(1, z, z^{2}, \cdots\right)\left(\begin{array}{ccccc}
2 & -1 & 0 & 0 & \cdots \\
-1 & 5 & -2 & 0 & \ddots \\
0 & -2 & 8 & -3 & \ddots \\
0 & 0 & -3 & 11 & \ddots \\
\vdots & \vdots & \ddots & \ddots & \ddots
\end{array}\right)\left(\begin{array}{c}
1 \\
\bar{w} \\
\bar{w}^{2} \\
\vdots
\end{array}\right) .
\end{aligned}
$$

Here

$$
H(K)=L_{a}^{2} \widehat{\oplus}(1-z) L_{a}^{2}
$$

Factoring $A=L L^{*}$ where

$$
L=\left(\begin{array}{cccc}
a_{0} & 0 & 0 & \cdots \\
b_{0} & a_{1} & 0 & \cdots \\
0 & b_{1} & a_{2} & \ddots \\
0 & 0 & b_{2} & \ddots \\
\vdots & \vdots & \ddots & \ddots
\end{array}\right)
$$

we arrive at the recursion $a_{0}=\sqrt{2}, b_{n}=\frac{-(n+1)}{a_{n}}$, and

$$
a_{n}^{2}+\frac{n^{2}}{a_{n-1}^{2}}=2+3 n
$$

or if $a_{n}=\sqrt{\frac{t_{n+1}}{t_{n}}}$,

$$
t_{n+1}=(2+3 n) t_{n}-n^{2} t_{n-1} .
$$

This type of recursion is not easy to solve.

However, the same transformation as before yields $K(z, \bar{w})$

$$
=K\left(S^{-1}(\zeta), S^{-1}(\bar{\omega})\right)=Q(\zeta) \overline{Q(\omega)}\left[\frac{1+\frac{\lambda^{2}+(1-\lambda)^{2}}{1+(1-\lambda)^{2}} \bar{\omega} \zeta}{1-\bar{\omega} \zeta}\right],
$$

where

$$
Q(\zeta)=\frac{\sqrt{1+(1-\lambda)^{2}}}{\left.1-\lambda^{2}\right)}(1+\lambda \zeta)
$$

So S^{-1} transforms K to a new kernel which is a linear function times a diagonal space which has Berger measure $g(t) d t$ with

$$
g(t)=\left(1+\frac{1}{\sqrt{5}}\right) t^{\frac{1}{\sqrt{5}}} .
$$

The resulting transformed measure on $H(K)$ is given by

$$
\|h\|_{H(K)}^{2}=\frac{\lambda}{\pi} \int_{0}^{2 \pi} \int_{0}^{1} \left\lvert\, h\left(\left.r e^{i \theta}\right|^{2}\left|\frac{r e^{i \theta}-\lambda}{1-\lambda r e^{i \theta}}\right|^{\frac{1}{\sqrt{5}}} \frac{r d r d \theta}{\left|r e^{i \theta}-\lambda\right|\left|1-\lambda r e^{i \theta}\right|}\right.\right.
$$

Lagniappe for John:

The recursion $a_{n}^{2}+\frac{n^{2}}{a_{n-1}^{2}}=2+3 n$ with $a_{0}=\sqrt{2}$ has solution

$$
a_{n}=\sqrt{\frac{(n+1) \int_{0}^{2 \pi} \int_{0}^{1} r^{n+1} e^{i(n+1) \theta}\left(\sqrt{2}-\frac{1}{\sqrt{2}} r e^{-i \theta}\right)\left|\frac{r e^{i \theta}-\frac{1}{\phi^{2}}}{1-\frac{1}{\phi^{2}} r e^{i \theta}}\right|^{\frac{1}{\sqrt{5}}} \frac{r d r d \theta}{\left|r e^{i \theta}-\frac{1}{\phi^{2}}\right|\left|1-\frac{1}{\phi^{2}} r e^{i \theta}\right|}}{\int_{0}^{2 \pi} \int_{0}^{1} r^{n} e^{i n \theta}\left(\sqrt{2}-\frac{1}{\sqrt{2}} r e^{-i \theta}\right)\left|\frac{r e^{i \theta}-\frac{1}{\phi^{2}}}{1-\frac{1}{\phi^{2}} r e^{i \theta}}\right|^{\frac{1}{\sqrt{5}}} \frac{r d r d \theta}{\left|r e^{i \theta}-\frac{1}{\phi^{2}}\right|\left|1-\frac{1}{\phi^{2}} r e^{i \theta}\right|}}}
$$

Proposition 1. K is a tridiagonal kernel and $H(K)$ contains the polynomials if, and only if, for $m \geq n+1$,

$$
\kappa_{n}=\frac{\left\langle z^{n}, z^{m}\right\rangle}{\left\langle z^{n+1}, z^{m}\right\rangle}
$$

is independent of m.
In the previous two examples κ_{n} converges to $\lambda=\frac{1}{\phi^{2}}$. In the next family of examples the measure is constructed to satisfy Proposition 1.

A class of subnormal operators on tridiagonal spaces. Let $a \geq 0, p \geq 0$, and $b \in \mathbb{R}$ be such that if $a>0$, then $a>\frac{b}{p+2}$ and if $a=0$, then $b<0$. For $|\lambda|>1$, define

$$
u(r, \theta)=\sum_{j=-\infty}^{\infty}\left[\frac{a-(1-r)(b+2|j| a)}{\lambda^{|j|}}\right] r^{|j|+p} e^{i j \theta}
$$

Let $d \mu\left(r e^{i \theta}\right)=u(r, \theta) d r d \theta$. A calculation shows
$u(r, \theta)=[a-(1-r) b] r^{p}+2 r^{p} \mathcal{R} e\left[\frac{r e^{i \theta}}{\lambda}\left(\frac{a-(1-r) b}{1-\frac{1}{\lambda} r e^{i \theta}}-\frac{2(1-r) a}{\left(1-\frac{1}{\lambda} r e^{i \theta}\right)^{2}}\right)\right]$.
Also, for $m \geq n$,

$$
<z^{n}, z^{m}>_{\mu}=\frac{2 \pi(2 n+p+2) a-b}{\lambda^{m-n}(2 m+p+1)(2 m+p+2)}
$$

and for $m \geq n+1$,

$$
\kappa_{n}=\frac{(2 n+p+2) a-b}{\lambda(2 n+p+4) a-b} \rightarrow \frac{1}{\lambda}
$$

The functions

$$
\left\{g_{n}(z)=\left(1-\kappa_{n} z\right) z^{n}: n=0,1, \ldots\right\}
$$

are orthogonal and can be normalized to the o.n. basis

$$
\left\{f_{n}(z)=\frac{g_{n}(z)}{\left\|g_{n}\right\|}: n=0,1, \ldots\right\}
$$

Since the nontrivial zero of f_{n} has limit λ, it is tempting to think the transformation $S(x)=\frac{x-\frac{1}{\lambda}}{1-\frac{1}{\lambda} x}$ may be a simplifying one for some choices of a, p, b, and λ.

The norm of g_{n} is given by
$\sqrt{2 \pi} \sqrt{\frac{a(2 n+p+2)-b}{(2 n+p+2)^{2}}-\kappa_{n}\left[\frac{(2 n+p+2) a-b}{(2 n+p+3)(2 n+p+4)}\right]\left(\frac{1}{\lambda}+\frac{1}{\bar{\lambda}}\right)+\kappa_{n}^{2}\left[\frac{(2 n+p+4) a-b}{(2 n+p+3)(2 n+p+4)}\right]}$

- What if the nontrivial zero of $f_{n}(z)=\left(a_{n}+b_{n} z\right) z^{n}$ diverges to infinity?

In particular suppose $f_{n}(z)=(n+1+z) z^{n}$? In this case

$$
K(z, w)=\frac{1+\bar{w} z}{(1-\bar{w} z)^{3}}+\frac{\bar{w}+z}{(1-\bar{w} z)^{2}}+\frac{\bar{w} z}{(1-\bar{w} z)}
$$

while for $m \geq n$,

$$
<z^{n}, z^{m}>=n!\sum_{j=m}^{\infty} \frac{m!(-1)^{m}}{(j!)^{2}}
$$

and

$$
\kappa_{n}=\frac{<z^{n}, z^{m}>}{<z^{n+1}, z^{m}>}=\frac{-1}{n+1}
$$

Is M_{z} subnormal?

The following table consists of examples of such kernels for which M_{z} passes several numerical tests for subnormality. The tests consisted of checking positivity of commutators of the operator as well as polynomials of the operator.

It suggests that large classes of tridiagonal kernels exist for which M_{z} is a subnormal operator and which are not of the types described above.

a_{n}	b_{n}	range of k	conjecture
$(n+1)^{2}$	$n+k$	$-3 \leq k \leq 3$	subnormal?
$(n+2)^{2}$	$n+k$	$-7 \leq k \leq 8$	subnormal?
$(n+3)^{2}$	$n+k$	$-12 \leq k \leq 15$	subnormal?
$(n+4)^{2}$	$n+k$	$-18 \leq k \leq 22$	subnormal?
$(n+5)^{2}$	$n+k$	$-26 \leq k \leq 31$	subnormal?
$(n+6)^{2}$	$n+k$	$-35 \leq k \leq 41$	subnormal?
$(n+7)^{2}$	$n+k$	$-45 \leq k \leq 52$	subnormal?
$(n+8)^{2}$	$n+k$	$-57 \leq k \leq 64$	subnormal?
$(n+9)^{2}$	$n+k$	$-69 \leq k \leq 78$	subnormal?
$(n+10)^{2}$	$n+k$	$-83 \leq k \leq 93$	subnormal?
$(n+11)^{2}$	$n+k$	$-99 \leq k \leq 109$	subnormal?
$(n+1)^{4}$	$(n+k)^{2}$	$-3 \leq k \leq 3$	subnormal?
$(n+2)^{4}$	$(n+k)^{2}$	$-7 \leq k \leq 8$	subnormal?
$(n+1)^{5}$	$(n+k)^{2}$	$-6 \leq k \leq 5$	subnormal?
$(n+1)^{6}$	$(n+k)^{2}$	$-9 \leq k \leq 8$	subnormal?
$(n+1)^{6}$	$n+k$	$-84 \leq k \leq 83$	subnormal?
$\sqrt{n+1}$	$\sqrt[4]{n+1}$	none	subnormal?
$1+\sqrt[4]{n+1}$	$\sqrt[4]{n+1}$	none	subnormal?

Assume $K_{1}(z, w)=\sum a_{n}(\bar{w} z)^{n}$ and $K_{2}(z, w)=\sum b_{n}(\bar{w} z)^{n}$ satisfy

1. $\lim \frac{a_{n}}{a_{n+1}}=\lim \frac{b_{n}}{b_{n+1}}=1$
2. $\lim a_{n}=\lim b_{n}=+\infty$
3. $\frac{1}{a_{n}}=\int_{0}^{1} t^{2 n} d \nu_{1}(t)$ and $\frac{1}{b_{n}}=\int_{0}^{1} t^{2 n} d \nu_{2}(t)$ for all n.

Note $\nu_{1}\{1\}=\nu_{2}\{1\}=0, H\left(K_{i}\right)=P^{2}\left(\mu_{i}\right)$ where $d \mu_{i}\left(r e^{i \theta}\right)=$ $\nu_{i}(r) \frac{d r d \theta}{2 \pi}$, and M_{z} is a bounded subnormal operator. So condition (1) ensures \mathbb{D} is a common domain and condition (2) ensures the measures live only on \mathbb{D} and not on the boundary.

Conjecture: Multiplication by z on $H\left(K_{1}+K_{2}\right)=H\left(K_{1}\right) \widehat{\oplus} H\left(K_{2}\right)$ is a subnormal operator. This is equivalent to either (1) or (2).

1. The parallel sum of $\frac{1}{a_{n}}$ and $\frac{1}{b_{n}}$ defined as

$$
\left(\left(\frac{1}{a_{n}}\right)^{-1}+\left(\frac{1}{b_{n}}\right)^{-1}\right)^{-1}=\frac{1}{a_{n}+b_{n}}
$$

is a moment sequence.
2. The harmonic mean of $\frac{1}{a_{n}}$ and $\frac{1}{b_{n}}$ defined as

$$
2\left(\left(\frac{1}{a_{n}}\right)^{-1}+\left(\frac{1}{b_{n}}\right)^{-1}\right)^{-1}=\frac{2}{a_{n}+b_{n}}
$$

is a moment sequence.
3. The Hankel matrix below must be positive for all n

$$
H_{\left\{\frac{1}{a_{n}+b_{n}}\right\}}=\left(\begin{array}{cccc}
\frac{1}{a_{0}+b_{0}} & \frac{1}{a_{1}+b_{1}} & \cdots & \frac{1}{a_{n}+b_{n}} \\
\frac{1}{a_{1}+b_{1}} & \frac{1}{a_{2}+b_{2}} & \cdots & \frac{1}{a_{n+1}+b_{n+1}} \\
\vdots & \vdots & \vdots & \vdots \\
\frac{1}{a_{n}+b_{n}} & \frac{1}{a_{n+1}+b_{n+1}} & \cdots & \frac{1}{a_{2 n}+b_{2 n}}
\end{array}\right)
$$

4. For each $k \geq 0$,

$$
(-1)^{k} \Delta^{k}\left(\frac{1}{a_{n}+b_{n}}\right) \geq 0
$$

where Δ^{k} denotes the k-th finite difference.

General Question: If K_{1} and K_{2} are measure spaces on a common open domain Ω with the measures supported only on Ω, under what conditions is the space $H\left(K_{1}\right) \hat{\oplus} H\left(K_{2}\right)$ with kernel $K_{1}+K_{2}$ a measure space?

Thank you John B. Conway and

best wishes for the future!

