Universality limits and de Branges spaces

Mishko Mitkovski

Department of Mathematics
Georgia Institute of Technology

Random matrices

$\mathcal{M}(n)$ space of all $n \times n$ Hermitian matrices $M=\left[m_{i j}\right]$
$\mathcal{M}(n)$ space of all $n \times n$ Hermitian matrices $M=\left[m_{i j}\right]$
equipped with $P_{n}(M) d M=c e^{-F(M)} \Pi d m_{i j} \Pi \Re d m_{i j} \Im d m_{i j}$.
$\mathcal{M}(n)$ space of all $n \times n$ Hermitian matrices $M=\left[m_{i j}\right]$
equipped with $P_{n}(M) d M=c e^{-F(M)} \Pi d m_{i i} \Pi \Re d m_{i j} \Im d m_{i j}$.

For physical reasons: $P_{n}(\tilde{M}) d \tilde{M}=P_{n}(M) d M$
$\mathcal{M}(n)$ space of all $n \times n$ Hermitian matrices $M=\left[m_{i j}\right]$
equipped with $P_{n}(M) d M=c e^{-F(M)} \Pi d m_{i j} \Pi \Re d m_{i j} \Im d m_{i j}$.

For physical reasons: $P_{n}(\tilde{M}) d \tilde{M}=P_{n}(M) d M$
$\tilde{M}=U M U^{*}, U$ unitary matrix.
$\mathcal{M}(n)$ space of all $n \times n$ Hermitian matrices $M=\left[m_{i j}\right]$
equipped with $P_{n}(M) d M=c e^{-F(M)} \Pi d m_{i i} \Pi \Re d m_{i j} \Im d m_{i j}$.

For physical reasons: $P_{n}(\tilde{M}) d \tilde{M}=P_{n}(M) d M$
$\tilde{M}=U M U^{*}, U$ unitary matrix.
This implies $F(M)=F\left(U M U^{*}\right)$ for all unitary matrices U.
Consequently, $F(M)$ should depend only on the eigenvalues of M.

Random matrices

Case of particular interest $F(M)=\operatorname{tr} Q(M)=\sum Q\left(\lambda_{i}\right)$.

Random matrices

Case of particular interest $F(M)=\operatorname{tr} Q(M)=\sum Q\left(\lambda_{i}\right)$.

$$
P_{n}(M) d M=c e^{-\sum Q\left(\lambda_{i}\right)} \prod_{i<j}\left(\lambda_{i}-\lambda_{j}\right)^{2} d \lambda_{1} \ldots d \lambda_{n}
$$

Random matrices

Case of particular interest $F(M)=\operatorname{tr} Q(M)=\sum Q\left(\lambda_{i}\right)$.

$$
P_{n}(M) d M=c e^{-\sum Q\left(\lambda_{i}\right)} \prod_{i<j}\left(\lambda_{i}-\lambda_{j}\right)^{2} d \lambda_{1} \ldots d \lambda_{n}
$$

$$
\prod_{i<j}\left(\lambda_{i}-\lambda_{j}\right)^{2}=\operatorname{det}\left(p_{i-1}\left(\lambda_{j}\right)\right)^{2}
$$

Case of particular interest $F(M)=\operatorname{tr} Q(M)=\sum Q\left(\lambda_{i}\right)$.

$$
\begin{gathered}
P_{n}(M) d M=c e^{-\sum Q\left(\lambda_{i}\right)} \prod_{i<j}\left(\lambda_{i}-\lambda_{j}\right)^{2} d \lambda_{1} \ldots d \lambda_{n} \\
\prod_{i<j}\left(\lambda_{i}-\lambda_{j}\right)^{2}=\operatorname{det}\left(p_{i-1}\left(\lambda_{j}\right)\right)^{2}
\end{gathered}
$$

$\left\{p_{k}(x)\right\}$ monic polynomials with deg $p_{k}(x)=k$.

Random matrices

$\left\{p_{k}(x)\right\}$ monic orthogonal polynomials associated to $e^{-Q(x)} d x$.

Random matrices

$\left\{p_{k}(x)\right\}$ monic orthogonal polynomials associated to $e^{-Q(x)} d x$.

$$
P_{n}(M) d M=\frac{e^{-\sum Q\left(\lambda_{i}\right)}}{n!} \operatorname{det}\left(K_{n}\left(\lambda_{i}, \lambda_{j}\right)\right) d \lambda_{1} \ldots d \lambda_{n}
$$

$\left\{p_{k}(x)\right\}$ monic orthogonal polynomials associated to $e^{-Q(x)} d x$.

$$
P_{n}(M) d M=\frac{e^{-\sum Q\left(\lambda_{i}\right)}}{n!} \operatorname{det}\left(K_{n}\left(\lambda_{i}, \lambda_{j}\right)\right) d \lambda_{1} \ldots d \lambda_{n}
$$

$K_{n}(x, y)=\sum_{i=0}^{n-1} p_{i}(x) p_{i}(y)$ reproducing kernels
$\left\{p_{k}(x)\right\}$ monic orthogonal polynomials associated to $e^{-Q(x)} d x$.

$$
P_{n}(M) d M=\frac{e^{-\sum Q\left(\lambda_{i}\right)}}{n!} \operatorname{det}\left(K_{n}\left(\lambda_{i}, \lambda_{j}\right)\right) d \lambda_{1} \ldots d \lambda_{n}
$$

$K_{n}(x, y)=\sum_{i=0}^{n-1} p_{i}(x) p_{i}(y)$ reproducing kernels
$p(y)=\int_{\mathbb{R}} p(x) K_{n}(x, y) e^{-Q(x)} d x$

Random matrices

Useful quantity is the correlation function:

$$
R_{m}\left(\lambda_{1}, \ldots, \lambda_{m}\right)=\int \ldots \int \frac{e^{-\sum Q\left(\lambda_{i}\right)}}{n!} \operatorname{det}\left(K_{n}\left(\lambda_{i}, \lambda_{j}\right)\right) d \lambda_{m+1} \ldots d \lambda_{n}
$$

Random matrices

Useful quantity is the correlation function:

$$
\begin{gathered}
R_{m}\left(\lambda_{1}, \ldots, \lambda_{m}\right)=\int \ldots \int \frac{e^{-\sum Q\left(\lambda_{i}\right)}}{n!} \operatorname{det}\left(K_{n}\left(\lambda_{i}, \lambda_{j}\right)\right) d \lambda_{m+1} \ldots d \lambda_{n} \\
R_{m}\left(\lambda_{1}, \ldots, \lambda_{m}\right)=e^{-\sum_{i=1}^{m} Q\left(\lambda_{i}\right)} \operatorname{det}\left(K_{n}\left(\lambda_{i}, \lambda_{j}\right)\right)_{1 \leq i \leq j \leq m}
\end{gathered}
$$

Useful quantity is the correlation function:

$$
\begin{gathered}
R_{m}\left(\lambda_{1}, \ldots, \lambda_{m}\right)=\int \ldots \int \frac{e^{-\sum Q\left(\lambda_{i}\right)}}{n!} \operatorname{det}\left(K_{n}\left(\lambda_{i}, \lambda_{j}\right)\right) d \lambda_{m+1} \ldots d \lambda_{n} \\
R_{m}\left(\lambda_{1}, \ldots, \lambda_{m}\right)=e^{-\sum_{i=1}^{m} Q\left(\lambda_{i}\right)} \operatorname{det}\left(K_{n}\left(\lambda_{i}, \lambda_{j}\right)\right)_{1 \leq i \leq j \leq m}
\end{gathered}
$$

Many statistical quantities can be expressed in terms of R_{m}.

Random matrices

Useful quantity is the correlation function:

$$
\begin{gathered}
R_{m}\left(\lambda_{1}, \ldots, \lambda_{m}\right)=\int \ldots \int \frac{e^{-\sum Q\left(\lambda_{i}\right)}}{n!} \operatorname{det}\left(K_{n}\left(\lambda_{i}, \lambda_{j}\right)\right) d \lambda_{m+1} \ldots d \lambda_{n} \\
R_{m}\left(\lambda_{1}, \ldots, \lambda_{m}\right)=e^{-\sum_{i=1}^{m} Q\left(\lambda_{i}\right)} \operatorname{det}\left(K_{n}\left(\lambda_{i}, \lambda_{j}\right)\right)_{1 \leq i \leq j \leq m}
\end{gathered}
$$

Many statistical quantities can be expressed in terms of R_{m}.
The universality limit essentially asserts

$$
\lim _{n \rightarrow \infty} \frac{R_{m}\left(x+\frac{a_{1}}{n}, \ldots, x+\frac{a_{m}}{n}\right)}{n^{m}}=\operatorname{det}\left(\frac{\sin \pi\left(\lambda_{i}-\lambda_{j}\right)}{\pi\left(\lambda_{i}-\lambda_{j}\right)}\right)_{1 \leq i \leq j \leq m} .
$$

Random matrices

Useful quantity is the correlation function:

$$
\begin{gathered}
R_{m}\left(\lambda_{1}, \ldots, \lambda_{m}\right)=\int \ldots \int \frac{e^{-\sum Q\left(\lambda_{i}\right)}}{n!} \operatorname{det}\left(K_{n}\left(\lambda_{i}, \lambda_{j}\right)\right) d \lambda_{m+1} \ldots d \lambda_{n} \\
R_{m}\left(\lambda_{1}, \ldots, \lambda_{m}\right)=e^{-\sum_{i=1}^{m} Q\left(\lambda_{i}\right)} \operatorname{det}\left(K_{n}\left(\lambda_{i}, \lambda_{j}\right)\right)_{1 \leq i \leq j \leq m}
\end{gathered}
$$

Many statistical quantities can be expressed in terms of R_{m}.
The universality limit essentially asserts

$$
\lim _{n \rightarrow \infty} \frac{R_{m}\left(x+\frac{a_{1}}{n}, \ldots, x+\frac{a_{m}}{n}\right)}{n^{m}}=\operatorname{det}\left(\frac{\sin \pi\left(\lambda_{i}-\lambda_{j}\right)}{\pi\left(\lambda_{i}-\lambda_{j}\right)}\right)_{1 \leq i \leq j \leq m} .
$$

Universality limit

Since m is fixed this boils down to

$$
\lim _{n \rightarrow \infty} \frac{K_{n}\left(x+\frac{a}{n}, x+\frac{b}{n}\right)}{n}=\frac{\sin \pi(a-b)}{\pi(a-b)}
$$

Universality limit

Since m is fixed this boils down to

$$
\lim _{n \rightarrow \infty} \frac{K_{n}\left(x+\frac{a}{n}, x+\frac{b}{n}\right)}{n}=\frac{\sin \pi(a-b)}{\pi(a-b)}
$$

It was proved for various $Q(x)$ by P. Deift (S . Venakides, X. Zhou, J. Baik ...) using Riemann-Hilbert methods.

Universality limit

Since m is fixed this boils down to

$$
\lim _{n \rightarrow \infty} \frac{K_{n}\left(x+\frac{a}{n}, x+\frac{b}{n}\right)}{n}=\frac{\sin \pi(a-b)}{\pi(a-b)}
$$

It was proved for various $Q(x)$ by P. Deift (S . Venakides, X. Zhou, J. Baik ...) using Riemann-Hilbert methods.

It was proved for more general measures by D. Lubinsky (V. Totik, B. Simon ...).

Questions:

Several natural (but vague) questions:

- Can we say anything if the measure does not have finite moments?
- Which objects should play the role of orthogonal polynomials?
- Why is the sinc kernel obtained as a limit?

Questions:

Several natural (but vague) questions:

- Can we say anything if the measure does not have finite moments?
- Which objects should play the role of orthogonal polynomials?
- Why is the sinc kernel obtained as a limit?

Use spaces of entire functions

Spaces of entire functions

Let μ be a measure on the real line satisfying $\int \frac{\mu(t)}{1+t^{2}}<\infty$..

Spaces of entire functions

Let μ be a measure on the real line satisfying $\int \frac{\mu(t)}{1+t^{2}}<\infty$..
Consider the completion of the set \mathcal{K}_{L} of all entire functions with type $\leq L$ in $L^{2}(\mu)$.

Spaces of entire functions

Let μ be a measure on the real line satisfying $\int \frac{\mu(t)}{1+t^{2}}<\infty$..
Consider the completion of the set \mathcal{K}_{L} of all entire functions with type $\leq L$ in $L^{2}(\mu)$.
(Krein's alternative) This completion is either \mathcal{K}_{L} or $L^{2}(\mu)$.

Spaces of entire functions

Let μ be a measure on the real line satisfying $\int \frac{\mu(t)}{1+t^{2}}<\infty$..
Consider the completion of the set \mathcal{K}_{L} of all entire functions with type $\leq L$ in $L^{2}(\mu)$.
(Krein's alternative) This completion is either \mathcal{K}_{L} or $L^{2}(\mu)$.
In either case we have a short de Branges space.

Spaces of entire functions

Let μ be a measure on the real line satisfying $\int \frac{\mu(t)}{1+t^{2}}<\infty$..
Consider the completion of the set \mathcal{K}_{L} of all entire functions with type $\leq L$ in $L^{2}(\mu)$.
(Krein's alternative) This completion is either \mathcal{K}_{L} or $L^{2}(\mu)$.
In either case we have a short de Branges space.
We have a nest of de Branges spaces parametrized by $L>0$.

Paley-Wiener (model) case

If μ is the Lebesgue measure we obtain the nest of Paley-Wiener spaces.
$K_{L}(x, y)=\frac{\sin \pi L(x-y)}{\pi(x-y)}$

Paley-Wiener (model) case

If μ is the Lebesgue measure we obtain the nest of Paley-Wiener spaces.
$K_{L}(x, y)=\frac{\sin \pi L(x-y)}{\pi(x-y)}$

$$
\lim _{L \rightarrow \infty} \frac{K_{L}\left(x+\frac{a}{L}, x+\frac{b}{L}\right)}{L}=\frac{\sin \pi(a-b)}{\pi(a-b)} .
$$

Paley-Wiener (model) case

If μ is the Lebesgue measure we obtain the nest of Paley-Wiener spaces.
$K_{L}(x, y)=\frac{\sin \pi L(x-y)}{\pi(x-y)}$

$$
\lim _{L \rightarrow \infty} \frac{K_{L}\left(x+\frac{a}{L}, x+\frac{b}{L}\right)}{L}=\frac{\sin \pi(a-b)}{\pi(a-b)}
$$

Want similar result for measures 'sufficiently close' to the Lebesgue measure.

Main result

Theorem

Let μ be a positive Poisson summable measure that is absolutely continuous on \mathbb{R} with strictly positive density. Moreover, assume that the density is continuous at a fixed point $x \in \mathbb{R}$. Then

$$
\lim _{L \rightarrow \infty} \frac{K_{L}\left(x+\frac{a}{L}, x+\frac{b}{L}\right)}{L}=\frac{\sin \pi \rho(x)(a-b)}{\pi(a-b)}
$$

where $K_{L}(x, y)$ are the reproducing kernels from the nested family of de Branges spaces associated to μ, and $\rho(x)$ is the density of states at x.

Main ideas in the proof

Lubinski's inequality: Assume μ and μ^{*} are measures on \mathbb{R} satisfying $\mu \leq \mu^{*}$. Then for all real x, y we have

$$
\frac{\left|K_{L}(x, y)-K_{L}^{*}(x, y)\right|}{K_{L}(x, x)} \leq \sqrt{\frac{K_{L}(y, y)}{K_{L}(x, x)}} \sqrt{1-\frac{K_{L}^{*}(x, x)}{K_{L}(x, x)}}
$$

Diagonal behavior: If μ satisfies the assumptions from the Theorem then:

$$
\lim _{L \rightarrow \infty} \frac{K_{L}\left(x+\frac{a}{L}, x+\frac{a}{L}\right)}{L}=\frac{1}{\mu^{\prime}(x)}
$$

Proof: Define ν to be the same as μ on a neighborhood of x and to be $\mu^{\prime}(x)$ times the Lebesgue measure outside of that neighborhood.
Define $\mu^{*}=\max (\mu, \nu)$ and apply the previous two results.

Thank you.

