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1. Normed vector spaces

In this section F stands for either R or C. Let X be a vector space over F.

1.1. Definitions and preliminary results.

Definition 1.1. A normed vector space X = (X , ∥ · ∥) consists of a vector space X over
F together with a norm ∥ · ∥ : X → [0,∞) (see definition 5.1 – which does not change
with R replaced by C). We often denote the normed vector space as X , with the norm
∥ · ∥ implicit.

As we noted before, using the properties of a norm, it is straightforward to check
that d : X × X → [0,∞) defined by

d(x, y) := ∥x− y∥
is a metric on X . The resulting topology is the norm topology and it is the default
topology on X .

Definition 1.2. A normed vector space X is a Banach space if it is complete (with its
norm topology). □

Definition 1.3. Two norms ∥ · ∥1, ∥ · ∥2 on X are equivalent if there exist constants
C, c > 0 such that

c∥x∥1 ≤ ∥x∥2 ≤ C∥x∥1,
for all x ∈ X . □

Remark 1.4. Equivalent norms determine the same topology on X and the same
Cauchy sequences (Problem 1.4). In particular, it follows that if X is equipped with
two equivalent norms ∥ · ∥1, ∥ · ∥2 then it is complete (a Banach space) in one norm if
and only if it is complete in the other.

Equivalence of norms is an equivalence relation on the set of norms on X . □

The next proposition is simple but fundamental; it says that the norm and the
vector space operations are continuous in the norm topology.

Proposition 1.5 (Continuity of vector space operations). Let X be a normed vector
space over F.

a) If (xn) converges to x in X , then (∥xn∥) converges to ∥x∥ in R.
b) If (kn) converges to k in F and (xn) converges to x in X , then (knxn) converges

to kx in X .
c) If (xn) converges to x and (yn) converges to y in X , then (xn + yn) converges to
x+ y in X .
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Proof. The proofs follow readily from the properties of the norm, and are left as exercises.
□

The following proposition gives a convenient criterion for a normed vector space to
be complete.

Definition 1.6. Given a sequence (xn) from a normed vector space X , the expression∑
n=1∞ xn denotes the sequence (sN =

∑N
n=1 xn), called the sequence of partial sums of

the series. The series converges if the sequence of partial sums converges in the norm
topology. In this case we use

∑
n=1∞ xn to also denote the limit of this sequence and

call it the sum.

Explicitly, the series
∑∞

n=1 xn converges means there is an x ∈ X such that for each
ϵ > 0 there is an N such that ∥sn − x∥ < ϵ for all n ≥ N.

The series
∑∞

n=1 xn converges absolutely if the series
∑∞

n=1 ∥xn∥ converges (in the
normed vector space (R, | · |)). □

Proposition 1.7. A normed space (X , ∥ · ∥) is complete if and only if every absolutely
convergent series in X is convergent.

Before proving the Proposition we collect two lemmas. A definition is needed for
the first.

Definition 1.8. A sequence (yk) from a normed vector space X is super-cauhcy if the
series

∑∞
k=1(yk+1 − yk) converges absolutely.

Lemma 1.9. If (xn) is a Cauchy sequence from a normed vector space X , then there is
a subsequence (yk) of (xn) that is super-cauchy.

Proof. With ϵ = 1
2
, there exists an N1 such that ∥xn − xm∥ < 1

2
for all m,n ≥ N1 since

(xn) is Cauchy. Assuming N1 < N2 < · · · < Nk have been chosen so that ∥xn−xm∥ < 1
2j

for 1 ≤ j ≤ k, there is an Nk+1 < Nk such that ∥xn − xm∥ < 1
2k+1 since (xn) is Cauchy.

Hence by recursion we have constructed a (strictly)increasing sequence of integers Nk

such that ∥xn−xm∥ < 1
2k

for allm,n ≥ Nk. Set yk = xNk
and note that ∥yk+1−yk∥ < 1

2k
,

from which it follows that (yk) is a super-cauchy subsequence of (xn). □

The proof will also use the following standard lemma from advanced calculus.

Lemma 1.10. If (xn) is a Cauchy sequence from a metric space (X, d) and if (xn) has
a subsequence (yk) that converges to some x, then (xn) converges to x.

Proof of Proposition 1.7. First suppose X is complete and
∑∞

n=1 xn is absolutely con-

vergent. Write sN =
∑N

n=1 xn for the N th partial sum and let ϵ > 0 be given. Since∑∞
n=1 ∥xn∥ is convergent, there exists an L such that

∑∞
n=L ∥xn∥ < ϵ. If N > M ≥ L,
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then

∥sN − sM∥ =

∥∥∥∥∥
N∑

n=M+1

xn

∥∥∥∥∥ ≤
N∑

n=M+1

∥xn∥ < ϵ.

Thus the sequence (sN) is Cauchy in X , hence convergent by the completeness hypoth-
esis.

Conversely, suppose every absolutely convergent series in X is convergent and that
(xn) is given Cauchy sequence from X. By Lemma 1.9 there is a super-cauchy subse-
quence (yk) of (xn). Since (yk) is super-cauchy, the series

∑∞
k=1(yk+1 − yk) is absolutely

convergent and hence, by hypothesis, convergent in X . Thus there is an z ∈ X such
that the sequence of partial sums

n∑
k=1

(yk+1 − yk) = yn+1 − y1

converges to z. Rearranging, (xNn+1 = yn+1) converges to x = z+y1.Hence (xn) is Cauchy
and has a convergent subsequence. Thus (xn) converges (to x) by Lemma 1.10. □

1.2. Examples.

1.2.1. Euclidean space. Observe that the Euclidean norm on the complex vector space
Cn agrees with the Euclidean norm on the real vector space R2n (via that natural real
linear isomomorphism R2 → C sending (x, y) to x + iy). Thus, Fn with the usual

Euclidean norm ∥(x1, . . . xn)∥ = (
∑n

k=1 |xk|2)
1/2

is a Banach space.

The vector space Fn can also be equipped with the ℓp-norms

∥(x1, . . . xn)∥p :=

(
n∑

k=1

|xk|p
)1/p

for 1 ≤ p <∞, and the ℓ∞-norm

∥(x1, . . . xn)∥∞ := max(|x1|, . . . |xn|).
For 1 ≤ p < ∞ and p ̸= 2, it is not immediately obvious that ∥ · ∥p defines a norm.
We will prove this assertion later. It is not too hard to show that all of the ℓp norms
(1 ≤ p ≤ ∞) are equivalent on Fn (though the constants c, C depend on the dimension
n). For instance, for n ∈ N,

∥x∥∞ ≤ ∥x∥2 ≤ ∥x∥1 ≤ n∥x∥∞.
The first and third inequalities are evident. For the middle inequality, observe

(∥x∥1)2 =
n∑

j,k=1

|xj| |xk| ≥
n∑

j=1

|xj|1 = ∥x∥22.

Given a normed vector space X = (X , ∥ · ∥), denote its closed unit ball by

X1 = {x ∈ X : ∥x∥ ≤ 1}.



4

It is instructive to sketch the closed unit ball in R2 with the three norms above.

It turns out that any two norms on a finite-dimensional vector space are equivalent.
As a corollary, every finite-dimensional normed space is a Banach space. See Problem 1.5.

Lemma 1.11. If ∥·∥1 and ∥·∥2 are norms on X and there is a constant C > 0 such that
∥x∥1 ≤ C∥x∥2 for all x ∈ X , then the mapping ι : (X , ∥ · ∥2) → (X , ∥ · ∥1) is (uniformly)
continuous.

Proof. For x, y ∈ X , we have ∥ι(x)− ι(y)∥1 = ∥ι(x− y)∥1 = ∥x− y∥1 ≤ C∥x− y∥2. □

Proposition 1.12. If ∥x∥ is a norm on Rn, then ∥x∥ is equivalent to the Euclidean
norm ∥ · ∥2.

Sketch of proof. Let {e1, . . . , en} denote the usual basis for Rn. Given x =
∑
ajej ∈ Rn,

∥x∥ ≤
∑

|aj| ∥ej∥ =
∑

|aj|∥ej∥ ≤M ∥x∥1 ≤ nM ∥x∥2,

whereM = max{∥e1∥, . . . , ∥en∥}. It now follows that the map ι : (Rn, ∥·∥2) → (Rn, ∥·∥)
is continuous and therefore so is the map f : (Rn, ∥·∥2) → [0,∞) defined by f(x) = ∥x∥.
Since

Sn−1 = {x ∈ Rn : ∥x∥2 = 1}
(the unit sphere) is compact in Rn, by the Extreme Value Theorem, f attains its infimum;
that is, there is a point p ∈ Sn−1 such that f(p) ≤ f(x) for all x ∈ Sn−1. But f(p) =
∥p∥ > 0 since p ̸= 0. Let c = f(p) = ∥p∥.We conclude that if ∥x∥2 = 1 then ∥x∥ ≥ c∥x∥2,
from which it follows by homogeneity that ∥x∥ ≥ c∥x∥2 for all x ∈ Rn. □

Corollary 1.13. All norms on a finite dimensional vector space are equivalent. Further,
if V is a finite dimensional normed vector space, then V1 is compact and V is a Banach
space.

Proof. Suppose V is a normed vector space of dimension n and let {v1, . . . , vn} denote
a basis for V . The function ∥ · ∥′ : V → [0,∞) defined by

∥v∥′ = ∥
∑

ajvj∥′ =
∑

|aj|

is easily seen to be a norm.

Now let ∥ · ∥ be a given norm on V. This norm induces a norm ∥ · ∥∗ on Rn given by

∥
∑

ajej∥∗ = ∥
∑

ajvj∥.

Since all norms in Rn are equivalent, the norm ∥ · ∥∗ is equivalent to the norm ∥ · ∥1.
Hence there exist constants 0 < c < C such that

c∥v∥′ = c
∑

|aj| = c∥
∑

ajej∥1 ≤ ∥
∑

ajej∥∗ ≤ C∥
∑

ajej∥1 = C
∑

|aj| = C∥v∥′.

Thus, as ∥
∑
ajej∥∗ = ∥

∑
ajvj∥,

c∥v∥′ ≤ ∥v∥ ≤ C∥v∥′
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for all v ∈ V. Thus all norms on V are equivalent.

Further, by definition, f : (V, ∥ · ∥) → (Rn, ∥ · ∥∗) is bijective and isometric. Thus,
f−1 is continuous, f−1(S) where S is the unit ball in (Rn, ∥·∥∗, is the unit ball in (V, ∥·∥)
and is compact as its the continuous image of a compact set. It is now routine to pass
from compactness of the unit ball in (V, ∥ · ∥) to completeness of (V, ∥ · ∥). □

1.2.2. The Banach space of bounded functions. If V is a vector space over F and ∅ ̸= T
is a set, then F (T, V ), the set of functions f : T → V is a vector space over F under
pointwise operations; e.g., if f, g ∈ F (T, V ) then f + g : T → V, is the function defined
by (f + g)(t) = f(t) + g(t).

Definition 1.14. A subset R of a normed vector space X is bounded if there is a C
such that ∥x∥ ≤ C for all x ∈ R; that is, R ⊆ CX1.

A function f : T → X is bounded if f(T ) ⊆ X is bounded.

Let Fb(T,X ) denote the vector space (subspace of F (T,X )) of bounded functions
f : T → X .

Remark 1.15. The function ∥ · ∥∞ : Fb(T,X ) → [0,∞) defined by

∥f∥∞ = sup{|f(t)| : t ∈ T}

is a norm on Fb(T,X ) as you should verify. Let d∞ denote the resulting metric:
d∞(f, g) = ∥f − g∥∞.

Note that convergence of a sequence in the metric space (Fb(T,X ), d∞) is uniform
convergence; in particular, a sequence is Cauchy in Fb(T,X ) if and only if it is uniformly
Cauchy. (Exercise.)

Proposition 1.16. If X is a Banach space, then Fb(T,X ) is also Banach space.

Proof. We are to show Fb(T,X ) is complete, assuming X is complete. Accordingly,
suppose (fn) is a Cauchy sequence from Fb(T,X ) and X is complete. In particular,
given ϵ > 0 there is an N such that d∞(fn, fm) = sup{∥fn(t) − fm(t)∥ : t ∈ T} < ϵ. It
follows that, for each s ∈ T, the sequence (fn(s)) is a Cauchy in X and hence converges
to some x ∈ X . Define f : T → X by f(s) = x. It remains to see that f is bounded and
(fn) converges to f.

Since Cauchy sequences are bounded and (fn) is Cauchy in the metric space Fb(T,X ),
there is a C such that

sup{∥fn(t)∥ : t ∈ T} = d∞(fn, 0) ≤ C

for all n. It follows from Proposition 1.5 that (∥fn(t)∥)n converges to |f(t) and hence
∥f(t)∥ ≤ C for all t ∈ T. Thus f is bounded; that is f ∈ Fb(T,X ).

It only remains to show that (fn) converges to f in Fb(T,X ). To do so let ϵ > 0
be given. There is an N such that if m,n ≥ N, then ∥fn(t) − fm(t)∥ < ϵ for all t ∈ T.
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Given s ∈ T, there is an M ≥ N such that ∥fm(s) − f(s)∥ < ϵ for all m ≥ N. Since,
(fm(s) − fn(s))m converges (with m) to (f(s) − fn(s)) in X , another application of
Proposition 1.5 gives (∥fm(s)− fn(s)∥)m converges to ∥f(s)− fn(s)∥. Thus

∥f(s)− fn(s)∥ ≤ ϵ,

for all s ∈ T. Hence d∞(f, fn) = ∥f − fn∥ ≤ ϵ and the proof is complete. □

There are important Banach spaces of continuous functions. Before going further,
we remind the reader of the following result from advanced calculus.

Theorem 1.17. Suppose X, Y are metric spaces, (fn) is a sequence fn : X → Y and
x ∈ X. If each fn is continuous at x and if (fn) converges uniformly to f , then f is
continuous at x. Hence if each fn is continuous, then so is f.

Proof. Let x and ϵ > 0 be given. Choose N such that if n ≥ N and y ∈ X, then
dY (fn(y), f(y)) < ϵ. Since fN is continuous at x, there is a δ > 0 such that if dX(x, y) < δ,
then dY (fN(x), fN(y)) < ϵ. Thus, if dX(x, y) < δ, then

dY (f(x), f(y)) ≤ dY (f(x), fN(x)) + dY (fN(x), fN(y)) + dY (fN(y), f(y))

< 3ϵ,

proving the theorem. □

Given a normed vector space Y , let Cb(X,Y) denote the subspace of Fb(X,Y) con-
sisting of continuous functions. Since uniform convergence is the same as convergence in
the normed vector space (Fb(X,Y), d∞), by Theorem 1.17, Cb(X,Y) is a closed subspace
of Fb(X,Y). In particular, in the case Y is a Banach space, so is Cb(X,Y).

When X be a compact metric space, let C(X) = C(X,F) denote the set of con-
tinuous functions f : X → F. Thus C(X) is a subspace of Fb(X,F) and we endow
C(X) with the norm it inherits from Fb(X,F). Since F is complete, C(X) is a Banach
space. Of course here we could replace F by a Banach space X and obtain the analogous
conclusion for the space C(X,X ).

Now let X be a locally compact metric space. In this case, a function f : X → F
vanishes at infinity if for every ϵ > 0, there exists a compact set K ⊆ X such that
supx/∈K |f(x)| < ϵ. Let C0(X) denote the subspace of Fb(X,F) consisting of continuous
functions f : X → F that vanish at infinity. Then C0(X) is a normed vector space with
the norm it inherits from C(X) (equivalently Fb(X,F). It is routine to check that C0(X)
is complete.

1.2.3. L1 spaces over R. Let (X,M , µ) be a measure space and let L1(µ) denote the
(real) vector space of (real-valued) absolutely integrable functions on X from Theo-
rem ??. We saw that

∥f∥1 :=
∫
X

|f | dm
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defines a norm on L1(µ), provided we agree to identify f and g when f = g a.e. (Indeed
the chief motivation for making this identification is that it makes ∥ · ∥1 into a norm.

Proposition 1.18. The real vector space L1(µ) is a Banach space.

We will construct a complex vector space analog of L1(µ) a bit later.

Proof. It suffices to verify the hypotheses of Proposition 1.7. Accordingly suppose∑∞
n=1 fn is absolutely convergent (so that

∑∞
n=1 ∥fn∥1 < ∞). By Tonelli’s summation

theorem, Theorem ??,∫ ∞∑
n=1

|fn| dm =
∞∑
n=1

∫
|fn| dm =

∞∑
n=1

∥fn∥1 <∞.

Thus the function g :=
∑∞

n=1 |fn| belongs to L1 and is thus finite m-a.e. In particular

the sequence of partial sums sN =
∑N

n=1 fn is a sequence of measurable functions with
|sN | ≤ g that converges pointwise a.e. to a measurable function f . Hence by the DCT
and its corollary, f ∈ L1 and the partial sums (sN)N converge to f in L1. □

1.2.4. Complex L1(µ) spaces. In this subsection we describe the extension of L1(µ) to a
complex vector space of complex valued functions (equivalence classes of functions).

Again we work on a fixed measure space (X,M , µ). As a topological space, C and
R2, are the same. A function f : X → C = R2 is measurable if and only if it is M −B2

measurable. Measurability of f can also be described in terms of the real and imaginary
parts of f.

Proposition 1.19. Suppose (X,M ) is a measurable space and f : X → C. Writing
f : X → C as f = u+ iv, where u, v : X → R, the function f is measurable if and only
if both u and v are.

Moreover, if f is measurable, then so is |f | : X → [0,∞).

We begin with the following elementary lemma whose proof is left to the reader.

Lemma 1.20. Suppose (X,M ) is a measure space and Y and Z are topological spaces.
If f : X → Y is M −BY measurable and g : Y → Z is BY −BZ measurable, then g ◦ f
is M − BZ measurable. In particulr, the result holds if g is continuous.

Sketch of proof of Proposition 1.19. The Borel σ-algebra B2 is generated by open rect-
angles; that is, a set U ⊆ C is open if and only if it is a countable union of open rectangles
(with rational vertices even). For an open rectagle I = J ×K = (a, b) × (c, d) observe
that

f−1(J) = u−1(J) ∩ v−1(K).

Thus, if u and v are measurable, then f−1(J) ∈ M . Consequently, by Propition ??, f
is measurable. Hence if u, v are both measurable, then so is f.
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Now suppose f is measurable. In this case

M ∋ f−1((t,∞)× R) = {u > t}.
Since the sets {(t,∞) : t} generate B1, Proposition ?? implies u is measurable. By
symmetry v is measurable.

To prove the second statement, since f is measurable and g : C → [0,∞) defined
by g(z) = |z| is continuous, the function g ◦ f = |f | is measurable by Lemma 1.20. □

Definition 1.21. A measurable f : X → C is integrable (or absolutely integrable) if |f |
is integrable.

Remark 1.22. From the inequalities

|Ref |, |Imf | ≤ |f | ≤ |Ref |+ |Imf |
it follows that f : X → C is (absolutely) integrable if and only if Ref and Imf are.

Definition 1.23. If f is complex-valued and absolutely integrable (that is, f is mea-
surable and |f | is integrable), we define the integal of f by∫

f =

∫
Ref + i

∫
Imf.

We also write ∥f∥1 :=
∫
X
|f | dµ in the complex case. Finally, we write L1 = L1(µ) to

denote the set of absolutely integrable complex-valued functions on X.

Generally, we leave it to context to indicate if we are considering the real or complex
version of L1; but for the following theorem we temporarily adopt the notation L1

R and
L1
C to distinguish between the real and complex vector space versions of L1(µ).

Theorem 1.24 (L1 as a C normed vector space). The set L1
C of is a vector space over

C (with the usual addition and scalar multiplication of functions). Morever, if f, g ∈ L1
C

and c ∈ C, then

(a) the mapping Λ : L1 → C defined by Λ(f) =
∫
f is linear;

(b)
∣∣∫ f ∣∣ ≤ ∫ |f |.

(c) ∥cf∥1 = |c|∥f∥1.
(d) ∥f + g∥1 ≤ ∥f∥1 + ∥g∥1.

Sketch of proof. Write f = u + iv and g = x + iy. In particular, u, v, x, y are all L1
R.

Given c = a + ib, the functions au, bv, av, bu are all L1
R and so are au− bv and av + bu

since L1
R is a real vector space. Therefore, cf = (au−bv)+ i(av+bu) is in L1

C. A similar,
but easier, argument shows f + g is in L1

C. Hence L
1
C is a vector space over C. Moreover,

since the integral is real linear on L1
R,

Λ(cf) = Λ((au+ bv) + i(av + bu)) = Λ((au+ bv)) + iΛ((av + bu))

= aΛ(u) + bΛ(v) + i[aΛ(v) + bΛ(u)]

= (a+ ib)[Λ(u) + iΛ(v)] = cΛ(f).
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Likewise Λ(f + g) = Λ(f) + Λ(g). Thus Λ is C-linear on L1
C and item (a) is proved.

If
∫
f = 0, then f = 0 almost everywhere and the last three items hold. Otherwise,

write
∫
f = reit in polar coordinates and observe

e−it

∫
f ∈ R+.

Thus, from the definition and linearity of the integral

R+ ∋ e−it

∫
f =

∫
e−itf =

∫
real e−itf + i

∫
image e−itf.

Thus
∫
image e−itf = 0 and using results for L1

R,∣∣∣∣ ∫ f

∣∣∣∣ = ∣∣∣∣e−it

∫
f

∣∣∣∣ = ∫ e−itf =

∫
real e−itf ≤

∫
| real e−itf | ≤

∫
|f |,

proving item (b).

Next, ∫
|cf | =

∫
|c| |f | = |c|

∫
|f |.

Hence item (c) holds. Similarly,the triangle inequality, item (d), follows from |f + g| ≤
|f |+ |g| (pointwise). □

Remark 1.25. Proposition 1.24 says ∥ · ∥1 is a semi-norm on L1. As usual, we identify
functions that differ by a null vector; that is, f ∼ g if ∥f − g∥1 = 0; equivalently,
identifying functions that are equal a.e., we obtain a normed complex vector space of L1

functions (which of course are not actually functions).

1.2.5. Sequence spaces. Define

c0 := {f : N → F| lim
m→∞

|f(m)| = 0}

ℓ∞ := {f : N → F| sup
m∈N

|f(m)| <∞}

ℓ1 := {f : N → F|
∞∑

m=0

|f(m)| <∞}.

Note that ℓ∞ = Fb(N,F) and is a Banach space with the norm

∥f∥∞ = sup
m

|f(m)|.

Further, c0 ⊆ ℓ∞ is the subspace C0(N) of ℓ∞ again with the norm ∥ · ∥∞. In particular,
c0 is a Banach space.

Observe that ℓ1 is the space (N, P (N), c), where c is counting measure on N and
∥ · ∥1 is the corresponding ℓ1 norm. Since only set of measure zero in this measure space
is the emptyset, two functions in ℓ1 = L1(c) are equivalent if and only if they are equal.
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Along with these spaces it is also helpful to consider the vector space

c00 := {f : N → F|f(n) = 0 for all but finitely many n}

Notice that c00 is a vector subspace of each of c0, ℓ
1 and ℓ∞. Thus it can be equipped with

either the ∥ · ∥∞ or ∥ · ∥1 norms. It is not complete in either of these norms, however.
What is true is that c00 is dense in c0 and ℓ1 (but not in ℓ∞). (See Problem 1.11).

1.2.6. Lp spaces. Again let (X,M ,m) be a measure space. For 1 ≤ p < ∞ let Lp(m)
denote the set of measurable functions f for which

∥f∥p :=
(∫

X

|f |p dm
)1/p

<∞

(again we identify f and g when f = g a.e.). It turns out that this quantity is a norm on
Lp(m), and Lp(m) is complete, though we will not prove this yet (it is not immediately
obvious that the triangle inequality holds when p > 1).

Choosing (X,M , µ) = (N, P (N), c), counting measure on N, obtains the sequence
spaces ℓp; that is, the F-vector space of functions f : N → F such that

∥f∥p :=

(
∞∑
n=1

|f(n)|p
)1/p

<∞

and this quantity is a norm making ℓp into a Banach space.

When p = ∞, we define L∞(µ) to be the set of all functions f : X → F with the
following property: there exists M > 0 such that

(1) |f(x)| ≤M for µ− a.e. x ∈ X;

as for the other Lp spaces we identify f and g when there are equal a.e. When f ∈ L∞,
let ∥f∥∞ be the smallest M for which (1) holds. Then ∥ · ∥∞ is a norm making L∞(µ)
into a Banach space.

1.2.7. Subspaces and products. If (X , ∥ · ∥) is a normed vector space and Y ⊆ X is a
vector subspace, then the restriction of ∥ · ∥ to Y is clearly a norm on Y . If X is a
Banach space, then (Y , ∥ · ∥) is a Banach space if and only if Y is closed in the norm
topology of X . (This is just a standard fact about metric spaces—a subspace of a
complete metric space is complete in the restricted metric if and only if it is closed.)

Definition 1.26. A subspace Y of a normed vector space X is a closed vector subspace
of X , denoted Y ≤ X . The terminology linear manifold is used synonymously with
vector subspace.

If X ,Y are vector spaces then the algebraic direct sum is the vector space of ordered
pairs

X ⊕ Y := {(x, y) : x ∈ X , y ∈ Y}
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with entrywise operations. If X , Y are equipped with norms ∥ · ∥X , ∥ · ∥Y , then each of
the quantities

|∥(x, y)∥∞ := max(∥x∥X , ∥y∥Y),
∥(x, y)∥1 := ∥x∥X + ∥y∥Y

∥(x, y)∥2 :=
√

∥x∥2X + ∥y∥2Y

(2)

is a norm on X ⊕ Y . These three norms are equivalent; indeed it follows from the
definitions that

∥(x, y)∥∞ ≤ ∥(x, y)∥2 ≤ ∥(x, y)∥1 ≤ 2∥(x, y)∥∞.

If X and Y are both complete, then X ⊕ Y is complete in each of these norms. The
resulting Banach spaces are denoted X ⊕∞ Y , X ⊕1 Y and X ⊕2 Y .

Since the three norms in the previous paragraph are equivalent, the resulting spaces
are indistinguishable topologically. There is a more abstract description of this topology.

Definition 1.27. Given topological spaces (X, τ) and (Y, σ), the product topology on the
Cartesian product X ×Y is the smallest topoology that makes the coordinate projections
πX : X×Y → X and πY : X×Y → Y defined by πX (x, y) = x, πY(x, y) = y continuous.
That is, the topology generated by the sets U × Y and X × V for open sets U ⊆ X and
V ⊆ Y.

Proposition 1.28. Suppose (X, τ) and (Y, σ) are topological spaces. The collection of
sets

B = {U × V : U ⊆ X, V ⊆ Y are open}

is a base for the product topology.

For normed vector spaces X and Y , the product topology on X ×Y is metrizable and
is the norm topology on X × Y with any of the norms of equation (2). Consequentely,
a sequence zn = (xn, yn) from X × Y converges (in the product topology) if and only if
both (xn) and (yn) converge; and zn converges to z = (x, y) if and only if (xn) converges
to x and (yn) converges to y. In particular, if X and Y are Banach spaces, then so is
X × Y .

It is evident how to extend the discussion here to finite products. The product topol-
ogy is the default topology on (finite) products of Banach spaces (and more generally
normed vector spaces).

1.2.8. Qoutient spaces. If X is a normed vector space and M is a proper subspace, then
one can form the algebraic quotient X/M, defined as the collection of distinct cosets
{x + M : x ∈ X}. From linear algebra, X/M is a vector space under the standard
operations. Let π : X → X/M denote the quotient map.
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Proposition 1.29. If M is a closed subspace of a normed vector space X , then the
quantity

∥π(x)∥ = ∥x+M∥ := inf
y∈M

∥x− y∥

is a norm on X/M. Moreover, if X is a Banach space, then so is X/M.

The norm in Proposition 1.29 is called the quotient norm. Geometrically, ∥x+M∥
is the distance in X from x to the closed set M. The assumption that M is closed in
needed to ensure that the quotient norm is indeed a norm. For instance M = C([0, 1])
is dense subspace of L1([0, 1]) (with Lebesgue measure) and hence for any

inf
g∈M

∥f − g∥ = 0

for all f ∈ L1([0, 1]).

Proof. We will verify a couple of the axioms of a norm for the quotient norm, leaving the
remainder of the proof as an exercise. First suppose x ∈ X and ∥π(x)∥ = 0. It follows
that there is a sequence (mn) form M such that (∥x−mn∥) converges to 0; that is, (mn)
converges to x. Since M is closed, x ∈ M and hence π(x) = 0.

Now let x, y ∈ X and ϵ > 0 be given. There exists m,n ∈ M such that

∥x−m∥ ≤ ∥π(x)∥+ ϵ, ∥y − n∥ ≤ ∥π(y)∥+ ϵ.

Hence

∥π(x)+π(y)∥ = ∥π(x+y)∥ ≤ ∥x+y−(m+n)∥ ≤ ∥x−m∥+∥y−n∥ ≤ ∥π(x)∥+∥π(y)|∥+2ϵ,

from which it follows that the triangle inequality holds and we have proved the quotient
norm is indeed a norm.

To prove X/M is complete (with the quotient norm) under the assumption that
X is a Banach space (complete), suppose (yn) is a sequence from X/M and

∑
yn is

absolutely convergent. For each n there exists xn ∈ X such that ∥xn∥ ≤ ∥yn∥+ 1
n2 and

π(xn) = yn. It follows that
∑
xn is absolutely convergent. Since X is a Banach space

the sequence of partial sums sN =
∑N

n=1 xn converges to some x ∈ X . In partiulcar,

∥sN − x∥ ≥ ∥π(sN − x)∥ = ∥π(sN)− π(x)∥ = ∥
N∑

n=1

yn − π(x)∥.

Since (∥sN − x∥) converges to 0, it follows that
∑
yn converges to π(x). Hence X/M is

complete by Proposition 1.7. □

More examples are given in the exercises and further examples will appear after the
development of some theory.
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1.3. Linear transformations between normed spaces.

Definition 1.30. Let X ,Y be normed vector spaces. A linear transformation T : X → Y
is bounded if there exists a constant C ≥ 0 such that ∥Tx∥Y ≤ C∥x∥X for all x ∈ X .

Remark 1.31. Note that in Definition 1.30 it suffices to require that ∥Tx∥Y ≤ C∥x∥X
just for all x ̸= 0, or for all x with ∥x∥X = 1 (why?). □

The importance of boundedness and the following simple proposition is hard to
overstate. Recall, a mapping f : X → Y between metric spaces is Lipschitz continuous
if there is a constant C > 0 such that d(f(x), f(y)) ≤ Cd(x, y) for all x, y ∈ X. A simple
exercise shows Lipschitz continuity implies (uniform) continuity.

Proposition 1.32. If T : X → Y is a linear transformation between normed spaces,
then the following are equivalent:

(i) T is bounded.
(ii) T is Lipschitz continuous.
(iii) T is uniformly continuous.
(iv) T is continuous.
(v) T is continuous at 0.

Moreover, in this case,

∥T∥ := sup{∥Tx∥ : ∥x∥ = 1}

= sup{∥Tx∥
∥x∥

: x ̸= 0}

= inf{C : ∥Tx∥ ≤ C∥x∥ for all x ∈ X}
and ∥T∥ is the smallest number (the infimum is attained 1) such that

(3) ∥Tx∥ ≤ ∥T∥ ∥x∥
for all x ∈ X .

Proof. Suppose T is bounded; that is, there exists a C ≥ 0 such that ∥Tx∥ ≤ C∥x∥ for
all x ∈ X . Thus, if x, y ∈ X , then, ∥Tx− Ty∥ = ∥T (x− y)∥ ≤ C∥x− y∥ by linearity of
T . Hence (i) implies (ii). The implications (ii) implies (iii) implies (iv) implies (v) are
evident.

The proof of (v) implies (i) exploits the homogeneity of the norm and the linearity
of T and not nearly the full strength of the continuity assumption. By hypothesis, with
ϵ = 1 there exists δ > 0 such that if ∥x∥ = ∥x− 0∥ < 2δ, then ∥Tx∥ = ∥Tx− T0)∥ < 1.
Given a nonzero vector x ∈ X , the vector δx/∥x∥ has norm less than δ, so

1 >

∥∥∥∥T ( δx

∥x∥

)∥∥∥∥ = δ
∥Tx∥
∥x∥

.

1The suprema need not be attained.
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Rearranging this we find ∥Tx∥ ≤ (1/δ)∥x∥ for all x ̸= 0.

Assuming T is bounded, it is immediate that sup{∥Tx∥ : ∥x∥ = 1} exists (and is a
real number). From homogeneity of the norm, it is also clear that

sup{∥Tx∥ : ∥x∥ = 1} = sup{∥Tx∥
∥x∥

: x ̸= 0}.

Likewise assuming T is bounded the set S = {C : ∥Tx∥ ≤ C∥x∥ for all x ∈ X} ⊆ [0,∞)
is not empty and bounded below (by 0) and hence the infimum exists. From the definition
of ∥T∥ we see that ∥T∥ ∈ S. Hence the infimum is at most ∥T∥. On the other hand, if

C ′ < inf S, then there is an x ∈ X such that ∥Tx∥ > C ′∥x∥ so that ∥Tx∥
∥x∥ > C ′. Thus

C ′ < ∥T∥. □

The set of all bounded linear operators from X to Y is denoted B(X ,Y). It is a
vector space under the operations of pointwise addition and scalar multiplication. The
quantity ∥T∥ is easily seen to be a norm. It is called the operator norm of T .

Problem 1.1. Prove the ∥ · ∥1 and ∥ · ∥∞ norms on c00 are not equivalent. Conclude
from your proof that the identity map on c00 is bounded from the ∥ · ∥1 norm to the
∥ · ∥∞ norm, but not the other way around.

Problem 1.2. Consider c0 and c00 equipped with the ∥ · ∥∞ norm. Prove there is no
bounded operator T : c0 → c00 such that T |c00 is the identity map. (Thus the conclusion
of Proposition 1.34 can fail if Y is not complete.)

Proposition 1.33. For normed vector spaces X and Y, the operator norm makes
B(X ,Y) into a normed vector space that is complete if Y is complete.

Proof. That B(X ,Y) is a normed vector space follows readily from the definitions and
is left as an exercise.

Suppose now Y is complete, and let Tn be a cauchy sequence in B(X ,Y). Let
E = X1 denote the closed unit ball in X . For x ∈ E,

(4) ∥Tnx− Tmx∥ = ∥(Tn − Tm)x∥ ≤ ∥Tn − Tm∥∥x∥ ≤ ∥Tn − Tm∥.
Hence the sequence (Tn|E) is a cauchy sequence (so uniformly cauchy) from Cb(E,Y),
the space of bounded continuous functions from B to Y . Since Y is complete, there is
an F ∈ Cb(E,Y) such that (Tn|E) converges to F in Cb(E,Y) and moreover ∥F (x)∥ ≤
C := sup{∥Tn∥ : n} < ∞. See Subsection 1.2.2. An exercise shows, given x, y ∈ B and
c ∈ F if x + y ∈ B and c x ∈ B, then F (x + y) = F (x) + F (y) and F (cx) = cF (x).
Hence F extends, by homogeneity, to a linear map T : X → Y such that ∥T∥ ≤ C and,
by equation (4), (Tn) converges to T in B(X, Y ). □

If T ∈ B(X ,Y) and S ∈ B(Y ,Z), then two applications of the inequality (3) give,
for x ∈ X ,

∥STx∥ ≤ ∥S∥∥Tx∥ ≤ ∥S∥∥T∥∥x∥
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and it follows that ST ∈ B(X ,Z) and ∥ST∥ ≤ ∥S∥∥T∥. In the special case that Y = X
is complete, B(X ) := B(X ,X ) is an example of a Banach algebra.

The following proposition is very useful in constructing bounded operators—at least
when the codomain is complete. Namely, it suffices to define the operator (and show
that it is bounded) on a dense subspace.

Proposition 1.34 (Extending bounded operators). Let X , Y be normed vector spaces
with Y complete, and E ⊆ X a dense linear subspace. If T : E → Y is a bounded linear

operator, then there exists a unique bounded linear operator T̃ : X → Y extending T (so

T̃ |E = T ). Further ∥T̃∥ = ∥T∥.

Sketch of proof. Recall, if X, Y are metric spaces, Y is complete, D ⊆ X is dense and
f : D → Y is uniformly continuous, then f has a unique continuous extension f̃ :
X → Y . Moreover, this extension can be defined as follows. Given x ∈ X, choose a
sequence (xn) from D converging to x and let f̃(x) = lim f(xn) (that the sequence f(xn)
is Cauchy follows from uniform continuity; that it converges from the assumption that
Y is complete and finally it is an exercise to show f̃(x) is well defined independent of

the choice of (xn)). Thus, it only remains to verify that the extension T̃ of T is in fact

linear and ∥T∥ = ∥T̃∥. Both are routine exercises. □

Example 1.35. Equip c0 and c00 with the sup norm, ∥ · ∥∞ and consider the identity
map ι : c00 → c00. If T is an extension of ι to the completion c0 of c00 (in the sup norm),
then, letting sn ∈ c00 denote the sequence sn(m) = 1

m
for m ≤ n and sn(m) = 0 for

m > n, the sequence (sn) is converge in c0 to the sequence s with s(m) = 1
m

for all m.
Hence (T (sn) = sn) converges to some t ∈ c00. But now there is a K such that t(k) = 0
for all k ≥ K so that ∥sn − t∥ ≥ 1

K
for all n ≥ K, a contradiction. This example shows

completeness of Y is essential in Proposition 1.34. □

Definition 1.36. A bounded linear transformation T ∈ B(X ,Y) is said to be invertible
if it is bijective (being bijective, automatically T−1 exists and is a linear transformation)
and T−1 is bounded from Y to X . Two normed spaces X ,Y are said to be (boundedly)
isomorphic if there exists an invertible linear transformation T : X → Y .

Example 1.37. As an example, given equivalent norms ∥ · ∥1 and ∥ · ∥2 on a vector
space X , the identity mapping ι : (X , ∥ · ∥1) → (X , ∥ · ∥2) is (boundedly) invertible and
witnesses the fact that these two normed vector spaces are boundedly isomorphic.

Definition 1.38. An operator T : X → Y such that ∥Tx∥ = ∥x∥ for all x ∈ X is an
isometry . Note that an isometry is automatically injective and if it is also surjective then
it is automatically invertible and T−1 is also an isometry. The normed vector spaces are
isometrically isomorphic if there is an invertible isometry T : X → Y .

Example 1.39. If X is a finite dimensional vector space and T : X → X is an isometry,
then T is onto. However, when X is not finite dimensional, an isometry need not be
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surjective. As examples, let ℓp = ℓp(N) denote the sequence spaces from Subsection 1.2.5.
The linear map S : ℓp(N) → ℓp(N) defined by Sf(n) = 0 if n = 0 and f(n− 1) if n > 0
(for f = (f(n))n ∈ ℓp) is the shift operator . It is straightforward to verify that S is an
isometry but not onto.

Example 1.40. Following up on the previous example, a linear map T : X → X can
be one-one and have dense range without being (boundedly) invertible. Let en ∈ ℓ2(N)
denote the function en(m) = 1 if n = m and 0 otherwise for non-negative integers

0 ≤ m,n. The set of c00 = {
∑N

n=0 anen : N ∈ N, cn ∈ F} is dense in ℓ2(N) and the
mapping D : c00 → ℓ2(N) defined by

D(
N∑

n=0

anen) =
N∑

n=0

an
n+ 1

en

is easily seen to be bounded with ∥D∥ = 1. It is also injective. Hence D extends to an
injective bounded operator, still denoted D, from ℓ2 → ℓ2, with ∥D∥ = 1. The range of
D contains {en : n ∈ N} and is thus dense in ℓ2(N).

Since
∑∞

n=0 |
1

n+1
|2 <∞, the vector f =

∑∞
n=1

1
n+1

en is in ℓ2(N). On the other hand,

if g ∈ ℓ2(N) and Dg = f, then

1

n+ 1
g(n) = (Dg)(n) = f(n) =

1

n+ 1

and thus g(n) = 1 for all n; however, since
∑

|g(n)|2 = ∞, we obtain a contradiction.
Hence f is not in the range of D.

1.4. Examples.

(a) If X is a finite-dimensional normed space and Y is any normed space, then every
linear transformation T : X → Y is bounded. See Problem 1.16.

(b) Let X denote c00 equipped with the ∥ · ∥1 norm, and Y denote c00 equipped with the
∥ · ∥∞ norm. Then the identity map idX ,Y : X → Y is bounded (in fact its norm is
equal to 1), but its inverse, the identity map ιY,X : Y → X , is unbounded. To verify
this claim, For positive integers n, let fn denote the element of c00 defined by

fn(m) =

{
1 if m ≤ n

0 if m > n.

Now ∥ιY,X (fn)∥1 = n, but ∥fn∥∞ = 1.

(c) Consider c00 with the ∥ ·∥∞ norm. Let a : N → F be any function and define a linear
transformation Ta : c00 → c00 by

(5) Taf(n) = a(n)f(n).

The mapping Ta is bounded if and only if M = supn∈N |a(n)| < ∞, in which case
∥Ta∥ = M . In this case, Ta extends uniquely to a bounded operator from c0 to c0
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by Proposition 1.34, and one may check that the formula (5) defines the extension.
All of these claims remain true if we use the ∥ · ∥1 norm instead of the ∥ · ∥∞ norm.
In this case, we get a bounded operator from ℓ1 to itself.

(d) Define S : ℓ1 → ℓ1 as follows: given the sequence (f(n))n from ℓ1 let Sf(1) = 0 and
Sf(n) = f(n − 1) for n > 1. (Viewing f as a sequence, S shifts the sequence one
place to the right and fills in a 0 in the first position). This S is an isometry, but is
not surjective. In contrast, if X is finite-dimensional, then the rank-nullity theorem
from linear algebra guarantees that every injective linear map T : X → X is also
surjective.

(e) Let C∞([0, 1]) denote the vector space of functions on [0, 1] with continuous deriva-
tives of all orders. The differentiation map D : C∞([0, 1]) → C∞([0, 1]) defined by
Df = df

dx
is a linear transformation. Since, for t ∈ R, we have Detx = tetx, it follows

that there is no norm on C∞([0, 1]) such that d
dx

is bounded.

1.5. Problems.

Problem 1.3. Prove Proposition 1.5.

Problem 1.4. Prove equivalent norms define the same topology and the same Cauchy
sequences.

Problem 1.5. (a) Prove all norms on a finite dimensional vector space X are equivalent.
Suggestion: Fix a basis e1, . . . en for X and define ∥

∑
akek∥1 :=

∑
|ak|. It is routine

to check that ∥ · ∥1 is a norm on X . Now complete the following outline.
(i) Let ∥ · ∥ be the given norm on X . Show there is an M such that ∥x∥ ≤M∥x∥1.

Conclude that the mapping ι : (X , ∥ · ∥1) → (X , ∥ · ∥) defined by ι(x) = x is
continuous;

(ii) Show that the unit sphere S = {x ∈ X : ∥x∥1 = 1} in (X , ∥ · ∥1) is compact in
the ∥ · ∥1 topology;

(iii) Show that the mapping f : S → (X , ∥ · ∥) given by f(x) = ∥x∥ is continuous
and hence attains its infimum. Show this infimum is not 0 and finish the proof.

(b) Combine the result of part (a) with the result of Problem 1.4 to conclude that every
finite-dimensional normed vector space is complete.

(c) Let X be a normed vector space and M ⊆ X a finite-dimensional subspace. Prove
M is closed in X .

Problem 1.6. Finish the proofs from the examples subsections.

Problem 1.7. A function f : [0, 1] → F is called Lipschitz continuous if there exists a
constant C such that

|f(x)− f(y)| ≤ C|x− y|
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for all x, y ∈ [0, 1]. Define ∥f∥Lip to be the best possible constant in this inequality.
That is,

∥f∥Lip := sup
x ̸=y

|f(x)− f(y)|
|x− y|

Let Lip[0, 1] denote the set of all Lipschitz continuous functions on [0, 1]. Prove ∥f∥ :=
|f(0)|+ ∥f∥Lip is a norm on Lip[0, 1], and that Lip[0, 1] is complete in this norm.

Problem 1.8. Let C1([0, 1]) denote the space of all functions f : [0, 1] → R such that
f is differentiable in (0, 1) and f ′ extends continuously to [0, 1]. Prove

∥f∥ := ∥f∥∞ + ∥f ′∥∞
is a norm on C1([0, 1]) and that C1 is complete in this norm. Do the same for the norm
∥f∥ := |f(0)|+ ∥f ′∥∞. (Is ∥f ′∥∞ a norm on C1?)

Problem 1.9. Let (X,M ) be a measurable space. Let M(X) denote the (real) vector
space of all signed measures on (X,M ). Prove the total variation norm ∥µ∥ := |µ|(X)
is a norm on M(X), and M(X) is complete in this norm.

Problem 1.10. Prove, if X ,Y are normed spaces, then the operator norm is a norm on
B(X ,Y).

Problem 1.11. Prove c00 is dense in c0 and ℓ
1. (That is, given f ∈ c0 there is a sequence

fn in c00 such that ∥fn − f∥∞ → 0, and the analogous statement for ℓ1.) Using these
facts, or otherwise, prove that c00 is not dense in ℓ∞. (In fact there exists f ∈ ℓ∞ with
∥f∥∞ = 1 such that ∥f − g∥∞ ≥ 1 for all g ∈ c00.)

Problem 1.12. Prove c00 is not complete in the ∥ · ∥1 or ∥ · ∥∞ norms. (After we have
studied the Baire Category theorem, you will be asked to prove that there is no norm
on c00 making it complete.)

Problem 1.13. Consider c0 and c00 equipped with the ∥ · ∥∞ norm. Prove there is no
bounded operator T : c0 → c00 such that T |c00 is the identity map. (Thus the conclusion
of Proposition 1.34 can fail if Y is not complete.)

Problem 1.14. Prove the ∥ · ∥1 and ∥ · ∥∞ norms on c00 are not equivalent. Conclude
from your proof that the identity map on c00 is bounded from the ∥ · ∥1 norm to the
∥ · ∥∞ norm, but not the other way around.

Problem 1.15. a) Prove f ∈ C0(Rn) if and only if f is continuous and lim|x|→∞ |f(x)| =
0. b) Let Cc(Rn) denote the set of continuous, compactly supported functions on Rn.
Prove Cc(Rn) is dense in C0(Rn) (where C0(Rn) is equipped with sup norm).

Problem 1.16. Prove, if X ,Y are normed spaces and X is finite dimensional, then
every linear transformation T : X → Y is bounded. Suggestion: Let d denote the
dimension of X and let {e1, . . . , ed} denote a basis. The function ∥ · ∥1 on X defined by
∥
∑
xjej∥1 =

∑
|xj| is a norm. Apply Problem 1.5.
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Problem 1.17. Prove the claims in Example 1.4(c).

Problem 1.18. Let g : R → F be a (Lebesgue) measurable function. The map Mg :
f → gf is a linear transformation on the space of measurable functions. Prove, if
g /∈ L∞(R), then there is an f ∈ L1(R) such that gf /∈ L1(R). Conversely, show if
g ∈ L∞(R), then Mg is bounded from L1(R) to itself and ∥Mg∥ = ∥g∥∞.

Problem 1.19. Prove the claims about direct sums.

Problem 1.20. Let X be a normed vector space and M a proper closed subspace.
Prove for every ϵ > 0, there exists x ∈ X such that ∥x∥ = 1 and infy∈M ∥x− y∥ > 1− ϵ.
(Hint: take any u ∈ X \M and let a = infy∈M ∥u− y∥. Choose δ > 0 small enough so
that a

a+δ
> 1− ϵ, and then choose v ∈ M so that ∥u−v∥ < a+δ. Finally let x = u−v

∥u−v∥ .)

Note that the distance to a (closed) subspace need not be attained. Here is an
example. Consider the Banach space C([0, 1]) (with the sup norm of course and either
real or complex valued functions) and the closed subspace

T = {f ∈ C([0, 1]) : f(0) = 0 =

∫ 1

0

f dt}.

Using machinery in the next section it will be evident that T is a closed subspace of
C([0, 1]). For now, it can be easily verified directly. Let g denote the function g(t) = t.
Verify that, for f ∈ T , that

1

2
=

∫
g dt =

∫
(g − f) dt ≤ ∥g − f∥∞.

In particular, the distance from g to T is at least 1
2
.

Note that the function h = x− 1
2
, while not in T , satisfies ∥g − h∥∞ = 1

2
.

On the other hand, for any ϵ > 0 there is an f ∈ T so that ∥g − f∥∞ ≤ 1
2
+ ϵ

(simply modify h appropriately). Thus, the distance from g to T is 1
2
. Now verify, using

the inequality above, that h is the only element of C([0, 1]) such that
∫
h dt = 0 and

∥g − h∥∞ = 1
2
.

Problem 1.21. Prove, if X is an infinite-dimensional normed space, then the unit ball
ball(X ) := {x ∈ X : ∥x∥ ≤ 1} is not compact in the norm topology. (Hint: use the
result of Problem 1.20 to construct inductively a sequence of vectors xn ∈ X such that
∥xn∥ = 1 for all n and ∥xn − xm∥ ≥ 1

2
for all m < n.)

Problem 1.22. (The quotient norm) Let X be a normed space and M a proper closed
subspace.

a) Prove the quotient norm is a norm.
b) Show that the quotient map x→ x+M has norm 1. (Use Problem 1.20.)
c) Prove, if X is complete, so is X/M.
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Problem 1.23. A normed vector space X is called separable if it is separable as a metric
space (that is, there is a countable subset of X which is dense in the norm topology).
Prove c0 and ℓ1 are separable, but ℓ∞ is not. (Hint: for ℓ∞, show that there is an
uncountable collection of elements {fα} such that ∥fα − fβ∥ = 1 for α ̸= β.)

END FALL TERM

2. Linear functionals and the Hahn-Banach theorem

If there is a fundamental theorem of functional analysis, it is the Hahn-Banach
theorem. The theorem is somewhat abstract-looking at first, but its importance will be
clear after studying some of its corollaries.

Definition 2.1. Let X be a normed vector space over the field F. A linear functional
on X is a linear map L : X → F. The dual space of X , denoted X ∗ is the space B(X ,F)
of bounded linear functionals on X .

Remark 2.2. Since F = R or C is complete, the vector space of bounded linear func-
tionals is itself a Banach space (complete normed vector space) and is known as the .
It is not yet obvious that X ∗ need be non-trivial (that is, that there are any bounded
linear functionals on X besides 0). One corollary of the Hahn-Banach theorem is there
exist enough bounded linear functionals on X to separate points.

2.1. Examples. This subsection contains some examples of bounded linear functionals
and dual spaces.

Example 2.3. For each of the sequence spaces c0, ℓ
1, ℓ∞, for each n the map f → f(n) is

a bounded linear functional. That is, λn : X → F defined by λn(f) = f(n) for f : N → F
in X , where X is any one of c0, ℓ

1, ℓ∞, is continuous since in each case it is immediate
that

|λn(f)| = |f(n)| ≤ ∥f∥X .

Example 2.4. Given g ∈ ℓ1, if f ∈ c0, then

(6)
∞∑
n=0

|f(n)g(n)| ≤ ∥f∥∞
∞∑
n=0

|g(n)| = ∥g∥1∥f∥∞.

Thus
∑∞

n=0 f(n)g(n) converges and we obtain a functional Lg : c0 → F defined by

(7) Lg(f) :=
∞∑
n=0

f(n)g(n).

The inequality of equation (6) says Lg is bounded (continuous) and ∥Lg∥ ≤ ∥g∥1. More-
over, it is immediate that Φ : ℓ1 → c∗0 defined by Φ(g) = Lg is bounded and linear and
∥Φ∥ ≤ 1. In fact, Φ is onto so that every bounded linear functional on c0 is of the form
Lg for some g ∈ ℓ1.
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Proposition 2.5. The map Φ : ℓ1 → c∗0 defined by Φ(g) = Lg is an isometric isomor-
phism from ℓ1 onto the dual space c∗0.

Proof. We have already seen that each g ∈ ℓ1 gives rise to a bounded linear functional
Lg ∈ c∗0 via

Lg(f) :=
∞∑
n=0

g(n)f(n),

that ∥Lg∥ ≤ ∥g∥1 and the the mapping Φ is bounded and linear. We will prove simul-
taneously that this map is onto and that ∥Lg∥ ≥ ∥g∥1.

Let L ∈ c∗0. We will first show that there is unique g ∈ ℓ1 so that L = Lg. Let
en ∈ c0 be the indicator function of n, that is

en(m) = δnm.

Define a function g : N → F by

g(n) = L(en).

We claim that g ∈ ℓ1 and L = Lg. To see this, fix an integer N and define h = hN :
N → F by

h(n) =

{
g(n)/|g(n)| if n ≤ N and g(n) ̸= 0

0 otherwise.

Thus h =
∑N

n=0 h(n)en. Further, by h ∈ c00 ⊆ c0 and ∥h∥∞ ≤ 1. Now

N∑
n=0

|g(n)| =
N∑

n=0

h(n)g(n) = L(h) = |L(h)| ≤ ∥L∥∥h∥ ≤ ∥L∥.

It follows that g ∈ ℓ1 and ∥g∥1 ≤ ∥L∥. By construction L = Lg when restricted to c00, so
by the uniqueness of extensions of bounded operators, Proposition 1.34, L = Lg. Thus
the map g → Lg is onto and

∥g∥1 ≤ ∥L∥ = ∥Lg∥ ≤ ∥g∥1. □

Example 2.6. Given g ∈ ℓ∞, if f ∈ ℓ1, then equation (6) shows |Lg(f)| ≤ ∥g∥∞ ∥f∥1,
where Lg is defined as in equation (7). Thus ∥Lg∥ ≤ ∥g∥∞ and we obtain a bounded
linear map Ψ : ℓ∞ → (ℓ1)∗

Proposition 2.7. The map Ψ is an isometric isomorphism from (ℓ1)∗ onto ℓ∞.

Proof. The proof follows the same lines as the proof of the previous proposition; the
details are left as an exercise. □

Remark 2.8. The same mapping g → Lg also shows that every g ∈ ℓ1 gives a bounded
linear functional on ℓ∞, but it turns out these do not exhaust (ℓ∞)∗ (see Problem 2.12).
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Regarding ℓ1 and ℓ∞ as L1 and L∞ for counting measure on N, it is not surprising
that, given a measure space (X,M , µ), a function g ∈ L∞(µ) (see Subsection 1.2.6 for
the definition of L∞(µ)) defines a linear functional Lg : L

1(µ) → F by

Lg(f) :=

∫
X

fg dm

for f ∈ L1(µ) is a bounded linear functional of norm at most M . We will prove in
Section 4 that the norm of Lg is in fact ∥g∥∞, and every bounded linear functional on
L1(m) is of this type (at least when m is σ-finite). □

Example 2.9. A regular Borel measure µ on a locally compact set X such that µ(K) <
∞ for compact subsets of X determines a linear functional λ : Cc(X) → F by

λ(f) = λµ(f) =

∫
X

f dµ.

An f ∈ Cc(X) is a positive function (really non-negative), written f ≥ 0, if f(x) ≥ 0
for all x ∈ X. The linear functional λµ is a positive linear functional in the sense that if
f ∈ Cc(X) is positive, then λµ(f) ≥ 0.

As a second example, let X = [0, 1] and note that the mapping I : C([0, 1]) → C
defined by

I(f) =

∫ 1

0

f dx,

where the integral is in the Riemann sense, is a positive linear functional on C([0, 1]).

END Monday 2025-01-13

Theorem 2.10 (Riesz-Markov Representation Theorem: positive version). Let X =
(X, τ) be a locally compact Hausdorff space. If λ : Cc(X) → C is a positive linear
functional, then there exists a unique Borel measure µ on the Borel σ-algebra BX , such
that

λ(f) =

∫
f dµ

for f ∈ Cc(X). Moreover, µ is regular in the sense that

(i) if K ⊆ X is compact, then µ(K) <∞;
(ii) if E ∈ BX , then µ(E) = inf{µ(U) : E ⊆ U, U open}; and
(iii) if E ∈ BX and µ(E) <∞, then µ(E) = sup{µ(K) : K ⊆ E, K compact}.

Remark 2.11. In general elements of Cc(X)∗ correspond to signed measures that will
appear later in these notes. □

2.2. Continuous linear functionals. For linear functionals, we can add to the list of
equivalent conditions of Proposition 1.32. In particular, the proof of the equivalence of
items (a) and (c) in Proposition 2.12 requires a map into the scalar field.
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Proposition 2.12. If X is a normed vector space and if λ : X → F is a non-zero (not
identically zero) linear functional , then the following are equivalent.

(a) λ is continuous;
(b) λ is bounded;
(c) kerλ is closed;
(d) kerλ ̸= X .

Proof. Items (a) and (b) are equivalent by Proposition 1.32 and it is evident that item (a)
implies item (c).

Suppose item (b) does not hold. Thus, there exists a sequence (fn) from X such
that ∥fn∥ ≤ 1, but |λ(fn)| ≥ n. Choose e ∈ X with λ(e) = 1 and let

hk = e − fn
λ(fn)

and note that (hk) converges to e but λ(hk) = 0 for all k. Thus (hk) is a sequence from
kerλ that converges to a point not in kerλ. Thus item (c) implies item (b).

Since kerλ ̸= V (since λ is not the zero map), item (c) implies item (d). Now
suppose item (c) does not hold. Thus there exists an f ̸∈ kerλ and a sequence (fn)
from kerλ that converges to f. Without loss of generality, λ(f) = 1. Given g ∈ X , the
sequence

gn = (g − λ(g)f) + λ(g) fn

converges to g and λ(gn) = 0. Thus g ∈ kerλ and we conclude X = kerλ. □

Remark 2.13. Note that Proposition 2.12 remains true with λ−1({a}) in place of kerλ,
for any choice of a ∈ F. For instance, in the proof that item (c) implies item (b), simply
require λ(e) = a + 1 instead of λ(e) = a/ In the proof that item (d) implies item (c),
suppose the sequence (fn) converges to f and λ(fn) = a, but λ(fn) = b ̸= a. In this

case, given g ∈ X , let gn = (g − cf) + cfn < where c = a−λ(g)
a−b

. The details are left as an
exercise.

As a corollary, Proposition 2.12 extends to linear maps from a normed space X into
a finite dimensional normed space as an easy argument shows.

If X is infinite dimensional, the result is false. Just choose a basis B for X and
let B0 = {b1, b2, . . . } denote a countable subset of B. Define L : X → X by declaring
L(bn) = n bn and L(b) = b for b ∈ B \ B0 and extend by linearity. Thus L is one-one so
that kerL = {0} is closed, but L is not bounded (and so not continuous). □

We close this subsection with the following result that should be compared with
item (a) from Subsection 1.4 followed by an example.

Proposition 2.14. If V is an infinite dimensional normed vector space, then there exists
a linear map f : V → F that is not continuous.



24

For a Banach space X , there are notions of a basis that reference the norm. For
instance, a Schauder basis for X is a sequence (en)

∞
n=1 such that for each x ∈ X there

exists a unique choice of scalars xn ∈ F such that the series
∑∞

n=1 xnen converges to
x. Forgetting the norm structure, a Hamel basis B ⊆ X for X is a basis in the sense
of linear algebra. Explicitly, letting F00(B) denote the functions a : B → F such that
ab = a(b) is zero for all but finitely many b ∈ B, the set B is a Hamel basis for X if for
each v ∈ X there exist is a unique function a ∈ F00(B) such that

v =
∑
b∈B

ab b =
finite∑
b∈B

ab b.

In this case any choice of c : B → F determines uniquely a linear functional λ : X → F
via the rule

λ(v) =
∑
b∈B

cb ab,

where cb = c(b). Often this process is described informally as: let λ(b) = c(b) and extend
by linearity. Finally, an argument using Zorn’s Lemma, which we will soon encounter
in the proof of the Hahn-Banach Theorem, shows that every vector space has a basis.
While it is true that every basis for a vector space V has the same cardinality, all that
we need to make sense of the statement V is an infinite dimensional vector space is the
fact that V has a basis that is infinite, then all bases for V are infinite, which is an
immediate consequence of the fact that all bases for a finite dimensional vector space
have the same cardinality. Thus, we can take the statement X is infinite dimensional
to mean that X has a Hamel basis B that contains a countable set B0.

Proof of Proposition 2.14. Let B denote a Hamel basis for V. By assumption, B has a
countable subset B0. Write B0 = {b1, b2, . . . } (so choose a bijection ψ : N → B0) and
assume, without loss of generality that ∥bj∥ = 1. Let λ : V → F denote the linear
functional determined by λ(bj) = j for bj ∈ B0 and λ(b) = 0 for b ∈ B \B0 and observe
that λ is not bounded. □

Example 2.15. Let X denote an infinite dimensional normed vector space and suppose
f : X → F denote a discontinuous linear functional. An exercise shows that f−1({1}) =
X in addition to ker f = X (see Proposition 2.12). Let U = {f ≤ 0} ⊆ kerλ and note
V = X \ U = {f > 0} ⊇ f−1({1}). Now U and V are disjoint convex sets such that
X = U ∪ V and U = X = V .

2.3. The Hahn-Banach Extension Theorem. To state and prove the Hahn-Banach
Extension Theorem, we first work in the setting F = R, then extend the results to the
complex case.

Definition 2.16. Let X be a real vector space. A Minkowski functional is a function
p : X → R such that p(x + y) ≤ p(x) + p(y) and p(λx) = λp(x) for all x, y ∈ X and
nonnegative λ ∈ R.
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For examples, if L : X → R is any linear functional, then the function p : X → R
defined by p(x) := |L(x)| is a Minkowski functional; and if ∥ · ∥ is a seminorm on X ,
then p : X → R defined by p(x) = ∥x∥ is a Minkowski functional.

Theorem 2.17 (The Hahn-Banach Extension2 Theorem, real version). Let X denote
a real vector space, p a Minkowski functional on X , and M a subspace of X . If L is a
linear functional on M such that L(x) ≤ p(x) for all x ∈ M, then there exists a linear
functional L′ on X such that

(i) L′|M = L (L′ extends L)
(ii) L′(x) ≤ p(x) for all x ∈ X (L′ is dominated by p).

Remark 2.18. In the statement of Theorem 2.17, X is a vector space, not a normed vec-
tor space and correspondingly M is a subspace in the sense of linear algebra (sometimes
referred to as a linear manifold). □

The proof will invoke Zorn’s Lemma, a result that is equivalent to the axiom of
choice (as well as the well-ordering principle and the Hausdorff maximality principle).
A partial order ⪯ on a set S is a relation that is reflexive, symmetric and transitive;
that is, for all x, y, z ∈ S

(i) x ⪯ x,
(ii) if x ⪯ y and y ⪯ x, then x = y, and
(iii) if x ⪯ y and y ⪯ z, then x ⪯ z.

We call S, or more precisely (S,⪯), a partially ordered set or poset . A subset T of
S is totally ordered , if for each x, y ∈ T either x ⪯ y or y ⪯ x. A totally ordered subset
T is often called a chain. An upper bound z for a chain T is an element z ∈ S such that
t ⪯ z for all t ∈ T . A maximal element for S is a w ∈ S that has no successor; that is
there does not exist an s ∈ S such that s ̸= w and w ⪯ s. An upper bound for a subset
A of S is an element s ∈ S such that a ⪯ s for all a ∈ A.

Theorem 2.19 (Zorn’s Lemma). Suppose S is a partially ordered set. If every chain in
S has an upper bound, then S has a maximal element.

END Wednesday 2025-01-15

The following Lemma is at the heart of the proof of Theorem 2.17.

Lemma 2.20. With the hypotheses of Theorem 2.17, if x ∈ X \M, then the conclusion
of Theorem 2.17 holds with the subspace M+ Rx in place of X .

Proof. For any m1,m2 ∈ M, by hypothesis,

L(m1) + L(m2) = L(m1 +m2) ≤ p(m1 +m2) ≤ p(m1 − x) + p(m2 + x).

2There is also the Hahn-Banach Separation Theorem. Both theorems are often simple called the (sic)
Hahn-Banach Theorem.



26

Rearranging gives, for m1,m2 ∈ M,

L(m1)− p(m1 − x) ≤ p(m2 + x)− L(m2)

and thus

sup
m∈M

{L(m)− p(m− x)} ≤ inf
m∈M

{p(m+ x)− L(m)}.

Now choose any real number λ satisfying

sup
m∈M

{L(m)− p(m− x)} ≤ λ ≤ inf
m∈M

{p(m+ x)− L(m)}.

In particular, for m ∈ M,

L(m)−λ ≤ p(m− x)

L(m)+λ ≤ p(m+ x).
(8)

Let N = M + Rx and define L′ : N → R by L′(m + tx) = L(m) + tλ for m ∈ M
and t ∈ R. Thus L′ is linear and agrees with L on M by definition. Moreover, by
construction and equation 8,

L(m− x) ≤ p(m− x)

L(m+ x) ≤ p(m+ x).
(9)

We now check that L′(y) ≤ p(y) for all y ∈ M + Rx. Accordingly, suppose y ∈ N
so that there exists m ∈ M and t ∈ R such that y = m + tx. If t = 0 there is nothing
to prove. If t > 0, then, in view of the second inequality of equation (9),

L′(y) = L′(m+ tx) = t
(
L(
m

t
) + λ

)
≤ t p(

m

t
+ x) = p(m+ tx) = p(y)

and a similar estimate, using the first inequality of equation (9), shows that

L′(m+ tx) ≤ p(m+ tx)

for t < 0. We have thus successfully extended L to a linear map L′ : N → R satisfying
L′(n) ≤ p(n) for all n ∈ N and the proof is complete. □

We make one further observation before turning to the proof of the Hahn-Banach
Theorem. If T is a totally ordered set and (Nα)α∈T are subspaces of a vector space X
that are nested increasing in the sense that Nα ⊆ Nβ for α ⪯ β, then N = ∪α∈TNα is
again a subspace of X . By contrast, if X is a normed vector space and Nα are (closed)
subspaces of X , then N will not necessarily be a (closed) subspace of X .

Proof of Theorem 2.17. Let L denote the set of pairs (L′,N ) where N is a subspace of
X containing M, and L′ is an extension of L to N obeying L′(y) ≤ p(y) on N . Declare
(L′

1,N1) ⪯ (L′
2,N2) if N1 ⊆ N2 and L

′
2|N1 = L′

1. This relation ⪯ is a partial order on L;
that is (L,⪯) is a partially ordered set. Further, Lemma 2.20 says if (L′,N ) is maximal
element, then N = X .

An exercise shows, given any increasing chain (L′
α,Nα) in L has as an upper bound

(L′,N ) in L, where N :=
⋃

αNα and L′(nα) := L′
α(nα) for nα ∈ Nα. By Zorn’s Lemma
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the collection L has a maximal element (L′,N ) with respect to the order ⪯ and the
proof is complete. □

The use of Zorn’s Lemma in the proof of Theorem 2.17 is a typical - one knows how
to carry out a construction one step a time, but there is no clear way to do it all at once.
As an exercise, use Zorn’s Lemma to prove that if V Is a vectors space and S ⊆ V is a
linearly independent set, then there is a basis B for V such that B ⊇ S.

In the special case that p is a seminorm, since L(−x) = −L(x) and p(−x) = p(x)
the inequality L ≤ p is equivalent to |L| ≤ p.

Corollary 2.21. Suppose X is a real normed vector space, M is a subspace of X , and
L is a bounded linear functional on M. If C ≥ 0 and |L(x)| ≤ C∥x∥ for all x ∈ M,
then there exists a bounded linear functional L′ on X extending L such that ∥L′∥ ≤ C.

Proof. Apply the Hahn-Banach theorem with the Minkowski functional p(x) = C∥x∥.
□

Before obtaining further corollaries, we extend Thoerem 2.17 to complex normed
spaces. First, if X is a vector space over C, then trivially it is also a vector space over
R, and there is a simple relationship between the R- and C-linear functionals.

Lemma 2.22. Let X be a vector space over C.

(a) If L : X → C is a C-linear functional, then u(x) = realL(x) defines an R-linear
functional on X and L(x) = u(x)− iu(ix).

(b) Conversely, if u : X → R is R-linear then L(x) := u(x)− iu(ix) is C-linear.
(c) If L : X → C is a C-linear functional, p : X → R is a seminorm, and u = realL,

then |u(x)| ≤ p(x) for all x ∈ X if and only if |L(x)| ≤ p(x) for all x ∈ X .

Proof. Problem 2.5.

To prove the last statement, it is immediate that |u(x)| ≤ |L(x)| for all x ∈ X .

Conversely, given x there is a unimodular α such that αL(x) = |L(x)|. Hence,
|L(x)| = L(αx) = |u(αx)| ≤ p(αx) = |α| p(x) = p(x). □

Remark 2.23. Note that in passing from the real to the complex case, we must give
up the generality of a Minkowski functional and instead content ourselves with the
seminorm p.

END Friday 2025-01-17

Theorem 2.24 (The Hahn-Banach Theorem, complex version). Let X denote a complex
vector space, p a seminorm on X , and M a subspace of X . If L : M → C is a C-linear
functional satisfying |L(x)| ≤ p(x) for all x ∈ M, then there exists a C-linear functional
L′ : X → C such that



28

(i) L′|M = L and
(ii) |L′(x)| ≤ p(x) for all x ∈ X .

Sketch of proof. Using the Lemma 2.22 and its notation: The proof consists of applying
the real Hahn-Banach theorem (Corollary 2.21) to the R-linear functional u = ReL to
obtain a real linear functional u′ : X → R extending u and satisfying u′(x) ≤ p(x) for all
x ∈ X . The resulting complex functional L′ associated to u′ is then a desired extension
of L. The details are left as an exercise. □

The following corollaries are quite important, and when the Hahn-Banach theorem
is applied it is usually in one of the following forms:

Corollary 2.25. Let X be a normed vector space over F (either R or C).

(i) If M ⊆ X is a subspace and L : M → F is a bounded linear functional, then there
exists a bounded linear functional L′ : X → F such that L′|M = L and ∥L′∥ = ∥L∥.

(ii) (Linear functionals detect norms) If x ∈ X is nonzero, there exists L ∈ X ∗ with
∥L∥ = 1 such that L(x) = ∥x∥.

(iii) (Linear functionals separate points) If x ̸= y in X , there exists L ∈ X ∗ such that
L(x) ̸= L(y).

(iv) (Linear functionals detect distance to subspaces) If M ⊆ X is a closed subspace
and x ∈ X \M, there exists L ∈ X ∗ such that
(a) L|M = 0;
(b) ∥L∥ = 1; and
(c) L(x) = dist(x,M) = infy∈M ∥x− y∥ > 0.

(v) if L is a linear submanifold of X and x ∈ X , then x ∈ L if and only if λ(x) = 0
for every λ ∈ X ∗ for which L ⊆ kerλ.

Proof. To prove item (i) consider the (semi)norm p(x) = ∥L∥ ∥x∥. By construction,
|L(x)| ≤ p(x) for x ∈ M. Hence, there is a linear functional L′ on X such that
L′|M = L and |L′(x)| ≤ p(x) for all x ∈ X . In particular, ∥L′∥ ≤ ∥L∥. On the other
hand, ∥L′∥ ≥ ∥L∥ since L′ agrees with L on M.

For item (ii), let M be the one-dimensional subspace of X spanned by x. Define a
functional L : M → F by L(t x

∥x∥) = t. In particular, |L(y)| = ∥y∥ for y ∈ M and thus

∥L∥ = 1. By (i), the functional L extends to a functional (still denoted L) on X such
that ∥L∥ = 1.

An application of item (ii) to the vector x− y proves item (iii).

To prove item (iv), let δ = dist(x,M). Since M is closed, δ > 0. Define a functional
L : M+ Fx→ F by L(y + tx) = tδ for y ∈ M and t ∈ F. Since for t ̸= 0 and y ∈ M,

∥y + tx∥ = |t|∥t−1y + x∥ ≥ |t|δ = |L(y + tx)|,

by Hahn-Banach we can extend L to a functional L ∈ X ∗ with ∥L∥ ≤ 1.
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Let M = L. Thus M is a closed subspace of X . If λ ∈ X ∗ and L ⊆ kerλ, then, by
continuity, M ⊆ kerλ proving one direction of item (v). For the remaining direction,
apply item (iv) to x ∈ X \M to obtain a λ ∈ X ∗ such that M ⊆ kerλ, but λ(x) ̸= 0. □

2.4. The bidual and reflexive spaces. Note that since X ∗ is a normed space, we
can form its dual, denoted X ∗∗, and called the bidual or double dual of X . There is
a canonical relationship between X and X ∗∗. Each fixed x ∈ X gives rise to a linear
functional x̂ : X ∗ → F via evaluation,

x̂(L) := L(x).

Since |x̂(L)| = |L(x)| ≤ ∥L∥ ∥x∥, the linear functional x̂ is in X ∗∗ and ∥x̂∥ ≤ ∥x∥.

Corollary 2.26. (Embedding in the bidual) The map x→ x̂ is an isometric linear map
from X into X ∗∗.

Proof. First, from the definition we see that

|x̂(L)| = |L(x)| ≤ ∥L∥∥x∥
so x̂ ∈ X ∗∗ and ∥x̂∥ ≤ ∥x∥. It is straightforward to check (recalling that the L’s are
linear) that the map x → x̂ is linear. Finally, to show that ∥x̂∥ = ∥x∥, fix a nonzero
x ∈ X . From Corollary 2.25(i) there exists L ∈ X ∗ with ∥L∥ = 1 and L(x) = ∥x∥. But
then for this x and L, we have |x̂(L)| = |L(x)| = ∥x∥ so ∥x̂∥ ≥ ∥x∥, and the proof is
complete. □

Definition 2.27. A Banach space X is called reflexive if the map ˆ : X → X ∗∗ is
surjective.

In other words, X is reflexive if the mapˆ is an (isometric) isomorphism of X with
X ∗∗. For example, every finite dimensional Banach space is reflexive (Problem 2.6).
Reflexive spaces often have nice properties. For instance, the distance from a point to a
(closed) subspace is attained.

Needless to say, the proof of the Hahn-Banach theorem is thoroughly non-constructive,
and in general it is an important (and often difficult) problem, given a normed space X ,
to find some concrete description of the dual space X ∗. Usually doing so means finding
a Banach space Y and a bounded (or, better, isometric) isomorphism T : Y → X ∗.

Example 2.28. Recall ℓ1 = c∗0 isometrically and ℓ∞ = (ℓ1)∗ isometrically by Proposi-
tions 2.5 and 2.7 Moreover it is straightfowrard to show that under the identification of
Corollary 2.26, the canonical map c0 → c∗∗0 corresponds to the natural inclusion of c0
into ℓ∞. Since c0 is separable, but ℓ∞ is not, c0 is not reflexive.

Example 2.29 (Banach Limits). The set

c =

{
f : N → F

∣∣∣∣ limn→∞
f(n) exists

}
,
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is a subspace of ℓ∞. The function L : c→ F defined by

L(f) = lim
n
f(n)

is a linear functional and it satisfies |L(f)| ≤ ∥f∥∞. Hence L is continuous and ∥L∥ ≤ 1.
On the other hand, letting o : N → F denote the function that is constantly equal to
1, we see 1 = |L(0)| = ∥o∥. Hence ∥L∥ = 1. Thus, by the Hahn-Banach Extension
Theorem, L extends to a bounded linear functional on all of ℓ∞ of norm 1. Any such
extension of L is a Banach limit .

By example 2.6, elements λ ∈ (ℓ1)∗ are precisely of the form Lf for some f ∈ ℓ∞,

where Lf (g) =
∑
f(n)g(n) for g ∈ ℓ1. Thus g ∈ ℓ1 thus determines an element ĝ in

(ℓ1)∗∗ by
ĝ(f) = Lf (g).

Let on : N → F denote the function on(j) = 0 for j ≤ n and on(j) = 1 for j > n and
observe,

ĝ(on) =
∞∑

j=n+1

g(n)

and L(on) = 1 for all n (where L is a Banach limit). It follows that L ̸= ĝ and therefore
the natural embedding of ℓ1 into (ℓ1)∗∗ = (ℓ∞)∗ is not onto.

In fact more is true. Namely, there is no isometric isomorphism between ℓ1 and
(ℓ∞)∗. As an outline of a proof, show, if X is a normed vector space and X ∗ is separable,
then X is also separable. This fact, applied to ℓ∞, shows (ℓ∞)∗ is not separable. Since
ℓ1 is separable, the result follows. □

END Monday 2025-01-24

Remark 2.30. After we have studied the Lp and ℓp spaces in more detail, we will see
that Lp is reflexive for 1 < p <∞.

We note in passing that if X is reflexive, then its dual X ∗ has a unique predual:
that is, if Y is another Banach space and Y∗ is isometrically isomorphic to X ∗, then
in fact Y is isometrically isomorphic to X . However this conclusion can fail when X
is not reflexive; for example it turns out that ℓ1 does not have a unique predual. See
Problems 2.10 and 2.15. □

The embedding into the bidual has many applications; one of the most basic is the
following.

Proposition 2.31 (Completion of normed spaces). If X is a normed vector space, then
there is a Banach space X and an isometric linear map ι : X → X such that the image
ι(X ) is dense in X .

Proof. Embed X into X ∗∗ via the map x → x̂ and let X be the closure of the image of
X in X ∗∗. Since X is a closed subspace of a complete space, it is complete. □
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The space X is called the completion of X . It is unique in the sense that if Y is
another Banach space and j : X → Y embeds X isometrically as a dense subspace of Y ,
then Y is isometrically isomorphic to X . The proof of this fact is left as an exercise.

2.5. Dual spaces and adjoint operators. [Optional] Let X ,Y be normed spaces
with duals X ∗,Y∗. If T : X → Y is a linear transformation and f : Y → F is a linear
functional, then T ∗f : X → F defined by

(10) (T ∗f)(x) = f(Tx)

is a linear functional on X . If T and f are both continuous (that is, bounded) then the
composition T ∗f is bounded, and more is true:

Theorem 2.32. Let T : X → Y be a bounded linear transformation. The function
T ∗ : Y∗ → X ∗ defined, for f ∈ Y∗, . Then:

(i) For f ∈ Y∗ the function T ∗f defined by the formula (10) is in X ∗.
(ii) The mapping T ∗ : Y∗ → X ∗ is a bounded linear map with ∥T ∗∥ = ∥T∥.

Proof. Since T is assumed bounded, for a fixed f ∈ Y∗ and all x ∈ X

|T ∗f(x)| = |f(Tx)| ≤ ∥f∥∥Tx∥ ≤ ∥f∥∥T∥∥x∥.

It follows that T ∗f is bounded on X (thus, belongs to X ∗) and

(11) ∥T ∗f∥ ≤ ∥f∥∥T∥.

Thus T ∗ maps Y∗ into X ∗ and it is straightforward to verify that T ∗ is linear. Moreover,
the inequality of equation (11) also shows that T ∗ is bounded and ∥T ∗∥ ≤ ∥T∥.

It remains to show ∥T ∗∥ ≥ ∥T∥. Toward this end, let 0 < ϵ < 1 be given and choose
x ∈ X with ∥x∥ = 1 and ∥Tx∥ > (1 − ϵ)∥T∥. Now consider Tx. By the Hahn-Banach
Theorem (Corollary 2.25(i)), there exists f ∈ Y∗ such that ∥f∥ = 1 and f(Tx) = ∥Tx∥.
For this f ,

∥T ∗∥ ≥ ∥T ∗f∥ ≥ |T ∗f(x)| = |f(Tx)| = ∥Tx∥ > (1− ϵ)∥T∥.

Hence, ∥T ∗∥ ≥ (1− ϵ)∥T∥. Since ϵ was arbitrary, ∥T ∗∥ ≥ ∥T∥. □

END Monday 2025-01-27 also covered Proposition 2.12

2.6. Duality for Sub and Quotient Spaces. [Optional. Not covered Spring 2025]
The Hahn-Banach Theorem allows for the identification of the duals of subspaces and
quotients of Banach spaces. Informally, the dual of a subspace is a quotient and the dual
of a quotient is a subspace. The precise results are stated below for complex scalars, but
they hold also for real scalars.
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Given a (closed) subspace M of the Banach space X , let π denote the map from X
to the quotient X/M. Recall (see Problem 1.22), the quotient is a Banach space with
the norm,

∥z∥ = inf{∥y∥ : π(y) = z}.
In particular, if x ∈ X , then

∥π(x)∥ = inf{∥x−m∥ : m ∈ M}.

It is evident from the construction that π is continuous and ∥π∥ ≤ 1. Further, by
Problem 1.20 (or see Proposition 2.33 below) if M is a proper (closed) subspace, then
∥π∥ = 1. In particular, π∗ : (X/M)∗ → X ∗ (defined by π∗λ = λ ◦ π) is also continuous.
Moreover, if x ∈ M, then

π∗λ(x) = λ(π(x)) = 0.

Let

M⊥ = {f ∈ X ∗ : f(x) = 0 for all x ∈ M}.
(M⊥ is called the annihilator of M in X ∗.) Recall, given x ∈ X , the element x̂ ∈ X ∗∗

is defined by x̂(τ) = τ(x), for τ ∈ X ∗. In particular,

M⊥ = ∩x∈M ker(x̂)

and thus M⊥ is a closed subspace of X ∗. Further, if λ ∈ (X/M)∗, then π∗λ ∈ M⊥.

Proposition 2.33 (The dual of a quotient). The mapping ψ : (X/M)∗ → M⊥ defined
by

ψ(λ) = π∗λ

is an isometric isomorphism; i.e., the mapping π∗ : (X/M)∗ → X ∗ is an isometric
isomorphism onto M⊥.

Informally, the proposition is expressed as (X/M)∗ = M⊥.

Proof. The linearity of ψ follows from Theorem 2.32 as does ∥ψ∥ = ∥π∥ ≤ 1. To prove
that ψ is isometric, let λ ∈ (X/M)∗ be given. Automatically, ∥ψ(λ)∥ ≤ ∥λ∥. To prove
the reverse inequality, fix r > 1. Let q ∈ X/M with ∥q∥ = 1 be given. There exists an
x ∈ X such that ∥x∥ < r and π(x) = q. Hence,

|λ(q)| = |λ(π(x))∥ = ∥ψ(λ)(x)∥ ≤ ∥ψ(λ)∥ ∥x∥ < r∥ψ(λ)∥.

Taking the supremum over such q shows ∥λ∥ ≤ r∥ψ(λ)∥. Finally, since 1 < r is arbitrary,
∥λ∥ ≤ ∥ψ(λ)∥.

To prove that ψ is onto, and complete the proof, let τ ∈ M⊥ be given. Fix q ∈ X/M.
If x, y ∈ X and π(x) = q = π(y), then τ(x) = τ(y). Hence, the mapping λ : X/M → C
defined by λ(q) = τ(x) is well defined. That λ is linear is left as an exercise. To see that
λ is continuous, observe that

|λ(q)| = |τ(x)| ≤ ∥τ∥ ∥x∥,
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for each x ∈ X such that π(x) = q. Taking the infimum over such x gives shows

|λ(q)| ≤ ∥τ∥ ∥q∥.

Finally, by construction ψ(λ) = τ. □

Since M⊥ is closed in X ∗, the quotient space X ∗/M⊥ is a Banach space. Let
ρ : X ∗ → X ∗/M⊥ denote the quotient mapping. Suppose λ ∈ M∗. By Corollary 2.25,
there is an f ∈ X ∗ such that f |M = λ; that is f is a bounded extension of λ (and
indeed f can be chosen such that ∥f∥ = ∥λ∥). If f and g are two extensions of λ to
bounded linear functionals on X ∗, then f(x)− g(x) = 0 for x ∈ M. Hence f − g ∈ M⊥

or equivalently, ρ(f) = ρ(g). Consequently, the mapping φ : M∗ → X ∗/M⊥ defined
by φ(λ) = ρ(f) (where f is any bounded extension of λ to X ) is well defined. It is
easily verified that φ is linear. Further, given q ∈ X ∗/M⊥, there is an f ∈ X ∗ such that
ρ(f) = q. In particular, with λ = f |M we have φ(λ) = ρ(f). Therefore φ is onto.

Proposition 2.34 (The dual of a subspace). The mapping φ : M∗ → X ∗/M⊥ is an
isometric isomorphism.

Proof. It remains to show that φ is an isometry, a fact that is an easy consequence of the
Hahn-Banach Theorem. Fix λ ∈ M∗ and let q = φ(λ). If f is any bounded extension
of λ to X ∗, then ∥f∥ ≥ ∥λ∥. Hence,

∥φ(λ)∥ =∥q∥
= inf{∥f∥ : f ∈ X ∗, ρ(f) = q}
= inf{∥f∥ : f ∈ X ∗, f |M = λ}
≥∥λ∥.

On the other hand, by the Hahn-Banach Theorem there is a bounded extension g of λ
with ∥g∥ = ∥λ∥. Thus ∥λ∥ ≤ ∥q∥. □

A special case of the following useful fact was used in the proofs above. If X ,Y are
vector spaces and T : X → Y is linear and M is a subspace of the kernel of T , then T

induces a linear map T̃ : X/M → Y . A canonical choice is M = ker(T ) in which case

T̃ is one-one. If X is a Banach space, Y is a normed vector space and M is closed, then
X/M is a Banach space.

Lemma 2.35. If X is a Banach space, M is a (closed) subspace of ker(T ), Y is a

normed vector space and T : X → Y is continuous, then the mapping T̃ is bounded and

∥T̃∥ = ∥T∥.

Proof. Let π : X → X/M denote the quotient map and observe that T̃ π = T . Since the

quotient map π has norm 1 (see Problem 1.22), we see that ∥T̃∥ ≤ ∥T∥. For the opposite
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inequality, let 0 < ϵ < 1 and choose x ∈ X such that ∥x∥ = 1 and ∥Tx∥ > (1 − ϵ)∥T∥.
Then ∥π(x)∥ ≤ 1 and

∥T̃∥ ≥ ∥T̃ π(x)∥ = ∥Tx∥ > (1− ϵ)∥T∥.

Letting ϵ go to zero finishes the proof. □

2.7. Hahn-Banach separation theorems. [Optional. Not covered Spring 2025]

Besides the extension theorem and its corollaries, the other important applications
of the Hahn-Banach theorem consist of various separation theorems. We begin with a
few definitions.

Definition 2.36. Let X be a vector space. A hyperplane in X is a subspace M of
codimension 1. An affine hyperplane is a set of the form x + M ⊆ X, for some fixed
x ∈ X and hyperplane M.

If L : X → F is a nonzero linear functional (bounded or not), the space M = kerL
is a hyperplane, and if we fix any scalar t ∈ F then the set {x ∈ X : L(x) = t} is an affine
hyperplane. Conversely, any hyperplane is the kernel of a nonzero linear functional. (To
see this, observe that if M is a hyperplane in X , then, since it has codimension 1, for
any fixed choice of a vector y ∈ X \M we can write every x ∈ X uniquely as x = m+ ty
with m ∈ M and t ∈ F. Then define L(x) = t.) Consequently, every affine hyperplane
has the form H = {x ∈ X : L(x) = t} for some nonzero linear functional L and some
scalar t.

Lemma 2.37. If M is a hyperplane in a normed vector space X , then M is either
closed, or dense in X .

Proof. It is easy to check that the closure of subspace of X is again a subspace. It follows
that M is a subspace with M ⊆ M ⊆ X . Since M has codimension 1, we must have
either M = M or M = X . □

Proposition 2.38. Let X be a normed vector space and L : X → F a linear functional.
Then L is continuous (that is, bounded) if and only if kerL is closed. Consequenlty, L
is continuous if and only if there exists a nonempty open set U such that U ∩kerL = ∅.

Proof. Trivially, if L is continuous then kerL is closed. Conversely, suppose M = kerL
is closed. We can then form the quotient space X/M, and since M is a hyperplane
this space is one-dimensional. If we let π denote the quotient map and define L̃ :
X/M → F by L̃π = L, then the linear functional L̃ is continuous (since its domain is
finite-dimensional), and since the quotient map is also continuous, we conclude that L
is continuous.

The second statement follows by combining the first statement with Lemma 2.37.

□
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Recall that a set K in a real vector space X is called convex if for every x, y ∈ K and
every 0 ≤ t ≤ 1, we have tx+(1− t)y ∈ K. Let X be a normed vector space over R and
let U ⊆ X be a convex, open set containing 0. We define a function p : X → [0,+∞) by

(12) p(x) = inf{r > 0 :
1

r
x ∈ U}.

(To see that the definition makes sense, observe that since U is open and 0 ∈ U , there
exists δ > 0 so that x ∈ U whenever ∥x∥ < δ. It follows that for every x ∈ X , we

have 1
r
x ∈ U for all r > ∥x∥

δ
; thus the set appearing in the definition is nonempty.) The

functional p is sometimes called a gauge for the set U , it is important because of the
following lemma.

Lemma 2.39. Let X be a normed vector space over R and let U ⊆ X be a convex open
set containing 0. Then the function p defined by (12) is a Minkowski functional, and
U = {x ∈ X : p(x) < 1}.

Proof. If r, s > 0 then trivially s
r
x ∈ U if and only if 1

r/s
x ∈ U , and it follows that

p(sx) = sp(x) for all s > 0. Likewise it is immediate from the definition of p that
p(0) = 0, so that p(sx) = sp(x) for all s ≥ 0. Next we show that p(x) < 1 if and only if
x ∈ U : indeed, if x is in U then since U is open, there is a δ > 0 such that (1+ δ)x ∈ U ,
thus p(x) ≤ (1 + δ)−1 < 1. On the other hand if p(x) < 1 then 1

r
x ∈ U for some

0 < r < 1, but then since U is convex and 0 ∈ U , we can write x = r(x
r
)+(1−r) ·0 ∈ U .

Finally, let us show that p(x+ y) ≤ p(x) + p(y). Fix any r, s > 0 such that x
r
and y

s

belong to U . Since U is convex, the convex combination(
r

r + s

)
x

r
+

(
s

r + s

)
y

s
=
x+ y

r + s

belongs to U , so by what was just proved we have p(x+y
r+s

) < 1. By homogeneity we
conclude that p(x + y) < r + s, and finally by taking the infimum over r and s we get
p(x+ y) ≤ p(x) + p(y).

□

Theorem 2.40 (Separation). Let X be a normed vector space over R. If U ⊆ X is a
nonempty, open, convex set, and x ∈ X \U , then there exists a bounded linear functional
L ∈ X ∗ and a real number a such that L(y) < a = L(x) for all y ∈ U .

Proof. We first assume that 0 ∈ U , the general case will follow by translation. Let
N be the one-dimensional subspace Rx. Define L on N by putting L(x) = 1 and
extending linearly. Let p be the gauge functional for U . Since x /∈ U , we have p(x) ≥ 1,
so 1 = L(x) ≤ p(x). Since both L and p are positive homogeneous, we also have
L(tx) ≤ p(tx) for all t ≥ 0. For t < 0, we have L(tx) < 0 ≤ p(tx) (since p ≥ 0 by
definition). Thus, we have L(y) ≤ p(y) for all y in the subspace N . It follows from the
Hahn-Banach theorem that there exists an extension of L to all of X (still denoted L)
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such that L(y) ≤ p(y) for all y ∈ X . It follows that L(x) = 1 and L(y) ≤ p(y) < 1 for
all y ∈ U . To see that this extension L is bounded, let V = U − x; then V is an open
set in X and L(y) < 0 for all y ∈ V , that is, V ∩ kerL = ∅, so by the second part of
Proposition 2.38 it follows that L is bounded.

Finally, in the case that U does not contain 0, we choose a point x0 ∈ U and apply
the theorem to U ′ := U − x0 and x′ = x− x0, to obtain a bounded functional such that
L(x) = 1 + L(x0) and L(y) < 1 + L(x0) for all y ∈ U ; the details are left to the reader.

□

Lemma 2.41. i) If X is a normed vector space over R, K ⊆ X is a convex set,
and x0 is an interior point of K, then for every x ∈ K and every 0 ≤ t < 1, the
point x0 + t(x− x0) is an interior point of K.

ii) If K is convex then int(K) is convex.
iii) If K is a closed, convex subset of X and K has nonempty interior, then K is

equal to the closure of its interior.
iv) Let K be a closed, convex subset of X and suppose 0 is an interior point of K. If

p is the gauge functional for the convex set U = int(K), then K = {x ∈ X |p(x) ≤
1}.

Proof. For (i), by translation, there is no loss of generality in supposing that x0 = 0.
Fix x ∈ K, and fix δ such that y ∈ K for all ∥y∥ < δ. For 0 ≤ t < 1, put ϵ = (1 − t)δ.
If ∥z − tx∥ < ϵ, then we can write z = tx + y with ∥y∥ < (1 − t)δ. It follows that
∥(1−t)−1y∥ < δ, so y′ = (1−t)−1y belongs to K. We have thus written z = tx+(1−t)y′
with x, y′ ∈ K, so z ∈ K. That is, the open ball B(tx, ϵ) is contained in K.

(ii) follows immediately from (i).

For (iii), since x = lim(x0 + tn(x− x0)) for any sequence tn increasing to 1, we see
that every x ∈ K is a limit of interior points.

For (iv), let p(x) ≤ 1. If p(x) < 1 then x ∈ U and thus x ∈ K. If p(x) = 1, then by
the definiton of p we have tx ∈ U for every 0 ≤ t < 1, so taking a sequence of scalars
tn increasing to 1, we get that x belongs to the closure of U so x ∈ K. Conversely, if
x ∈ K, then by part (i) tx ∈ U for every 0 ≤ t < 1, so p(x) ≤ 1. □

Corollary 2.42 (Strict separation). Let X be a normed vector space over R. If K ⊆ X
is a closed, convex set with nonempty interior, and x ∈ X \K, then there exists a bounded
linear functional L ∈ X ∗, and real numbers a < b such that L(y) ≤ a < b = L(x) for all
y ∈ K.

Proof. Again we assume that 0 is an interior point of K, and leave the general case to the
reader. Let U = int(K) and let p be the gauge functional for U ; by the lemma we have
K = {x ∈ X |p(x) ≤ 1}. Thus, if x /∈ K, then p(x) > 1. We may then choose a number
0 < t < 1 so that tx /∈ K. Applying the previous separation theorem to U and tx, we
obtain a bounded linear functional L and a real number a such that L(y) < a = L(tx)
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for all y ∈ U , we put b := a
t
= L(x). Since L(y) < a on U , and L is continuous, and

K is the closure of U (by item (iii) of the Lemma), we conclude that L(y) ≤ a for all
a ∈ K, which completes the proof. □

2.8. Problems.

Problem 2.1. Prove, if X is any normed vector space, {x1, . . . xn} is a linearly indepen-
dent set in X , and α1, . . . αn are scalars, then there exists a bounded linear functional f
on X such that f(xj) = αj for j = 1, . . . n. (Recall linear maps from a finite dimensional
normed vector space to a normed vector space are bounded.)

Problem 2.2. Let X ,Y be normed spaces and T : X → Y a linear transformation.
Prove T is bounded if and only if there exists a constant C such that for all x ∈ X and
f ∈ Y∗,

(13) |f(Tx)| ≤ C∥f∥∥x∥;

in which case ∥T∥ is equal to the best possible C in (13).

Problem 2.3. Let X be a normed vector space. Show that if M is a closed subspace of
X and x /∈ M, then M+ Fx is closed. Use this result to give another proof that every
finite-dimensional subspace of X is closed.

Problem 2.4. Prove, if M is a finite-dimensional subspace of a Banach space X , then
there exists a closed subspace N ⊆ X such that M∩N = {0} and M +N = X . (In
other words, every x ∈ X can be written uniquely as x = y + z with y ∈ M, z ∈ N .)
Hint: Choose a basis x1, . . . xn for M and construct, using Problem 2.1 and the Hahn-
Banach Theorem, bounded linear functionals f1, . . . fn on X such that fi(xj) = δij. Now
let N = ∩n

i=1ker fi. (Warning: this conclusion can fail badly if M is not assumed finite
dimensional, even if M is still assumed closed. Perhaps the first known example is that
c0 is not complemented in ℓ∞, though it is nontrivial to prove.)

Problem 2.5. Prove Proposition 2.22.

Problem 2.6. Prove every finite-dimensional Banach space is reflexive.

Problem 2.7. Let B denote the subset of ℓ∞ consisting of sequences which take values
in {−1, 1}. Show that any two (distinct) points of B are a distance 2 apart. Show, if C
is a countable subset of ℓ∞, then there exists a b ∈ B such that ∥b− c∥ ≥ 1 for all c ∈ C.
Conclude ℓ∞ is not separable. Prove there is no isometric isomorphism Λ : c0 → ℓ∞.

Problem 2.8. [This problem belongs in the section with signed measures] Prove, if µ
is a finite regular (signed) Borel measure on a compact Hausdorff space, then the linear
function Lµ : C(X) → R defined by

Lµ(f) =

∫
X

f dµ
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is bounded (continuous) and ∥Lµ∥ = ∥µ∥ := |µ|(X). (See the Riesz-Markov Theorem
for positive linear functionals.)

Problem 2.9. Let X and Y be normed vector spaces and T ∈ L(X ,Y).

a) Consider T ∗∗ : X ∗∗ → Y∗∗. Identifying X ,Y with their images in X ∗∗ and Y∗∗,
show that T ∗∗|X = T .

b) Prove T ∗ is injective if and only if the range of T is dense in Y .
c) Prove that if the range of T ∗ is dense in X ∗, then T is injective; if X is reflexive

then the converse is true.
d) Assuming now that X and Y are Banach spaces, prove that T : X → Y is

invertible if and only if T ∗ is invertible, in which case (T ∗)−1 = (T−1)∗.

Problem 2.10. a) Prove that if X is reflexive, then X ∗ is reflexive. (Hint: let
ι : X → X ∗∗ be the canonical inclusion; by assumption ι is invertible. Compute
(ι−1)∗.)

b) Prove that if X is reflexive and M ⊆ X is a closed subspace, then M is reflexive.
c) Prove that a Banach space X is reflexive if and only if X ∗ is reflexive.
d) Prove that if X is reflexive and Y is another Banach space with Y∗ isometrically

isomorphic to X ∗, then Y is isometrically isomorphic to X . (This conclusion can
fail if X is not reflexive; see Problem 2.15.)

Problem 2.11. Prove, if X is a Banach space and X ∗ is separable, then X is separable.
[Hint: let {fn} be a countable dense subset of X ∗. For each n choose xn such that
∥xn∥ = 1 and |fn(xn)| ≥ 1

2
∥fn∥. Show that the set of Q-linear combinations of {xn} is

dense in X .]

Problem 2.12. a) Prove there exists a bounded linear functional L ∈ (ℓ∞)∗ with
the following property: whenever f ∈ ℓ∞ and limn→∞ f(n) exists, then L(f) is
equal to this limit. (Hint: first show that the set of such f forms a subspace
M ⊆ ℓ∞).

b) Show that such a functional L is not equal to Lg for any g ∈ ℓ1; thus the map
T : ℓ1 → (ℓ∞)∗ given by T (g) = Lg is not surjective.

c) Give another proof that T is not surjective, using Problem 2.11.

Problem 2.13. Let X be a normed space and let K ⊆ X be a convex set. (Recall,
this means that whenever x, y ∈ K, then 1

2
(x+ y) ∈ K; equivalently, tx+ (1− t)y ∈ K

for all 0 ≤ t ≤ 1.) A point x ∈ K is called an extreme point of K whenever y, z ∈ K,
0 < t < 1, and x = ty+ (1− t)z, then y = z = x. (That is, the only way to write x as a
convex combination of elements of K is the trivial way.)

a) Let X be a normed space and let B = ball(X ) denote the (closed) unit ball of
X . Prove that x ∈ B is not an extreme point of B if and only if there exists a
nonzero y ∈ B such that ∥x± y∥ ≤ 1.
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b) Prove that if X and Y are normed spaces, and T : X → Y is a surjective
linear isometry, (so that X and Y are isometrically isomorphic) then T induces
a bijection between the extreme points of ball(X ) and ball(Y).

c) Let ℓpn denote the (real) Banach space Rn equipped with the ℓp norm, 1 ≤ p ≤ ∞.
Prove that ℓ12 and ℓ

∞
2 are isometrically isomorphic, but that there is no isometry

between ℓ13 and ℓ∞3 .

Problem 2.14. a) Show that the extreme points of the unit ball of ℓ1 are precisely
the points of the form λen where |λ| = 1 and en is the sequence which is 1 in the
nth entry and 0 elsewhere. (See Problem 2.13).

b) Determine the extreme points of the unit ball of ℓ∞.
c) Show that the unit ball of c0 has no extreme points.

Problem 2.15. Let

c =

{
f : N → F

∣∣∣∣ limn→∞
f(n) exists

}
,

and equip c with the supremum norm ∥f∥∞ := sup |f(n)|.

a) Show that c∗ ∼= ℓ1 isometrically.
b) Prove that c is boundedly isomorphic to c0.
c) Prove that c is not isometrically isomorphic to c0. (Hint: examine the extreme

points of the unit balls of c and c0; see Problems 2.13 and 2.14 .)

(This problem provides an example of Banach spaces X and Y such that X and Y are
not isometrically isomorphic, but X ∗ and Y∗ are. So in general we cannot recover X
(isometrically) from X ∗. In fact the situation is worse, ℓ1 has isometric preduals which
are not even boundedly isomorphic to c0, but the construction is more involved and
outside the scope of these notes.)

3. The Baire Category Theorem and applications

This section contains three important applications of the Baire category theorem in
functional analysis. These are the Principle of Uniform boundedness (also known as the
Banach-Steinhaus theorem), the Open Mapping Theorem, and the Closed Graph The-
orem. (In learning these theorems, keep careful track of what completeness hypotheses
are needed.)

3.1. Baire’s Theorem. Recall, a set D in a metric space X is dense (in X) if D = X.
Lemma 3.1 below should be familiar. We will use the notation B(x, r), for the open ball
of radius r > 0 center to the point x in a metric space X = (X, d)

B(x, r) = {y ∈ X : d(x, y) < r};
and F ◦ for the interior of a subset F of a metric space X.

Lemma 3.1. Suppose X is a metric space.
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(a) For a subset D ⊆ X of X, the following are equivlalent:
(i) D is dense in X;

(ii) Dc does not contain a nonempty open set ((Dc)◦ = ∅;

(iii) if ∅ ̸= U is open, then D ∩ U ̸= ∅.

(b) If U ⊆ X is open and x ∈ U, then there is an r > 0 such that B(x, r) ⊆ U.

(c) A subset F of X is closed with empty interior if and only if F c is open and dense.

Theorem 3.2 (The Baire Category Theorem). Suppose X is a complete metric space.

(a) If (Un)
∞
n=1 is a sequence of open dense subsets of X, then ∩∞

n=1Un ̸= ∅.

(b) If (Fn)n is a sequence of closed sets with empty interior, then ∪Fn ̸= X.

Remark 3.3. We will actually prove that ∩Un is dense in X. This conclusion is in fact
equivalent to the conclusion that ∩Un ̸= ∅.

Theorem 3.2 is true if X is a locally compact Hausdorff space and there are connec-
tions between the Baire Category Theorem and the axiom of choice. □

The following lemma should be familiar from advanced calculus. It will be used in
the proof of Theorem 3.2.

Lemma 3.4. Let X be a complete metric space and suppose (Cn) is a sequence of subsets
of X. If

(i) each Cn is nonempty;
(ii) (Cn) is nested decreasing;
(iii) each Cn is closed; and
(iv) (diam(Cn)) converges to 0,

then there is an x ∈ X such that
{x} = ∩Cn.

Moreover, if (xn) is a sequence from X and xn ∈ Cn for each n, then (xn) converges to
some x.

Proof of Theorem 3.2. The two items are equivalent, but for our purposes it is enough to
show item (a) implies item (b). To this end, suppose item (a) holds, (Fn) is a sequence
of closed sets such that F ◦

n = ∅ for all n and X = ∪Fn. Taking complements, ∅ = ∩F c
n.

By Lemma 3.1, the sets F c
n are open and dense in X by Lemma 3.1. Hence X is not

complete and therefore item (a) implies item (b). Thus it suffices to prove item (a).

To prove item (a), let (Un)
∞
n=1 be a sequence of open dense sets inX and let I = ∩Un.

To prove I is dense, it suffices to show that I has nontrivial intersection with every
nonempty open set W by Lemma 3.1. Fix such a W . Since, by Lemma 3.1, U1 is dense,



41

there is a point x1 ∈ W ∩U1. Since U1 andW are open, there is a radius 0 < r1 < 1 such
that the B(x1, r1) is contained in W ∩ U1 by Lemma 3.1. Similarly, since U2 is dense
and open there is a point x2 ∈ B(x1, r1) ∩ U2 and a radius 0 < r2 <

1
2
such that

B(x2, r2) ⊆ B(x1, r1) ∩ U2 ⊆ W ∩ U1 ∩ U2.

Continuing inductively, since each Un is dense and open there is a sequence of points
(xn)

∞
n=1 and radii 0 < rn <

1
n
such that

B(xn, rn) ⊆ B(xn−1, rn−1) ∩ Un ⊆ W ∩ (∩n
j=1Un).

The sequence of sets (B(xn, rn)) satisfies the hypothesis of Lemma 3.4 andX is complete.
Hence there is an x ∈ X such that

x ∈ ∩nB(xn, rn) ⊆ W ∩ I. □

3.2. Category. Baire’s theorem is used as a kind of pigeonhole principle: the “thick”
complete metric space X cannot be expressed as a countable union of “thin” closed sets
without interior.

Definition 3.5. A subset E of a metric space X is nowhere dense (in X) if its closure
has empty interior; that is (E)◦ = ∅.

A set F in a metric space X is first category (or meager) if it can be expressed as a
countable union of nowhere dense sets. In particular, a countable union of first category
sets is first category.

A set G is second category if it is not first category.

Corollary 3.6 (The Baire Category Theorem restated). If X is a complete metric space,
then X is not a countable union of nowhere dense sets; that is, X is of second category
in itself.

Proof. Suppose X = ∪∞
n=1En where each En is nowhere dense. It follows that X =

∪∞
n=1Fn, where each Fn = En is closed and with empty interior. Hence, by Theorem 3.2

item (b), X is not complete. □

Corollary 3.7. An infinite dimensional Banach space can not have a countable basis.
In particular, there is no norm on c00 that makes it a Banach space; ditto for the vector
space of polynomials.

Proof. The proof is left as an exercise. As a starting point, show, if M is finite dimen-
sional subspace of an infinite dimensional Banach space X , then M is nowhere dense in
X . □
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3.3. The Principle of Uniform Boundedness.

Theorem 3.8 (The Principle of Uniform Boundedness (PUB)). Suppose X ,Y are
normed spaces and {Tα : α ∈ A} ⊆ B(X ,Y) is a collection of bounded linear trans-
formations from X to Y. Let B denote the set

(14) B := {x ∈ X : sup
α

∥Tαx∥ <∞}.

If B is of the second category (thus not a countable union of nowhere dense sets) in X,
then

sup
α

∥Tα∥ <∞.

In particular, if X is complete and if the collection {Tα : α ∈ A} is pointwise bounded,
then it is uniformly bounded.

Proof. For notational convenience, set M(x) = supα ∥Tαx∥ <∞.

For each integer n ≥ 1 consider the set

Vn := {x ∈ X :M(x) > n}.

Since each Tα is continuous (bounded), the sets Vn are open. (Indeed, for each α the map
x→ ∥Tαx∥ is continuous from X to R, so if ∥Tαx∥ > n for some α then also ∥Tαy∥ > n
for all y sufficiently close to x.) Let En denote the complement of Vn and observe that
B = ∪∞

n=1En. Since B is assumed to be of the second category, there is an N such that
(EN)

◦ is not empty. Since EN is closed, it follows that EN has nonempty interior; i.e.,
there is an x0 ∈ EN and r > 0 so that B(x0, r) ⊆ EN . α and every ∥x∥ < r, expressing
x = (x− x0) + x0 as the sum of two elements of B(x0, r) gives

∥Tαx∥ ≤ ∥Tα(x− x0)∥+ ∥Tαx0∥ ≤ N +N.

That is, if ∥x∥ < r, then M(x) ≤ 2N . By rescaling we conclude that if ∥x∥ < 1, then
∥Tαx∥ ≤ 2N/r for all α and thus supα ∥Tα∥ ≤ 2N/r <∞. □

The following result is one of the many corollaries to the PUB.

Corollary 3.9. Suppose X is a Banach space and Y is a normed vector space. If (Tn)
is a sequence of bounded operators Tn : X → Y that converges pointwise to a (necessarily
linear) map T : X → Y , then T is bounded.

Outline of proof. In a metric space, convergent sequences are bounded. Hence (Tnx)n is
bounded in Y for each x ∈ X . Thus the set X = {x ∈ X : sup{∥Tnx∥ : n ∈ N} < ∞}
is of second category in X . Thus C = sup{∥Tn∥ : n ∈ N} < ∞. Thus the proof reduces
to showing ∥Tx∥ ≤ C∥x∥ for all x ∈ X , a task that is left as an exercise for the gentle
reader. □
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3.4. Open mapping. Given a subset B of a vector space X and a scalar s ∈ F, let
sB = {sb : b ∈ B}. Similarly, for x ∈ X , let B − x = {b − x : b ∈ B}. Let X ,Y be
normed vector spaces and suppose T : X → Y is linear. If B ⊆ X and s ∈ F is nonzero,
then T (sB) = sT (B) and further, an easy argument shows T (sB) = s T (B). It is also
immediate that if B is open, then so is B − x.

Recall that if X, Y are topological spaces, a mapping f : X → Y is called open if
f(U) is open in Y whenever U is open in X. In particular, if f is a bijection, then f is
open if and only if f−1 is continuous. In the case of normed linear spaces the condition
that a linear map is open is refined by the Open Mapping Theorem, Theorem 3.11 below.
But first a lemma.

Lemma 3.10 (Translation and Dilation lemma). Let X ,Y be normed vector spaces, let
B denote the open unit ball of X , and let T : X → Y be a linear map. The following are
equivalent.

(i) The map T is open;
(ii) T (B) contains an open ball centered at 0;
(iii) there is an s > 0 such that T (sB) contains an open ball centered at 0; and
(iv) T (sB) contains an open ball centered at 0 for each s > 0.

In the proof of this lemma and that of Theorem 3.11 to follow, we use BX (x, r) and
BY(y, s) to denote the open balls centered to x and y with radii r and s in X and Y
respectively when needed to avoid ambiguity.

Proof. This result is more or less immediate from the fact that, for fixed z0 ∈ X and
r ∈ F, the translation map z → z + z0 and the dilation map z → rz are continuous in a
normed vector space.

The implication item (i) implies item (ii) is immediate. The fact that T (sB) =
sT (B) for s > 0 readily shows items (ii), (iii) and (iv) are all equivalent.

To finish the proof it suffice to show item (iv) implies item (i). Accordingly, suppose
item (iv) holds and let U ⊆ X be a given open set. To prove that T (U) is open, let
y ∈ T (U) be given. There is an x ∈ U such that T (x) = y. There is an s > 0 such that
the ball B(x, s) lies in U ; that is B(x, s) ⊆ U . The ball B(0, s) = B(x, s)− x is an open
ball centered to 0. By hypothesis there is an r > 0 such that BY(0, r) ⊆ T (B(0, s)). By
linearity of T ,

BY(y, r) =BY(0, r) + y ⊆ T (B(0, s)) + y

=T (B(0, s)) + T (x) = T (B(0, s) + x) = T (B(x, s)) ⊆ T (U).

Thus T (U) is open and the proof is complete. □

Theorem 3.11 (Open Mapping). Suppose that X is a Banach space, Y is a normed
vector space and T : X → Y is bounded. If the range of T is of second category, then
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(i) T (X ) = Y;
(ii) Y is complete (so a Banach space); and
(iii) T is open.

In particular, if X ,Y are Banach spaces, and T : X → Y is bounded and onto, then
T is an open map.

Proof. Assuming T is open and letting B denote the open unit ball in X , by Lemma 3.10,
there is an r > 0 such that BY(0, r) ⊆ T (B). Hence,

Y = ∪∞
n=1B

Y(0, n r) ⊆ T (nB) ⊆ T (X ),

so that item (i) holds. (Here the superscript Y is used to emphasize this ball is in Y .)
That is, item (iii) implies item (i).

To prove item (iii), let B(x, r) denote the open ball of radius r centered at x in X .
Trivially X =

⋃∞
n=1B(0, n) and thus rangeT = T (X ) =

⋃∞
n=1 T (B(0, n)). Since the

range of T is assumed second category, there is an N such that T (B(0, N)) is second

category and hence somewhere dense. In other words, T (B(0, N)) has nonempty interior.

By scaling (see Lemma (3.10)), T (B(0, 1)) has nonempty interior. Hence, there exists

p ∈ Y and r > 0 such that T (B(0, 1)) contains the open ball BY(p, r). It follows that
for all ∥y∥ < r,

y = (y + p)− p ∈ T (B(0, 1)) + T (B(0, 1)) ⊆ T (B(0, 2)),

where we have used −T (B(0, 1)) = T (B(0, 1)). In other words,

BY(0, r) ⊆ T (B(0, 2)).

By scaling, it follows that, for n ∈ N,

BY(0,
r

2n+1
) ⊆ T (B(0,

1

2n
)).

END Friday 2025-01-31

We will use the hypothesis that X is complete to prove BY(0, r
4
) ⊆ T (B(0, 1)), which,

by Lemma 3.10, implies T is open. Accordingly let y such that ∥y∥ < r
4
be given. Since

y is in the closure of T (B(0, 1
2
)), there is a y1 ∈ T (B(0, 1

2
)) such that ∥y−y1∥ < r

8
. Since

y − y1 ∈ BY(0, r
8
) it is is in the closure of T (B(0, 1

4
)). Thus there is a y2 ∈ T (B(0, 1

4
))

such that ∥(y − y1)− y2∥ < r
16
. Continuing in this fashion produces a sequence (yj)

∞
j=1

from Y such that,

(a) ∥y −
∑n

j=1 yj∥ ≤ r
2n+2 ; and

(b) yn ∈ T (B(0, 1
2n
))

for all n. It follows the sequence (sm =
∑m

j=1 yj)m converges to y. Further, for each

j there is an xj ∈ B(0, 1
2j
) such that yj = Txj. Thus, setting tm =

∑m
j=1 xj, we have
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Tsm = tm and
∞∑
j=1

∥xj∥ <
∞∑
k=1

2−k = 1,

thus the sequence (tm)m converges to some x with ∥x∥ ≤
∑∞

j=1 ∥xj∥ < 1, that is,

x ∈ B(0, 1). It follows that y = Tx by continuity of T . Consequently y ∈ T (B(0, 1))
and the proof of item (iii) is complete.

To prove item (ii), let M denote the kernel of T and T̃ the mapping T̃ : X/M → Y
determined by T̃ π = T ; that is T̃ (π(x)) = T (x) for x ∈ X . By construction T̃ is one-one
and by Lemma 2.35, it is continuous. Further its range is the same as the range of T ,

namely Y , and is thus second category. Hence, by what has already been proved, T̃ is

an open map. and consequently T̃−1 is continuous. Hence X/M and Y are isomorphic
(though of course not necessarily isometrically isomorphic) as normed vector spaces.
Therefore, since X/M is complete (Proposition 1.29), so is Y . □

Note that the proof of item (ii) in the Open Mapping Theorem shows, in the case
that in the case that T is one-one and its range is of second category, that T is onto and
its inverse is continuous. In particular, if T : X → Y is a continuous bijection and Y is
a Banach space (so the range of T is second category), then T−1 is continuous.

Corollary 3.12 (The Banach Isomorphism Theorem). If X ,Y are Banach spaces and
T : X → Y is a bounded bijection, then T−1 is also bounded (hence, T is an isomor-
phism).

Proof sketch. Note that when T is bijection, T is open if and only if T−1 is continuous.
The result thus follows from the Open Mapping Theorem and Proposition 1.32. □

The following examples show that the hypothesis that X and Y are Banach spaces,
and not just normed vector spaces, is needed in Corollary 3.12.

Example 3.13. This example shows that the assumption that the range of T is second
category in Y is necessary in Theorem 3.11.

Let X denote the Banach space ℓ1 and let Y = ℓ1 as a linear manifold in c0 with
the c0 (sup) norm. So Y is a normed space, but not a Banach space. The identity map
ιX toY is a bijection. It is also continuous since the supremum norm of an element of ℓ1

dominates its ℓ1 norm. Let G = BX (0, 1) ⊆ X denote the (open) unit ball in X. Thus
G is open in X . Given r > 0 choose n ∈ N such that n > 2

r
and let x = r

2

∑n
j=1 ej, where

ej ∈ ℓ1 is the function ej : N → F defined by

ej(m) =

{
1 if m = j

0 if m ̸= j.
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Observe that ∥x∥∞ < r, but ∥x∥1 > 1. Hence x ∈ BY(0, r), but x /∈ G. Thus BY(0, r) ̸⊆
G for any choice of r > 0, which means 0 is not an interior point of G (in Y). Hence G
is not open in Y .

The argument above of course shows that the range of ι is not second category in
Y . Here is simple direct proof of this fact. First note that the sequence gn = 1

n

∑n
j=1 ej

converges to 0 in c0 and gn ∈ ℓ1 with ∥gn∥1 = 1. For N ∈ N, let BN = {f ∈ ℓ1 : ∥f∥1 ≤
N} ⊆ Y . Verify that each BN is closed in Y . On the other hand, given N, the sequence
fk = f+3Ngk converges to f in c0 and so in Y , but ∥f+3Ngk∥ ≥ 3N−∥f∥ ≥ 2N > N.
Thus f is not in the interior of BN and so BN is nowhere dense and Y = ∪∞

N=1BN .

Example 3.14. This example shows that the assumption X is a Banach space can not
be relaxed to X is simply a normed vector space in Theorem 3.11.

Let Y be an infinite dimensional Banach space. Let λ be a discontinuous linear
functional, whose existence is the content of Proposition 2.14. As an exercise, show that
the function ∥ · ∥∗ : Y → [0,∞) given by

∥x∥∗ = ∥x∥Y + |λ(x)|
is a norm on Y . Let X denote the normed space Y with this norm; that is X = (Y , ∥·∥∗).
Let T : X → Y denote the identity map (so bijective). Let G denote the unit ball in X .
We claim 0 is not in the interior of G as a subset of Y . Indeed, since λ is not continuous,
there is a sequence (xn) of unit vectors in Y such that |λ(x)| ≥ n. Consequently, given
r > 0 and choosing n sufficiently large, ∥ r

2
xn∥Y < r, but ∥ r

2
xn∥∗ > 1. Thus B(0, r) ̸⊆ G

proving the claim.

A consequence of the argument is that X is not a Banach space. To verify this fact
directly, let y /∈ kerλ be given. By Proposition prop:bdd-lf-iff-cns, there is a sequence
(xn) from kerλ that converges to x (in Y). Since ∥xn∥∗ = ∥x∥Y , the sequence (xn) is
Cauchy in X . However, since ∥xn − y∥∗ = ∥xn − y∥Y − λ(y), the sequence (xn) does
not converge to y in X . Now suppose (xn) converged to some z ∈ X . Thus z ∈ Y and
∥xn − z∥∗ = ∥xn − z∥Y + λ(z) converges to 0 from which it follows that z = y and the
proof is complete.

This result depends on the axiom of choice. In this proof, choice is smuggle in
through the appeal to Propostion 2.14, whose proof in turn depended on the existence
of a Hamel basis, which in turn uses Zorn’s Lemma (choice). □

END Monday 2025-02-03 - except had not discussed the Banach Isomorphism The-
orem.

3.5. The Closed Graph Theorem. Recall that the Cartesian product X × Y of Ba-
nach spaces X and Y with its default product topology from Subsection 1.2.7. In
particular, the product topology on X × Y is the coarsest topology that makes both
coordinate projections πX and πY from X ×Y to X and Y respectively continuous. This
topology is the same as that determined by the norms in equation (2).
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Definition 3.15. The graph of a linear map T : X → Y between normed vector spaces
is the set

G(T ) := {(x, y) ∈ X × Y : y = Tx}.
Observe that since T is a linear map, G(T ) is a linear subspace of X ×Y . The transfor-
mation T is closed if G(T ) is a closed subset of X × Y . □

It is an easy exercise to show that G(T ) is closed if and only if whenever (xn, Txn)
converges to (x, y), we have y = Tx. Problem 3.2 gives an example where G(T ) is closed,
but T is not continuous. On the other hand, the next theorem says that if X ,Y are
complete (Banach spaces), then G(T ) is closed if and only if T is continuous.

Theorem 3.16 (The Closed Graph Theorem). If X ,Y are Banach spaces and T : X →
Y is closed, then T is bounded.

Proof. We prove T closed implies T is bounded, leaving the easy converse as an exercise.
With the norm ∥(x, y)∥∞ = max{∥x∥, ∥y∥} the vector space X×Y is a Banach space with
the product topology. The coordinate projections πX , πY are bounded with norm one.
Let π1, π2 be the coordinate projections πX , πY restricted to G(T ); explicitly π1(x, Tx) =
x and π2(x, Tx) = Tx. Note that π1 is a bijection between G(T ) and X and in particular
π−1
1 (x) = (x, Tx). By hypothesis G(T ) is a closed subset of a Banach space and hence

a Banach space. Thus π1 is a bounded linear bijection between Banach spaces and
therefore, by Corollary 3.12, π−1

1 : X → G(T ) is bounded. Since π2 is bounded, π2◦π−1
1 :

X → Y is continuous. To finish the proof, observe π2 ◦ π−1
1 (x) = π2(x, Tx) = Tx. □

3.6. Problems.

Problem 3.1. Show that there exists a sequence of open, dense subsets Un ⊆ R such
that m(

⋂∞
n=1 Un) = 0.

Problem 3.2. Consider the linear subspace D ⊆ c0 defined by

D = {f ∈ c0 : lim
n→∞

|nf(n)| = 0}

and the linear transformation T : D → c0 defined by (Tf)(n) = nf(n).

a) Prove T is closed, but not bounded. b) Prove T is bijective and T−1 : c0 → D is
bounded (and surjective), but not open. c) What can be said of D as a subset of c0?

Problem 3.3. Suppose X is a vector space equipped with two norms ∥ · ∥1, ∥ · ∥2 such
that ∥ · ∥1 ≤ ∥ · ∥2. Prove that if X is complete in both norms, then the two norms are
equivalent.

Problem 3.4. Let X ,Y be Banach spaces. Provisionally, say that a linear transforma-
tion T : X → Y is weakly bounded if f ◦ T ∈ X ∗ whenever f ∈ Y∗. Prove, if T is weakly
bounded, then T is bounded.
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Problem 3.5. Let X ,Y be Banach spaces. Suppose (Tn) is a sequence in B(X ,Y) and
limn Tnx exists for every x ∈ X . Prove, if T is defined by Tx = limn Tnx, then T is
bounded.

Problem 3.6. Suppose that X is a vector space with a countably infinite basis. (That
is, there is a linearly independent set {xn} ⊆ X such that every vector x ∈ X is
expressed uniquely as a finite linear combination of the xn’s.) Prove there is no norm
on X under which it is complete. (Hint: consider the finite-dimensional subspaces
Xn := span{x1, . . . xn}.)

Problem 3.7. The Baire Category Theorem can be used to prove the existence of
(very many!) continuous, nowhere differentiable functions on [0, 1]. To see this, let En

denote the set of all functions f ∈ C[0, 1] for which there exists x0 ∈ [0, 1] (which may
depend on f) such that |f(x) − f(x0)| ≤ n|x − x0| for all x ∈ [0, 1]. Prove the sets En

are nowhere dense in C[0, 1]; the Baire Category Theorem then shows that the set of
nowhere differentiable functions is second category. (To see that En is nowhere dense,
approximate an arbitrary continuous function f uniformly by piecewise linear functions
g, whose pieces have slopes greater than 2n in absolute value. Any function sufficiently
close to such a g will not lie in En.)

Problem 3.8. Let L2([0, 1]) denote the Lebesgue measurable functions f : [0, 1] → C
such that |f |2 is in L1([0, 1]). It turns out, as we will see later, that L2([0, 1]) is a linear
manifold (subspace of the vector space L1([0, 1])), though this fact is not needed for this
problem.

Let gn : [0, 1] → R denote the function which takes the value n on [0, 1
n3 ] and 0

elsewhere. Show,

(i) if f ∈ L2([0, 1]), then limn→∞
∫
gnf dm = 0;

(ii) Ln : L1([0, 1]) → C defined by Ln(f) =
∫
gnf dm is bounded, and ∥Lg∥ = n;

(iii) conclude L2([0, 1]) is of the first category in L1([0, 1]).

Problem 3.9. A Banach space of functions on a set X is a vector subspace B of the
space of complex-valued functions on X with a norm ∥·∥ making B a Banach space such
that, for each x ∈ X, the mapping Ex : B → C defined by Ex(f) = f(x) is continuous
(bounded) and if f(x) = 0 for all x ∈ X, then f = 0.

Suppose g : X → C. Show, if gf ∈ B for each f ∈ B, then the linear map
Mg : B → B defined by Mgf = gf is bounded.

Problem 3.10. Suppose X is a Banach space and M and N are closed subspaces.
Show, if for each x ∈ X there exist unique m ∈ M and n ∈ N such that

x = m+ n,

then the mapping P : X → M defined by Px = m is bounded.



49

Problem 3.11. Let X be a Banach space and M ⊆ X a closed subspace. A linear
transformation P : X → M is called a bounded projection if it is bounded and P (m) = m
for all m ∈ M. Prove that if M is a closed subspace and there exists a bounded
projection P : X → M, then there exists a closed subspace N ⊆ X such that M∩N =
{0} and X = M + N . Show also that in this case there exists a bounded projection
Q : X → N .

Remark: Given a closed subspace M ⊆ X , we say M is (topologically) comple-
mented if there exists a closed subspaceN ⊆ X such thatM∩N = {0} andM+N = X .
Taken together, the last two problems show that a closed subspace M ⊆ X is comple-
mented if and only if there is a bounded projection P : X → M. Not every subspace of
a Banach space is necessarily complemented, for example c0 is not complemented in ℓ∞,
though this is nontrivial to prove.

Problem 3.12. Here, for definiteness we take the scalar field R.
Let T : ℓ∞ → ℓ∞ denote the backward shift operator defined by Tf(n) = f(n+ 1)

A bounded linear functional λ : ℓ∞ → R satisfying,

(i) if f ∈ ℓ∞ and (f(n)) converges, then λ(f) = limn→∞ f(n); and
(ii) λ(Tf) = λ(f)

is a Banach Limit .

Prove

(a) Banach limits exist.
(b) If λ is a Banach limit and f ∈ ℓ∞, then

lim inf f(n) ≤ λ(f) ≤ lim sup f(n).

A sequence f ∈ ℓ∞ for which (f(n)) does not converge, but λ(f) = µ(f) for all
Banach limits λ and µ is almost convergent . Show that g defined by g(n) = (−1)n is
almost convergent. (Suggestion: given a Banach limit λ, consider λ(g + Tg).

Problem 3.13. Prove that Q is not a Gδ set.

4. Lp spaces

Throughout this section, (X,M , µ) is a measure space and X ̸= ∅.

Definition 4.1. For 0 < p < ∞, let Lp(µ) denote the space of measurable functions
f : X → F that satisfy

∥f∥p :=
(∫

X

|f |p dµ
)1/p

<∞.

Lemma 4.2. Suppose 0 < p < ∞. If f, g ∈ Lp(µ) and c ∈ F, then ∥f + g∥pp ≤
2p
(
∥f∥pp + ∥g∥pp

)
and ∥cf∥p = |c| ∥f∥p. Hence Lp(µ) is a vector space.
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Later we will show, for 1 ≤ p ≤ ∞, that ∥ · ∥p is a semi-norm on Lp(µ).

Sketch of proof. The equality ∥cf∥p = |c| ∥f∥p is immediate. As a pointwise inequality,
|f + g| ≤ |f |+ |g| ≤ 2 max{|f |, |g|}. Hence,

|f + g|p ≤ 2pmax{|f |, |g|}p = 2pmax{|f |p, |g|p} ≤ 2p(|f |p + |g|p),

from which the rest of the result follows. □

END Wednesday 2025-02-05

Definition 4.3. A measurable function f : X → F is essentially bounded if there is a
t > 0 such that

µ({|f | > t}) = 0

and let L∞(µ) denote the set of essentially bounded functions on (X,M , µ).

Define ∥ · ∥∞ : L∞(µ) → [0,∞) by

(15) ∥f∥∞ = inf{t > 0 : µ({|f | > t}) = 0}.

Proposition 4.4. The set L∞(µ) is a vector space. Further, the infimum in equa-
tion (15) is attained and ∥ · ∥∞ is a semi-norm on L∞(µ).

It is customary to write Lp instead of Lp(µ) when the µ is understood (or generic).

Proof. It is evident that, if c ∈ F and f ∈ L∞ then cf ∈ L∞ and ∥cf∥∞ = |c| ∥f∥∞.
Now suppose f, g ∈ L∞. Let s, t > 0 be given such that s > ∥f∥∞ and t > ∥g∥∞. By
definition, the (measurable) sets A = {|f | > t} and B = {|g| > s} have measure 0.
Let C = {|f + g| > s + t}. Hence A ∪ B has measure 0 and by the triangle inequality
Ac ∩ Bc ⊆ Cc. Thus C ⊆ A ∪ B and hence C has measure 0. Thus f + g ∈ L∞(µ) and
∥f + g∥ ≤ s+ t. It now follows that ∥f + g∥ ≤ ∥f∥∞ + ∥g∥∞ and hence L∞ is a vector
space and ∥ · ∥∞ is a semi-norm on L∞.

That the infimum is attained in equation (15) is left as an (easy) exercise based
upon the fact that a countable union of sets of measure zero has measure zero. □

We record the following simple observation for later use - often without comment.

Lemma 4.5. If 0 < p ≤ ∞ and f ∈ Lp(µ), then ∥f∥p = 0 if and only if f = 0 almost
everyewhere.

Proof. For 0 < p < ∞, by assumption g = |f |p is unsigned
∫
g = ∥f∥pp. Since g = 0

almost everywhere if and only if
∫
g = 0, the result follows. □
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4.1. Conjugate indices and the inequalities of Young, Holder and Minkowski.
We now restrict our attention to 1 ≤ p ≤ ∞.

Definition 4.6. The conjugate index or dual exponent to 1 < p < ∞ is the unique
1 < q <∞ satisfying

1

p
+

1

q
= 1.

The dual index to p = ∞ is q = 1; and the dual index to p = 1 is q = ∞. □

Note that (p− 1)q = p and likewise (q − 1)p = q. The significance of dual indices is
apparent in the following result.

Lemma 4.7 (Young’s inequality). If a, b are nonnegative numbers and 1 < p, q < ∞
are dual indices, then

ab ≤ ap

p
+
bq

q

and equality holds if and only if bq = ap.

Proof. If a or b is 0 there is nothing to prove. So suppose a, b > 0. Define ψ : R → R
by ψ(t) = ap(1−t)bqt. A bit of rearranging gives ψ(t) = ap · exp(ct), where c = log(bq/ap).
The function ψ is infinitely differentiable and

ψ′′(t) = c2 ψ(t) > 0.

Thus ψ is convex. In particular, (using the fact that 1
p
+ 1

q
= 1)

(16) ψ

(
1

q

)
= ψ

(
1

p
· 0 + 1

q
· 1
)

≤ 1

p
ψ(0) +

1

q
ψ(1) =

ap

p
+
bq

q
.

For the case of equality, note that ψ(t) is strictly convex unless c = 0 (ap = bq), in which
case ψ is constant. □

For an alternate geometric proof of Lemma 4.7, see Problem 2.9.

Theorem 4.8 (Hölder’s inequality). Suppose 1 ≤ p ≤ ∞ and q is the conjugate index
to p. If f ∈ Lp and g ∈ Lq, then fg ∈ L1, and

(17) ∥fg∥1 ≤ ∥f∥p∥g∥q.

Further, assuming 1 ≤ p < ∞ and f ∈ Lp(µ), if ∥f∥p ̸= 0, then there exists a
g ∈ Lq(µ) such that

(i) ∥g∥q = 1;
(ii) fg ≥ 0; and
(iii)

(18) ∥fg∥1 =
∫
fg = ∥f∥p ∥g∥q = ∥f∥p.
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If µ has the property that every set of positive measure contains a set of positive,
but finite, measure and f ∈ L∞(µ), then

∥f∥∞ = sup{∥fg∥1 : g ∈ L1(µ), ∥g∥1 = 1}.

Remark 4.9. For f ∈ L1(µ) of course equality holds in equation (17) with g = 1.

The assumption that (X,M , µ) has the property that every (measurable) set of
positive measure contains a set of finite measure is needed as the following example
shows. For the measure space ({0}, {∅, {0}}, µ), where µ(∅) = 0 and µ({0}) = ∞, we
have L1(µ) = {0} and thus ∥fg∥1 = 0 for all f ∈ L∞(µ) and g ∈ L1(µ). □

Proof of Theorem 4.8. The proof is easy in the cases p = ∞ or p = 1. Now suppose
1 < p <∞.

If ∥f∥p = 0, then f = 0 a.e. by Lemma 4.5. Hence fg = 0 a.e. and, by another
application of Lemma 4.5, ∥fg∥1 = 0. Thus the inequality of equation (17) holds. By
symmetry, the same is true for g. Hence we may assume ∥f∥p ̸= 0 ̸= ∥g∥q.

By homogeneity we may assume ∥f∥p = ∥g∥q = 1. We are to show∫
|fg| dµ ≤ 1.

Applying Lemma 4.7 gives

(19) |f(x)g(x)| ≤ 1

p
|f(x)|p + 1

q
|g(x)|q.

Integrating (19) with respect to µ and applying the normalizations on p, q, f, g gives the
inequality of equation (17). Further, observe, in the case 1 < p, q < ∞, that equality
holds in Hölders in inequality if and only if equality holds a.e. µ in equation (19) if and
only if |f |p = |g|q a.e. µ by Lemma 4.7.

To prove the further portion of the theorem, suppose 1 < p < ∞ and f ∈ Lp(µ)
satisfies ∥f∥p = 1. Let g = |f |p f−1 (interpreting g as 0 when f is 0). From |g|q =
|f |(p−1)q = |f |p it follows that g ∈ Lq(µ) and ∥g∥q = 1. Further, fg = |f |p so that
∥fg∥1 = 1 = ∥f∥p and hence equation (18) holds. (Note that a small tweak to this
argument also handles the case p = 1.)

For the last statement, suppose every subset S of X with µ(S) = ∞ contains a set
T for which 0 < µ(T ) < ∞ and let f ∈ L∞(µ) be given. Without loss of generality,
∥f∥∞ = C > 0. Given 0 < ρ < C, the set E = {|f | > ρ} has positive measure. Thus
there is a set F ⊆ E such that 0 < µ(F ) < ∞. Let g = 1

µ(F )
χF , where χF is the

characteristic function of F. Observe g ∈ L1(µ) and ∥g∥1 = 1. Moreover, |fg| ≥ ρg and
hence ∥fg∥1 ≥ ρ∥g∥1 and the result follows. □

END Friday 2025-02-07
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Example 4.10. One can get a more intuitive feel for what Hölder’s inequality says by
examining it in the case of step functions. Let E,F be sets of finite, positive measure
and put f = 1E, g = 1F . Then ∥fg∥1 = µ(E ∩ F ) and

∥f∥p∥q∥q = µ(E)1/pµ(F )1/q,

so Hölder’s inequality can be proved easily in this case using the relation 1
p
+ 1

q
= 1 and

the fact that µ(E ∩ F ) ≤ min(µ(E), µ(F )).

Corollary 4.11 (Minkowski’s inequality). Let (X,M , µ) be a measure space and sup-
pose 1 ≤ p ≤ ∞. If f, g ∈ Lp(µ), then

∥f + g∥p ≤ ∥f∥p + ∥g∥p.

Hence ∥ · ∥p is a semi-norm on Lp(µ).

Proof. The result has already been established for p = 1 and p = ∞ so suppose 1 <
p < ∞ and let q denote the conjugate index to p. By Lemma 4.2, f + g ∈ Lp(µ). The
result is vacuous if f + g = 0 (almost everywhere); equivalenlty, ∥f + g∥p = 0. Now
suppose ∥f + g∥p ̸= 0. By Theorem 4.8, there is an h ∈ Lq(µ) such that ∥h∥q = 1 and
∥(f + g)h∥1 = ∥f + g∥p. On the other hand, two more applications of Theorem 4.8 and
the fact that ∥ · ∥1 is a semi-norm gives,

∥f + g∥p = ∥(f + g)h∥1 ≤ ∥fh∥1 + ∥gh∥1 ≤ ∥f∥p∥h∥1 + ∥g∥p∥h∥1 = ∥f∥p + ∥g∥p. □

4.2. The Lebesuge spaces Lp(µ). The proof of the following proposition, based on
Lemma 4.5 is left to the gentle reader.

Proposition 4.12. The set N (ν) = {f ∈ Lp(µ) : ∥f∥p = 0} is a subspace of Lp(µ) and
the function ∥ · ∥p descends to a norm on the quotient space Lp(µ)/N (µ).

Definition 4.13. The normed vector space (Lp(µ)/N (µ), ∥ · ∥p) (for 1 ≤ p ≤ ∞) is
denoted Lp(µ) and is known as a Lebesgue space.

Suppose 1 ≤ p ≤ ∞ and q is the conjugate index to p. Fix g ∈ Lq(µ). For f ∈ Lp(µ),
Hölder’s inequality (Theorem 4.8) implies gf ∈ L1(µ) and moroever ∥fg∥1 ≤ ∥f∥p ∥g∥q.
Thus, we obtain a bounded linear functional Lg : Lp(µ) → F of norm at most ∥g∥q
defined by

Lg(f) = gf.

Hence we obtain a bounded map (with norm at most one) Φ : Lq(µ) → Lp(µ)∗.

Proposition 4.14. For 1 < p ≤ ∞, the mapping Φ : Lq(µ) → Lp(µ)∗ defined by
Φ(g) = Lg is isometric.

When p = 1, if µ is σ-finite, then Φ : L∞(µ) → L1(µ)∗ is isometric.
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Remark 4.15. In the case p = 1 it suffices to assume that (X,M , µ) has the property
that every set S such that µ(S) = ∞ contains a subset T with 0 < µ(T ) <∞.

Returning to the example in Remark 4.9 where L1(µ) = {0}, the map Φ is not
one-one. Since in this case Lp(µ)∗ = {0}, but L∞(µ) = F isometrically, Φ is the zero
map and, in particular, Φ(1) = 0.)

Later we will see that the map Φ in Proposition 4.14 is an isometric isomorphism
for 1 ≤ p <∞, with the proviso that µ is σ-finite in the case p = 1.

Proof of Proposition 4.14. Let g ∈ Lq(µ) be given. If ∥g∥q = 0, then Lg = 0 so that the
results holds, even when p = 1 without conditions on the measure space (X,M , µ).

Now suppose 1 < p ≤ ∞ and ∥g∥q ̸= 0. As already observed, ∥Ψ(g)∥ = ∥Lg∥ ≤ ∥g∥q,
for g ∈ Lq(µ). On the other hand, since 1 ≤ q < ∞, for 0 ̸= g ∈ Lq(µ), the moreover
portion of Hölder’s Inequality (Theorem 4.8) gives a function f ∈ Lp(µ) such that
∥f∥p = 1 and

Lg(f) =

∫
fg = ∥g∥q.

Hence ∥Lg∥ ≥ ∥g∥q and thus ∥Lg∥ = ∥g∥q.
In the case p = 1 and µ satisfies the hypothesis of the additional hypotheses given,

Hölder’s inequality implies that, for each 0 ≤ ρ < ∥g∥∞, there is an f ∈ L1(µ) such
that ∥f∥1 = 1 and |Lg(f)| = ∥fg∥1 > ρ. Thus ∥Lg∥ ≥ ∥g∥∞ and consequently ∥Lg∥ =
∥g∥∞. □

Proposition 4.16. For 1 ≤ p ≤ ∞, the normed vector space Lp(µ) is a Banach space.

Proposition 4.16 is a near immediate consequence of the following lemma.

Lemma 4.17. Suppose 1 ≤ p ≤ ∞ and (fn)
∞
n=1 is a sequence from Lp(µ). If for each

ϵ > 0 there is an N such that if m,n ≥ N, then ∥fn − fm∥p < ϵ, then there is an
f ∈ Lp(µ) such that

(a) the sequence (∥fn − f∥p)n converges to 0;
(b) there is subsequence (fnk

) of (fn) that converges to f pointwise almost everywhere.

END Monday 2025-02-10

Sketch of proof. The proof for the case 1 ≤ p <∞ is very much like the case p = 1 that
has already been established and is just sketched here.

There is a subsequence (gk)
∞
k=1 of (fn) such that ∥gk+1−gk∥ < 2−k for k ≥ 1. Setting

g0 = 0, the series
∑∞

k=0 ∥gk+1−gk∥p converges. (The subsequence (gk) is super-Cauchy.)
Let

hm =
m∑
k=0

|gk+1 − gk|
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and let h denote the pointwise limit (in [0,∞]) of the non-negative increasing sequence
(hm). By the Monotonne Convergence Theorem,∫

hp = lim

∫
hpm.

Thus,

(20) ∥h∥p = lim ∥hm∥p.s

The inequality,

∥hm∥p ≤
m∑
k=0

∥gk+1 − gk∥p ≤

[
∞∑
k=0

∥gk+1 − gk∥p

]p
<∞

and equation (20) implies h ∈ Lp. Thus

h =
∞∑
k=0

|gk+1 − gk|

is finite almost everywhere and hence,
m∑
k=0

(gk+1 − gk) = gm+1

also converges almost everywhere to a measurable function f. That is, the sequence (gk)
converges pointwise to f. Further, since |f | ≤ h and h ∈ Lp, it follows that f ∈ Lp.

By construction, for m fixed, if n > m, then ∥gn − gm∥p < 21−m and (|gn − gm|p)n
converges pointwise almost everywhere to |f − gm|p. Thus, by Fatou,

∥f − gm∥pp =
∫

|f − gm|p ≤ lim inf

∫
|gn − gm|p = lim inf ∥gn − gm∥pp < 21−m.

Thus the sequence (∥f − gm∥p)m converges to 0.

A standard fact that, in a metric space X, if (xn) is Cauchy and if there is an x ∈ X
and a subsequence (xnk

) of (xn) that converges to x, then (xn) converges to x. Thus,
from what has been proved, (fn) converges to f in Lp and the subsequence (gk) of (fn)
converges to f pointwise, completing the proof for 1 ≤ p <∞.

The case p = ∞ follows from the fact that, for g ∈ L∞(µ), the set {|g| > ∥g∥∞}
has measure 0 (Proposition 4.4) so that it can be assumed that |g| is bounded by ∥g∥∞.
From here the proof is very much like the proof of completeness of the space Fb(X,F) of
bounded functions on a set X with the supremum norm. (See Proposition 1.16) In par-
ticular, a Cauchy sequence (fn) converges pointwise almost everywhere (no subsequence
is needed). The details are left to the reader. □

Corollary 4.18. If (fn) is a sequence from Lp(µ) (1 ≤ p ≤ ∞) that converges to f
in Lp(µ), then there is a subsequence (fnk

) of (fn) that converges to f pointwise almost
everywhere.
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Proof. The sequence (fn) (viewed as representative of their respective equivalence classes)
satisfies the hypotheses of Lemma 4.17. Hence there is a g ∈ Lp(µ) and subsequence (gk)
of (fn) that converges to g both in Lp(µ) and pointwise almost everywere. By uniqueness
of limits, g = f as elements of Lp(µ); that is, almost everywhere. Thus (gk) converge to
f pointwise almost everywhere. □

Corollary 4.19. Suppose 1 ≤ p ≤ ∞ and (fn) is a sequence from Lp(µ). If (fn) con-
verges to f in Lp(µ) and to g pointwise a.e., then f = g a.e.; that is, the pointwise limit
and Lp(µ) limit are the same (almost everywhere).

Example 4.20. [The typewriter sequence] Define fn : [0, 1] → R by

fn(x) = χ
(n−2k

2k
,n+1−2k

2k
]
, for 2k ≤ n < 2k+1,

(here χ is the indicator function) viewed as functions in L1(m) for Lebesgue measure m
on [0, 1]. The sequence (fn) converges to 0 in L1(m), but does not converge pointwise
anywhere. On the other hand, the subsequence (gk = f2k) converges to 0 pointwise
(everywhere).

Example 4.21. Let (X,M , µ) denote a measure space and suppose h : X → F is
a measurable function. Given 1 ≤ p, r ≤ ∞, if hf ∈ Lr for each f ∈ Lp, then the
linear mapping Mh : Lp → Lr is bounded. As an example of what more can be said, if
µ(X) <∞ and p = 2 = r, then h ∈ L∞.

Use the Closed Graph Theorem as follows. Suppose (fn,Mhfn) is a sequence that
converges to (f, g) in Lp×Lr. Apply Corollary 4.18 to (fn) and f to obtain a subsequence
(gk) of (fn) converging to f pointwise a.e. and of course in Lp. Apply Corollary 4.18 to
(hgk) and g to deduce g = hf. Now use Closed Graph.

For the bit about L2, make an argument like the one at the end of the proof of
Hölder’s inequality.

4.3. Problems.

Problem 4.1. Suppose f : [0, A] → [0,∞) is differentiable, strictly increasing and
f(0) = 0. Prove, for each 0 < a ≤ A, that∫ x

0

f +

∫ f(x)

0

f−1 = xf(x).

[Suggestion: Differentiate g(x) =
∫ x

0
f +

∫ f(x)

0
f−1 − xf(x).] Deduce Young’s inequality.

Problem 4.2. [Truncation of Lp functions] Suppose f is an unsigned function in Lp(µ),
1 < p <∞. For t > 0 let

Et = {x : f(x) > t}.
Show:
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(a) For each real number t > 0, the horizontal truncation 1Etf belongs to Lq for all
1 ≤ q ≤ p.

(b) For each real number t > 0, the vertical truncation ft := min(f, t) belongs to Lq for
all p ≤ q ≤ ∞.

(c) Every f ∈ Lp, 1 < p < ∞, can be decomposed as f = g + h where g ∈ L1 and
h ∈ L∞.

Problem 4.3. Suppose f ∈ Lp0∩L∞ for some p0 <∞. Prove f ∈ Lp for all p0 ≤ p ≤ ∞,
and limp→∞ ∥f∥p = ∥f∥∞.

Problem 4.4. Prove fn → f in the L∞ norm if and only if fn → f essentially uniformly,
and that L∞ is complete.

Problem 4.5. Show that Lp(R) ̸⊆ Lq(R) for any pair p, q.

Problem 4.6. Consider L∞(R).

a) Show that M := C0(R) is a closed subspace of L∞(R) (more precisely, that the
set of L∞ functions that are a.e. equal to a C0 function is closed in L∞). Prove
there is a bounded linear functional λ : L(R)∞ → F such that λ|M = 0 and
λ(1R) = 1.

b) Prove there is no function g ∈ L1(R) such that λ(f) =
∫
R fg dm for all f ∈ L∞.

(Hint: look at the restriction of λ to C0(R).)

5. Hilbert Space

5.1. Inner product spaces.

Definition 5.1. Let V denote a vector space over C. A function ⟨·, ·⟩ : V × V → C is a
inner product if, for all f, g, h ∈ V and c ∈ C,

(a) ⟨f, f⟩ ≥ 0;
(b) ⟨f, f⟩ = 0 if and only if f = 0;
(c) ⟨f + cg, h⟩ = ⟨f, h⟩+ c ⟨g, h⟩;
(d) ⟨g, f⟩ = ⟨f, g⟩.

END Wednesday 2025-02-12

Proposition 5.2. An inner product on a vector space V satisfies the the Cauchy–
Schwarz inequality,

|⟨f, g⟩|2 ≤ ⟨f, f⟩ ⟨g, g⟩.
Equality holds if and only if f and g are linearly dependent.

The function ∥ · ∥ : V → C defined by ∥f∥ =
√
⟨f, f⟩ is a norm on V and, with this

notation, the CS inequality becomes

|⟨f, g⟩| ≤ ∥f∥ ∥g∥.
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Further, ∥f + g∥ = ∥f∥ + ∥g∥ if and only if either f = 0 or there is a t ≥ 0 such
that g = tf.

Remark 5.3. Given an inner product space V = (V, ⟨·, ·⟩), we endow it with the norm
- and hence metric - arising from the inner product.

Lemma 5.4 (Joint continuity of the inner product). Let H be an inner product space
equipped with its norm topology. If (xn) converges to x and (yn) converges to y in H,
then (⟨xn, yn⟩) converges to ⟨x, y⟩.

Proof. By Cauchy-Schwarz,

|⟨xn, yn⟩ − ⟨x, y⟩| ≤ |⟨xn, yn − y⟩|+ |⟨xn − x, y⟩| ≤ ∥xn∥∥yn − y∥+ ∥xn − x∥∥y∥ → 0,

since ∥xn − x∥, ∥yn − y∥ → 0 and the sequence ∥xn∥ is bounded. □

Definition 5.5. A Hilbert space H over F is an inner product space over F that is
complete in the metric d(x, y) = ∥x− y∥ =

√
⟨x− y, x− y⟩. (Here, as usual, F is either

C or R.)
We continue to use the notation M ≤ H to indicate M is a (closed) subspace of H

from Definition 1.26.

Example 5.6 (Fn). It is easy to check that the standard scalar product on Rn is an
inner product; it is defined as usual by

(21) ⟨x, y⟩ =
n∑

j=1

xjyj

where we have written x = (x1, . . . xn); y = (y1, . . . yn). Similarly, the standard inner
product of vectors z = (z1, . . . zn), w = (w1, . . . wn) in Cn is given by

(22) ⟨z, w⟩ =
n∑

j=1

zjwj.

(Note that it is necessary to take complex conjugates of the w’s to obtain positive
definiteness.)

It is straightforward to check that equations (21) and (22) define inner products on
Rn and Cn respectively that induce the Euclidean norm. Since these Euclidean spaces
are complete, they are Hilbert spaces.

Example 5.7 (L2(µ)). Let (X,M , µ) be a measure space. Given f, g ∈ L2(µ), by
Hölder’s inequality (Theorem 4.8), the function fg ∈ L1(µ) and ∥fg∥ ≤ ∥f∥2 ∥g∥2.
From here it is a simple exercise to verify that the Banach space L2(µ) is the inner
product space with the inner product,

(23) ⟨f, g⟩ =
∫
X

fg dµ.
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That is, equation (23) is an inner product and the norm on L2(µ) is the norm derived
from this inner product.

Example 5.8 (ℓ2(N)). Let

ℓ2(N) = {(a1, a2, . . . an, . . . ) | an ∈ F,
∞∑
j=1

|an|2 <∞}.

This space is L2(c) for the measure space (N, P (N), c), where c is counting measure. In
particular, ℓ2(N) is a Hilbert space with the inner product,

(24)
∞∑
n=1

anbn

for sequences a = (a1, a2, . . . ) and b = (b1, b2, . . . ) in ℓ
2.

Note too, that example 5.6, is the special case of L2(ν) for ν equal to counting
measure on P ({1, 2, . . . , n}).

5.2. Orthogonality. In this section we show that many of the basic features of the
Euclidean geometry of Fn extend naturally to the setting of an inner product space.

Definition 5.9. Let H be an inner product space.

(i) Two vectors x, y ∈ H are orthogonal if ⟨x, y⟩ = 0, written x ⊥ y.
(ii) Two subsets A,B of H are orthogonal if x ⊥ y for all x ∈ A and y ∈ B, written

A ⊥ B.
(iii) A subset A of H is orthogonal if x ⊥ y for each x, y ∈ A with x ̸= y and is

orthonormal if also ⟨x, x⟩ = 1 for all x ∈ A.
(iv) The orthogonal complement of a subset E of H is

E⊥ = {x ∈ H : ⟨x, e⟩ = 0 for all e ∈ E}.

The proof of the following lemma is an easy exercise. Indeed, the first item follows
immediately from Lemma 5.4 and the second from the positive definiteness of a norm.

Lemma 5.10. If E is a subset of an inner product space H, then

(i) E⊥ is a closed subspace of H;
(ii) E ∩ E⊥ ⊆ {0}; and
(iii) E ⊆ (E⊥)⊥ = E⊥⊥.

Theorem 5.11 (The Pythagorean Theorem). If H is an inner product space and
f1, . . . fn are mutually orthogonal vectors in H, then

∥f1 + · · ·+ fn∥2 = ∥f1∥2 + · · ·+ ∥fn∥2.
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Proof. When n = 2, we have

∥f1 + f2∥2 = ∥f1∥2 + ⟨f1, f2⟩+ ⟨f2, f1⟩+ ∥f2∥2

= ∥f1∥2 + ∥f2∥2.
The general case follows by induction. □

Suppose V is a vector space over F. A function [·, ·] : V × V → F satisfying the
axioms of items c and d is bilinear form in the case F = R and a sesquilinear form when
F = C. If it also satisfies item a, then it is positive semi-defininite.

Theorem 5.12 (The Parallelogram Law). If [·, ·] is a bilinear (resp. sesquilinear) form
on a vector space over R (resp. C) and f, h ∈ V, then

(25) [f + g, f + g] + [f − g, f − g] = 2 ([f, f ] + [g, g]) .

In particular, if H is an inner product space, then

(26) ∥f + g∥2 + ∥f − g∥2 = 2(∥f∥2 + ∥g∥2).

Proof. By linearity (resp. sesquilinearity),

(27) [f ± g, f ± g] = [f, f ]± [f, g]± [g, f ]± [g, g]

Adding these two equations together gives the identity of equation (25).

In the case of Hilbert space, equation (26) follows from equation (25) by the defini-
tion of the norm coming from the inner product. □

Subtracting, instead of adding, in the proof of the Parallelogram Law gives the
polarization identity

2 ([f, g] + [g, f ]) = [f + g, f + g]− [f − g, f − g].

Theorem 5.13 (The Polarization identity). If [·, ·] is a bilinear form on a vector space
over Rand f, h ∈ V, then

(28) 4[f, g] = [f + g, f + g]− [f − g, f − g].

In particular, if H is an inner product space over R, then

(29) ⟨f, g⟩ = 1

4

(
∥f + g∥2 − ∥f − g∥2

)
.

If [·, ·] is a sesquilinear form on a vector space over Cand f, h ∈ V, then

(30) 4[f, g] =
3∑

k=0

ik[f + ikg, f + ikg].

If H is a complex Hilbert space, then

(31) 4⟨f, g⟩ =
3∑

k=0

ik⟨f + ikg, f + ikg⟩.
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Remark: Note that, in a Hilbert space, the polarization identity says that the inner
product is determined by the norm.

An elementary (but tricky) theorem of von Neumann says, in the real case, that if
H is any vector space equipped with a norm ∥ · ∥ such that the parallelogram law (26)
holds for all f, g ∈ H, then H is an inner product space with inner product given by
formula (??) in the case of real scalars and formula (31) in the case of complex scalars.
(The proof is simply to define the inner product by equation (??) or (31), and check
that it is indeed an inner product.)

5.3. Best approximation in Hilbert space.

Definition 5.14. A subset K of a vector space V is convex if whenever a, b ∈ K and
0 ≤ s, t sum to 1, it follows that sa + tb ∈ K as well. (Geometrically, this means that
when a, b lie in K, so does the line segment joining them.)

A normed vector space X is strictly convex if x, y ∈ X and ∥x + y∥ = ∥x∥ + ∥y∥,
then either x = 0 or there is a t ≥ 0 such that y = tx.

Example 5.15. Subspaces and balls (B(x, r)) in a normed vector spaces are convex.
The closure and interior of a convex set are convex.

Remark 5.16. Hilbert spaces are strictly convex. The Lebesgue spaces Lp are convex
for 1 < p <∞, but not for p = 1,∞.

That a normed vector space is strictly convex if and only if x ̸= y and ∥x∥ = ∥y∥ = 1,
then ∥1

2
(x+ y)∥ < 1 offers an explanation for the terminology.

END Friday 2025-02-14 (though we had not finished with the remark immediately
above)

Proposition 5.17. Suppose X is a strictly convex normed vector space. If K ⊆ X is
convex, h ∈ X and there exists a y, z ∈ K such that

∥h− y∥ = dist(h,K) = inf{∥h− k∥ : k ∈ K} = ∥h− z∥,
then z = y.

Proof. Let d = dist(h,K). By convexity, k = y+z
2

∈ K and by the triangle inequality,

d ≤ ∥h− k∥ = ∥1
2
(h− y) +

1

2
(h− z)∥ ≤ 1

2
[∥h− y∥+ ∥h− z∥] = d.

Hence equality holds in the triangle inequality. Without loss of generality, h−y ̸= 0 and,
by strict convexity, there is a t ≥ 0 such that h−y = t(h−z). Since ∥h−y∥ = d = ∥h−z∥,
it follows that t = 1 and therefore y = z. □

Theorem 5.18. Suppose H is a Hilbert space. If ∅ ̸= K ⊆ H is a closed, convex,
nonempty set, and h ∈ H, then there exists a unique vector k0 ∈ K such that

∥h− k0∥ = dist(h,K) := inf{∥h− k∥ : k ∈ K}.
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Proof. Uniqueness follows from Propositions 5.2 and 5.17.

Let d = dist(h,K) = infk∈K ∥h− k∥. First observe, if x, y ∈ K, then, by convexity,
so is v = x+y

2
and in particular, ∥h− v∥2 ≥ d2. Hence, by the parallelogram law, applied

to f = x−h
2

and g = y−h
2
,∥∥∥∥x− y

2

∥∥∥∥2 =1

2

(
∥x− h∥2 + ∥y − h∥2

)
−
∥∥∥∥x+ y

2
− h

∥∥∥∥2
≤1

2

(
∥x− h∥2 + ∥y − h∥2

)
− d2.

(32)

There exists a sequence (kn) in K so that (∥kn − h∥) converges to d. Given ϵ > 0
choose N such that for all n ≥ N , ∥kn − h∥2 < d2 + ϵ2. By (32), if m,n ≥ N then∥∥∥∥km − kn

2

∥∥∥∥2 < 1

2
(2d2 +

1

2
ϵ2)− d2 = ϵ2.

Consequently ∥km − kn∥ < ϵ for m,n ≥ N and (kn) is a Cauchy sequence. Since H is
complete, (kn) converges to a limit k ∈ H, and since K is closed, k ∈ K. Since (kn − h)
converges to (k − h) and ∥kn − h∥ converges to d it follows, by continuity of the norm,
that ∥k − h∥ = d. □

The most important application of the preceding approximation theorem is in the
case when K = M is a (closed) subspace of the Hilbert space H. What is significant
is that in the case of a subspace, the minimizer k has an elegant geometric description,
namely, it is obtained by “dropping a perpendicular” from h to M . This geometric
interpretation is the content of the next theorem, whose statement uses Theorem 5.18.
Recall M ≤ H to means that M is a (closed) subspace of H.

Theorem 5.19. Suppose H is a Hilbert space, M ≤ H, and h ∈ H. If f0 is the unique
element ofM such that ∥h−f0∥ = dist(h,M), then (h−f0) ⊥M . Conversely, if f0 ∈M
and (h− f0) ⊥M , then ∥h− f0∥ = dist(h,M).

Proof. Let f0 ∈ M with ∥h − f0∥ = dist(h,M) be given. Given f ∈ M , for t ∈ R, let
λ = t⟨h− f0, f⟩. Since f0 + λf ∈M ,

0 ≤ ∥h− (f0 + λf)∥2 − ∥h− f0∥2

=∥(h− f0) + λf∥2 − ∥h− f0∥2

=− 2 realλ ⟨h− f0, f⟩+ |λ|2∥f∥2

=
[
−2t+ t2 ∥f∥2

] ∣∣⟨h− f0, f⟩
∣∣2

for all t. Thus |⟨h− f0, f⟩| = 0.
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Conversely, suppose f0 ∈ M and (h − f0) ⊥ M . In particular, we have (h − f0) ⊥
(f0 − f) for all f ∈M . Therefore, by Theorem 5.11, for all f ∈M

∥h− f∥2 = ∥(h− f0) + (f0 − f)∥2

= ∥h− f0∥2 + ∥f0 − f∥2 ≥ ∥h− f0∥2.

Thus ∥h− f0∥ = dist(h,M). □

Corollary 5.20. If H is a Hilbert space and M ≤ H, then (M⊥)⊥ =M .

Proof. By Lemma 5.10, M ⊆ (M⊥)⊥. Now suppose that x ∈ (M⊥)⊥. By Theorem 5.19
applied to x and M , there exists m ∈ M such that x −m ∈ M⊥. On the other hand,
both x and m are in (M⊥)⊥ and thus by Lemma 5.10, x−m ∈ (M⊥)⊥. Hence x−m = 0
by Lemma 5.10, and x ∈M . □

If E is a subset of the Banach space X, and E is the collection of all closed subspaces
N of X such that E ⊆ N , then

M = ∩N∈EN
is the smallest closed subspace containing E.

Corollary 5.21. If E is a subset of H, then (E⊥)⊥ is equal to the smallest closed
subspace of H containing E. In particular, if E is a linear manifold (vector subspace)
in H, then E = (E⊥)⊥.

Proof. The proof uses Lemma 5.10 freely. In particular, E ⊆ (E⊥)⊥ and (E⊥)⊥ is a
closed subspace. If M is a closed subspace containing E, then E⊥ ⊇ M⊥ and hence
(E⊥)⊥ ⊆ (M⊥)⊥ =M by Corollary 5.20.

For the last statement, from the fact that E and E⊥⊥ are both the smallest closed
subspace containing the linear maniforld E. See Corollary 5.20. □

END Monday 2025-02-17

Corollary 5.22. A vector subspace E of a Hilbert space H is dense in H if and only if
E⊥ = {0}.

Proposition 5.23. Suppose M,N ≤ H. If M and N are orthogonal, then M + N is
closed. In particular, M +N is again a subspace of H.

Proof. It suffices to prove that M +N is complete. Accordingly suppose (mk + nk) is a
Cauchy sequence from M +N . From orthogonality, for k, ℓ ∈ N,

∥mk −mℓ∥2 + ∥nk − nℓ∥2 = ∥(mk + nk)− (mℓ + nℓ)∥2

and hence (mk) and (nk) are both Cauchy. Since H is complete and M,N are closed,
M and N are each complete. Thus (mk) converges to some m ∈ M and (nk) converges
to some n ∈ N and thus (mk + nk) converges to m+ n ∈M +N . □
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Definition 5.24. Given subspacesM,N ≤ H of a Hilbert space H, the notationM⊕N
is used for M +N in the case M and N are closed subspaces and M ⊥ N and is called
the orthogonal direct sum. Hence, M ⊕ N indicates that M,N are orthogonal closed
subspaces of H.

The following corollary should be compared with Problem 3.10.

Corollary 5.25. If M ≤ H, then H =M ⊕M⊥.

Proof. Given x ∈ H, there exists m ∈ M such that x − m ∈ M⊥ by Theorem 5.19.
Hence x = m+ (x−m) ∈M ⊕M⊥. □

Example 5.26. In a Banach space, a best approximation to a subspace need not exist as
the following example illustrates. Consider the real Banach space C([0, 1]), the subspace
U = kerλ1 ∩kerλ2 where λj are the linear functionals on C([0, 1]) defined by λ1(f) =

∫
f

and λ2(f) = f(1). Since these linear functionals are bounded with norm 1, the linear
manifold U is closed (so a subspace). Let f = 1 − x and observe, for g ∈ U, that
(f − g)(1) = 0 and

∫
(f − g) = 1

2
. Thus the average of f − g is 1

2
but (f − g)(1) < 1

2
.

Consequently, there is a point p ∈ [0, 1] such that (f − g)(p) > 1
2
and we conclude that

there does not exists a g ∈ U such that ∥g − f∥ = 1
2
.

Given 0 < ϵ < 1
2
, choose 0 < δ =

1
2
−ϵ+2ϵ2

1+2ϵ
< 1 Let γ = 1

2
− ϵ−δ and let g = gϵ denote

the piecewise linear function that takes values 1
2
− ϵ−x for 0 ≤ x ≤ δ, and then connects

the points (δ, γ) to (1, 0) (draw the picture). By construction, g ∈ C([0, 1]) and g(1) = 0.
Further, δ was chosen to insure that

∫
g = 0. Thus g ∈ U and ∥f − g∥∞ = 1

2
+ ϵ. Hence

dist(f, U) = 1
2
but there does not exist a g ∈ U where this distance is achieved.

Example 5.27. This example show that in a Banach space, there can be more than
one closest point from a point to a subsapce.

Consider the real Banach space (R2, ∥ · ∥∞) (thus ∥(x1, x2)∥∞ = max{|x1|, |x2|}. Let
M = {(x1, 0) : x1 ∈ R} ⊆ R2 and noteM is a subspace of R2. Let y = (0, 1) and observe
dist(y,M) = 1 and this distance is attained for each (x, 0) ∈M with |x| ≤ 1.

END Wednesday 2025-02-19 - we also discussed Corollary 4.19 and example 4.20.

5.4. The Riesz Representation Theorem and Hilbert space adjoint operators.
In this section we investigate the dual H∗ of a Hilbert space H. One way to construct
bounded linear functionals on Hilbert space is as follows. Given a vector g ∈ H define,

Lg(h) = ⟨h, g⟩.

Indeed, linearity of L is just the linearity of the inner product in the first entry, and the
boundedness of L follows from the Cauchy-Schwarz inequality,

|Lg(h)| = |⟨h, g⟩| ≤ ∥g∥∥h∥.
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So ∥Lg∥ ≤ ∥g∥, but in fact it is easy to see that ∥Lg∥ = ∥g∥; just apply Lg to the unit
vector g/∥g∥ (assuming g ̸= 0). Hence, L : H → H∗ defined by g 7→ Lg is a conjugate
linear isometry (thus linear in the case of real scalars).

In fact, it is clear from linear algebra that every linear functional on Fn takes the
form Lg. More generally, every bounded linear functional on a Hilbert space has the form
just described.

Theorem 5.28 (The Riesz RepresentationTheorem). If H is a Hilbert space and λ :
H → F is a bounded linear functional, then there exists a unique vector g ∈ H such that
λ = Lg. Thus the conjugate linear mapping L is isometric and onto.

Proof. It has already been established that L is isometric and in particular one-one.
Thus it only remains to show L is onto. Accordingly, let λ ∈ H∗ be given. If λ = 0, then
λ = L0. So, assume λ ̸= 0. Since λ is continuous, by Proposition 1.32 kerλ = λ−1({0})
is a proper, closed subspace of H. Thus, by Theorem 5.19 (or Corollary 5.25) there exists
a nonzero vector f ∈ (kerλ)⊥ and by rescaling we may assume λ(f) = 1.

Given h ∈ H, observe

λ(h− λ(h)f) = λ(h)− λ(h)λ(f) = 0.

Thus h− λ(h)f ∈ kerλ and consequently,

0 = ⟨h− λ(h)f, f⟩
= ⟨h, f⟩ − λ(h)⟨f, f⟩.

Thus λ = Lg, where g =
f

∥f∥2 and the proof is complete. □

5.4.1. Duality for Hilbert space. In the case F = R the Riesz representation theorem
identifies H∗ with H. In the case F = C, the mapping sending λ ∈ H∗ to the vector
h0 is conjugate linear and thus H∗ is not exactly H (under this map). However, it is
customary when working in complex Hilbert space not to make this distinction. This
convention creates some conflicts that must kept in mind. For instance, given Banach
spaces X and Y and a bounded linear map T : X → Y , the adjoint of T, denoted T ∗

is the uniquely determined (by Hahn-Banach) linear map T ∗ : Y∗ → X ∗ defined by
Tf = f ◦ T so that Tf(x) = f(T (x)) for x ∈ X . See Theorem 2.32 Because of our
conjugate linear identification of H with H∗, the notion of the adjoint of a operator
in the context of Hilbert space differs from the of operators between Banach spaces as
described in the following proposition.

Proposition 5.29. If H,K are Hilbert spaces and T : H → K is a bounded operator,
then there is a unique bounded operator S : K → H satifying,

⟨Th, k⟩ = ⟨h, Sk⟩.

Definition 5.30. The operator S associated to T in Proposition 5.29 is the (Hilbert
space) adjoint of T, denoted T ∗ (sic).
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The following elementary lemma will be used in the proof of Proposition 5.29 and
elsewhere without comment.

Lemma 5.31. Suppose H,K are Hilby spaces and Y : H → K. If ⟨Th, k⟩ = 0 for all
h ∈ H and k ∈ K, then Y = 0

Proof. Given h choose k = Th and use positive definitiness of the inner product. □

Proof. Define S : K → H as follows. Given k ∈ K, observe that the mapping λ : H → C
defined by λ(f) = ⟨Tf, k⟩ is (linear and) continuous. Hence, there is a vector Sk such
that

⟨Tf, h⟩ = λ(f) = ⟨f, Sk⟩.
Conversely, if S ′ : K → H is linear and

⟨Tf, k⟩ = ⟨f, S ′k⟩

for all f,∈ H and k ∈ K, then ⟨(S − S ′)k, f⟩ = 0 for all f ∈ H and k ∈ K and hence
S ′ = S. □

Further properties of the adjoints on Hilbert space appear in Problem 5.2.

A bounded operator T on a Hilbert space H is self-adjoint or hermitian if T ∗ = T .

Proposition 5.32. If T is a bounded self-adjoint operator on a Hilbert space H, then
[·, ·] : H ×H → F defined by [f, g] = ⟨Tf, g⟩ is a bilinear/sesquilinear form on H. If, in
addition, ⟨Th, h⟩ = 0 for all h ∈ H, then T = 0.

Proof. Define [·, ·] : H ×H → F by

[f, g] = ⟨Tf, g⟩.

Since T is self-adjoint, [g, f ] = ⟨Tg, f⟩ = ⟨g, Tf⟩ = ⟨Tf, g⟩ = [f, g], from which it
follows that [·, ·] is a bilinear/sesquilinear form on H. Hence, by the polarization identity
(Theorem 5.13),

4⟨Tf, g⟩ =
3∑

k=0

ik⟨T (f + ikg), f + ikg⟩ = 0,

for all f, g ∈ H. By Lemma 5.31, T = 0. □

5.4.2. Projections. Returning to Theorem 5.19, if M ≤ H and h ∈ H, there exists
a unique f0 ∈ M such that (h − f0) ⊥ M . We thus obtain a well-defined function
P : H → H (or, we could write P : H →M) defined by

(33) Ph = f0.

That is, Ph is characterized by Ph ∈M and (h− Ph) ∈M⊥. If the space M needs to
be emphasized we will write PM for P .
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Definition 5.33. A bounded operator Q on a Hilbert space H (meaning Q : H → H is
linear and bounded) is a projection if Q∗ = Q and Q2 = Q. □

The following Theorem says if Q is a projection, then Q = PN , where N is the
range of Q; that is, Q is uniquely determined by its range, justifying the use of the in
Definition 5.33; and conversely, if M ≤ H, then PM is a projection (onto M).

Theorem 5.34. Suppose M ≤ H. The mapping P = PM is a projection with range M .
Moreover, if Q is a projection with range N , then

(i) if h ∈ N , then Qh = h;
(ii) ∥Qh∥ ≤ ∥h∥ for all h ∈ H;
(iii) N ≤ H;
(iv) N⊥ is the kernel of Q;
(v) I −Q is a projection with range N⊥; and
(vi) Q = PN .

Definition 5.35. ForM ≤ H and Q the operator PM is called the orthogonal projection
of H on M and, for h ∈ H, the vector PMh is the orthogonal projection of h onto M .

Proof. In view of Corollary 5.25, M ⊕M⊥ = H, from which it follows readily that P is
a linear map.

Evidently P maps into M and if f ∈ M, then Pf = f and hence P maps onto M
and PPf = Pf (and so P 2 = P ).

If h ∈ H, then h = Ph+ (h−Ph). But (h−Ph) ∈M⊥ and Ph ∈M , and thus, by
the Pythagorean Theorem

∥h∥2 = ∥h− Ph∥2 + ∥Ph∥2.
Hence ∥Ph∥ ≤ ∥h∥. In particular, P is a bounded operator on H. (See also Problem
3.10.)

Given g, f ∈ H, since g − Pg is orthogonal to M and Pf is in M ,

⟨Pf, Pg⟩ =⟨Pf, Pg⟨+⟨Pf, (g − Pg)⟩
=⟨Pf, g⟩ = ⟨f, P ∗g⟩.

On the other hand, by the same reasoning

⟨Pf, Pg⟩ =⟨Pf + (I − P )f, Pg⟩
=⟨f, Pg⟩.

Hence P ∗ = P and all the claims about P have now been proved.

Turning to Q, suppose Q is a projection and let N denote the range of Q. Since
Q2 = Q it follows that Qh = h for h ∈ N (the range of Q). Also from Q2 = Q we have
Q(I −Q) = 0. Thus if h, f ∈ H, then

⟨Qh, (I −Q)f⟩ = ⟨h,Q(I −Q)f⟩ = 0.
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Choosing f = h, it follows that h = Qh+ (I −Q)h is an orthogonal decomposition and
hence ∥Qh∥ ≤ ∥h∥ and so Q is continuous.

If (hn) is a sequence from the range of Q that converges to h ∈ H, then, by continuity
of Q, the sequence (hn = Qhn) converges to Qh and thus h = Qh so that the range of
Q is closed.

Next, f ∈ N⊥ if and only if

0 = ⟨Qh, f⟩ = ⟨h,Qf⟩

for every h ∈ H; if and only if Qf = 0. Thus N⊥ = ker(Q).

An easy argument shows I −Q is a projection too. In particular, f is in the range
of I − Q if and only if (I − Q)f = f . On the other hand (I − Q)f = f if and only if
Qf = 0. Thus the range of I − Q is the kernel of Q. Finally, given h ∈ H, we have
Qh ∈ N and h−Qh = (I −Q)h ∈ N⊥. Thus Q = PN . □

END Friday 2025-02-21 Though we had not proved the assertions about Q in Propo-
sition 5.29 nor Proposition 5.32.

5.5. Orthonormal Sets and Bases. Recall, a subset E of a Hilbert space H is or-
thonormal if ∥e∥ = 1 for all e ∈ E, and if e, f ∈ E and e ̸= f , then e ⊥ f .

Definition 5.36. An orthonormal set is maximal if it is not contained in any larger
orthonormal set. A maximal orthonormal set is called an (orthonormal) basis or a Hilbert
space basis for H.

Proposition 5.37. An orthonormal set E is maximal if and only if the only vector
orthogonal to E is the zero vector. Equivalently, an orthonormal set E is maximal if
and only if the span of E is dense in H.

Proof. Suppose E is not maximal. Hence there is an orthonormal set F ⊇ E and a vector
f ∈ F \ E. In particular, 0 ̸= f ∈ E⊥. Conversely, if 0 ̸= f ∈ E⊥, then F = E ∪ {f} is
an orthormal set that properly contains E and hence E is not maximal.

For the second part, from what has been proved, E is maximal if and only if E⊥ =
{0} if and only if E⊥⊥ = H. On the other hand spanE = E⊥⊥ by Corollary 5.25 □

Remark 5.38. It must be stressed that a basis in the above sense need not be a basis
in the sense of linear algebra; that is, a basis for H as a vector space. In particular,
it is always true that an orthonormal set is linearly independent (Exercise: prove this
statement), but in general an orthonormal basis need not span H. In fact, if E is an
infinite orthonormal subset of H, then E does not span H. See Problem 3.6.

If E is an orthonormal set in a Hilbert space H, then E is a basis for the Hilbert
space spanE.

Example 5.39. Here are some common examples of orthonormal bases.
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(a) Of course the standard basis {e1, . . . , en} is an orthonormal basis of Fn.

(b) In much the same way we get a orthonormal basis of ℓ2(N); for each n define

en(k) =

{
1 if k = n

0 if k ̸= n

It is straightforward to check that the set E = {en}∞n=1 is orthonormal. In fact, it is
a basis. To see this, notice that if h : N → F belongs to ℓ2(N), then ⟨h, en⟩ = h(n),
and hence if h ⊥ E, we have h(n) = 0 for all n, so h = 0.

(c) Let H = L2[0, 1]. Consider for n ∈ Z the set of functions E = {en(x) = e2iπnx : n ∈
Z}. An easy exercise shows this set is orthonormal. Though not obvious, it is in
fact a basis. (See Problem 5.6.) Here is an outline of a proof. Given a (Lebesgue)
measurable set E ⊆ [0, 1], by regularity there exists an open set U and a closed set
F such that F ⊆ E ⊆ U and m(U \ F ) < ϵ, where m is Lebesgue measure. Let
K = [0, 1] \ U and define f : [0, 1] → R by

f(t) =
d(t,K)

d(t, F ) + d(t,K)
,

where d(t, S) = inf{|t−s| : s ∈ S} is the distance from a point t to the set S ⊆ [0, 1].
Because F,K are compact, the infima in these distance are attained. In particular,
f(t) = 1 for t ∈ F, and f(t) = 0 for t ∈ K, while otherwise 0 ≤ f(t) ≤ 1. It follows
that ∫ 1

0

|f − χE|2 dm ≤ µ(U \ F ) < ϵ,

where ξE is the indicator function of E. Since simple functions are dense in L2([0, 1])
(an exercise), it follows that continuous functions are too. Stone Weierstrass im-
plies that the span of E (the set of trigonmetric polynomials) is uniformly dense in
C([0, 1]).

END Monday 2025-02-24

5.6. Problems.

Problem 5.1. Prove the complex form of the polarization identity: if H is a Hilbert
space over C, then for all g, h ∈ H

⟨g, h⟩ = 1

4

(
∥g + h∥2 − ∥g − h∥2 + i∥g + ih∥2 − i∥g − ih∥2

)
Problem 5.2. (Adjoint operators) Let H be a Hilbert space and T : H → H a bounded
linear operator.

a) Prove there is a unique bounded operator T ∗ : H → H satisfying ⟨Tg, h⟩ =
⟨g, T ∗h⟩ for all g, h ∈ H, and ∥T ∗∥ = ∥T∥.

b) Prove, if S, T ∈ B(H), then (aS+T )∗ = aS∗+T ∗ for all a ∈ F, and that T ∗∗ = T .
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c) Prove ∥T ∗T∥ = ∥T∥2.
d) Prove kerT is a closed subspace of H, (ranT ) = (kerT ∗)⊥ and kerT ∗ = (ranT )⊥.

Problem 5.3. Let H,K be Hilbert spaces. A linear transformation T : H → K is
called isometric if ∥Th∥ = ∥h∥ for all h ∈ H, and unitary if it is a surjective isometry.
Prove the following:

a) T is an isometry if and only if ⟨Tg, Th⟩ = ⟨g, h⟩ for all g, h ∈ H, if and only if
T ∗T = I (here I denotes the identity operator on H).

b) T is unitary if and only if T is invertible and T−1 = T ∗, if and only if T ∗T =
TT ∗ = I.

c) Prove, if E ⊆ H is an orthonormal set and T is an isometry, then T (E) is an
orthonormal set in K.

d) Prove, if H is finite-dimensional, then every isometry T : H → H is unitary.
e) Consider the shift operator S ∈ B(ℓ2(N)) defined by

(34) S(a0, a1, a2, . . . ) = (0, a0, a1, . . . )

Prove S is an isometry, but not unitary. Compute S∗ and SS∗.

Problem 5.4. For any set J , let ℓ2(J) denote the set of all functions f : J → F such
that

∑
j∈J |f(j)|2 <∞. Then ℓ2(J) is a Hilbert space.

a) Prove ℓ2(I) is isometrically isomorphic to ℓ2(J) if and only if I and J have the
same cardinality. (Hint: use Problem 5.3(c).)

b) Prove, if H is any Hilbert space, then H is isometrically isomorphic to ℓ2(J) for
some set J .

Problem 5.5. Let (X,M , µ) be a σ-finite measure space. Prove the simple functions
that belong to L2(µ) are dense in L2(µ).

Problem 5.6. (The Fourier basis) Prove the set E = {en(t) := e2πint|n ∈ Z} is an
orthonormal basis for L2[0, 1]. (Hint: use the Stone-Weierstrass theorem to prove that

the set of trigonometric polynomials P = {
∑N

n=−M cne
2πint} is uniformly dense in the

space of continuous functions f on [0, 1] that satisfy f(0) = f(1). Then show that this
space of continuous functions is dense in L2[0, 1]. Finally show that if fn is a sequence
in L2[0, 1] and fn → f uniformly, then also fn → f in the L2 norm.)

Problem 5.7. Let (gn)n∈N be an orthonormal basis for L2[0, 1], and extend each function
to R by declaring it to be 0 off of [0, 1]. Prove the functions hmn(x) := 1[m,m+1](x)gn(x−
m), n ∈ N,m ∈ Z form an orthonormal basis for L2(R). (Thus L2(R) is separable.)

Problem 5.8. Let (X,M , µ), (Y,N , ν) are σ-finite measure spaces, and let µ×ν denote
the product measure. Prove, if (fm) and (gn) are orthonormal bases for L2(µ), L2(ν)
respectively, then the collection of functions {hmn(x, y) = fm(x)gn(y)} is an orthonromal
basis for L2(µ × ν). Use this result to construct an orthonormal basis for L2(Rn), and
conclude that L2(Rn) is separable.
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Problem 5.9. (Weak Convergence)

a) Prove, if (hn) converges to h in norm, then also (hn) converges to h weakly.
(Hint: Cauchy-Schwarz.)

b) Prove, if H is infinite-dimensional, and (en) is an orthonormal sequence in H,
then en → 0 weakly, but en ̸→ 0 in norm. (Thus weak convergence does not
imply norm convergence.)

c) Prove (hn) converges to h in norm if and only if (hn) converges to h weakly and
∥hn∥ → ∥h∥.

d) Prove if (hn) converges to h weakly, then ∥h∥ ≤ lim inf ∥hn∥.

Problem 5.10. Suppose H is countably infinite-dimensional (separable Hilbert space).
Prove, if h ∈ H and ∥h∥ < 1, then there is a sequence hn in H with ∥hn∥ = 1 for all n,
and (hn) converges to h weakly, but hn does not converge to h strongly.

Problem 5.11. Prove Theorem ??.

Problem 5.12. Prove, if (an) is a sequence of complex numbers, then the following are
equivalent.

(1)
∑

n∈N an converges as a net;
(2)

∑∞
n=1 an converges unconditionally;

(3)
∑∞

n=1 an converges absolutely.

Problem 5.13. Suppose (hn) is a sequence from a Hilbert space H. Show, if
∑∞

n=1 hn
converges absolutely, then

∑∞
n=1 hn converges unconditionally and as a net.

Problem 5.14. Suppose H is a Hilbert space and (hj) is a sequence from H. Show,∑∞
j=1 hj converges unconditionally if and only if

∑
j∈N hj converges as a net. (Warning:

showing unconditional convergence implies convergence as a net is challenging.)
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poset, 25
positive function, 22
positive linear functional, 22
positive semi-defininite, 60
projection, 67
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regular, 22
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self-adjoint, 66
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series converges, 2
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shift operator, 16
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