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1. Normed vector spaces

In this section F stands for either R or C. Let X be a vector space over F.

1.1. Definitions and preliminary results.

Definition 1.1. A normed vector space X = (X , ∥ · ∥) consists of a vector space X over
F together with a norm ∥ · ∥ : X → [0,∞) (see definition ?? – which does not change
with R replaced by C). We often denote the normed vector space as X , with the norm
∥ · ∥ implicit.

As we noted before, using the properties of a norm, it is straightforward to check
that d : X × X → [0,∞) defined by

d(x, y) := ∥x− y∥
is a metric on X . The resulting topology is the norm topology and it is the default
topology on X .

Definition 1.2. A normed vector space X is a Banach space if it is complete (with its
norm topology). □

Definition 1.3. Two norms ∥ · ∥1, ∥ · ∥2 on X are equivalent if there exist constants
C, c > 0 such that

c∥x∥1 ≤ ∥x∥2 ≤ C∥x∥1,
for all x ∈ X . □

Remark 1.4. Equivalent norms determine the same topology on X and the same
Cauchy sequences (Problem 1.4). In particular, it follows that if X is equipped with
two equivalent norms ∥ · ∥1, ∥ · ∥2 then it is complete (a Banach space) in one norm if
and only if it is complete in the other.

Equivalence of norms is an equivalence relation on the set of norms on X . □

The next proposition is simple but fundamental; it says that the norm and the
vector space operations are continuous in the norm topology.

Proposition 1.5 (Continuity of vector space operations). Let X be a normed vector
space over F.

a) If (xn) converges to x in X , then (∥xn∥) converges to ∥x∥ in R.
b) If (kn) converges to k in F and (xn) converges to x in X , then (knxn) converges

to kx in X .
c) If (xn) converges to x and (yn) converges to y in X , then (xn + yn) converges to
x+ y in X .
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Proof. The proofs follow readily from the properties of the norm, and are left as exercises.
□

The following proposition gives a convenient criterion for a normed vector space to
be complete.

Definition 1.6. Given a sequence (xn) from a normed vector space X , the expression∑
n=1∞ xn denotes the sequence (sN =

∑N
n=1 xn), called the sequence of partial sums of

the series. The series converges if the sequence of partial sums converges in the norm
topology. In this case we use

∑
n=1∞ xn to also denote the limit of this sequence and

call it the sum.

Explicitly, the series
∑∞

n=1 xn converges means there is an x ∈ X such that for each
ϵ > 0 there is an N such that ∥sn − x∥ < ϵ for all n ≥ N.

The series
∑∞

n=1 xn converges absolutely if the series
∑∞

n=1 ∥xn∥ converges (in the
normed vector space (R, | · |)). □

Proposition 1.7. A normed space (X , ∥ · ∥) is complete if and only if every absolutely
convergent series in X is convergent.

Before proving the Proposition we collect two lemmas. A definition is needed for
the first.

Definition 1.8. A sequence (yk) from a normed vector space X is super-cauhcy if the
series

∑∞
k=1(yk+1 − yk) converges absolutely.

Lemma 1.9. If (xn) is a Cauchy sequence from a normed vector space X , then there is
a subsequence (yk) of (xn) that is super-cauchy.

Proof. With ϵ = 1
2
, there exists an N1 such that ∥xn − xm∥ < 1

2
for all m,n ≥ N1 since

(xn) is Cauchy. Assuming N1 < N2 < · · · < Nk have been chosen so that ∥xn−xm∥ < 1
2j

for 1 ≤ j ≤ k, there is an Nk+1 < Nk such that ∥xn − xm∥ < 1
2k+1 since (xn) is Cauchy.

Hence by recursion we have constructed a (strictly)increasing sequence of integers Nk

such that ∥xn−xm∥ < 1
2k

for allm,n ≥ Nk. Set yk = xNk
and note that ∥yk+1−yk∥ < 1

2k
,

from which it follows that (yk) is a super-cauchy subsequence of (xn). □

The proof will also use the following standard lemma from advanced calculus.

Lemma 1.10. If (xn) is a Cauchy sequence from a metric space (X, d) and if (xn) has
a subsequence (yk) that converges to some x, then (xn) converges to x.

Proof of Proposition 1.7. First suppose X is complete and
∑∞

n=1 xn is absolutely con-

vergent. Write sN =
∑N

n=1 xn for the N th partial sum and let ϵ > 0 be given. Since∑∞
n=1 ∥xn∥ is convergent, there exists an L such that

∑∞
n=L ∥xn∥ < ϵ. If N > M ≥ L,
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then

∥sN − sM∥ =

∥∥∥∥∥
N∑

n=M+1

xn

∥∥∥∥∥ ≤
N∑

n=M+1

∥xn∥ < ϵ.

Thus the sequence (sN) is Cauchy in X , hence convergent by the completeness hypoth-
esis.

Conversely, suppose every absolutely convergent series in X is convergent and that
(xn) is given Cauchy sequence from X. By Lemma 1.9 there is a super-cauchy subse-
quence (yk) of (xn). Since (yk) is super-cauchy, the series

∑∞
k=1(yk+1 − yk) is absolutely

convergent and hence, by hypothesis, convergent in X . Thus there is an z ∈ X such
that the sequence of partial sums

n∑
k=1

(yk+1 − yk) = yn+1 − y1

converges to z. Rearranging, (xNn+1 = yn+1) converges to x = z+y1.Hence (xn) is Cauchy
and has a convergent subsequence. Thus (xn) converges (to x) by Lemma 1.10. □

1.2. Examples.

1.2.1. Euclidean space. Observe that the Euclidean norm on the complex vector space
Cn agrees with the Euclidean norm on the real vector space R2n (via that natural real
linear isomomorphism R2 → C sending (x, y) to x + iy). Thus, Fn with the usual

Euclidean norm ∥(x1, . . . xn)∥ = (
∑n

k=1 |xk|2)
1/2

is a Banach space.

The vector space Fn can also be equipped with the ℓp-norms

∥(x1, . . . xn)∥p :=

(
n∑

k=1

|xk|p
)1/p

for 1 ≤ p <∞, and the ℓ∞-norm

∥(x1, . . . xn)∥∞ := max(|x1|, . . . |xn|).
For 1 ≤ p < ∞ and p ̸= 2, it is not immediately obvious that ∥ · ∥p defines a norm.
We will prove this assertion later. It is not too hard to show that all of the ℓp norms
(1 ≤ p ≤ ∞) are equivalent on Fn (though the constants c, C depend on the dimension
n). For instance, for n ∈ N,

∥x∥∞ ≤ ∥x∥2 ≤ ∥x∥1 ≤ n∥x∥∞.
The first and third inequalities are evident. For the middle inequality, observe

(∥x∥1)2 =
n∑

j,k=1

|xj| |xk| ≥
n∑

j=1

|xj|1 = ∥x∥22.

Given a normed vector space X = (X , ∥ · ∥), denote its closed unit ball by

X1 = {x ∈ X : ∥x∥ ≤ 1}.
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It is instructive to sketch the closed unit ball in R2 with the three norms above.

It turns out that any two norms on a finite-dimensional vector space are equivalent.
As a corollary, every finite-dimensional normed space is a Banach space. See Problem 1.5.

Lemma 1.11. If ∥·∥1 and ∥·∥2 are norms on X and there is a constant C > 0 such that
∥x∥1 ≤ C∥x∥2 for all x ∈ X , then the mapping ι : (X , ∥ · ∥2) → (X , ∥ · ∥1) is (uniformly)
continuous.

Proof. For x, y ∈ X , we have ∥ι(x)− ι(y)∥1 = ∥ι(x− y)∥1 = ∥x− y∥1 ≤ C∥x− y∥2. □

Proposition 1.12. If ∥x∥ is a norm on Rn, then ∥x∥ is equivalent to the Euclidean
norm ∥ · ∥2.

Sketch of proof. Let {e1, . . . , en} denote the usual basis for Rn. Given x =
∑
ajej ∈ Rn,

∥x∥ ≤
∑

|aj| ∥ej∥ =
∑

|aj|∥ej∥ ≤M ∥x∥1 ≤ nM ∥x∥2,

whereM = max{∥e1∥, . . . , ∥en∥}. It now follows that the map ι : (Rn, ∥·∥2) → (Rn, ∥·∥)
is continuous and therefore so is the map f : (Rn, ∥·∥2) → [0,∞) defined by f(x) = ∥x∥.
Since

Sn−1 = {x ∈ Rn : ∥x∥2 = 1}
(the unit sphere) is compact in Rn, by the Extreme Value Theorem, f attains its infimum;
that is, there is a point p ∈ Sn−1 such that f(p) ≤ f(x) for all x ∈ Sn−1. But f(p) =
∥p∥ > 0 since p ̸= 0. Let c = f(p) = ∥p∥.We conclude that if ∥x∥2 = 1 then ∥x∥ ≥ c∥x∥2,
from which it follows by homogeneity that ∥x∥ ≥ c∥x∥2 for all x ∈ Rn. □

Corollary 1.13. All norms on a finite dimensional vector space are equivalent. Further,
if V is a finite dimensional normed vector space, then V1 is compact and V is a Banach
space.

Proof. Suppose V is a normed vector space of dimension n and let {v1, . . . , vn} denote
a basis for V . The function ∥ · ∥′ : V → [0,∞) defined by

∥v∥′ = ∥
∑

ajvj∥′ =
∑

|aj|

is easily seen to be a norm.

Now let ∥ · ∥ be a given norm on V. This norm induces a norm ∥ · ∥∗ on Rn given by

∥
∑

ajej∥∗ = ∥
∑

ajvj∥.

Since all norms in Rn are equivalent, the norm ∥ · ∥∗ is equivalent to the norm ∥ · ∥1.
Hence there exist constants 0 < c < C such that

c∥v∥′ = c
∑

|aj| = c∥
∑

ajej∥1 ≤ ∥
∑

ajej∥∗ ≤ C∥
∑

ajej∥1 = C
∑

|aj| = C∥v∥′.

Thus, as ∥
∑
ajej∥∗ = ∥

∑
ajvj∥,

c∥v∥′ ≤ ∥v∥ ≤ C∥v∥′



5

for all v ∈ V. Thus all norms on V are equivalent.

Further, by definition, f : (V, ∥ · ∥) → (Rn, ∥ · ∥∗) is bijective and isometric. Thus,
f−1 is continuous, f−1(S) where S is the unit ball in (Rn, ∥·∥∗, is the unit ball in (V, ∥·∥)
and is compact as its the continuous image of a compact set. It is now routine to pass
from compactness of the unit ball in (V, ∥ · ∥) to completeness of (V, ∥ · ∥). □

1.2.2. The Banach space of bounded functions. If V is a vector space over F and ∅ ̸= T
is a set, then F (T, V ), the set of functions f : T → V is a vector space over F under
pointwise operations; e.g., if f, g ∈ F (T, V ) then f + g : T → V, is the function defined
by (f + g)(t) = f(t) + g(t).

Definition 1.14. A subset R of a normed vector space X is bounded if there is a C
such that ∥x∥ ≤ C for all x ∈ R; that is, R ⊆ CX1.

A function f : T → X is bounded if f(T ) ⊆ X is bounded.

Let Fb(T,X ) denote the vector space (subspace of F (T,X )) of bounded functions
f : T → X .

Remark 1.15. The function ∥ · ∥∞ : Fb(T,X ) → [0,∞) defined by

∥f∥∞ = sup{|f(t)| : t ∈ T}

is a norm on Fb(T,X ) as you should verify. Let d∞ denote the resulting metric:
d∞(f, g) = ∥f − g∥∞.

Note that convergence of a sequence in the metric space (Fb(T,X ), d∞) is uniform
convergence; in particular, a sequence is Cauchy in Fb(T,X ) if and only if it is uniformly
Cauchy. (Exercise.)

Proposition 1.16. If X is a Banach space, then Fb(T,X ) is also Banach space.

Proof. We are to show Fb(T,X ) is complete, assuming X is complete. Accordingly,
suppose (fn) is a Cauchy sequence from Fb(T,X ) and X is complete. In particular,
given ϵ > 0 there is an N such that d∞(fn, fm) = sup{∥fn(t) − fm(t)∥ : t ∈ T} < ϵ. It
follows that, for each s ∈ T, the sequence (fn(s)) is a Cauchy in X and hence converges
to some x ∈ X . Define f : T → X by f(s) = x. It remains to see that f is bounded and
(fn) converges to f.

Since Cauchy sequences are bounded and (fn) is Cauchy in the metric space Fb(T,X ),
there is a C such that

sup{∥fn(t)∥ : t ∈ T} = d∞(fn, 0) ≤ C

for all n. It follows from Proposition 1.5 that (∥fn(t)∥)n converges to |f(t) and hence
∥f(t)∥ ≤ C for all t ∈ T. Thus f is bounded; that is f ∈ Fb(T,X ).

It only remains to show that (fn) converges to f in Fb(T,X ). To do so let ϵ > 0
be given. There is an N such that if m,n ≥ N, then ∥fn(t) − fm(t)∥ < ϵ for all t ∈ T.
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Given s ∈ T, there is an M ≥ N such that ∥fm(s) − f(s)∥ < ϵ for all m ≥ N. Since,
(fm(s) − fn(s))m converges (with m) to (f(s) − fn(s)) in X , another application of
Proposition 1.5 gives (∥fm(s)− fn(s)∥)m converges to ∥f(s)− fn(s)∥. Thus

∥f(s)− fn(s)∥ ≤ ϵ,

for all s ∈ T. Hence d∞(f, fn) = ∥f − fn∥ ≤ ϵ and the proof is complete. □

There are important Banach spaces of continuous functions. Before going further,
we remind the reader of the following result from advanced calculus.

Theorem 1.17. Suppose X, Y are metric spaces, (fn) is a sequence fn : X → Y and
x ∈ X. If each fn is continuous at x and if (fn) converges uniformly to f , then f is
continuous at x. Hence if each fn is continuous, then so is f.

Proof. Let x and ϵ > 0 be given. Choose N such that if n ≥ N and y ∈ X, then
dY (fn(y), f(y)) < ϵ. Since fN is continuous at x, there is a δ > 0 such that if dX(x, y) < δ,
then dY (fN(x), fN(y)) < ϵ. Thus, if dX(x, y) < δ, then

dY (f(x), f(y)) ≤ dY (f(x), fN(x)) + dY (fN(x), fN(y)) + dY (fN(y), f(y))

< 3ϵ,

proving the theorem. □

Given a normed vector space Y , let Cb(X,Y) denote the subspace of Fb(X,Y) con-
sisting of continuous functions. Since uniform convergence is the same as convergence in
the normed vector space (Fb(X,Y), d∞), by Theorem 1.17, Cb(X,Y) is a closed subspace
of Fb(X,Y). In particular, in the case Y is a Banach space, so is Cb(X,Y).

When X be a compact metric space, let C(X) = C(X,F) denote the set of con-
tinuous functions f : X → F. Thus C(X) is a subspace of Fb(X,F) and we endow
C(X) with the norm it inherits from Fb(X,F). Since F is complete, C(X) is a Banach
space. Of course here we could replace F by a Banach space X and obtain the analogous
conclusion for the space C(X,X ).

Now let X be a locally compact metric space. In this case, a function f : X → F
vanishes at infinity if for every ϵ > 0, there exists a compact set K ⊆ X such that
supx/∈K |f(x)| < ϵ. Let C0(X) denote the subspace of Fb(X,F) consisting of continuous
functions f : X → F that vanish at infinity. Then C0(X) is a normed vector space with
the norm it inherits from C(X) (equivalently Fb(X,F). It is routine to check that C0(X)
is complete.

1.2.3. L1 spaces over R. Let (X,M , µ) be a measure space and let L1(µ) denote the
(real) vector space of (real-valued) absolutely integrable functions on X from Theo-
rem ??. We saw that

∥f∥1 :=
∫
X

|f | dm
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defines a norm on L1(µ), provided we agree to identify f and g when f = g a.e. (Indeed
the chief motivation for making this identification is that it makes ∥ · ∥1 into a norm.

Proposition 1.18. The real vector space L1(µ) is a Banach space.

We will construct a complex vector space analog of L1(µ) a bit later.

Proof. It suffices to verify the hypotheses of Proposition 1.7. Accordingly suppose∑∞
n=1 fn is absolutely convergent (so that

∑∞
n=1 ∥fn∥1 < ∞). By Tonelli’s summation

theorem, Theorem ??,∫ ∞∑
n=1

|fn| dm =
∞∑
n=1

∫
|fn| dm =

∞∑
n=1

∥fn∥1 <∞.

Thus the function g :=
∑∞

n=1 |fn| belongs to L1 and is thus finite m-a.e. In particular

the sequence of partial sums sN =
∑N

n=1 fn is a sequence of measurable functions with
|sN | ≤ g that converges pointwise a.e. to a measurable function f . Hence by the DCT
and its corollary, f ∈ L1 and the partial sums (sN)N converge to f in L1. □

1.2.4. Complex L1(µ) spaces. In this subsection we describe the extension of L1(µ) to a
complex vector space of complex valued functions (equivalence classes of functions).

Again we work on a fixed measure space (X,M , µ). As a topological space, C and
R2, are the same. A function f : X → C = R2 is measurable if and only if it is M −B2

measurable. Measurability of f can also be described in terms of the real and imaginary
parts of f.

Proposition 1.19. Suppose (X,M ) is a measurable space and f : X → C. Writing
f : X → C as f = u+ iv, where u, v : X → R, the function f is measurable if and only
if both u and v are.

Moreover, if f is measurable, then so is |f | : X → [0,∞).

We begin with the following elementary lemma whose proof is left to the reader.

Lemma 1.20. Suppose (X,M ) is a measure space and Y and Z are topological spaces.
If f : X → Y is M −BY measurable and g : Y → Z is BY −BZ measurable, then g ◦ f
is M − BZ measurable. In particulr, the result holds if g is continuous.

Sketch of proof of Proposition 1.19. The Borel σ-algebra B2 is generated by open rect-
angles; that is, a set U ⊆ C is open if and only if it is a countable union of open rectangles
(with rational vertices even). For an open rectagle I = J ×K = (a, b) × (c, d) observe
that

f−1(J) = u−1(J) ∩ v−1(K).

Thus, if u and v are measurable, then f−1(J) ∈ M . Consequently, by Propition ??, f
is measurable. Hence if u, v are both measurable, then so is f.
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Now suppose f is measurable. In this case

M ∋ f−1((t,∞)× R) = {u > t}.
Since the sets {(t,∞) : t} generate B1, Proposition ?? implies u is measurable. By
symmetry v is measurable.

To prove the second statement, since f is measurable and g : C → [0,∞) defined
by g(z) = |z| is continuous, the function g ◦ f = |f | is measurable by Lemma 1.20. □

Definition 1.21. A measurable f : X → C is integrable (or absolutely integrable) if |f |
is integrable.

Remark 1.22. From the inequalities

|Ref |, |Imf | ≤ |f | ≤ |Ref |+ |Imf |
it follows that f : X → C is (absolutely) integrable if and only if Ref and Imf are.

Definition 1.23. If f is complex-valued and absolutely integrable (that is, f is mea-
surable and |f | is integrable), we define the integal of f by∫

f =

∫
Ref + i

∫
Imf.

We also write ∥f∥1 :=
∫
X
|f | dµ in the complex case. Finally, we write L1 = L1(µ) to

denote the set of absolutely integrable complex-valued functions on X.

Generally, we leave it to context to indicate if we are considering the real or complex
version of L1; but for the following theorem we temporarily adopt the notation L1

R and
L1
C to distinguish between the real and complex vector space versions of L1(µ).

Theorem 1.24 (L1 as a C normed vector space). The set L1
C of is a vector space over

C (with the usual addition and scalar multiplication of functions). Morever, if f, g ∈ L1
C

and c ∈ C, then

(a) the mapping Λ : L1 → C defined by Λ(f) =
∫
f is linear;

(b)
∣∣∫ f ∣∣ ≤ ∫ |f |.

(c) ∥cf∥1 = |c|∥f∥1.
(d) ∥f + g∥1 ≤ ∥f∥1 + ∥g∥1.

Sketch of proof. Write f = u + iv and g = x + iy. In particular, u, v, x, y are all L1
R.

Given c = a + ib, the functions au, bv, av, bu are all L1
R and so are au− bv and av + bu

since L1
R is a real vector space. Therefore, cf = (au−bv)+ i(av+bu) is in L1

C. A similar,
but easier, argument shows f + g is in L1

C. Hence L
1
C is a vector space over C. Moreover,

since the integral is real linear on L1
R,

Λ(cf) = Λ((au+ bv) + i(av + bu)) = Λ((au+ bv)) + iΛ((av + bu))

= aΛ(u) + bΛ(v) + i[aΛ(v) + bΛ(u)]

= (a+ ib)[Λ(u) + iΛ(v)] = cΛ(f).



9

Likewise Λ(f + g) = Λ(f) + Λ(g). Thus Λ is C-linear on L1
C and item (a) is proved.

If
∫
f = 0, then f = 0 almost everywhere and the last three items hold. Otherwise,

write
∫
f = reit in polar coordinates and observe

e−it

∫
f ∈ R+.

Thus, from the definition and linearity of the integral

R+ ∋ e−it

∫
f =

∫
e−itf =

∫
real e−itf + i

∫
image e−itf.

Thus
∫
image e−itf = 0 and using results for L1

R,∣∣∣∣ ∫ f

∣∣∣∣ = ∣∣∣∣e−it

∫
f

∣∣∣∣ = ∫ e−itf =

∫
real e−itf ≤

∫
| real e−itf | ≤

∫
|f |,

proving item (b).

Next, ∫
|cf | =

∫
|c| |f | = |c|

∫
|f |.

Hence item (c) holds. Similarly,the triangle inequality, item (d), follows from |f + g| ≤
|f |+ |g| (pointwise). □

Remark 1.25. Proposition 1.24 says ∥ · ∥1 is a semi-norm on L1. As usual, we identify
functions that differ by a null vector; that is, f ∼ g if ∥f − g∥1 = 0; equivalently,
identifying functions that are equal a.e., we obtain a normed complex vector space of L1

functions (which of course are not actually functions).

1.2.5. Sequence spaces. Define

c0 := {f : N → F| lim
m→∞

|f(m)| = 0}

ℓ∞ := {f : N → F| sup
m∈N

|f(m)| <∞}

ℓ1 := {f : N → F|
∞∑

m=0

|f(m)| <∞}.

Note that ℓ∞ = Fb(N,F) and is a Banach space with the norm

∥f∥∞ = sup
m

|f(m)|.

Further, c0 ⊆ ℓ∞ is the subspace C0(N) of ℓ∞ again with the norm ∥ · ∥∞. In particular,
c0 is a Banach space.

Observe that ℓ1 is the space (N, P (N), c), where c is counting measure on N and
∥ · ∥1 is the corresponding ℓ1 norm. Since only set of measure zero in this measure space
is the emptyset, two functions in ℓ1 = L1(c) are equivalent if and only if they are equal.
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Along with these spaces it is also helpful to consider the vector space

c00 := {f : N → F|f(n) = 0 for all but finitely many n}

Notice that c00 is a vector subspace of each of c0, ℓ
1 and ℓ∞. Thus it can be equipped with

either the ∥ · ∥∞ or ∥ · ∥1 norms. It is not complete in either of these norms, however.
What is true is that c00 is dense in c0 and ℓ1 (but not in ℓ∞). (See Problem 1.11).

1.2.6. Lp spaces. Again let (X,M ,m) be a measure space. For 1 ≤ p < ∞ let Lp(m)
denote the set of measurable functions f for which

∥f∥p :=
(∫

X

|f |p dm
)1/p

<∞

(again we identify f and g when f = g a.e.). It turns out that this quantity is a norm on
Lp(m), and Lp(m) is complete, though we will not prove this yet (it is not immediately
obvious that the triangle inequality holds when p > 1).

Choosing (X,M , µ) = (N, P (N), c), counting measure on N, obtains the sequence
spaces ℓp; that is, the F-vector space of functions f : N → F such that

∥f∥p :=

(
∞∑
n=1

|f(n)|p
)1/p

<∞

and this quantity is a norm making ℓp into a Banach space.

When p = ∞, we define L∞(µ) to be the set of all functions f : X → K with the
following property: there exists M > 0 such that

(1) |f(x)| ≤M for µ− a.e. x ∈ X;

as for the other Lp spaces we identify f and g when there are equal a.e. When f ∈ L∞,
let ∥f∥∞ be the smallest M for which (1) holds. Then ∥ · ∥∞ is a norm making L∞(µ)
into a Banach space.

1.2.7. Subspaces and direct sums. If (X , ∥ · ∥) is a normed vector space and Y ⊆ X is a
vector subspace, then the restriction of ∥ · ∥ to Y is clearly a norm on Y . If X is a Banach
space, then (Y , ∥ · ∥) is a Banach space if and only if Y is closed in the norm topology of
X . (This is just a standard fact about metric spaces—a subspace of a complete metric
space is complete in the restricted metric if and only if it is closed.)

If X ,Y are vector spaces then the algebraic direct sum is the vector space of ordered
pairs

X ⊕ Y := {(x, y) : x ∈ X , y ∈ Y}
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with entrywise operations. If X , Y are equipped with norms ∥ · ∥X , ∥ · ∥Y , then each of
the quantities

∥(x, y)∥∞ := max(∥x∥X , ∥y∥Y),
∥(x, y)∥1 := ∥x∥X + ∥y∥Y

∥(x, y)∥2 :=
√

∥x∥2X + ∥y∥2Y
is a norm on X ⊕ Y . These three norms are equivalent; indeed it follows from the
definitions that

∥(x, y)∥∞ ≤ ∥(x, y)∥2 ≤ ∥(x, y)∥1 ≤ 2∥(x, y)∥∞.
If X and Y are both complete, then X ⊕ Y is complete in each of these norms. The
resulting Banach spaces are denoted X ⊕∞ Y , X ⊕1 Y and X ⊕2 Y .

1.2.8. Qoutient spaces. If X is a normed vector space and M is a proper subspace, then
one can form the algebraic quotient X/M, defined as the collection of distinct cosets
{x + M : x ∈ X}. From linear algebra, X/M is a vector space under the standard
operations. Let π : X → X/M denote the quotient map.

Proposition 1.26. If M is a closed subspace of a normed vector space X , then the
quantity

∥π(x)∥ = ∥x+M∥ := inf
y∈M

∥x− y∥

is a norm on X/M. Moreover, if X is a Banach space, then so is X/M.

The norm in Proposition 1.26 is called the quotient norm. Geometrically, ∥x+M∥
is the distance in X from x to the closed set M. The assumption that M is closed in
needed to ensure that the quotient norm is indeed a norm. For instance M = C([0, 1])
is dense subspace of L1([0, 1]) (with Lebesgue measure) and hence for any

inf
g∈M

∥f − g∥ = 0

for all f ∈ L1([0, 1]).

Proof. We will verify a couple of the axioms of a norm for the quotient norm, leaving the
remainder of the proof as an exercise. First suppose x ∈ X and ∥π(x)∥ = 0. It follows
that there is a sequence (mn) form M such that (∥x−mn∥) converges to 0; that is, (mn)
converges to x. Since M is closed, x ∈ M and hence π(x) = 0.

Now let x, y ∈ X and ϵ > 0 be given. There exists m,n ∈ M such that

∥x−m∥ ≤ ∥π(x)∥+ ϵ, ∥y − n∥ ≤ ∥π(y)∥+ ϵ.

Hence

∥π(x)+π(y)∥ = ∥π(x+y)∥ ≤ ∥x+y−(m+n)∥ ≤ ∥x−m∥+∥y−n∥ ≤ ∥π(x)∥+∥π(y)|∥+2ϵ,

from which it follows that the triangle inequality holds and we have proved the quotient
norm is indeed a norm.
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To prove X/M is complete (with the quotient norm) under the assumption that
X is a Banach space (complete), suppose (yn) is a sequence from X/M and

∑
yn is

absolutely convergent. For each n there exists xn ∈ X such that ∥xn∥ ≤ ∥yn∥+ 1
n2 and

π(xn) = yn. It follows that
∑
xn is absolutely convergent. Since X is a Banach space

the sequence of partial sums sN =
∑N

n=1 xn converges to some x ∈ X . In partiulcar,

∥sN − x∥ ≥ ∥π(sN − x)∥ = ∥π(sN)− π(x)∥ = ∥
N∑

n=1

yn − π(x)∥.

Since (∥sN − x∥) converges to 0, it follows that
∑
yn converges to π(x). Hence X/M is

complete by Proposition 1.7. □

More examples are given in the exercises and further examples will appear after the
development of some theory.

1.3. Linear transformations between normed spaces.

Definition 1.27. Let X ,Y be normed vector spaces. A linear transformation T : X → Y
is bounded if there exists a constant C ≥ 0 such that ∥Tx∥Y ≤ C∥x∥X for all x ∈ X .

Remark 1.28. Note that in Definition 1.27 it suffices to require that ∥Tx∥Y ≤ C∥x∥X
just for all x ̸= 0, or for all x with ∥x∥X = 1 (why?). □

The importance of boundedness and the following simple proposition is hard to
overstate. Recall, a mapping f : X → Y between metric spaces is Lipschitz continuous
if there is a constant C > 0 such that d(f(x), f(y)) ≤ Cd(x, y) for all x, y ∈ X. A simple
exercise shows Lipschitz continuity implies (uniform) continuity.

Proposition 1.29. If T : X → Y is a linear transformation between normed spaces,
then the following are equivalent:

(i) T is bounded.
(ii) T is Lipschitz continuous.
(iii) T is uniformly continuous.
(iv) T is continuous.
(v) T is continuous at 0.

Moreover, in this case,

∥T∥ := sup{∥Tx∥ : ∥x∥ = 1}

= sup{∥Tx∥
∥x∥

: x ̸= 0}

= inf{C : ∥Tx∥ ≤ C∥x∥ for all x ∈ X}
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and ∥T∥ is the smallest number (the infimum is attained 1) such that

(2) ∥Tx∥ ≤ ∥T∥ ∥x∥

for all x ∈ X .

Proof. Suppose T is bounded; that is, there exists a C ≥ 0 such that ∥Tx∥ ≤ C∥x∥ for
all x ∈ X . Thus, if x, y ∈ X , then, ∥Tx− Ty∥ = ∥T (x− y)∥ ≤ C∥x− y∥ by linearity of
T . Hence (i) implies (ii). The implications (ii) implies (iii) implies (iv) implies (v) are
evident.

The proof of (v) implies (i) exploits the homogeneity of the norm and the linearity
of T and not nearly the full strength of the continuity assumption. By hypothesis, with
ϵ = 1 there exists δ > 0 such that if ∥x∥ = ∥x− 0∥ < 2δ, then ∥Tx∥ = ∥Tx− T0)∥ < 1.
Given a nonzero vector x ∈ X , the vector δx/∥x∥ has norm less than δ, so

1 >

∥∥∥∥T ( δx

∥x∥

)∥∥∥∥ = δ
∥Tx∥
∥x∥

.

Rearranging this we find ∥Tx∥ ≤ (1/δ)∥x∥ for all x ̸= 0.

Assuming T is bounded, it is immediate that sup{∥Tx∥ : ∥x∥ = 1} exists (and is a
real number). From homogeneity of the norm, it is also clear that

sup{∥Tx∥ : ∥x∥ = 1} = sup{∥Tx∥
∥x∥

: x ̸= 0}.

Likewise assuming T is bounded the set S = {C : ∥Tx∥ ≤ C∥x∥ for all x ∈ X} ⊆ [0,∞)
is not empty and bounded below (by 0) and hence the infimum exists. From the definition
of ∥T∥ we see that ∥T∥ ∈ S. Hence the infimum is at most ∥T∥. On the other hand, if

C ′ < inf S, then there is an x ∈ X such that ∥Tx∥ > C ′∥x∥ so that ∥Tx∥
∥x∥ > C ′. Thus

C ′ < ∥T∥. □

The set of all bounded linear operators from X to Y is denoted B(X ,Y). It is a
vector space under the operations of pointwise addition and scalar multiplication. The
quantity ∥T∥ is easily seen to be a norm. It is called the operator norm of T .

Problem 1.1. Prove the ∥ · ∥1 and ∥ · ∥∞ norms on c00 are not equivalent. Conclude
from your proof that the identity map on c00 is bounded from the ∥ · ∥1 norm to the
∥ · ∥∞ norm, but not the other way around.

Problem 1.2. Consider c0 and c00 equipped with the ∥ · ∥∞ norm. Prove there is no
bounded operator T : c0 → c00 such that T |c00 is the identity map. (Thus the conclusion
of Proposition 1.31 can fail if Y is not complete.)

Proposition 1.30. For normed vector spaces X and Y, the operator norm makes
B(X ,Y) into a normed vector space that is complete if Y is complete.

1The suprema need not be attained.
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Proof. That B(X ,Y) is a normed vector space follows readily from the definitions and
is left as an exercise.

Suppose now Y is complete, and let Tn be a cauchy sequence in B(X ,Y). Let
E = X1 denote the closed unit ball in X . For x ∈ E,

(3) ∥Tnx− Tmx∥ = ∥(Tn − Tm)x∥ ≤ ∥Tn − Tm∥∥x∥ ≤ ∥Tn − Tm∥.

Hence the sequence (Tn|E) is a cauchy sequence (so uniformly cauchy) from Cb(E,Y),
the space of bounded continuous functions from B to Y . Since Y is complete, there is
an F ∈ Cb(E,Y) such that (Tn|E) converges to F in Cb(E,Y) and moreover ∥F (x)∥ ≤
C := sup{∥Tn∥ : n} < ∞. See Subsection 1.2.2. An exercise shows, given x, y ∈ B and
c ∈ F if x + y ∈ B and c x ∈ B, then F (x + y) = F (x) + F (y) and F (cx) = cF (x).
Hence F extends, by homogeneity, to a linear map T : X → Y such that ∥T∥ ≤ C and,
by equation (3), (Tn) converges to T in B(X, Y ). □

If T ∈ B(X ,Y) and S ∈ B(Y ,Z), then two applications of the inequality (2) give,
for x ∈ X ,

∥STx∥ ≤ ∥S∥∥Tx∥ ≤ ∥S∥∥T∥∥x∥
and it follows that ST ∈ B(X ,Z) and ∥ST∥ ≤ ∥S∥∥T∥. In the special case that Y = X
is complete, B(X ) := B(X ,X ) is an example of a Banach algebra.

The following proposition is very useful in constructing bounded operators—at least
when the codomain is complete. Namely, it suffices to define the operator (and show
that it is bounded) on a dense subspace.

Proposition 1.31 (Extending bounded operators). Let X , Y be normed vector spaces
with Y complete, and E ⊆ X a dense linear subspace. If T : E → Y is a bounded linear

operator, then there exists a unique bounded linear operator T̃ : X → Y extending T (so

T̃ |E = T ). Further ∥T̃∥ = ∥T∥.

Sketch of proof. Recall, if X, Y are metric spaces, Y is complete, D ⊆ X is dense and
f : D → Y is uniformly continuous, then f has a unique continuous extension f̃ :
X → Y . Moreover, this extension can be defined as follows. Given x ∈ X, choose a
sequence (xn) from D converging to x and let f̃(x) = lim f(xn) (that the sequence f(xn)
is Cauchy follows from uniform continuity; that it converges from the assumption that
Y is complete and finally it is an exercise to show f̃(x) is well defined independent of
the choice of (xn)). Thus, it only remains to verify that the extension T̃ of T is in fact
linear and ∥T∥ = ∥T̃∥. Both are routine exercises. □

Example 1.32. Equip c0 and c00 with the sup norm, ∥ · ∥∞ and consider the identity
map ι : c00 → c00. If T is an extension of ι to the completion c0 of c00 (in the sup norm),
then, letting sn ∈ c00 denote the sequence sn(m) = 1

m
for m ≤ n and sn(m) = 0 for

m > n, the sequence (sn) is converge in c0 to the sequence s with s(m) = 1
m

for all m.
Hence (T (sn) = sn) converges to some t ∈ c00. But now there is a K such that t(k) = 0
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for all k ≥ K so that ∥sn − t∥ ≥ 1
K

for all n ≥ K, a contradiction. This example shows
completeness of Y is essential in Proposition 1.31. □

Definition 1.33. A bounded linear transformation T ∈ B(X ,Y) is said to be invertible
if it is bijective (being bijective, automatically T−1 exists and is a linear transformation)
and T−1 is bounded from Y to X . Two normed spaces X ,Y are said to be (boundedly)
isomorphic if there exists an invertible linear transformation T : X → Y .

Example 1.34. As an example, given equivalent norms ∥ · ∥1 and ∥ · ∥2 on a vector
space X , the identity mapping ι : (X , ∥ · ∥1) → (X , ∥ · ∥2) is (boundedly) invertible and
witnesses the fact that these two normed vector spaces are boundedly isomorphic.

Definition 1.35. An operator T : X → Y such that ∥Tx∥ = ∥x∥ for all x ∈ X is an
isometry . Note that an isometry is automatically injective and if it is also surjective then
it is automatically invertible and T−1 is also an isometry. The normed vector spaces are
isometrically isomorphic if there is an invertible isometry T : X → Y .

Example 1.36. If X is a finite dimensional vector space and T : X → X is an isometry,
then T is onto. However, when X is not finite dimensional, an isometry need not be
surjective. As examples, let ℓp = ℓp(N) denote the sequence spaces from Subsection 1.2.5.
The linear map S : ℓp(N) → ℓp(N) defined by Sf(n) = 0 if n = 0 and f(n− 1) if n > 0
(for f = (f(n))n ∈ ℓp) is the shift operator . It is straightforward to verify that S is an
isometry but not onto.

Example 1.37. Following up on the previous example, a linear map T : X → X can
be one-one and have dense range without being (boundedly) invertible. Let en ∈ ℓ2(N)
denote the function en(m) = 1 if n = m and 0 otherwise for non-negative integers

0 ≤ m,n. The set of c00 = {
∑N

n=0 anen : N ∈ N, cn ∈ F} is dense in ℓ2(N) and the
mapping D : c00 → ℓ2(N) defined by

D(
N∑

n=0

anen) =
N∑

n=0

an
n+ 1

en

is easily seen to be bounded with ∥D∥ = 1. It is also injective. Hence D extends to an
injective bounded operator, still denoted D, from ℓ2 → ℓ2, with ∥D∥ = 1. The range of
D contains {en : n ∈ N} and is thus dense in ℓ2(N).

Since
∑∞

n=0 |
1

n+1
|2 <∞, the vector f =

∑∞
n=1

1
n+1

en is in ℓ2(N). On the other hand,

if g ∈ ℓ2(N) and Dg = f, then

1

n+ 1
g(n) = (Dg)(n) = f(n) =

1

n+ 1

and thus g(n) = 1 for all n; however, since
∑

|g(n)|2 = ∞, we obtain a contradiction.
Hence f is not in the range of D.
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1.4. Examples.

(a) If X is a finite-dimensional normed space and Y is any normed space, then every
linear transformation T : X → Y is bounded. See Problem 1.16.

(b) Let X denote c00 equipped with the ∥ · ∥1 norm, and Y denote c00 equipped with the
∥ · ∥∞ norm. Then the identity map idX ,Y : X → Y is bounded (in fact its norm is
equal to 1), but its inverse, the identity map ιY,X : Y → X , is unbounded. To verify
this claim, For positive integers n, let fn denote the element of c00 defined by

fn(m) =

{
1 if m ≤ n

0 if m > n.

Now ∥ιY,X (fn)∥1 = n, but ∥fn∥∞ = 1.

(c) Consider c00 with the ∥ ·∥∞ norm. Let a : N → F be any function and define a linear
transformation Ta : c00 → c00 by

(4) Taf(n) = a(n)f(n).

The mapping Ta is bounded if and only if M = supn∈N |a(n)| < ∞, in which case
∥Ta∥ = M . In this case, Ta extends uniquely to a bounded operator from c0 to c0
by Proposition 1.31, and one may check that the formula (4) defines the extension.
All of these claims remain true if we use the ∥ · ∥1 norm instead of the ∥ · ∥∞ norm.
In this case, we get a bounded operator from ℓ1 to itself.

(d) Define S : ℓ1 → ℓ1 as follows: given the sequence (f(n))n from ℓ1 let Sf(1) = 0 and
Sf(n) = f(n − 1) for n > 1. (Viewing f as a sequence, S shifts the sequence one
place to the right and fills in a 0 in the first position). This S is an isometry, but is
not surjective. In contrast, if X is finite-dimensional, then the rank-nullity theorem
from linear algebra guarantees that every injective linear map T : X → X is also
surjective.

(e) Let C∞([0, 1]) denote the vector space of functions on [0, 1] with continuous deriva-
tives of all orders. The differentiation map D : C∞([0, 1]) → C∞([0, 1]) defined by
Df = df

dx
is a linear transformation. Since, for t ∈ R, we have Detx = tetx, it follows

that there is no norm on C∞([0, 1]) such that d
dx

is bounded.
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1.5. Problems.

Problem 1.3. Prove Proposition 1.5.

Problem 1.4. Prove equivalent norms define the same topology and the same Cauchy
sequences.

Problem 1.5. (a) Prove all norms on a finite dimensional vector space X are equivalent.
Suggestion: Fix a basis e1, . . . en for X and define ∥

∑
akek∥1 :=

∑
|ak|. It is routine

to check that ∥ · ∥1 is a norm on X . Now complete the following outline.
(i) Let ∥ · ∥ be the given norm on X . Show there is an M such that ∥x∥ ≤M∥x∥1.

Conclude that the mapping ι : (X , ∥ · ∥1) → (X , ∥ · ∥) defined by ι(x) = x is
continuous;

(ii) Show that the unit sphere S = {x ∈ X : ∥x∥1 = 1} in (X , ∥ · ∥1) is compact in
the ∥ · ∥1 topology;

(iii) Show that the mapping f : S → (X , ∥ · ∥) given by f(x) = ∥x∥ is continuous
and hence attains its infimum. Show this infimum is not 0 and finish the proof.

(b) Combine the result of part (a) with the result of Problem 1.4 to conclude that every
finite-dimensional normed vector space is complete.

(c) Let X be a normed vector space and M ⊆ X a finite-dimensional subspace. Prove
M is closed in X .

Problem 1.6. Finish the proofs from the examples subsections.

Problem 1.7. A function f : [0, 1] → F is called Lipschitz continuous if there exists a
constant C such that

|f(x)− f(y)| ≤ C|x− y|
for all x, y ∈ [0, 1]. Define ∥f∥Lip to be the best possible constant in this inequality.
That is,

∥f∥Lip := sup
x̸=y

|f(x)− f(y)|
|x− y|

Let Lip[0, 1] denote the set of all Lipschitz continuous functions on [0, 1]. Prove ∥f∥ :=
|f(0)|+ ∥f∥Lip is a norm on Lip[0, 1], and that Lip[0, 1] is complete in this norm.

Problem 1.8. Let C1([0, 1]) denote the space of all functions f : [0, 1] → R such that
f is differentiable in (0, 1) and f ′ extends continuously to [0, 1]. Prove

∥f∥ := ∥f∥∞ + ∥f ′∥∞
is a norm on C1([0, 1]) and that C1 is complete in this norm. Do the same for the norm
∥f∥ := |f(0)|+ ∥f ′∥∞. (Is ∥f ′∥∞ a norm on C1?)

Problem 1.9. Let (X,M ) be a measurable space. Let M(X) denote the (real) vector
space of all signed measures on (X,M ). Prove the total variation norm ∥µ∥ := |µ|(X)
is a norm on M(X), and M(X) is complete in this norm.
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Problem 1.10. Prove, if X ,Y are normed spaces, then the operator norm is a norm on
B(X ,Y).

Problem 1.11. Prove c00 is dense in c0 and ℓ
1. (That is, given f ∈ c0 there is a sequence

fn in c00 such that ∥fn − f∥∞ → 0, and the analogous statement for ℓ1.) Using these
facts, or otherwise, prove that c00 is not dense in ℓ∞. (In fact there exists f ∈ ℓ∞ with
∥f∥∞ = 1 such that ∥f − g∥∞ ≥ 1 for all g ∈ c00.)

Problem 1.12. Prove c00 is not complete in the ∥ · ∥1 or ∥ · ∥∞ norms. (After we have
studied the Baire Category theorem, you will be asked to prove that there is no norm
on c00 making it complete.)

Problem 1.13. Consider c0 and c00 equipped with the ∥ · ∥∞ norm. Prove there is no
bounded operator T : c0 → c00 such that T |c00 is the identity map. (Thus the conclusion
of Proposition 1.31 can fail if Y is not complete.)

Problem 1.14. Prove the ∥ · ∥1 and ∥ · ∥∞ norms on c00 are not equivalent. Conclude
from your proof that the identity map on c00 is bounded from the ∥ · ∥1 norm to the
∥ · ∥∞ norm, but not the other way around.

Problem 1.15. a) Prove f ∈ C0(Rn) if and only if f is continuous and lim|x|→∞ |f(x)| =
0. b) Let Cc(Rn) denote the set of continuous, compactly supported functions on Rn.
Prove Cc(Rn) is dense in C0(Rn) (where C0(Rn) is equipped with sup norm).

Problem 1.16. Prove, if X ,Y are normed spaces and X is finite dimensional, then
every linear transformation T : X → Y is bounded. Suggestion: Let d denote the
dimension of X and let {e1, . . . , ed} denote a basis. The function ∥ · ∥1 on X defined by
∥
∑
xjej∥1 =

∑
|xj| is a norm. Apply Problem 1.5.

Problem 1.17. Prove the claims in Example 1.4(c).

Problem 1.18. Let g : R → K be a (Lebesgue) measurable function. The map Mg :
f → gf is a linear transformation on the space of measurable functions. Prove, if
g /∈ L∞(R), then there is an f ∈ L1(R) such that gf /∈ L1(R). Conversely, show if
g ∈ L∞(R), then Mg is bounded from L1(R) to itself and ∥Mg∥ = ∥g∥∞.

Problem 1.19. Prove the claims about direct sums.

Problem 1.20. Let X be a normed vector space and M a proper closed subspace.
Prove for every ϵ > 0, there exists x ∈ X such that ∥x∥ = 1 and infy∈M ∥x− y∥ > 1− ϵ.

(Hint: take any u ∈ X \M and let a = infy∈M ∥u− y∥. Choose δ > 0 small enough so
that a

a+δ
> 1− ϵ, and then choose v ∈ M so that ∥u−v∥ < a+δ. Finally let x = u−v

∥u−v∥ .)

Note that the distance to a (closed) subspace need not be attained. Here is an
example. Consider the Banach space C([0, 1]) (with the sup norm of course and either
real or complex valued functions) and the closed subspace

T = {f ∈ C([0, 1]) : f(0) = 0 =

∫ 1

0

f dt}.
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Using machinery in the next section it will be evident that T is a closed subspace of
C([0, 1]). For now, it can be easily verified directly. Let g denote the function g(t) = t.
Verify that, for f ∈ T , that

1

2
=

∫
g dt =

∫
(g − f) dt ≤ ∥g − f∥∞.

In particular, the distance from g to T is at least 1
2
.

Note that the function h = x− 1
2
, while not in T , satisfies ∥g − h∥∞ = 1

2
.

On the other hand, for any ϵ > 0 there is an f ∈ T so that ∥g − f∥∞ ≤ 1
2
+ ϵ

(simply modify h appropriately). Thus, the distance from g to T is 1
2
. Now verify, using

the inequality above, that h is the only element of C([0, 1]) such that
∫
h dt = 0 and

∥g − h∥∞ = 1
2
.

Problem 1.21. Prove, if X is an infinite-dimensional normed space, then the unit ball
ball(X ) := {x ∈ X : ∥x∥ ≤ 1} is not compact in the norm topology. (Hint: use the
result of Problem 1.20 to construct inductively a sequence of vectors xn ∈ X such that
∥xn∥ = 1 for all n and ∥xn − xm∥ ≥ 1

2
for all m < n.)

Problem 1.22. (The quotient norm) Let X be a normed space and M a proper closed
subspace.

a) Prove the quotient norm is a norm.
b) Show that the quotient map x→ x+M has norm 1. (Use Problem 1.20.)
c) Prove, if X is complete, so is X/M.

Problem 1.23. A normed vector space X is called separable if it is separable as a metric
space (that is, there is a countable subset of X which is dense in the norm topology).
Prove c0 and ℓ1 are separable, but ℓ∞ is not. (Hint: for ℓ∞, show that there is an
uncountable collection of elements {fα} such that ∥fα − fβ∥ = 1 for α ̸= β.)

END FALL TERM

2. Linear functionals and the Hahn-Banach theorem

If there is a fundamental theorem of functional analysis, it is the Hahn-Banach
theorem. The theorem is somewhat abstract-looking at first, but its importance will be
clear after studying some of its corollaries.

Definition 2.1. Let X be a normed vector space over the field F. A linear functional
on X is a linear map L : X → F. The dual space of X , denoted X ∗ is the space B(X ,F)
of bounded linear functionals on X .

Remark 2.2. Since F = R or C is complete, the vector space of bounded linear func-
tionals is itself a Banach space (complete normed vector space) and is known as the .
It is not yet obvious that X ∗ need be non-trivial (that is, that there are any bounded
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linear functionals on X besides 0). One corollary of the Hahn-Banach theorem is there
exist enough bounded linear functionals on X to separate points.

2.1. Examples. This subsection contains some examples of bounded linear functionals
and dual spaces.

Example 2.3. For each of the sequence spaces c0, ℓ
1, ℓ∞, for each n the map f → f(n) is

a bounded linear functional. That is, λn : X → F defined by λn(f) = f(n) for f : N → F
in X , where X is any one of c0, ℓ

1, ℓ∞, is continuous since in each case it is immediate
that

|λn(f)| = |f(n)| ≤ ∥f∥X .

Example 2.4. Given g ∈ ℓ1, if f ∈ c0, then

(5)
∞∑
n=0

|f(n)g(n)| ≤ ∥f∥∞
∞∑
n=0

|g(n)| = ∥g∥1∥f∥∞.

Thus
∑∞

n=0 f(n)g(n) converges and we obtain a functional Lg : c0 → F defined by

(6) Lg(f) :=
∞∑
n=0

f(n)g(n).

The inequality of equation (5) says Lg is bounded (continuous) and ∥Lg∥ ≤ ∥g∥1. More-
over, it is immediate that Φ : ℓ1 → c∗0 defined by Φ(g) = Lg is bounded and linear and
∥Φ∥ ≤ 1. In fact, Φ is onto so that every bounded linear functional on c0 is of the form
Lg for some g ∈ ℓ1.

Proposition 2.5. The map Φ : ℓ1 → c∗0 defined by Φ(g) = Lg is an isometric isomor-
phism from ℓ1 onto the dual space c∗0.

Proof. We have already seen that each g ∈ ℓ1 gives rise to a bounded linear functional
Lg ∈ c∗0 via

Lg(f) :=
∞∑
n=0

g(n)f(n),

that ∥Lg∥ ≤ ∥g∥1 and the the mapping Φ is bounded and linear. We will prove simul-
taneously that this map is onto and that ∥Lg∥ ≥ ∥g∥1.

Let L ∈ c∗0. We will first show that there is unique g ∈ ℓ1 so that L = Lg. Let
en ∈ c0 be the indicator function of n, that is

en(m) = δnm.

Define a function g : N → F by

g(n) = L(en).
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We claim that g ∈ ℓ1 and L = Lg. To see this, fix an integer N and define h = hN :
N → F by

h(n) =

{
g(n)/|g(n)| if n ≤ N and g(n) ̸= 0

0 otherwise.

Thus h =
∑N

n=0 h(n)en. Further, by h ∈ c00 ⊆ c0 and ∥h∥∞ ≤ 1. Now

N∑
n=0

|g(n)| =
N∑

n=0

h(n)g(n) = L(h) = |L(h)| ≤ ∥L∥∥h∥ ≤ ∥L∥.

It follows that g ∈ ℓ1 and ∥g∥1 ≤ ∥L∥. By construction L = Lg when restricted to c00, so
by the uniqueness of extensions of bounded operators, Proposition 1.31, L = Lg. Thus
the map g → Lg is onto and

∥g∥1 ≤ ∥L∥ = ∥Lg∥ ≤ ∥g∥1. □

Example 2.6. Given g ∈ ℓ∞, if f ∈ ℓ1, then equation (5) shows |Lg(f)| ≤ ∥g∥∞ ∥f∥1,
where Lg is defined as in equation (6). Thus ∥Lg∥ ≤ ∥g∥∞ and we obtain a bounded
linear map Ψ : ℓ∞ → (ℓ1)∗

Proposition 2.7. The map Ψ is an isometric isomorphism from (ℓ1)∗ onto ℓ∞.

Proof. The proof follows the same lines as the proof of the previous proposition; the
details are left as an exercise. □

Remark 2.8. The same mapping g → Lg also shows that every g ∈ ℓ1 gives a bounded
linear functional on ℓ∞, but it turns out these do not exhaust (ℓ∞)∗ (see Problem ??).

Regarding ℓ1 and ℓ∞ as L1 and L∞ for counting measure on N, it is not surprising
that, given a measure space (X,M , µ), a function g ∈ L∞(µ) (see Subsection 1.2.6 for
the definition of L∞(µ)) defines a linear functional Lg : L

1(µ) → F by

Lg(f) :=

∫
X

fg dm

for f ∈ L1(µ) is a bounded linear functional of norm at most M . We will prove in
Section ?? that the norm of Lg is in fact ∥g∥∞, and every bounded linear functional on
L1(m) is of this type (at least when m is σ-finite). □

Example 2.9. A regular Borel measure µ on a locally compact set X such that µ(K) <
∞ for compact subsets of X determines a linear functional λ : Cc(X) → F by

λ(f) = λµ(f) =

∫
X

f dµ.

An f ∈ Cc(X) is a positive function (really non-negative), written f ≥ 0, if f(x) ≥ 0
for all x ∈ X. The linear functional λµ is a positive linear functional in the sense that if
f ∈ Cc(X) is positive, then λµ(f) ≥ 0.
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As a second example, let X = [0, 1] and note that the mapping I : C([0, 1]) → C
defined by

I(f) =

∫ 1

0

f dx,

where the integral is in the Riemann sense, is a positive linear functional on C([0, 1]).

END Monday 2025-01-13

Theorem 2.10 (Riesz-Markov Representation Theorem: positive version). Let X =
(X, τ) be a locally compact Hausdorff space. If λ : Cc(X) → C is a positive linear
functional, then there exists a unique Borel measure µ on the Borel σ-algebra BX , such
that

λ(f) =

∫
f dµ

for f ∈ Cc(X). Moreover, µ is regular in the sense that

(i) if K ⊆ X is compact, then µ(K) <∞;
(ii) if E ∈ BX , then µ(E) = inf{µ(U) : E ⊆ U, U open}; and
(iii) if E ∈ BX and µ(E) <∞, then µ(E) = sup{µ(K) : K ⊆ E, K compact}.

Remark 2.11. In general elements of Cc(X)∗ correspond to signed measures that will
appear later in these notes. □

We close this subsection with the following result that should be compared with
item (a) from Subsection 1.4.

Proposition 2.12. If V is an infinite dimensional normed vector space, then there exists
a linear map f : V → F that is not continuous.

For a Banach space X , there are notions of a basis that reference the norm. For
instance, a Schauder basis for X is a sequence (en)

∞
n=1 such that for each x ∈ X there

exists a unique choice of scalars xn ∈ F such that the series
∑∞

n=1 xnen converges to
x. Forgetting the norm structure, a Hamel basis B ⊆ X for X is a basis in the sense
of linear algebra. Explicitly, letting F00(B) denote the functions a : B → F such that
ab = a(b) is zero for all but finitely many b ∈ B, the set B is a Hamel basis for X if for
each v ∈ X there exist is a unique function a ∈ F00(B) such that

v =
∑
b∈B

ab b =
finite∑
b∈B

ab b.

In this case any choice of c : B → F determines uniquely a linear functional λ : X → F
via the rule

λ(v) =
∑
b∈B

cb ab,

where cb = c(b). Often this process is described informally as: let λ(b) = c(b) and extend
by linearity. Finally, an argument using Zorn’s Lemma, which we will soon encounter
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in the proof of the Hahn-Banach Theorem, shows that every vector space has a basis.
While it is true that every basis for a vector space V has the same cardinality, all that
we need to make sense of the statement V is an infinite dimensional vector space is the
fact that V has a basis that is infinite, then all bases for V are infinite, which is an
immediate consequence of the fact that all bases for a finite dimensional vector space
have the same cardinality. Thus, we can take the statement X is infinite dimensional
to mean that X has a Hamel basis B that contains a countable set B0.

Proof of Proposition 2.12. Let B denote a Hamel basis for V. By assumption, B has a
countable subset B0. Write B0 = {b1, b2, . . . } (so choose a bijection ψ : N → B0) and
assume, without loss of generality that ∥bj∥ = 1. Let λ : V → F denote the linear
functional determined by λ(bj) = j for bj ∈ B0 and λ(b) = 0 for b ∈ B \B0 and observe
that λ is not bounded. □

2.2. The Hahn-Banach Extension Theorem. To state and prove the Hahn-Banach
Extension Theorem, we first work in the setting F = R, then extend the results to the
complex case.

Definition 2.13. Let X be a real vector space. A Minkowski functional is a function
p : X → R such that p(x + y) ≤ p(x) + p(y) and p(λx) = λp(x) for all x, y ∈ X and
nonnegative λ ∈ R.

For examples, if L : X → R is any linear functional, then the function p : X → R
defined by p(x) := |L(x)| is a Minkowski functional; and if ∥ · ∥ is a seminorm on X ,
then p : X → R defined by p(x) = ∥x∥ is a Minkowski functional.

Theorem 2.14 (The Hahn-Banach Extension2 Theorem, real version). Let X denote
a real vector space, p a Minkowski functional on X , and M a subspace of X . If L is a
linear functional on M such that L(x) ≤ p(x) for all x ∈ M, then there exists a linear
functional L′ on X such that

(i) L′|M = L (L′ extends L)
(ii) L′(x) ≤ p(x) for all x ∈ X (L′ is dominated by p).

Remark 2.15. In the statement of Theorem 2.14, X is a vector space, not a normed vec-
tor space and correspondingly M is a subspace in the sense of linear algebra (sometimes
referred to as a linear manifold). □

The proof will invoke Zorn’s Lemma, a result that is equivalent to the axiom of
choice (as well as the well-ordering principle and the Hausdorff maximality principle).
A partial order ⪯ on a set S is a relation that is reflexive, symmetric and transitive;
that is, for all x, y, z ∈ S

2There is also the Hahn-Banach Separation Theorem. Both theorems are often simple called the (sic)
Hahn-Banach Theorem.
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(i) x ⪯ x,
(ii) if x ⪯ y and y ⪯ x, then x = y, and
(iii) if x ⪯ y and y ⪯ z, then x ⪯ z.

We call S, or more precisely (S,⪯), a partially ordered set or poset . A subset T of
S is totally ordered , if for each x, y ∈ T either x ⪯ y or y ⪯ x. A totally ordered subset
T is often called a chain. An upper bound z for a chain T is an element z ∈ S such that
t ⪯ z for all t ∈ T . A maximal element for S is a w ∈ S that has no successor; that is
there does not exist an s ∈ S such that s ̸= w and w ⪯ s. An upper bound for a subset
A of S is an element s ∈ S such that a ⪯ s for all a ∈ A.

Theorem 2.16 (Zorn’s Lemma). Suppose S is a partially ordered set. If every chain in
S has an upper bound, then S has a maximal element.

END Wednesday 2025-01-15

The following Lemma is at the heart of the proof of Theorem 2.14.

Lemma 2.17. With the hypotheses of Theorem 2.14, if 0 ̸= x ∈ X \ M, then the
conclusion of Theorem 2.14 holds with the subspace M+ Rx in place of X .

Proof. For any m1,m2 ∈ M, by hypothesis,

L(m1) + L(m2) = L(m1 +m2) ≤ p(m1 +m2) ≤ p(m1 − x) + p(m2 + x).

Rearranging gives, for m1,m2 ∈ M,

L(m1)− p(m1 − x) ≤ p(m2 + x)− L(m2)

and thus

sup
m∈M

{L(m)− p(m− x)} ≤ inf
m∈M

{p(m+ x)− L(m)}.

Now choose any real number λ satisfying

sup
m∈M

{L(m)− p(m− x)} ≤ λ ≤ inf
m∈M

{p(m+ x)− L(m)}.

In particular, for m ∈ M,

L(m)−λ ≤ p(m− x)

L(m)+λ ≤ p(m+ x).
(7)

Let N = M + Rx and define L′ : N → R by L′(m + tx) = L(m) + tλ for m ∈ M
and t ∈ R. Thus L′ is linear and agrees with L on M by definition. Moreover, by
construction and equation 7,

L(m− x) ≤ p(m− x)

L(m+ x) ≤ p(m+ x).
(8)
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We now check that L′(y) ≤ p(y) for all y ∈ M + Rx. Accordingly, suppose y ∈ N
so that there exists m ∈ M and t ∈ R such that y = m + tx. If t = 0 there is nothing
to prove. If t > 0, then, in view of the second inequality of equation (8),

L′(y) = L′(m+ tx) = t
(
L(
m

t
) + λ

)
≤ t p(

m

t
+ x) = p(m+ tx) = p(y)

and a similar estimate, using the first inequality of equation (8), shows that

L′(m+ tx) ≤ p(m+ tx)

for t < 0. We have thus successfully extended L to a linear map L′ : N → R satisfying
L′(n) ≤ p(n) for all n ∈ N and the proof is complete. □

We make one further observation before turning to the proof of the Hahn-Banach
Theorem. If T is a totally ordered set and (Nα)α∈T are subspaces of a vector space X
that are nested increasing in the sense that Nα ⊆ Nβ for α ⪯ β, then N = ∪α∈TNα is
again a subspace of X . By contrast, if X is a normed vector space and Nα are (closed)
subspaces of X , then N will not necessarily be a (closed) subspace of X .

Proof of Theorem 2.14. Let L denote the set of pairs (L′,N ) where N is a subspace of
X containing M, and L′ is an extension of L to N obeying L′(y) ≤ p(y) on N . Declare
(L′

1,N1) ⪯ (L′
2,N2) if N1 ⊆ N2 and L

′
2|N1 = L′

1. This relation ⪯ is a partial order on L;
that is (L,⪯) is a partially ordered set. Further, Lemma 2.17 says if (L′,N ) is maximal
element, then N = X .

An exercise shows, given any increasing chain (L′
α,Nα) in L has as an upper bound

(L′,N ) in L, where N :=
⋃

αNα and L′(nα) := L′
α(nα) for nα ∈ Nα. By Zorn’s Lemma

the collection L has a maximal element (L′,N ) with respect to the order ⪯ and the
proof is complete. □

The use of Zorn’s Lemma in the proof of Theorem 2.14 is a typical - one knows how
to carry out a construction one step a time, but there is no clear way to do it all at once.
As an exercise, use Zorn’s Lemma to prove that if V Is a vectors space and S ⊆ V is a
linearly independent set, then there is a basis B for V such that B ⊇ S.

In the special case that p is a seminorm, since L(−x) = −L(x) and p(−x) = p(x)
the inequality L ≤ p is equivalent to |L| ≤ p.

Corollary 2.18. Suppose X is a real normed vector space, M is a subspace of X , and
L is a bounded linear functional on M. If C ≥ 0 and |L(x)| ≤ C∥x∥ for all x ∈ M,

then there exists a bounded linear functional L′ on X extending L such that ∥L′∥ ≤ C.

Proof. Apply the Hahn-Banach theorem with the Minkowski functional p(x) = C∥x∥.
□
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Before obtaining further corollaries, we extend Thoerem 2.14 to complex normed
spaces. First, if X is a vector space over C, then trivially it is also a vector space over
R, and there is a simple relationship between the R- and C-linear functionals.

Lemma 2.19. Let X be a vector space over C. If L : X → C is a C-linear functional,
then u(x) = realL(x) defines an R-linear functional on X and L(x) = u(x) − iu(ix).
Conversely, if u : X → R is R-linear then L(x) := u(x) − iu(ix) is C-linear. If, in
addition, p : X → R is a seminorm, then |u(x)| ≤ p(x) for all x ∈ X if and only if
|L(x)| ≤ p(x) for all x ∈ X .

Proof. Problem ??.

To prove the last statement, it is immediate that |u(x)| ≤ |L(x)| for all x ∈ X .

Conversely, given x there is a unimodular α such that αL(x) = |L(x)|. Hence,
|L(x)| = L(αx) = |u(αx)| ≤ p(αx) = |α| p(x) = p(x). □

Remark 2.20. Note that in passing from the real to the complex case, we must give up
the generality of a Minkowski functional and instead content ourselves with seminorms
p.

END Friday 2024-01-17
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