Spectral properties of operators associated with the Cesàro operator on weighted Bergman spaces

Len Miller

Department of Mathematics & Statistics Mississippi State University miller@math.msstate.edu

SEAM 27, March 18, 2011

Len Miller

Mississippi State University

Definition

- Let m denote planar Lebesgue measure and let $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}.$
- For $\alpha > -1$, define the measure m_{α} on \mathbb{D} given by $dm_{\alpha}(z) = (1 |z|^2)^{\alpha} dm(z)$, and for $p \ge 1$, let $L^p_a(\mathbb{D}, m_{\alpha})$ denote the weighted Bergman space

$$L^p_a(\mathbb{D}, m_\alpha) = L^p(\mathbb{D}, m_\alpha) \cap \mathcal{H}(\mathbb{D}).$$

• For $\operatorname{Re} \nu > 0$, define

$$\mathcal{C}_{
u}f(z)=rac{1}{z^{
u}}\int_{0}^{z}rac{f(\omega)\,\omega^{
u-1}}{\omega-1}\,d\omega\quad(f\in\mathcal{H}(\mathbb{D}),\,\,z\in\mathbb{D}).$$

Len Miller

Mississippi State University

Definition

- Let m denote planar Lebesgue measure and let $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}.$
- For $\alpha > -1$, define the measure m_{α} on \mathbb{D} given by $dm_{\alpha}(z) = (1 |z|^2)^{\alpha} dm(z)$, and for $p \ge 1$, let $L^p_a(\mathbb{D}, m_{\alpha})$ denote the weighted Bergman space

$$L^p_a(\mathbb{D}, m_\alpha) = L^p(\mathbb{D}, m_\alpha) \cap \mathcal{H}(\mathbb{D}).$$

• For
$$\operatorname{Re} \nu > 0$$
, define

$$\mathcal{C}_{
u}f(z)=rac{1}{z^{
u}}\int_{0}^{z}rac{f(\omega)\,\omega^{
u-1}}{\omega-1}\,d\omega\quad(f\in\mathcal{H}(\mathbb{D}),\,\,z\in\mathbb{D}).$$

 C_1 is the classical Cesàro operator and if $f(z) = \sum_{n=0}^{\infty} a_n z^n$, then

$$C_{\nu}f(z) = \sum_{n=0}^{\infty} \frac{1}{n+\nu} \left(\sum_{k=0}^{n} a_k\right) z^n.$$

Len Miller

Mississippi State University

- 1918 Hardy. C_1 bounded on H^2 .
- 1965 Brown, Halmos and Shields. C_1 is hyponormal on H^2 ; $\sigma(C_1, H^2) = \overline{B(1, 1)}$.
- 1971 Kriete and Trutt. C_1 on H^2 is unitarily equivalent to M_z on $P^2(\mu)$ and thus subnormal.
- 1984 Cowen. Subnormality of C_1 on H^2 via semigroups. Subnormality of the semigroup through the Paley-Wiener Theorem.
- 1987 Siskakis. Used Cowen's semigroups to establish $\sigma(C_1, H^p) = \overline{B(\frac{p}{2}, \frac{p}{2})}$.
- 1998 M.M. and Smith. Used Siskakis's semigroup analysis to determine spectral picture of C_1 on H^p , p > 1, and an analytic $L : \mathbb{C} \setminus \sigma_e(C_1, H^p) \to \mathcal{L}(H^p)$ with $L(\lambda)(\lambda - C_1) = I$ and $\log \|L(\lambda)\|$ integrable on circles intersecting $\sigma_e(C_1)$. Consequently, C_1 has a decomposable extension.

- 2001 M.M. Extend preceding to Bergman spaces $L_a^p(\mathbb{D}, m_0)$, $p \ge 4$.
- 2002 M.M. Extend Paley-Wiener to $L^2_a(\mathbb{P}, m_0)$ and use Cowen's ideas to show C_2 is subnormal on $L^2_a(\mathbb{D}, m_0)$; C_1 has a generalized scalar extension and C_1 is subdecomposable for $2 \le p$.
- 2003 Dalhner. Uses non-semigroup methods to obtain spectral picture and subdecomposability on $L^p_a(\mathbb{D}, m_\alpha)$, 1 ; an explicit decomposable extension is given.
- 2008 Persson. Extends Dahlner's results to more general spaces including nonrelexive spaces H^1 and $L^1_a(\mathbb{D}, m_\alpha)$ for $\alpha \ge 0$.

- 2001 M.M. Extend preceding to Bergman spaces $L_a^p(\mathbb{D}, m_0)$, $p \ge 4$.
- 2002 M.M. Extend Paley-Wiener to $L^2_a(\mathbb{P}, m_0)$ and use Cowen's ideas to show C_2 is subnormal on $L^2_a(\mathbb{D}, m_0)$; C_1 has a generalized scalar extension and C_1 is subdecomposable for $2 \le p$.
- 2003 Dalhner. Uses non-semigroup methods to obtain spectral picture and subdecomposability on $L^p_a(\mathbb{D}, m_\alpha)$, 1 ; an explicit decomposable extension is given.
- 2008 Persson. Extends Dahlner's results to more general spaces including nonrelexive spaces H^1 and $L^1_a(\mathbb{D}, m_\alpha)$ for $\alpha \ge 0$.
 - In every case, the subdecomposability of C₁ and decomposibility of Dahlner's extension follow from growth estimates of an analytic left resolvent. There is no analogous condition sufficient for an operator to be subscalar.

Theorem

Let $\alpha > -1$. Then

1. If
$$\operatorname{Re} \nu > 0$$
 then $C_{\nu} : L^{2}_{a}(\mathbb{D}, m_{\alpha}) \to L^{2}_{a}(\mathbb{D}, m_{\alpha})$ is bounded with $\sigma_{p}(C_{\nu}) = \{\frac{1}{\nu+n} : 0 \le n < \frac{\alpha+2}{2} - \operatorname{Re} \nu\},\ \sigma(C_{\nu}) = \sigma_{p}(C_{\nu}) \cup \overline{B} \text{ where } B = B(\frac{1}{\alpha+2}, \frac{1}{\alpha+2}), \text{ and } \sigma_{e}(C_{\nu}) = \partial B.$

Len Miller

Mississippi State University

Theorem

Let $\alpha > -1$. Then

- 1. If $\operatorname{Re} \nu > 0$ then $C_{\nu} : L^{2}_{a}(\mathbb{D}, m_{\alpha}) \to L^{2}_{a}(\mathbb{D}, m_{\alpha})$ is bounded with $\sigma_{p}(C_{\nu}) = \{\frac{1}{\nu+n} : 0 \leq n < \frac{\alpha+2}{2} \operatorname{Re} \nu\},\ \sigma(C_{\nu}) = \sigma_{p}(C_{\nu}) \cup \overline{B}$ where $B = B(\frac{1}{\alpha+2}, \frac{1}{\alpha+2})$, and $\sigma_{e}(C_{\nu}) = \partial B.$
- 2. $C_{\alpha+2}: L^2_a(\mathbb{D}, m_\alpha) \to L^2_a(\mathbb{D}, m_\alpha)$ is subnormal.

Len Miller

Mississippi State University

Theorem

Let $\alpha > -1$. Then

- 1. If $\operatorname{Re} \nu > 0$ then $C_{\nu} : L^{2}_{a}(\mathbb{D}, m_{\alpha}) \to L^{2}_{a}(\mathbb{D}, m_{\alpha})$ is bounded with $\sigma_{p}(C_{\nu}) = \{\frac{1}{\nu+n} : 0 \leq n < \frac{\alpha+2}{2} \operatorname{Re} \nu\},\ \sigma(C_{\nu}) = \sigma_{p}(C_{\nu}) \cup \overline{B} \text{ where } B = B(\frac{1}{\alpha+2}, \frac{1}{\alpha+2}), \text{ and } \sigma_{e}(C_{\nu}) = \partial B.$
- 2. $C_{\alpha+2}: L^2_a(\mathbb{D}, m_\alpha) \to L^2_a(\mathbb{D}, m_\alpha)$ is subnormal.
- 3. If $n \in \mathbb{Z}$, $n + \alpha > 0$, then $C_{\alpha+n}$ is subscalar.
- 4. If $(\alpha + 2)/2 \le \alpha + n < \alpha + 2$ then $C_{\alpha+n}$ is not hyponormal.

Spectral properties of operators associated with the Cesàro operator on weighted Bergman spaces

Len Miller

Proof. We first follow Cowen's argument to show $C_{\alpha+2}$ is subnormal. Define $k_t(z) = (e^{-t} - 1)z + 1$ and $\psi_t(z) = \frac{e^{-t}z}{k_t(z)}$. Then $1 \le e^t |k_t(z)|$, $\operatorname{Re} k_t(z) \le 2e^t - 1$ for $z \in \mathbb{D}$ and $\psi_t(\mathbb{D}) \subset \mathbb{D}$. Then for $t \ge 0$,

$$F_{\nu}(t)f(z) := \left(rac{\psi_t(z)}{z}
ight)^{
u} f(\psi_t(z)),$$

is a strongly continuous semigroup of weighted composition operators on $L^2_a(\mathbb{D}, m_\alpha)$ with generator $\Lambda_\nu f(z) = -(1-z)(zf'(z) + \nu f(z))$. dom $(\Lambda_\nu) = \{f : (1-z)zf' \in L^2_a(\mathbb{D}, m_\alpha)\}.$

Spectral properties of operators associated with the Cesàro operator on weighted Bergman spaces

Len Miller

Define a measure on the upper half plane \mathbb{P} by $d\mu_{\alpha}(\omega) = (\operatorname{Im} \omega)^{\alpha} dm(\omega)$ and denote the corresponding Bergman space to be $L^{2}_{a}(\mathbb{P}, m_{\alpha}) = L^{2}(\mathbb{P}, m_{\alpha}) \cap \mathcal{H}(\mathbb{P}).$

Len Miller

Mississippi State University

Define a measure on the upper half plane \mathbb{P} by $d\mu_{\alpha}(\omega) = (\operatorname{Im} \omega)^{\alpha} dm(\omega)$ and denote the corresponding Bergman space to be $L^{2}_{a}(\mathbb{P}, m_{\alpha}) = L^{2}(\mathbb{P}, m_{\alpha}) \cap \mathcal{H}(\mathbb{P}).$

 $\varphi(\omega) = \frac{\omega - i}{\omega + i}$ maps \mathbb{P} onto \mathbb{D} and $W : L^2_a(\mathbb{D}, m_\alpha) \to L^2_a(\mathbb{P}, m_\alpha)$ given by

$$Wf(\omega) := \frac{2^{\alpha+1}i^{(\alpha+2)/2}}{(\omega+i)^{\alpha+2}}f(\varphi(\omega)),$$

is an isometry with inverse

$$W^{-1}g(z) = rac{2i^{(\alpha+2)/2}}{(1-z)^{\alpha+2}}g(\varphi^{-1}(z)).$$

Len Miller

Mississippi State University

Introduction and Preliminaries Introduction and Preliminaries Main Results Main Results Main Results

For a > 0 and Im $b \ge 0$, define a composition operator $\widetilde{C}_{a,b}$ on $L^2_a(\mathbb{P}, m_\alpha)$ by $\widetilde{C}_{a,b}f(\omega) = f(a\omega + b)$.

Len Miller

Mississippi State University

For a > 0 and Im $b \ge 0$, define a composition operator $C_{a,b}$ on $L^2_a(\mathbb{P}, m_\alpha)$ by $\widetilde{C}_{a,b}f(\omega) = f(a\omega + b)$. Then $\Gamma_{\alpha+2}(t) = e^{-t(\alpha+2)}W^{-1}\widetilde{C}_{e^{-t},(1-e^{-t})i}W.$

For a > 0 and Im $b \ge 0$, define a composition operator $\widetilde{C}_{a,b}$ on $L^2_a(\mathbb{P}, m_\alpha)$ by $\widetilde{C}_{a,b}f(\omega) = f(a\omega + b)$. Then $\Gamma_{a,b} = f(\omega + b) = f(\omega + b)$

$$\Gamma_{\alpha+2}(t) = e^{-t(\alpha+2)} W^{-1} \widetilde{C}_{e^{-t},(1-e^{-t})i} W.$$

Cowen derived properties of $C_{a,b}$ using classical Payley-Wiener theorem. [MM'02] used an extension of the Fourier transform to the unweighted Bergman space $L^2_a(\mu_0)$ to obtain analogous results. The following plays the same role for weighted Bergman spaces. Theorem (Duren, Gallardo-Gutiérrez, Montes-Rodríguez) For $\beta > 0$ define τ_{β} on $(0, \infty)$ by $d\tau_{\beta}(t) = 2^{\beta-1}\pi\Gamma(\beta) t^{-\beta} dt$. Then the inverse Fourier transform

$$Uf(\omega) = \int_0^\infty f(t) e^{i\omega t} dt$$

is an isometry from $L^2(\mathbb{R}^+, \tau_{\alpha+1})$ onto $L^2_a(\mathbb{P}, m_{\alpha})$.

Len Miller

Mississippi State University

Theorem (Duren, Gallardo-Gutiérrez, Montes-Rodríguez) For $\beta > 0$ define τ_{β} on $(0, \infty)$ by $d\tau_{\beta}(t) = 2^{\beta-1}\pi\Gamma(\beta) t^{-\beta} dt$. Then the inverse Fourier transform

$$Uf(\omega) = \int_0^\infty f(t) e^{i\omega t} dt$$

is an isometry from $L^2(\mathbb{R}^+, \tau_{\alpha+1})$ onto $L^2_a(\mathbb{P}, m_{\alpha})$.

If s > 0 and Re $t \le 0$, define $T_{s,t}$ on $L^2(\mathbb{R}^+, \tau_\beta)$ by $T_{s,t}f(x) = e^{tx}f(sx)$. Since Duren's U^{-1} is the same extension of the Fourier transform to the weighted Bergman spaces the following relation holds in this setting, too.

Theorem (Duren, Gallardo-Gutiérrez, Montes-Rodríguez) For $\beta > 0$ define τ_{β} on $(0, \infty)$ by $d\tau_{\beta}(t) = 2^{\beta-1}\pi\Gamma(\beta) t^{-\beta} dt$. Then the inverse Fourier transform

$$Uf(\omega) = \int_0^\infty f(t) e^{i\omega t} dt$$

is an isometry from $L^2(\mathbb{R}^+, \tau_{\alpha+1})$ onto $L^2_a(\mathbb{P}, m_{\alpha})$.

If s > 0 and Re $t \le 0$, define $T_{s,t}$ on $L^2(\mathbb{R}^+, \tau_\beta)$ by $T_{s,t}f(x) = e^{tx}f(sx)$. Since Duren's U^{-1} is the same extension of the Fourier transform to the weighted Bergman spaces the following relation holds in this setting, too.

Corollary (Cowen, MM'02)

If
$$a > 0$$
 and $\mathsf{Im} \ b \ge 0$, then $\widetilde{C}_{a,b} = rac{1}{a} U T_{rac{1}{a}, rac{ib}{a}} U^*$.

Len Miller

Theorem (Cowen, MM'02)

Let $\beta > 0$ and assume s > 0 and Re $t \leq 0$.

1.
$$||T_{s,t}|| = s^{(\beta-1)/2}$$
 and if $s \neq 1$ or $\operatorname{Re} t < 0$ then $\sigma(T_{s,t}) = \overline{B(0, ||T_{s,t}||)}$.

2. If s > 1 then $T_{s,t}$ is unitarily equivalent to an subnormal operator-weighted bilateral shift;

It follows that for all $t \ge 0$, $\Gamma_{\alpha+2}(t)$ is subnormal on $L^2_a(\mathbb{D}, m_\alpha)$ with $\|\Gamma_{\alpha+2}(t)\| = e^{-(\alpha+2)t/2}$. $\lim_{t\to\infty} \frac{\log \|\Gamma_{\alpha+2}(t)\|}{t} = -\frac{\alpha+2}{2}$ implies that $C_{\alpha+2} = R(0, \Lambda_{\alpha+2})$ is bounded with $\sigma(C_{\alpha+2}) \subseteq \overline{B}$, where $B = B(\frac{1}{\alpha+2}, \frac{1}{\alpha+2})$.

Len Miller

Theorem (Cowen, MM'02)

Let $\beta > 0$ and assume s > 0 and Re $t \leq 0$.

1.
$$||T_{s,t}|| = s^{(\beta-1)/2}$$
 and if $s \neq 1$ or $\operatorname{Re} t < 0$ then $\sigma(T_{s,t}) = \overline{B(0, ||T_{s,t}||)}.$

2. If s > 1 then $T_{s,t}$ is unitarily equivalent to an subnormal operator-weighted bilateral shift;

It follows that for all $t \ge 0$, $\Gamma_{\alpha+2}(t)$ is subnormal on $L^2_a(\mathbb{D}, m_\alpha)$ with $\|\Gamma_{\alpha+2}(t)\| = e^{-(\alpha+2)t/2}$. $\lim_{t\to\infty} \frac{\log \|\Gamma_{\alpha+2}(t)\|}{t} = -\frac{\alpha+2}{2}$ implies that $C_{\alpha+2} = R(0, \Lambda_{\alpha+2})$ is bounded with $\sigma(C_{\alpha+2}) \subseteq \overline{B}$, where $B = B(\frac{1}{\alpha+2}, \frac{1}{\alpha+2})$. By a theorem if Ito, the semigroup $(\Gamma_{\alpha+2}(t))_{t\ge 0}$ has a normal extension; in particular, $C_{\alpha+2}$ is subnormal. Similarly, if $\operatorname{Re} \nu \ge \alpha + 2$, then $(\Gamma_{\nu}(t))_{t\ge 0}$ has type $\le -\frac{\alpha+2}{2}$ and it follows that $C_{\nu} = R(0, \Lambda_{\nu})$ is bounded with $\sigma(C_{\nu}) \subset \overline{B}$.

Let
$$S, Q : L^2_a(\mathbb{D}, m_\alpha) \to L^2_a(\mathbb{D}, m_\alpha)$$
 be defined by $Sf(z) = zf(z)$ and $Qf(z) = \frac{f(z) - f(0)}{z}$. Then $QS = I$ and $SQ = I - e_0 \otimes e_0$, where $e_n(z) = z^n, n \ge 0$ is the orthogonal basis for $L^2_a(\mathbb{D}, m_\alpha)$. $||e_n||^2 \sim n^{-(\alpha+1)}$.

Len Miller

Mississippi State University

Let
$$S, Q : L^2_a(\mathbb{D}, m_\alpha) \to L^2_a(\mathbb{D}, m_\alpha)$$
 be defined by $Sf(z) = zf(z)$ and $Qf(z) = \frac{f(z) - f(0)}{z}$. Then $QS = I$ and $SQ = I - e_0 \otimes e_0$, where $e_n(z) = z^n$, $n \ge 0$ is the orthogonal basis for $L^2_a(\mathbb{D}, m_\alpha)$. $||e_n||^2 \sim n^{-(\alpha+1)}$.

If Re $\nu > 0$, choose $n \ge 0$ so that Re $\nu + n \ge \alpha + 2$. Then $C_{\nu+n}$ is bounded and

$$C_{\nu}|_{\operatorname{ran} S^n} = S^n C_{\nu+n} Q^n|_{\operatorname{ran} S^n}. \tag{*}$$

Thus $C_{\nu}|_{\operatorname{ran} S^n}$ is bounded and, since $C_{\nu}e_{\ell} = \sum_{k=\ell}^{\infty} \frac{1}{k+\nu}e_k \in L^2_a(\mathbb{D}, m_{\alpha})$ for $0 \leq \ell < n$. $C_{\nu} : L^2_a(\mathbb{D}, m_{\alpha}) \to L^2_a(\mathbb{D}, m_{\alpha})$ is bounded.

Spectral properties of operators associated with the Cesàro operator on weighted Bergman spaces

Len Miller

To determine the spectrum, we solve the equation

$$(\lambda - C_{\nu})f = h \tag{1}$$

for $f, h \in \mathcal{H}(\mathbb{D})$, $\lambda \neq 0$. (1) implies that

$$(\mu(z)f(z))' = \frac{1}{\lambda} \left(\frac{z}{1-z}\right)^{-1/\lambda} (z^{\nu}h(z))' \quad (z \notin (-1,0])$$
(2)

where $\mu(z) = z^{\nu} \left(\frac{z}{1-z}\right)^{-1/\lambda}$.

Len Miller

Mississippi State University

Len Miller

To determine the spectrum, we solve the equation

$$(\lambda - C_{\nu})f = h \tag{1}$$

for $f, h \in \mathcal{H}(\mathbb{D})$, $\lambda \neq 0$. (1) implies that

$$(\mu(z)f(z))' = \frac{1}{\lambda} \left(\frac{z}{1-z}\right)^{-1/\lambda} (z^{\nu}h(z))' \quad (z \notin (-1,0])$$
(2)

where $\mu(z) = z^{\nu} \left(\frac{z}{1-z}\right)^{-1/\lambda}$. In particular, $(\lambda - C_{\nu})f = 0$ implies that $f(z) = cz^{1/\lambda - \nu}(1-z)^{-1/\lambda}$, and since $(1-z)^{-1/\lambda} \in L^2_a(\mathbb{D}, m_{\alpha}) \Leftrightarrow \operatorname{Re}(\frac{1}{\lambda}) < \frac{\alpha+2}{2}$,

$$\sigma_p(C_{\nu}) = \left\{ \frac{1}{n+\nu} : 0 \le n < \frac{\alpha+2}{2} - \operatorname{Re}\nu \right\}.$$

Mississippi State University

Assume that $\operatorname{Re} \nu \geq \alpha + 2$ and $\operatorname{Re} \frac{1}{\lambda} < \frac{\alpha+2}{2}$. Then, as in Persson, for $h \in L^2_a(\mathbb{D}, m_\alpha)$, (1) has unique solution

$$\begin{split} f(z) &= \frac{1}{\lambda} h(z) + \frac{1}{\lambda^2 \mu(z)} \int_0^z \omega^{\nu - 1/\lambda - 1} (1 - \omega)^{1/\lambda - 1} h(\omega) \, d\omega \\ &= \frac{1}{\lambda} h(z) + \frac{1}{\lambda^2} \int_0^\infty \Gamma_\nu(t) h(z) e^{t/\lambda} \, dt, \end{split}$$

norm convergent since $\|\Gamma_{\nu}(t)\| \leq e^{|\operatorname{Im}\nu|\pi/2} e^{-(\alpha+2)t/2}$.

Spectral properties of operators associated with the Cesàro operator on weighted Bergman spaces

Len Miller

The essential spectrum is identified through the following.

Theorem (Dahlner, Persson ($\nu = 1$ general $p \ge 1$)) Let $\operatorname{Re} \nu > 0$ and define

$$L_{\lambda,\nu}(f) = \int_0^1 f(t) t^{\nu-1/\lambda-1} (1-t)^{1/\lambda-1} dt.$$

If $\frac{\alpha+2}{2} < \operatorname{Re} \frac{1}{\lambda} < \operatorname{Re} \nu + m$ then 1. $L_{\lambda,\nu}$: ran $S^m \to \mathbb{C}$ is continuous, and 2. $(\lambda - C_{\nu})$ ran $S^m = \ker L_{\lambda,\nu} \cap \operatorname{ran} S^m$.

Len Miller

Mississippi State University

The essential spectrum is identified through the following.

Theorem (Dahlner, Persson ($\nu = 1$ general $p \ge 1$)) Let $\operatorname{Re} \nu > 0$ and define

$$L_{\lambda,\nu}(f) = \int_0^1 f(t) t^{\nu-1/\lambda-1} (1-t)^{1/\lambda-1} dt.$$

If
$$\frac{\alpha+2}{2} < \operatorname{Re} \frac{1}{\lambda} < \operatorname{Re} \nu + m$$
 then
1. $L_{\lambda,\nu}$: ran $S^m \to \mathbb{C}$ is continuous, and
2. $(\lambda - C_{\nu})$ ran $S^m = \ker L_{\lambda,\nu} \cap \operatorname{ran} S^m$.

Corollary

If
$$\operatorname{Re} \nu \geq \alpha + 2$$
, then $B = B(\frac{1}{\alpha+2}, \frac{1}{\alpha+2}) = \rho_e(\mathcal{C}_\nu) \cap \sigma(\mathcal{C}_\nu)$.

 $\text{Proof: } \lambda \in B \Leftrightarrow \tfrac{\alpha+2}{2} < \operatorname{Re} \tfrac{1}{\lambda}. \text{ Choose } m \text{ so that } \operatorname{Re} \tfrac{1}{\lambda} < \operatorname{Re} \nu + m.$

Len Miller

Mississippi State University

Recall (*): If Re $\nu > 0$ and $n \ge 0$ is such that Re $\nu + n \ge \alpha + 2$, then

$$C_{\nu}|_{\operatorname{ran} S^n} = S^n C_{\nu+n} Q^n|_{\operatorname{ran} S^n}.$$

Since ran S^n has finite codimension, it follows that for $\sigma_{\bullet} = \sigma_{\ell e}, \sigma_{re}$ and σ_{e} ,

$$\sigma_{\bullet}(\mathcal{C}_{\nu}) = \sigma_{\bullet}(\mathcal{C}_{\nu}, \operatorname{ran} S^{n}) = \sigma_{\bullet}(S^{n}\mathcal{C}_{\nu+n}Q^{n}, \operatorname{ran} S^{n}) = \sigma_{\bullet}(\mathcal{C}_{\nu+n}).$$

Recall (*): If Re $\nu > 0$ and $n \ge 0$ is such that Re $\nu + n \ge \alpha + 2$, then

$$C_{\nu}|_{\operatorname{ran} S^n} = S^n C_{\nu+n} Q^n|_{\operatorname{ran} S^n}.$$

Since ran S^n has finite codimension, it follows that for $\sigma_{\bullet} = \sigma_{\ell e}, \sigma_{re}$ and σ_{e} ,

$$\sigma_{\bullet}(\mathcal{C}_{\nu}) = \sigma_{\bullet}(\mathcal{C}_{\nu}, \operatorname{ran} S^{n}) = \sigma_{\bullet}(S^{n}\mathcal{C}_{\nu+n}Q^{n}, \operatorname{ran} S^{n}) = \sigma_{\bullet}(\mathcal{C}_{\nu+n}).$$

If $T \in \mathcal{L}(X)$, then $\partial \sigma(T) \setminus \sigma_{\ell e}(T)$ consists of isolated eigenvalues. Thus we obtain $\sigma(C_{\nu}) \setminus \sigma_{p}(C_{\nu}) = \overline{B}$.

Spectral properties of operators associated with the Cesàro operator on weighted Bergman spaces

Len Miller

Finally, we establish that $C_{n+\alpha}$ is subscalar for all $n \in \mathbb{Z}$, $n > -\alpha$. We show that if C_{ν} is subscalar, then $C_{\nu+1}$ is subscalar, and, if $\operatorname{Re} \nu > 1$, that $C_{\nu-1}$ is subscalar.

An intrinsic characterization of subscalar operators is due to Eschmeier and Putinar: Let X be a Banach space and let $\mathcal{E}(\mathbb{C}, X)$ denote the Frècet space of infinitely differentiable X-valued functions. If $T \in \mathcal{L}(X)$, then T is subscalar \Leftrightarrow the mapping $T_{\mathbb{C}}f(\lambda) := (\lambda - T)f(\lambda)$ is injective with closed range in $\mathcal{E}(\mathbb{C}, X)$. Finally, we establish that $C_{n+\alpha}$ is subscalar for all $n \in \mathbb{Z}$, $n > -\alpha$. We show that if C_{ν} is subscalar, then $C_{\nu+1}$ is subscalar, and, if $\operatorname{Re} \nu > 1$, that $C_{\nu-1}$ is subscalar.

An intrinsic characterization of subscalar operators is due to Eschmeier and Putinar: Let X be a Banach space and let $\mathcal{E}(\mathbb{C}, X)$ denote the Frècet space of infinitely differentiable X-valued functions. If $T \in \mathcal{L}(X)$, then T is subscalar \Leftrightarrow the mapping $T_{\mathbb{C}}f(\lambda) := (\lambda - T)f(\lambda)$ is injective with closed range in $\mathcal{E}(\mathbb{C}, X)$.

Suppose that $(f_n)_n \subset \mathcal{E}(\mathbb{C}, L^2_a(\mathbb{D}, m_\alpha))$ is such that $(C_{\nu+1})_{\mathbb{C}} f_n \to 0$ in $\mathcal{E}(\mathbb{C}, L^2_a(\mathbb{D}, m_\alpha))$. Then, by (*), $QC_\nu S = C_{\nu+1}$ and so $Q(C_\nu)_{\mathbb{C}} S = (C_{\nu+1})_{\mathbb{C}}$. Thus $(C_\nu)_{\mathbb{C}} Sf_n = SQ(C_\nu)_{\mathbb{C}} Sf_n \to 0$, and therefore $Sf_n \to 0$ in $\mathcal{E}(\mathbb{C}, L^2_a(\mathbb{D}, m_\alpha))$. Thus $f_n = QSf_n \to 0$ and it follows that $C_{\nu+1}$ is subscalar.

Len Miller

Mississippi State University

Now suppose that
$$\operatorname{Re} \nu > 1$$
 and $(C_{\nu-1})_{\mathbb{C}} f_n \to 0$ in $\mathcal{E}(\mathbb{C}, L^2_a(\mathbb{D}, m_\alpha))$. Write $f_n(\lambda) = \sum_{k=0}^{\infty} a_{n,k}(\lambda)e_k$, where each $a_{n,k} \in \mathcal{E}(\mathbb{C})$. Then
 $(\lambda - \frac{1}{\nu-1})a_{n,0}(\lambda)e_0 = (I - SQ)(\lambda - C_{\nu-1})f_n(\lambda) \to 0$ in $\mathcal{E}(\mathbb{C}, L^2_a(\mathbb{D}, m_\alpha))$; thus $a_{n,0} \to 0$ in $\mathcal{E}(\mathbb{C})$ by a theorem of L. Schwartz. Since $f_n = a_{n,0}e_0 + SQf_n$, it follows from (*) that
 $(C_{\nu})_{\mathbb{C}}Qf_n = S(C_{\nu})_{\mathbb{C}}Q(SQf_n) = (C_{\nu-1})_{\mathbb{C}}(SQf_n) \to 0$ in $\mathcal{E}(\mathbb{C}, L^2_a(\mathbb{D}, m_\alpha))$.
Since C_{ν} is subscalar, it follows that $f_n \to 0$ as required.

Finally, if $\frac{\alpha+2}{2} \le n + \alpha < \alpha + 2$, then $\sigma_p(C_{\alpha+n}) = \emptyset$ and $C_{\alpha+n}$ has spectral radius $r(C_{\alpha+n}) = \frac{2}{\alpha+2}$.

Len Miller

Mississippi State University

Introduction and Preliminaries Introduction and Preliminaries Main Results Main Results Main Results

Finally, if
$$\frac{\alpha+2}{2} \leq n + \alpha < \alpha + 2$$
, then $\sigma_p(C_{\alpha+n}) = \emptyset$ and $C_{\alpha+n}$ has spectral radius $r(C_{\alpha+n}) = \frac{2}{\alpha+2}$.
But $||C_{\alpha+n}e_0||/||e_0|| > \frac{1}{|n+\alpha|} \geq r(C_{\alpha+n})$. In particular, $C_{\alpha+n}$ is not hyponormal.

Len Miller

Finally, if
$$\frac{\alpha+2}{2} \leq n + \alpha < \alpha + 2$$
, then $\sigma_p(C_{\alpha+n}) = \emptyset$ and $C_{\alpha+n}$ has spectral radius $r(C_{\alpha+n}) = \frac{2}{\alpha+2}$.
But $||C_{\alpha+n}e_0||/||e_0|| > \frac{1}{|n+\alpha|} \geq r(C_{\alpha+n})$. In particular, $C_{\alpha+n}$ is not hyponormal.

THANKS!

Len Miller

Mississippi State University