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1. NORMED VECTOR SPACES
In this section F stands for either R or C. Let X be a vector space over F.

1.1. Definitions and preliminary results.

Definition 1.1. A normed vector space X = (X, || - ||) conEdis‘tcs of a vector space X over
el .seml:1l

F together with a norm || - || : X — [0,00) (see definition h.T — which does not change
with R replaced by C). We often denote the normed vector space as X', with the norm
| - || implicit.

As we noted before, using the properties of a norm, it is straightforward to check
that d: X x X — [0, 00) defined by

d(z,y) = |lz -y
is a metric on X. The resulting topology is the norm topology and it is the default
topology on X.

nach:space| Definition 1.2. A normed vector space X is a Banach space if it is complete (with its
norm topology). O

quiv:norms| Definition 1.3. Two norms || - [jy5]| - |, on & are equivalent if there exist constants
C, ¢ > 0 such that
cllzfli <Hlzl2 < Cllzll,

for all z € X. OJ

a

quiv:norms| Remark 1.4. Equwalejgt %ggr‘g%gggegmme the same topology on X and the same Cauchy
sequences (Problem I1 T). In parficular, 1t follows that if X is equipped with two equiv-
alent norms || - ||;,] - ||, then it is complete (a Banach space) in one norm if and only if

it is complete in the other.

Equivalence of norms is an equivalence relation on the set of norms on X. 0

The next proposition is simple but fundamental; it says that the norm and the
vector space operations are continuous in the norm topology.

normed-tvs | Proposition 1.5 (Continuity of vector space operations). Let X be a normed vector space
over IF.

a) If (x,) converges to x in X, then (||z,||) converges to ||z|| in R.

b) If (k,) converges to k in F and (x,) converges to x in X, then (k,z,) converges
to kx in X.

c) If (x,) converges to x and (y,) converges to y in X, then (z, + y,) converges to

x+yinX.
1
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Proof. The proofs follow readily from the properties of the norm, and are left as exercises.
O

The following proposition gives a convenient criterion for a normed vector space to
be complete.

Definition 1.6. Given a sequence (z,) from a normed vector space X, the expression
Y ne1e Tn denotes the sequence (sy = ij:l x,), called the sequence of partial sums of
the series. The series converges if the sequence of partial sums converges in the norm
topology. In this case we use ) _,« 2, to also denote the limit of this sequence and
call it the sum.

Explicitly, the series ) | ,, converges means there is an « € X such that for each
€ > 0 there is an N such that ||s, — z|| < € for all n > N.

The series Y > | x, converges absolutely if the series > 7 | |lz,|| converges (in the
normed vector space (R, |- |)). O

Proposition 1.7. A normed space (X, || -||) is complete if and only if every absolutely
convergent series in X 1S convergent.

Before proving the Proposition we collect two lemmas. A definition is needed for
the first.

Definition 1.8. A sequence (yx) from a normed vector space X is super-cauhcy if the
series > oo (Yk+1 — yr) converges absolutely.

Lemma 1.9. If (z,,) is a Cauchy sequence from a normed vector space X, then there is
a subsequence (yx) of (z,) that is super-cauchy.

Proof. With € = , there exists an Ny such that ||z, — z,,|| < 1 for all m,n > N; smce
(x,,) is Cauchy. Assuming N; < Ny < --- < Nj have been chosen so that ||z, — x| < QJ
for 1 < j <k and n,m > Nj;, there is an Ny, > Ny, such that ||z, — x| < 21«% since
(xy,) is Cauchy. Hence by recursion we have constructed a (strictly)increasing sequence
of integers Ny such that ||z, — z,| < 2k for all m,n > Nj. Set y, = xn, and note
that ||yx+1 — yk|| < 3¢, from which it follows that (y) is a super-cauchy subsequence of
(). O

The proof will also use the following standard lemma from advanced calculus.

Lemma 1.10. If (z,) is a Cauchy sequence from a metric space (X,d) and if (x,) has
a subsequence (yy) that converges to some x, then (x,) converges to x.

[prop:abs-cvg-complete .
Proof of Proposition IT- / Tirst suppose X is complete and > °° n—1 Tn is absolutely con-

vergent. Write sy = Zgzl x, for the N* partial sum and let € > 0 be given. Since
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> @yl is convergent, there exists an L such that Y >°  |lz,|| <e. If N > M > L,
then

N N
sy = sull = || D wal| € D aall <.
n=M+1 n=M+1

Thus the sequence (sy) is Cauchy in X', hence convergent by the completeness hypoth-
esis.

Conversely, suppose every absolutely convergent fenes 1n X ¢ &5, convergent and that
(x,) is given Cauchy sequence from X. By Lemma Il T there 1s o super-cauchy subse-
quence (yx) of (z,,). Since (yi) is super-cauchy, the series > ;- (yx11 — yx) is absolutely
convergent and hence, by hypothesis, convergent in X'. Thus there is an z € X such
that the sequence of partial sums

n

Z(yk—H - yk) =Yn+1 — W1
k=1

converges to z. Rearranging, (n, ., = yn41) converges to x = z+y;. Hence ( gfl” | is € CCY Shg converge
and has a convergent subsequence. Thus (x,) converges (to z) by Lemma [T.T0.

1.2. Examples.

1.2.1. Fuclidean space. Observe that the Euclidean norm on the complex vector space
C™ agrees with the Euclidean norm on the real vector space R** (via that natural real
linear isomomorphism R? — C sending (z,y) to = + iy). Thus, F" with the usual
Euclidean norm ||(z1,...2,)|| = O r; |avk|2)1/2 is a Banach space.

The vector space F™ can also be equipped with the -norms

n 1/p
(@1, )l = <Z |1'k:|p)

k=1
for 1 < p < oo, and the £*-norm
|(z1, ... 2p) |00 := max(|zy|,...|z,]).

For 1 < p < oo and p # 2, it is not immediately obvious that || - ||, defines a norm.
We will prove this assertion later. It is not too hard to show that all of the /% norms
(1 < p < o00) are equivalent on F™ (though the constants ¢, C' depend on the dimension
n). For instance, for n € N,

[2lloe < [lzfl2 < llzlly < nlj#]loe.
The first and third inequalities are evident. For the middle inequality, observe

(Il[l:)* Z |5 [k | > Z g * = Nlll3.

7,k=1



Given a normed vector space X = (X, || - ||), denote its closed unit ball by
X ={reX || <1}
It is instructive to sketch the closed unit ball in R? with the three norms above.

It turns out that any two norms on a finite-dimensional vector space are equivalent, . . i
. ) i ] prob:findim-basics
As a corollary, every finite-dimensional normed space is a Banach space. See Problem [T75.

Lemma 1.11. If||-|; and ||-||2 are norms on X and there is a constant C' > 0 such that
x|y < C||x||g for all z € X, then the mapping ¢ : (X, || |l2) = (X, |- |l1) is (uniformly)
continuous.

Proof. For z,y € &, we have [|((z) — u(y)[h = [[e(z = y)ls = [l = ylly < Cllz —yll. O

Proposition 1.12. [f ||z|| is a norm on R"™, then ||z|| is equivalent to the Euclidean
norm || - |2

Sketch of proof. Let {es,...,e,} denote the usual basis for R". Given z = ) aje; € R",

lzll < Y laglllesl = D lagllies| < Ml < n M ||z,
where M = max{||e1]], ..., ||ex||}. It now follows that the map ¢ : (R™, ||-||2) = (R™, ||-]])
is continuous and therefore so is the map f : (R, ||-||2) — [0, 00) defined by f(z) = ||=]|.
Since
S ={z eR": ||, =1}

(the unit sphere) is compact in R™, by the Extreme Value Theorem, f attains its infimum;
that is, there is a point p € S"! such that f(p) < f(z) for all x € S™~1. But f(p) =
|p|| > 0since p # 0. Let ¢ = f(p) = ||p||. We conclude that if ||z||s = 1 then ||z| > c||z||2,
from which it follows by homogeneity that ||x|| > c||z||2 for all z € R™. O

Corollary 1.13. All norms on a finite dimensional vector space are equivalent. Further,
if Vis a finite dimensional normed vector space, then Vi is compact and V' is a Banach
space.

Proof. Suppose V' is a normed vector space of dimension n and let {vy,...,v,} denote
a basis for V. The function || - ||': V — [0, 00) defined by

ol =11 agull’ = lal

is easily seen to be a norm.

Now let || - || be a given norm on V. This norm induces a norm || - ||, on R™ given by
1> agesll =1 azsll
Since all norms in R™ are equivalent, the norm || - ||. is equivalent to the norm || - [|;.

Hence there exist constants 0 < ¢ < C such that

clloll = e lagl =l D ajeilh < 1D ae;ll < CID azesl =C D las| = Clloll.
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Thus, as || 32 aje;ll« = [1 22 ajv;ll,
cloll” < [loll < Clolf
for all v € V. Thus all norms on V' are equivalent.
Further, by definition, f : (V.| - ||) = (R", ]| - ||«) is bijective and isometric. Thus,
f~!is continuous, f~1(S) where S is the unit ball in (R™, ||- ||, is the unit ball in (V, ||-||)

and is compact as its the continuous image of a compact set. It is now routine to pass
from compactness of the unit ball in (V)| - ||) to completeness of (V.|| - ). O

1.2.2. The Banach space of bounded functions. 1f V is a vector space over F and @ # T
is a set, then F/(T,V), the set of functions f : T — V is a vector space over F under
pointwise operations; e.g., if f,g € F(T,V) then f + ¢ :T — V, is the function defined
by (f +9)(t) = f(t) + g(t).

Definition 1.14. A subset R of a normed vector space X is bounded if there is a C'
such that ||z]| < C for all x € R; that is, R C CA}.

A function f: T — X is bounded if f(T') C X is bounded.

Let Fy(T, X) denote the vector space (subspace of F(T, X)) of bounded functions
f:T—X.

Remark 1.15. The function || - ||o : F3(T, X) — [0, 00) defined by
[flle = sup{[f ()] : t € T}

is a norm on Fy(7,X) as you should verify. Let d, denote the resulting metric:
doo(f,9) = Ilf = 9llco-

Note that convergence of a sequence in the metric space (F,(T, X), dy) is uniform
convergence; in particular, a sequence is Cauchy in F,(7, X) if and only if it is uniformly
Cauchy. (Exercise.)

Proposition 1.16. If X is a Banach space, then Fy(T, X)) is also Banach space.

Proof. We are to show F,(T,X) is complete, assuming X is complete. Accordingly,
suppose (f,) is a Cauchy sequence from Fy(7,X) and X is complete. In particular,
given € > 0 there is an N such that doo(fo, fn) = sup{||fn(t) — ()| :t € T} < e. It
follows that, for each s € T', the sequence (f,(s)) is a Cauchy in X and hence converges
to some x € X. Define f : T'— X by f(s) = x. It remains to see that f is bounded and
(fn) converges to f.

Since Cauchy sequences are bounded and ( f,) is Cauchy in the metric space Fy(T, X),
there is a C' such that
sup{|| fn(®)[| : t € T} = doe(f3,0) < C

... _ [prop: d-t
for all n. It follows from Proposition Ilfgptklllg‘gm@ jn(vf)n)n converges to |f(t) and hence

|f(@)]| < C for all t € T. Thus f is bounded; that is f € Fy(T, X).




limit-cont

It only remains to show that (f,) converges to f in F,(7,X). To do so let € > 0
be given. There is an N such that if m,n > N, then || f,.(t) — f(t)|| < € for all t € T.
Given s € T, there is an M > N such that || f,.(s) — f(s)|| < € for all m > N. Since,

(fm(s) — fn%sl)gﬁnn%%r&gg_r%?g (with m) to (f(s) — fu(s)) in X, another application of
Proposition .5 gives ([[fm(S) — fu(s)|)m converges to || f(s) — fu(s)|. Thus

1£(8) = fal(s)ll <€,

for all s € T. Hence doo(f, fn) = ||f — fnll < € and the proof is complete. O

There are important Banach spaces of continuous functions. Before going further,
we remind the reader of the following result from advanced calculus.

Theorem 1.17. Suppose X,Y are metric spaces, (f,) is a sequence f, : X — Y and
x € X. If each f, is continuous at x and if (f,) converges uniformly to f, then f is
continuous at x. Hence if each f, is continuous, then so is f.

Proof. Let x and ¢ > 0 be given. Choose N such that if n > N and y € X, then
dy (fu(y), f(y)) < e. Since fy is continuous at z, there is a § > 0 such that if dx (z,y) < 0,
then dy (fn(x), fn(y)) < €. Thus, if dx(z,y) < 0, then

dy (f(z), f(y)) < dy(f(z), fn() +dy (Fx(2), fn () + dv (Fn(y), f(y))

< 3e,

proving the theorem. 0

Given a normed vector space ), let Cy(X,)) denote the subspace of Fy(X,)) con-

sisting of continuous functions. Since uniform convergence is the same as convergence in
:ulimit-cont

the normed vector space (Fy(X,)),dw), by Theorem T.T7, C,(X, V) 1s a closed subspace

of Fy(X,Y). In particular, in the case ) is a Banach space, so is Cy(X, ).

When X be a compact metric space, let C'(X) = C(X,F) denote the set of con-
tinuous functions f : X — F. Thus C(X) is a subspace of F,(X,F) and we endow
C(X) with the norm it inherits from F(X,F). Since F is complete, C(X) is a Banach
space. Of course here we could replace F by a Banach space X and obtain the analogous
conclusion for the space C(X, X).

Now let X be a locally compact metric space. In this case, a function f : X — F
vanishes at infinity if for every € > 0, there exists a compact set K C X such that
sup,¢r |f(2)| < e. Let Co(X) denote the subspace of Fy(X,F) consisting of continuous
functions f : X — F that vanish at infinity. Then Cy(X) is a normed vector space with
the norm it inherits from C'(X) (equivalently Fy(X,F). It is routine to check that Cy(X)
is complete.
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1.2.3. L' spaces over R. Let (X,.#, 1) be a measure space and let L'(u) denote the
(real) vector space of (real-valued) absolutely integrable functions on X. The function

|- Jl s L1 (1) = [0,00) defined by

1l = /X |l dm

for f € L'(u) is a norm on L' (i), provided we agree to identify f and g when f = g a.e.
(Indeed the chief motivation for making this identification is that it makes || - ||; into a
norm.

Proposition 1.18. The real vector space L'(p) is a Banach space.

We will construct a complex vector space analog of L'(u) a bit later.
. . prop:abs-cvg-complete
Proof. 1t suffices to verify the hypotheses of Proposition [[.7." Accordingly suppose
S>> fn is absolutely convergent (so that > >~ || fulli < 00). By Tonelli’s summation
theorem,

U/n§£:|j%¢‘j”l:: §£:°/P|fn|d7n:::j£: Hfﬁ”l < 00.
n=1 n=1 n=1

Thus the function g := >_°7 | f,| belongs to L' and is thus finite m-a.e. In particular
the sequence of partial sums sy = Zgzl fn is a sequence of measurable functions with
|sn| < g that converges pointwise a.e. to a measurable function f. Hence by the DCT
and its corollary, f € L! and the partial sums (sy)y converge to f in L. O

1.2.4. Complex L'(1) spaces. In this subsection we describe the extension of L'(u) to a
complex vector space of complex valued functions (equivalence classes of functions).

Again we work on a fixed measure space (X, .#, u). As a topological space, C and
R2, are the same. A function f : X — C = R? is measurable if and only if it is .4 — B,
measurable. Measurability of f can also be described in terms of the real and imaginary
parts of f.

Proposition 1.19. Suppose (X, .#) is a measurable space and f : X — C. Writing
f: X —=Cas f=u+ 1w, where u,v: X — R, the function f is measurable if and only
if both w and v are.

Moreover, if f is measurable, then so is |f| : X — [0, 00).

We begin with the following elementary lemma whose proof is left to the reader.

Lemma 1.20. Suppose (X, .#) is a measure space andY and Z are topological spaces.
If f: X =Y is M — By measurable and g : Y — Z is By — Bz measurable, then go f
is M — Bz measurable. In particulr, the result holds if g is continuous.
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:fuv:mble
Sketch of proof of Proposition 779 The Borel o-algebra %, is generated by open rect-
angles; that is, a set U C C is open if and only if it is a countable union of open rectangles
(with rational vertices even). For an open rectagle I = J x K = (a,b) X (c,d) observe
that

) =u™H () N (K.
Thus, if u and v are measurable, then f~1(J) € .#. Consequently, f is measurable.
Hence if u, v are both measurable, then so is f.

Now suppose f is measurable. In this case
M H(t,00) x R) = {u > t}.

Since the sets {(t,00) : t} generate %y, u is measurable. By symmetry v is measurable.

To prove the second statement, since f is measurable and g : C — [0, )e éi-eggggse-right
by g(z) = |2 is continuous, the function g o f = |f| is measurable by Lemma T.20. 1

measurable | Definition 1.21. A measurable f: X — C is integrable (or absolutely integrable) if | f|
is integrable.

Remark 1.22. From the inequalities
[Ref], Imf] < [f] < [Ref| + [Imf]
it follows that f : X — C is (absolutely) integrable if and only if Ref and Imf are.

Definition 1.23. If f is complex-valued and absolutely integrable (that is, f is mea-
surable and |f| is integrable), we define the integal of f by

/f:/Ref—l—z'/Imf.

We also write || f|l1 := [y |f|dp in the complex case. Finally, we write L' = L'(u) to
denote the set of absolutely integrable complex-valued functions on X.

Generally, we leave it to context to indicate if we are considering the real or complex
version of L'; but for the following theorem we temporarily adopt the notation L} and
L¢ to distinguish between the real and complex vector space versions of L'(u).

rties-L1:C| Theorem 1.24 (L' as a C normed vector space). The set Li of is a vector space over
C (with the usual addition and scalar multiplication of functions). Morever, if f,g € L¢
and ¢ € C, then

int-linear| (a) the mapping A : L' — C defined by A(f) = [ f is linear;
t v intabs| (b) }ff‘§f|f|

it:scaling| (c) [lcfllr =|c[[[f]-

angle ineq| (d) |[f+glli <[ flli + llgll-
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Sketch of proof. Write f = u + v and g = x + iy. In particular, u,v,z,y are all LL.
Given ¢ = a + ib, the functions au, bv, av, bu are all L} and so are au — bv and av + bu
since Lg, is a real vector space. Therefore, ¢f = (au—bv)+i(av+bu) is in L. A similar,
but easier, argument shows f + ¢ is in L¢.. Hence L is a vector space over C. Moreover,
since the integral is real linear on L,

Alef) = A((au + bv) + i(av + bu)) = A((au + b)) + iA((av + bu))
= al(u) + bA(v) + ijaA(v) + bA(u)]
= (a+b)[A(u) + iA(v)] = cA(f).
Likewise A(f + g) = A(f) + A(g). Thus A is C-linear on L{ and item (5%@

If [ f=0,then f =0 almost everywhere and the last three items hold. Otherwise,
write [ f = re in polar coordinates and observe

e_it/f€R+.

Thus, from the definition and linearity of the integral

Ry > e”/f = /eitf = /reale”f + 1 /imagee“f.

Thus [imagee ™ f = 0 and using results for Lg,

’/ [1|= [es= [reacip< [1eacs< [151

[it:absint v intabs

proving item (bJ.
[lest= [relsi=tel [ 11
t:triangle ine

Next,
t: 1i
Hence item (%) Totds, rSlmllarlyﬁche triangle inequality, item (Id), folTows from If+9] <
|f|+ |g| (pointwise). O

[thm:basic-properties-L1:C 1
Remark 1.25. Proposition [[.Z4 says |- []1 1s a semi-norm on L'. As usual, we identify

functions that differ by a null vector; that is, f ~ ¢ if ||f — g|i = 0; equivalently,
identifying functions that are equal a.e., we obtain a normed complex vector space of L!
functions (which of course are not actually functions).

1.2.5. Sequence spaces. Define
co = {f : N F| lim_|f(m)] =0}

> = {fN—>F|SI£I|f(m)| < o0}

= {f:N=F| Y |f(m)| < oo}.
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Note that > = Fy(N,F) and is a Banach space with the norm

/1l = sup|f(m)].

Further, ¢y C £* is the subspace Cy(N) of /> again with the norm || - ||». In particular,
co is a Banach space.

Observe that ¢! is the space (N, P(N),c), where ¢ is counting measure on N and
| - ||1 is the corresponding ¢! norm. Since only set of measure zero in this measure space
is the emptyset, two functions in £* = L!(c) are equivalent if and only if they are equal.

Along with these spaces it is also helpful to consider the vector space
coo := {f : N = F|f(n) =0 for all but finitely many n}

Notice that cyg is a vector subspace of each of ¢y, /! and ¢>°. Thus it can be equipped with
either the || - || or || - ||; norms. It is not complete in either of these norm however.
What is true is that cog is dense in ¢y and ¢! (but not in ). (See Problem [T.TT).

1.2.6. LP spaces. Again let (X, .#,m) be a measure space. For 1 < p < oo let LP(m)
denote the set of measurable functions f for which

1/p
1l = (/X |f|pdm) <00

(again we identify f and g when f = g a.e.). It turns out that this quantity is a norm on
LP(m), and LP(m) is complete, though we will not prove this yet (it is not immediately
obvious that the triangle inequality holds when p > 1).

Choosing (X, ., ) = (N, P(N), ¢), counting measure on N, obtains the sequence
spaces (P; that is, the F-vector space of functions f : N — I such that

0 1/p
1l == (ny(n)\p> < o0

and this quantity is a norm making ¢? into a Banach space.

When p = oo, we define L>(u) to be the set of all functions f : X — F with the
following property: there exists M > 0 such that

(1) If(x)| <M for p—ae x€X;

as for the other LP spaces we identify f lg&d s %rll_glelfre are equal a.e. When f € L™,

let || f|lo be the smallest M for which (T) holds. Then | - || is & norm making L>(u)
into a Banach space.
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1.2.7. Subspaces and products. If (X,]| - ||) is a normed vector space and Y C X is a
vector subspace, then the restriction of ||-|| to ) is clearly a norm on Y. If X is a
Banach space, then (), || - ||) is a Banach space if and only if ) is closed in the norm
topology of X. (This is just a standard fact about metric spaces—a subspace of a
complete metric space is complete in the restricted metric if and only if it is closed.)

ace:closed| Definition 1.26. A subspace ) of a normed vector space X is a closed vector subspace
of X, denoted Y < X. The terminology linear manifold is used synonymously with
vector subspace.

If X, Y are vector spaces then the algebraic direct sum is the vector space of ordered
pairs
XeY:={(r,y):xeX,ye)}
with entrywise operations. If &', J are equipped with norms || - ||y, || - [|;,, then each of
the quantities

[1[(z; Y)lloo == max([[z]|x, lylly),

duct:norms (2) H(x,y)!h = ”xH/\’ + ||yHy

Iz, )ll2 == 3/ lll3 + 1lyll3

is a norm on X @ ). These three norms are equivalent; indeed it follows from the
definitions that

12, 9)lloo < Ml(2,9)ll2 < (2 9) ]l < 21[(2, ) oo

If X and Y are both complete, then X & ) is complete in each of these norms. The
resulting Banach spaces are denoted X ®©o Y, X ®1 Y and X ®s V.

Since the three norms in the previous paragraph are equivalent, the resulting spaces
are indistinguishable topologically. There is a more abstract description of this topology.

t:topology| Definition 1.27. Given topological spaces (X, 7) and (Y, o), the product topology on the
Cartesian product X XY is the smallest topoology that makes the coordinate projections
mx : X XY = X andwy : X XY =Y defined by wx(x,y) = x, my(x,y) = y continuous.
That s, the topology generated by the sets U XY and X x V' for open sets U C X and
VCy.

Proposition 1.28. Suppose (X, 7) and (Y, o) are topological spaces. The collection of
sets

B={UxV:UCX,VCY are open}
s a base for the product topology.

For normed vector spaces X and Y, the product topology on X X ?e/zsstarg g/;z' _apbrlgd%gg.noms

is the norm topology on X x Y with any of the norms of equation (Z). Consequentely,
a sequence z, = (T, yn) from X X Y converges (in the product topology) if and only if
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both (x,) and (y,) converge; and z, converges to z = (z,y) if and only if (z,) converges
to x and (y,) converges to y. In particular, if X and Y are Banach spaces, then so is

X x ).

It is evident how to extend the discussion here to finite products. The product topol-
ogy is the default topology on (finite) products of Banach spaces (and more generally
normed vector spaces).

1.2.8. Qoutient spaces. If X is a normed vector space and M is a proper subspace, then
one can form the algebraic quotient X /M, defined as the collection of distinct cosets
{r + M : 2z € X}. From linear algebra, X' /M is a vector space under the standard
operations. Let m: X — X'/ M denote the quotient map.

Proposition 1.29. If M is a closed subspace of a normed vector space X, then the
quantity
= — inf —
Ir(@)f = llz + M| = inf ||z —y]

is a norm on X /M. Moreover, if X is a Banach space, then so is X /M.

. L [prop:quotient:Banach .
The norm in Proposition [[.2971s called the quotient norm. Geometrically, ||z + M||

is the distance in X from x to the closed set M. The assumption that M is closed in
needed to ensure that the quotient norm is indeed a norm. For instance M = C(]0, 1])
is dense subspace of L([0,1]) (with Lebesgue measure) and hence for any

Jnf ||f —gll =0
for all f € L(]0,1]).

Proof. We will verify a couple of the axioms of a norm for the quotient norm, leaving the
remainder of the proof as an exercise. First suppose x € X and ||w(x)|| = 0. It follows
that there is a sequence (m,,) form M such that (||z —m,||) converges to 0; that is, (m,,)
converges to z. Since M is closed, x € M and hence 7(x) = 0.

Now let x,y € X and € > 0 be given. There exists m,n € M such that
lz —m| < [[7(@) +e |ly—nl < [r@)[]+e
Hence
(@) +m(y)|| = llr(z4+y)l| < lz+y—(m+n)|| < lz—ml[+[ly—nll < |7 (x)[|+]|7(y)][]+2€,
from which it follows that the triangle inequality holds and we have proved the quotient

norm is indeed a norm.

To prove X /M is complete (with the quotient norm) under the assumption that

X is a Banach space (complete), suppose (y,) is a sequence from X /M and )y, is

absolutely convergent. For each n there exists z, € X such that ||z, | < |ly.|l + -5 and
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m(z,) = yn. It follows that ) x, is absolutely convergent. Since X is a Banach space
the sequence of partial sums sy = 25:1 T, converges to some x € X. In partiulcar,

lsy = zf| = [|m(sy — 2)[| = [Im(sn) = w(2)[| = ] Zyn —m(z)

Since (||sy — z||) converges to 0, it follows that > yn converges to m(z). Hence X'/ M is

rop:abs-cvg-complete
complete by Proposition I1 . 0

More examples are given in the exercises and further examples will appear after the
development of some theory.

1.3. Linear transformations between normed spaces.

Definition 1.30. Let X', Y be normed vector spaces. A linear transformation 7 : X —

Y is bounded if there exists a constant C' > 0 such that |[|Tx|y < C||z||x for all z € X.
|d:bounded;linear

Remark 1.31. Note that in Definition [[:30 1t suthices to require that ||Tz||y < C||z||x

just for all x # 0, or for all x with ||z|x =1 (why?). O

The importance of boundedness and the following simple proposition is hard to
overstate. Recall, a mapping f : X — Y between metric spaces is Lipschitz continuous
if there is a constant C' > 0 such that d(f(x), f(y)) < Cd(z,y) for all z,y € X. A simple
exercise shows Lipschitz continuity implies (uniform) continuity.

Proposition 1.32. If T : X — Y s a linear transformation between normed spaces,
then the following are equivalent:

(i) T is bounded.

(i1) T is Lipschitz continuous.
(111) T is uniformly continuous.
(iv) T is continuous.

(v) T is continuous at 0.

Moreover, in this case,
1T} = sup{||Tz|| - ||=[] = 1}
e zoy
=inf{C : |[Tz| < C||z| for all x € X'}
and ||T|| is the smallest number (the infimum is attained *) such that
(3) 1Tz < |7} ]|
forall x € X.

s
=S

IThe suprema need not be attained.
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Proof. Suppose T is bounded; that is, there exists a C' > 0 such that ||Tz|| < C||z| for
all z € X. Thus, if x,y € X, then, |Tx — Ty|| = ||T(z — y)|| < C||x — y|| by linearity of
T. Hence (i) implies (ii). The implications (ii) implies (iii) implies (iv) implies (v) are
evident.

The proof of (v) implies (i) exploits the homogeneity of the norm and the linearity
of T" and not nearly the full strength of the continuity assumption. By hypothesis, with
€ = 1 there exists 6 > 0 such that if ||z|| = ||z — 0|| < 20, then ||Tz| = ||Tx —T0)| < 1.
Given a nonzero vector x € X, the vector dx/||z|| has norm less than d, so

T
T<5_$) ‘:5H z||
] ]l
Rearranging this we find ||Tz| < (1/0)]|z| for all  # 0.

Assuming T is bounded, it is immediate that sup{||Tz| : ||z| = 1} exists (and is a
real number). From homogeneity of the norm, it is also clear that

sup{|[Ta] : |l = 1} = p{”H ||” v+ 0},

Likewise assuming 7" is bounded the set S = {C' : ||Tz|| < C||z|| for all z € X'} C [0, c0)
is not empty and bounded below (by 0) and hence the infimum exists. From the definition
of [|T']| we see that ||T']] € S. Hence the infimum is at most ||7||. On the other hand, if
C" < inf S| then there is an © € X such that ||[Tz| > C’||z| so that ”‘ﬁ” > ('. Thus
< |7 O

1>

The set of all bounded linear operators from X to ) is denoted B(&X,)). It is a
vector space under the operations of pointwise addition and scalar multiplication. The
quantity ||7"|| is easily seen to be a norm. It is called the operator norm of T

Problem 1.1. Prove the || - ||; and | - ||, norms on cgy are not equivalent. Conclude
from your proof that the identity map on ¢y is bounded from the || - ||, norm to the
| - ||, norm, but not the other way around.

Problem 1.2. Consider ¢ and cgy equipped with the || - || norm. Prove there is no
bounded operatlpor Texgc% =i Soo Such 31%’% ej;L‘;B% is the identity map. (Thus the conclusion

of Proposmon [I. 54 can fail 1t J/ 1s not complete

Proposition 1.33. For normed vector spaces X and )Y, the operator norm makes
B(X,Y) into a normed vector space that is complete if Y is complete.

Proof. That B(X,)Y) is a normed vector space follows readily from the definitions and
is left as an exercise.

Suppose now ) is complete, and let T,, be a cauchy sequence in B(X,)). Let
E = X denote the closed unit ball in X. For x € F,

(4) [Tow = Tol| = [|(To = T2l < T = T[] < [T = Tonl



15

Hence the sequence (7),|g) is a cauchy sequence (so uniformly cauchy) from Cy(E,)),
the space of bounded continuous functions from B to ). Since ) is complete, there is
an F' € Cy(E,Y) such that (T,|g) conver es toFEd(nY »(E,Y) and moreover || F(x)| <
C = sup{||T|| : n} < oc. See Subsection [T-9.7. An'exercise shows, given z,y € B and
ceFifx+y € Band cx € B, then F(z +y) = F(x) + F(y) and F(cx) = cF(z).
Hence F" extends, hy homogeneity, to a linear map 7": & — ) such that |IT|| < C and,
eq:
by equation (), (1) converges to T in B(X,Y). d

legn: op—norm-ineq

If T'e B(X,Y) and S € B(), Z), then two applications of the inequality (B) give,
for z € X,

STl < [STIT=l < IS [«]

and it follows that ST € B(X, Z) and ||ST|| < ||S||||T]|. In the special case that ) = X
is complete, B(X) := B(X, X) is an example of a Banach algebra.

The following proposition is very useful in constructing bounded operators—at least
when the codomain is complete. Namely, it suffices to define the operator (and show
that it is bounded) on a dense subspace.

-operators| Proposition 1.34 (Extending bounded operators). Let X', ) be normed vector spaces
with Y complete, and £ C X a dense linear subspace. If T : £ — Y is a bounded linear
operator, then there exists a unique bounded linear operator T:X Y extending T (so
T|e =T). Further ||T| = ||T].

Sketch of proof. Recall, if X,Y are metric spaces, Y is complete, D C X is dense and
f: D — Y is uniformly continuous, then f has a unique continuous extension f :
X — Y. Moreover, this extension can be defined as follows. Given x € X, choose a
sequence (z,,) from D converging to x and let f(z) = lim f(z,) (that the sequence f(x,,)
is Cauchy follows from uniform continuity; that it converges from the assumption that
Y is complete and finally it is an exercise to show f(x) is well defined independent of
the choice of (z,)). Thus, it only remains to verify that the extension T of T is in fact
linear and ||T|| = || 7||. Both are routine exercises. O

Example 1.35. Equip ¢y and ¢o with the sup norm, || - ||o and consider the identity
map ¢ : coo — Coo- If T'is an extension of ¢ to the completion ¢ of ¢go (in the sup norm),
then, letting s,, € coo denote the sequence s,(m) = - for m < n and s,(m) = 0 for
m > n, the sequence (s,) is converge in ¢y to the sequence s with s(m) = % for all m.
Hence (T'(s,) = s,) converges to some t € coo. But now there is a K such that t(k) =0
for all k > K so that ||s, —t|| > & for all n 2> K a contradiction. This example shows

:extending-boun ed-operator
completeness of ) is essential in Proposmon I1 ST 0

Definition 1.36. A bounded linear transformation 7' € B(X,)) is said to be invertible
if it is bijective (being bijective, automatically 7! exists and is a linear transformation)
and T~ is bounded from Y to X. Two normed spaces X, ) are said to be (boundedly)
isomorphic if there exists an invertible linear transformation 7' : X — ).
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Example 1.37. As an example, given equivalent norms || - [|; and || - |2 on a vector
space X, the identity mapping ¢ : (X, || - [[1) = (&, | - ||2) is (boundedly) invertible and
witnesses the fact that these two normed vector spaces are boundedly isomorphic.

Definition 1.38. An operator 7' : X — Y such that |Tz| = ||z|| for all z € X is an
1sometry. Note that an isometry is automatically injective and if it is also surjective then
it is automatically invertible and T is also an isometry. The normed vector spaces are
1sometrically isomorphic if there is an invertible isometry T : X — ).

Example 1.39. If X is a finite dimensional vector space and T : X — X is an isometry,
then T is onto. However, when X is not finite dimensional, an isometry need not be

[Ssec:seq:space
surjective. As examples, let /7 = (P(N) denote the sequence spaces from Subsection [[.2.5

The linear map S : /#(N) — ¢P(N) defined by Sf(n) =0if n=0and f(n —1) if n > 0
(for f = (f(n)), € ¢P) is the shift operator. It is straightforward to verify that S is an
isometry but not onto.

Example 1.40. Following up on the previous example, a linear map 7' : X — X can
be one-one and have dense range without being (boundedly) invertible. Let e, € (*(N)
denote the function e,(m) = 1 if n = m and 0 otherwise for non-negative integers
0 < m,n. The set of cop = {320 yanen : N € N, ¢, € F} is dense in (2(N) and the
mapping D : cgo — £*(N) defined by

N

an
anen) =
DS o
is easily seen to be bounded with ||D|| = 1. It is also injective. Hence D extends to an

injective bounded operator, still denoted D, from ¢? — ¢? with ||D|| = 1. The range of
D contains {e, : n € N} and is thus dense in /*(N).

Since Y7 |51 < 00, the vector f ="
if g € (?(N) and Dg = f, then

——e, is in £2(N). On the other hand,

n= 1n+1

n+1 n+1

and thus g(n) = 1 for all n; however, since Y |g(n)|?> = oo, we obtain a contradiction.

Hence f is not in the range of D.
r-examples

r-exanples|
1.4. Examples.
cont:imuous |

continuous| (a) If X is a finite-dimensional normed space and ) is any norme _space, then every

linear transformation 7" : X — Y is bounded. See Problem |1 ib

(b) Let X denote cy equipped with the || - ||, norm, and ) denote cyy equipped with the
| - || norm. Then the identity map idxy : X — Y is bounded (in fact its norm is
equal to 1), but its inverse, the identity map ¢ty » : Y — X, is unbounded. To verify
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this claim, For positive integers n, let f,, denote the element of ¢oy defined by

£ (m) = {1 ?fmgn

0 ifm>n.

Now [[eyx(fa)lls = n, but || fulle =1

(¢) Consider ¢y with the || - ||oo norm. Let a : N — F be any function and define a linear
transformation T}, : cog — coo by
(5) Tof(n) = a(n)f(n).

The mapping 7, is bounded if and only if M = sup,,cy|a(n)| < oo, in which case
|To|| = M. In thls cas éng'hg)%glrllﬁl 3 qeuelty to a bounded opgrator from ¢ to ¢y
by Proposition I1 54 Snd one may check that the formula ( efines the extension.
All of these claims remain true if we use the || - ||; norm instead of the || - [|o norm.

In this case, we get a bounded operator from ¢ to itself.

(d) Define S : /' — ¢! as follows: given the sequence (f(n)), from ¢! let Sf(1) =0 and
Sf(n) = f(n—1) for n > 1. (Viewing f as a sequence, S shifts the sequence one
place to the right and fills in a 0 in the first position). This S is an isometry, but is
not surjective. In contrast, if X is finite-dimensional, then the rank-nullity theorem
from linear algebra guarantees that every injective linear map 7' : X — X is also
surjective.

(e) Let C*°(]0,1]) denote the vector space of functions on [0, 1] with continuous deriva-
tives of all orders. The differentiation map D : C*([0,1]) — C>([0,1]) defined by
Df = 2= is a linear transformation. Since, for t € R, we have De!® = te'”, it follows
that there is no norm on C*°([0,1]) such that - is bounded.

1.5. Problems.

mrop normed-tvs
Problem 1.3. Prove Proposition II75.

Problem 1.4. Prove equivalent norms define the same topology and the same Cauchy
sequences.

Problem 1.5. (a) Prove all norms on a finite dimensional vector space X" are equivalent.
Suggestion: Fix a basis ey, ... e, for X and define || > arer||1 := D |ax|. It is routine
to check that || - ||; is @ norm on X'. Now complete the following outline.

(i) Let ||-|| be the given norm on X'. Show there is an M such that ||z| < M||z]|;.
Conclude that the mapping ¢ : (X, |- ||;) — (X,||-||) defined by i(z) = = is
continuous;

(i) Show that the unit sphere S = {zx € X : ||z|; =1} in (X, || - ||;) is compact in
the || - ||, topology;
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(iii) Show that the mapping f : S — (X,] - ||) given by f(x) = ||z|| is continuous

and hence attains its infimum. Show this infimum is not Oe%llllglvgingkcl 1;1}(1)% erOf

(b) Combine the result of part (a) with the result of Problem IT. T to conciude that every
finite-dimensional normed vector space is complete.

(c) Let X be a normed vector space and M C X a finite-dimensional subspace. Prove

M is closed in X.

Problem 1.6. Finish the proofs from the examples subsections.

Problem 1.7. A function f : [0,1] — F is called Lipschitz continuous if there exists a
constant C' such that

[f(z) = f(y)] < Clo -y
for all z,y € [0,1]. Define ||f||1;» to be the best possible constant in this inequality.

That is,
flz) = fy
1l iy = SUPM
Ty [z — |
Let Lip[0, 1] denote the set of all Lipschitz continuous functions on [0, 1]. Prove || f]| :=
|£(0)] + || f||zip is & norm on Lip[0, 1], and that Lip[0, 1] is complete in this norm.

Problem 1.8. Let C*(]0, 1]) denote the space of all functions f : [0,1] — R such that
f is differentiable in (0,1) and f’ extends continuously to [0, 1]. Prove

L= 1 oo + 11 Mo
is a norm on C'([0,1]) and that C' is complete in this norm. Do the same for the norm

LA = 1O+ [/ e~ (I [[ ']l & norm on C17)

Problem 1.9. Let (X, .#) be a measurable space. Let M(X) denote the (real) vector
space of all signed measures on (X, .#). Prove the total variation norm ||u| = |p|(X)
is a norm on M (X), and M(X) is complete in this norm.

Problem 1.10. Prove, if X', ) are normed spaces, then the operator norm is a norm on

B(X,)).

Problem 1.11. Prove ¢y is dense in ¢y and ¢*. (That is, given f € ¢ there is a sequence
fn in cop such that ||f, — flleo — 0, and the analogous statement for ¢!.) Using these
facts, or otherwise, prove that cgg is not dense in £*°. (In fact there exists f € £*° with
| fllo = 1 such that ||f — g||cc > 1 for all g € ¢q.)

Problem 1.12. Prove ¢y is not complete in the || - || or || - ||cc norms. (After we have
studied the Baire Category theorem, you will be asked to prove that there is no norm
on ¢go making it complete.)

Problem 1.13. Consider ¢y and Coo equipped with the || - ||ooc norm. Prove there is no
bounded operatrpor Texgc% adissosul %% (;_CLQ% is the identity map. (Thus the conclusion

of Proposmon [T. 54 can fail 1t J/ 1s not complete
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Problem 1.14. Prove the || - ||; and || - ||, norms on ¢y are not equivalent. Conclude
from your proof that the identity map on coy is bounded from the || - ||; norm to the
| - ||, norm, but not the other way around.

Problem 1.15. a) Prove f € Cy(R") if and only if f is continuous and lim,_, | f(z)| =
0. b) Let C.(R™) denote the set of continuous, compactly supported functions on R™.
Prove C.(R™) is dense in Cy(R™) (where Cy(R") is equipped with sup norm).

Problem 1.16. Prove, if X)) are normed spaces and X is finite dimensional, then
every linear transformation 7" : X — ) is bounded. Suggestion: Let d denote the
dimension of X and l'et {e1,...,eq} denote a baf%lgéb?'fhl% c@n?—%tég{lcg -|Jy on & defined by
| > zjelli = > |#;| is a norm. Apply Problem 5.

. . |sec;bounded-operator—-examples
Problem 1.17. Prove the claims in Example [T4(c]J.

Problem 1.18. Let g : R — F be a (Lebesgue) measurable function. The map Mg :
f — gf is a linear transformation on the space of measurable functions. Prove, if
g ¢ L¥(R), then there is an f € L'(R) such that gf ¢ L'(R). Conversely, show if
g € L*(R), then M, is bounded from L'(R) to itself and || M, = ||g]|o-

Problem 1.19. Prove the claims about direct sums.

Problem 1.20. Let X be a normed vector space and M a proper closed subspace.
Prove for every e > 0, there exists © € & such that ||z|| =1 and infyep |z —y|| > 1 —€.
(Hint: take any v € & \ M and let a = inf,cpq ||u — y||. Choose § > 0 small enough so
that %5 > 1—¢, and then choose v € M so that [[u—v| < a+d. Finally let z = ==.)

lu—vll*

Note that the distance to a (closed) subspace need not be attained. Here is an
example. Consider the Banach space C([0,1]) (with the sup norm of course and either
real or complex valued functions) and the closed subspace

Tz{fec<[o,1]>:f<o>=o=/o £},

Using machinery in the next section it will be evident that 7" is a closed subspace of
C([0,1]). For now, it can be easily verified directly. Let g denote the function g(t) = t.
Verify that, for f € T, that

%:/gdt:/(g—f)dtﬁ 19— Flle.

In particular, the distance from ¢ to T is at least %
Note that the function & =z — 1, while not in T, satisfies |lg — hljoc = 3.

On the other hand, for any e > 0 there is an f € T so that [|g — f|lec < 5 + €
(simply modify h appropriately). Thus, the distance from g to T is % Now verify, using
the inequality above, that h is the only element of C'([0,1]) such that [hdt = 0 and

lg = Bllsc = 3
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Problem 1.21. Prove, if X' is an infinite-dimensional normed space, then the unit ball
ball(X) = {z € )rgrébUﬁUiézli’e&%a?Ot compaet in the norm topology. (Hint: use the
result of Problem [[20 o construct inductively a sequence of vectors z,, € X such that

|, || = 1 for all n and ||z, — @, > 3 for all m < n.)

tient-norm| Problem 1.22. (The quotient norm) Let X be a normed space and M a proper closed
subspace.

a) Prove the quotient norm is a norm. _

. prob:FRiesz-lemma
b) Show that the quotient map = — = + M has norm 1. (Use Problem II.20.)
¢) Prove, if X' is complete, so is X'/ M.

Problem 1.23. A normed vector space X is called separable if it is separable as a metric
space (that is, there is a countable subset of X which is dense in the norm topology).
Prove ¢y and (' are separable, but £* is not. (Hint: for ¢*°, show that there is an
uncountable collection of elements {f,} such that ||f, — fs]| =1 for a # 3.)

END FALL TERM

2. LINEAR FUNCTIONALS AND THE HAHN-BANACH THEOREM

If there is a fundamental theorem of functional analysis, it is the Hahn-Banach
theorem. The theorem is somewhat abstract-looking at first, but its importance will be
clear after studying some of its corollaries.

Definition 2.1. Let X be a normed vector space over the field F. A linear functional
on X is a linear map L : X — F. The dual space of X, denoted X* is the space B(X,TF)
of bounded linear functionals on X.

Remark 2.2. Since F = R or C is complete, the vector space of bounded linear func-
tionals is itself a Banach space (complete normed vector space) and is known as the .
It is not yet obvious that X* need be non-trivial (that is, that there are any bounded
linear functionals on X" besides 0). One corollary of the Hahn-Banach theorem is there
exist enough bounded linear functionals on X to separate points.

2.1. Examples. This subsection contains some examples of bounded linear functionals
and dual spaces.

l-examples

nce:spaces| Example 2.3. For each of the sequence spaces cg, £, £>°, for each n the map f — f(n)
is a bounded linear functional. That is, A, : X — T defined by \,(f) = f(n) for
f:N —= Fin X, where X is any one of ¢y, /!, />, is continuous since in each case it is
immediate that

A (D] = [F ()] < [ fllx-
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eg:c0:dual| Example 2.4. Given g € (%, if f € ¢y, then

(6) D1 m)gm)] < I fllee Y lg)] = llglh £l

Thus Y., f(n)g(n) converges and we obtain a functional Ly : co — F defined by

(7) Ly(f) = f(n)g(n).

The inequality of equation (E‘%sgcig/% Ly is bounded (continuous) and ||Ly|| < ||g|l1. More-
over, it is immediate that ® : (' — ¢ defined by ®(g) = L, is bounded and linear and
|®|| < 1. In fact, ® is onto so that every bounded linear functional on cq is of the form
L, for some g € (*.

dual-of-c0| Proposition 2.5. The map @ : (* — ¢ defined by ®(g9) = L, is an isometric isomor-

phism from (' onto the dual space c},.

Proof. We have already seen that each g € ¢! gives rise to a bounded linear functional
L, € ¢ via

Ly(f) =Y _g)f(n),

that ||Ly|| < |lg|lx and the the mapping ® is bounded and linear. We will prove simul-
taneously that this map is onto and that || Ly|| > ||g||:-

Let L € ¢j. We will first show that there is unique g € ¢* so that L = L,. Let
en € ¢o be the indicator function of n, that is
en(m) = 6pm.
Define a function g : N — F by
g(n) = L(ey).
We claim that g € ¢* and L = L,. To see this, fix an integer N and define h = hy :
N — F by

Thus h = 3. h(n)e,. Further, by h € cgo C o and ||| < 1. Now

> lam) = h(n)g(n) = L(k) = |L(R)| < | L[] < LI

It follows that g € ¢! and ||g||; < ||L|. By construction L = L, Whenlprestricted £0 Coq, SO
. . L rop:extendlng;-%ounded-operators
by the uniqueness of extensions of bounded operators, Proposition I[734, L = L,. Thus

the map g — L, is onto and

lglly < [ILIF= [[Lgll < llglh- O
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:Lg:11
Example 2.6. Given g € (=, if f €1 t?f;n equation (lﬁi fows |Lg(H)] < l9lloo | £1l15
where L, is defined as in equation ( us ||L,|| < |lg]lc and we obtain a bounded
al:l-infty| linear map W: /(> — ()

al-of-elll| Proposition 2.7. The map ¥ is an isometric isomorphism from (€*)* onto (°°.

Proof. The proof follows the same lines as the proof of the previous proposition; the
details are left as an exercise. O

Remark 2.8. The same mapping g — L, also shows that every g € ¢! gives a bo%ndg
linear functional on ¢°°, but it turns out these do not exhaust (£>°)* (see Problem Z.TZ).

Regarding ¢! and ¢~ as L' and L* for counting measure on N, it is not s Sréacr_lfmg acos
that, given a measure space (X,.#, 1), a function g € L>(u) (see Subsection [T.2.6 tor

the definition of L>°(u)) defines a linear functional L, : L'(u) — F by

=/ngdm

for f € s%i(ﬁl is a bounded linear functional of norm at most M. We will prove in
Section [T that the norm of L, is in fact ||g||~, and every bounded linear functional on
LY(m) is of this type (at least when m is o-finite). O

ell-infty-dual

Example 2.9. A regular Borel measure p on a locally compact set X such that u(K) <
oo for compact subsets of X determines a linear functional A : C.(X) — F by

A(P) = Aulf) = /X fdu.

An f € C.(X) is a positive function (really non-negative), written f > 0, if f(z) > 0
for all x € X. The linear functional A, is a positive linear functional in the sense that if
f € C.(X) is positive, then A\,(f) > 0.

As a second example, let X = [0, 1] and note that the mapping I : C([0,1]) — C

defined by
1
= / fdx,
0

where the integral is in the Riemann sense, is a positive linear functional on C([0, 1]).

END Monday 2025-01-13

Theorem 2.10 (Riesz-Markov Representation Theorem: positive version). Let X = (X, 1)
be a locally compact Hausdorff space. If XA : C.(X) — C is a positive linear functional,
then there exists a unique Borel measure ji on the Borel o-algebra Bx, such that

A = [ fan
for f € C.(X). Moreover, i is regular in the sense that
(1) if K C X is compact, then u(K) < oo,
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i:bdd-1f:a
i:bdd-1f:b
i:bdd-1f:c
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(i1) if E € Bx, then p(E) = inf{u(U) : E C U, U open}; and
(111) if E € Bx and u(F) < oo, then u(E) = sup{u(K) : K C E, K compact}.

Remark 2.11. In general elements of C.(X)* correspond to signed measures that will

appear later in

these notes. [l

2.2. Continuous linear functiona*ps. F%r Ainez%r functionals, we can add to the list of
ivalent conditions of Proposition Ilrg‘p: 1d _lfrt_lglllslar the proof of the equivalence of
eqluva)E?bdd—gglahda-lfﬁc p ﬁprop:bdéll%1%¥%—cns ’ p !

items (] and (

C) 1n Proposition Z-TZ requires a map into the scalar field.

Proposition 2.12. If X is a normed vector space and if A : X — F is a non-zero (not
identically zero) linear functional , then the following are equivalent.

(a) X is continuous;
(b) X is bounded;
(c) ker A is closed;

i:bdd-1f:d

(d) ker X\ # X.

i

Proof. Ttems q
implies item (I

:bdd-1fi:zbdd-1£f:b L prop:bdd-iff-cns . i:bdd-1f:a
Japd, (b are equivalent by Proposition [[-3Zand it is evident that item (B

i:bdd-1f:b
Suppose item (lb ) does not hold. Thus, there exists a sequence (f,) from X such

that [|fu] < 1,

but |A(f.)| > n. Choose e € X with A(e) =1 and let

Jn
A(fn)

hk:: e —

and note that (hy) converges to e but A\(h;) = 0 for all (/E?cggi f(:fék) is a seguence. from

ker A that converges to a point not in ker \. Thus item () 1mplies item (IbJ.

i:bdd-1f: i:bdd-1f:d
Since ker 171% d&/_lgs.iglce A is not the zero map), item (Ei imp ies item (lEll J. Now

suppose item
from ker \ that

oes not hold. Thus there exists an f ¢ ker A\ and a sequence (f,)
converges to f. Without loss of generality, A(f) = 1. Given g € X, the

sequence
gn = (9= N9)f) + N9) fn
converges to g and A(g,) = 0. Thus g € ker A and we conclude X' = ker \. 0
prop:bdd-1f-iff-cns
Remark 2.13.

Note that Proposition Z.TZ Temains true w1th]i).\gé S{fli})cm pla(fie‘ of ket

for any choice of a € F. For instance, in the proof that item () 1mp 1es tem _((Ig)), Slmll;ilyb dd1f c

require A(e) =

a + 1 instead of A(e) = a/ In the proof that item (d) mmplies item (

suppose the sequence (f,) converges to f and A(f,) = a, but A\(f,) = b # a. In this

case, given g €
exercise.

_ _ a=\g) .
X, let gn = (g — cf) + cfn < where ¢ = =22, The details are left as an

prop:bdd-1f-iff-cns

As a corollary, Proposition Z.TZ extends to linear maps from a normed space X into
a finite dimensional normed space as an easy argument shows.
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If X is infinite dimensional, the result is false. Just choose a basis B for X and
let By = {by,b,...} denote a countable subset of B. Define L : X — X by declaring
L(b,) =nb, and L(b) =b for b € B\ By and extend by linearity. Thus L is one-one so
that ker L = {0} is closed, but L is not bounded (and so not continuous). O

We C%QSG thi;, subsection with, the followingxres It that should be compared with
le 1 di amples

. g:finite m:conti dounded-operator- P
item (2] from Subsection II.4 tollowed by an example.

Proposition 2.14. If V is an infinite dimensional normed vector space, then there ex-
ists a linear map f:'V — F that is not continuous.

For a Banach space X, there are notions of a basis that reference the norm. For
instance, a Schauder basis for X is a sequence (e,)32; such that for each x € X" there
exists a unique choice of scalars x,, € F such that the series Zzozl Tp€, converges to
x. Forgetting the norm structure, a Hamel basis B C X for X is a basis in the sense
of linear algebra. Explicitly, letting Foo(B) denote the functions a : B — F such that
ap = a(b) is zero for all but finitely many b € B, the set B is a Hamel basis for X if for
each v € X there exist is a unique function a € Fyo(B) such that

finite
v = E apb = E ap b.
beB beB

In this case any choice of ¢ : B — F determines uniquely a linear functional A : X — F
via the rule
Av) = Z Cp Qp,

where ¢, = ¢(b). Often this process is described informally as: let A(b) = ¢(b) and extend
by linearity. Finally, an argument using Zorn’s Lemma, which we will soon encounter
in the proof of the Hahn-Banach Theorem, shows that every vector space has a basis.
While it is true that every basis for a vector space V' has the same cardinality, all that
we need to make sense of the statement V' is an infinite dimensional vector space is the
fact that V' has a basis that is infinite, then all bases for V' are infinite, which is an
immediate consequence of the fact that all bases for a finite dimensional vector space
have the same cardinality. Thus, we can take the statement X" is infinite dimensional
to mean that X has a Hamel basis B that contains a countable set Bj.

. :disc:linfun . .
Proof of Proposition %. 77. Let B denote a Hamel basis for V. By assumption, B has a
countable subset By. Write By = {by,bs, ...} (so choose a bijection ¢ : N — By) and

assume, without loss of generality that ||b;|] = 1. Let A : V' — F denote the linear
functional determined by A(b;) = j for b; € By and A(b) = 0 for b € B\ B, and observe
that X is not bounded. U

Example 2.15. Let X denote an infinite dimensional normed vector space and suppose

f: & — T denote a discontinuous linear functional. An exercise shows that f=1({1}) =
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prop:bdd-1f-iff-¢
X in addition to ker f = X (see Proposition . u) Let U = {j < 0} C ker A and note

V=X\U={f>0}2 f'({1}). Now U and V are disjoint convex sets such that
X=UUVandU=X=V.

2.3. The Hahn-Banach Extension Theorem. To state and prove the Hahn-Banach
Extension Theorem, we first work in the setting ' = R, then extend the results to the
complex case.

Definition 2.16. Let X be a real vector space. A Minkowski functional is a function
p: X — R such that p(z +y) < p(z) + p(y) and p(Az) = Ap(z) for all z,y € X and
nonnegative A € R.

For examples, if L : X — R is any linear functional, then the function p : X — R
defined by p(x) := |L(x)| is a Minkowski functional; and if || - || is a seminorm on X,
then p : X — R defined by p(x) = ||z|| is a Minkowski functional.

Theorem 2.17 (The Hahn-Banach Extension® Theorem, real version). Let X denote a
real vector space, p a Minkowski functional on X, and M a subspace of X. If L is a
linear functional on M such that L(z) < p(z) for all x € M, then there exists a linear
functional L' on X such that

(i) L'\|p = L (L' extends L)
(it) L'(z) < p(z) for allx € X (L' is dominated by p).

hm:r-hb
Remark 2.18. In the statement of Theorem E 7, X 1s a vector space, not a normed vec-
tor space and correspondingly M is a subspace in the sense of linear algebra (sometimes
referred to as a linear manifold). 0

The proof will invoke Zorn’s Lemma, a result that is equivalent to the axiom of
choice (as well as the well-ordering principle and the Hausdorff maximality principle).
A partial order < on a set S is a relation that is reflexive, symmetric and transitive;
that is, for all x,y,z € S

(i) v 2w,
(ii) if x <y and y < x, then z = y, and
(iii) if * Ky and y < z, then < z.

We call S, or more precisely (S, =), a partially ordered set or poset. A subset T of
S is totally ordered, if for each x,y € T either x < y or y < x. A totally ordered subset
T is often called a chain. An upper bound z for a chain 7" is an element z € S such that
t < zforall t € T. A maximal element for S is a w € S that has no successor; that is
there does not exist an s € S such that s # w and w =< s. An upper bound for a subset
A of S is an element s € S such that a < s for all ¢ € A.

Theorem 2.19 (Zorn’s Lemma). Suppose S is a partially ordered set. If every chain in
S has an upper bound, then S has a mazrimal element.
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END Wednesday 2025-01-15
hm:r-hb
The following Lemma is at the heart of the proof of Theorem E.l .
hm:r-hb
Lemma 2%%1{}{@@ the hypotheses of Theorem 5;. 17, 1f x € X'\ M, then the conclusion
of Theorem [Z.17 holds with the subspace M + Rz in place of X.
Proof. For any my, my € M, by hypothesis,
L(my) + L(mg) = L(my + my) < p(my +mg) < p(my — x) + p(ma + ).
Rearranging gives, for my, ms € M,
L(my) — p(my — x) < p(ma + x) — L(my)

and thus

sup {L(m) — p(m — )} < inf {p(m + 2) — L(m)}.
meM me

Now choose any real number A satisfying

sup {L(m) —p(m —a)} < A < inf {p(m +2) — L(m)}.
meM me

In particular, for m € M,
L(m)—) < p(m — z)

(8) L(m)+A < p(m + z).

Let N = M + Rz and define L' : N — R by L'(m + tx) = L(m) + tA for m € M
P . e

and t € R Thus L 1§ hxieeqrch%%csle]e}grees with L on M by definition. Moreover, by

construction and equation

L(m —
©) (m — )

L(m + x)

(m — )

< p(m
< p(m+z).

We now check that L'(y) < p(y) for all y € M + Rx. Accordingly, suppose y € N
so that there exists m € M and t € R such that y = m + tx. If £ = ( there is noRhmg

eg.cC oosel-a
to prove. If ¢ > 0, then, in view of the second mequahty of equation (177,

L'(y)=L(m+tx)=t (L(—) + )\> < tp( + ) = p(m + tz) = p(y)

leg:choosel-alt
and a similar estimate, using the first inequality of equatlon (U), shows that

L'(m+tx) < p(m + tx)

for t < 0. We have thus successfully extended L to a linear map L' : N' — R satisfying
L'(n) < p(n) for all n € N and the proof is complete. O

We make one further observation before turning to the proof of the Hahn-Banach
Theorem. If T is a totally ordered set and (N, ).er are subspaces of a vector space X
that are nested increasing in the sense that N, C N3 for a < §, then N' = Uper N, is
again a subspace of X. By contrast, if X" is a normed vector space and N, are (closed)
subspaces of X, then N will not necessarily be a (closed) subspace of X.



complexify

27

Proof of Theorem %‘c L denote the set of pairs (L', N) where N is a subspace of
X containing M, and L’ is an extension of L to N obeying L'(y) < p(y) on N. Declare
(L3, M) = (L5, N2) if Ny © N and Ly|n; = Li. This relagion < is a partial order on £;
that is (£, <) is a partially ordered set. Further, Lemma mays if (L', ) is maximal
element, then N = X.

An exercise shows, given any increasing chain (L/, N,) in £ has as an upper bound
(L',N) in £, where N := |J_ N, and L'(n,) := L/ (n,) for n, € N,. By Zorn’s Lemma
the collection £ has a maximal element (L', N') with respect to the order < and the
proof is complete. 0

hm:r-hb
The use of Zorn’s Lemma in the proof of Theorem Em typical - one knows how
to carry out a construction one step a time, but there is no clear way to do it all at once.
As an exercise, use Zorn’s Lemma to prove that if V' Is a vectors space and S C V is a
linearly independent set, then there is a basis B for V such that B O S.
In the special case that p is a seminorm, since L(—z) = —L(z) and p(—z) = p(z)
the inequality L < p is equivalent to |L| < p.

Corollary 2.21. Suppose X is a real normed vector space, M is a subspace of X, and
L is a bounded linear functional on M. If C' > 0 and |L(z)| < C||z|| for all x € M,
then there exists a bounded linear functional L' on X extending L such that | L'|| < C.

Proof. Apply the Hahn-Banach theorem with the Minkowski functional p(x) = C||z||.
0

L. . hm:r-hb
Before obtaining further corollaries, we extend Thoerem E.l [ to complex normed
spaces. First, if X' is a vector space over C, then trivially it is also a vector space over
R, and there is a simple relationship between the R- and C-linear functionals.

Lemma 2.22. Let X be a vector space over C.

(a) If L : X — C is a C-linear functional, then u(x) = real L(x) defines an R-linear
functional on X and L(x) = u(x) — tu(iz).

(b) Conversely, if u: X — R is R-linear then L(x) := u(z) —iu(iz) is C-linear.

(c) If L : X — C is a C-linear functional, p: X — R is a seminorm, and u = real L,

then |u(z)| < p(x) for all x € X if and only if |L(x)| < p(z) for all z € X.

prob:complexify
Proof. Problem Z'5.

To prove the last statement, it is immediate that |u(z)| < |L(z)| for all x € X.
Conversely, given x there is a unimodular®— « such that aL(z) = |L(x)|. Hence,
|L(z)| = L(az) = |u(az)| < plax) = |a| p(z) = p(z). 0

3

a complex number z is unimodular if |z| = 1.
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-minkowski| Remark 2.23. Note that in passing from the real to the complex case, we must give
up the generality of a Minkowski functional and instead content ourselves with the
seminorm p.

END Friday 2025-01-17

thm:c-hb| Theorem 2.24 (The Hahn-Banach Theorem, complex version). Let X' denote a com-
plex vector space, p a seminorm on X, and M a subspace of X. If L : M — C s a
C-linear functional satisfying |L(x)| < p(z) for all x € M, then there exists a C-linear
functional L' : X — C such that

(i) L'|pm = L and
(i) |L'(z)| < p(z) for allz € X.
. prop:complexify . .

Sketch of proof. Using the Lemma 2727 an 05, ng}‘ggtlon: The proof consists of applying
the real Hahn-Banach theorem (Corollary 2 o the R-linear functional © = ReL to
obtain a real linear functional v’ : X — R extending u and satisfying v'(x) < p(z) for all
x € X. The resulting complex functional L’ associated to u is then a desired extension
of L. The details are left as an exercise. U

The following corollaries are quite important, and when the Hahn-Banach theorem
is applied it is usually in one of the following forms:

cor:hb-cor| Corollary 2.25. Let X' be a normed vector space over F (either R or C).

it:HB (1) If M C X is a subspace and L : M — F is a bounded linear functional, then there
exists a bounded linear functional L' : X — F such that L'|p = L and ||L'|| = ||L]||.
i:HB:ii| (%) (Linear functionals detect norms) If x € X is nonzero, there exists L € X* with
IL|| = 1 such that L(zx) = ||z||.
(111) (Linear functionals separate points) If z # y in X, there exists L € X* such that
L(z) # L(y).
i:HB:iv| (i) (Linear functionals detect distance to subspaces) If M C X is a closed subspace
and x € X \ M, there exists L € X* such that
(a) Ll =0;
(b) || = 1; and
(¢) L(z) = dist(x, M) = infep ||z — y|| > 0.
i:HB:v (v) if £ is a linear submanifold of X and x € X, then x € L if and only if AN(x) =0
for every A € X* for which L C ker \.

-
jas]
w
: I
[
-

Proof. To prove item ( I otsider the (semi)norm p(x) = ||L|| ||z||. By construction,
|L(z)| < p(z) for x € M. Hence, there is a linear functional L’ on X such that
L'\p = L and |L'(z)] < p(x) for all z € X. In particular, ||L'|| < ||L||. On the other
hand, ||L'|| > ||L|| since L' agrees with L on M.
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_ iHB:ii . :

For item Ii ], let M be the one-dimensional subspace of X spanned by z. Define a
functional L : M — F by L(t ap) =t In particular, |L(y)| = ||ly|| for y € M and thus
|L|| = 1. By (i), the functional L extends to a functional (still denoted L) on X such
that || L] = 1.

i:HB:ii i:HB:iji
An application of item (Iil) fo the vector ©x — y proves item (Iin;.

i:HB:i
To prove item (lv i o = dist(x, M). Since M is closed, § > 0. Define a functional

L: M+Fx—Fby L(y+tx) =té for y € M and t € F. Since for t # 0 and y € M,
ly + tell = [tll|t ™"y + | = [t]6 = |L(y + tz)],
by Hahn-Banach we can extend L to a functional L € X* with || L] < 1.
Let M = L. Thus M is a closed subspace of X. I Aﬂg?(* and £ C ker A, then, by

1 v
continuity, MHBCH il%er A proving one direction of item (V). For the remaining direction,

apply item (Iiv'j toz € X'\ M to obtain a A € X* such that M C ker A, but A\(z) # 0. [

2.4. The bidual and reflexive spaces. Note that since X* is a normed space, we

can form its dual, denoted X**, and called the bidual or double dual of X. There is

a canonical relationship between A and X**. Each fixed x € X gives rise to a linear

functional z : X* — F via evaluation,

(L) := L(x).

Since |z(L)| = |L(z)| < ||L]| ||z, the linear functional Z is in A** and ||zZ|| < ||z||.
embedinxss| Corollary 2.26. (Embedding in the bidual) The map x — T is an isometric linear map

from X into X**.

Proof. First, from the definition we see that
[2(L)| = [L()| < [[L[[[]]
so z € A* and ||z]| < ||z||. It is straightforward to check (recalling that the L’s are

linear) that the map x — @ s ligear. Finally, to show that |Z]| = ||z, fix a nonzero
x € X. From Corollary E_ZB%_E%IG exists L € X* with |L]| =1 and L(z) = ||z||. But
then for this x and L, we have |z(L)| = |L(x)| = ||z| so ||z|| > ||z||, and the proof is
complete. O

Definition 2.27. A Banach space X is called reflexive if the map " : X — A™* is
surjective.

In other words, X is reflexive if the map”~ is an (isometric) isomorphism of X Wltgl findin-reflexive
X**. For example, every finite dimensional Banach space is reflexive (Problem u D).
Reflexive spaces often have nice properties. For instance, the distance from a point to a
(closed) subspace is attained.

Needless to say, the proof of the Hahn-Banach theorem is thoroughly non-constructive,
and in general it is an important (and often difficult) problem, given a normed space X,
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to find some concrete description of the dual space A*. Usually doing so means finding
a Banach space ) and a bounded (or, better, isometric) isomorphism 7" : ) — X*.

1 : o0 1\* 3 : :
Exargpggzgd 8. ;5@5"82111- L 5% 180@etr1cally and (> = (/1) 1sometrlca.ully by Pr(?p051
tions 2.5 and L. ¢ Moreover it 1s straightfowrard to show that under the identification of
Corollary Z.76, the canonical map ¢y — c* corresponds to the natural inclusion of cg

into £°°. Since ¢y is separable, but £*° is not, ¢ is not reflexive.

Example 2.29 (Banach Limits). The set

c:{f:N—>IF

lim f(n) exists } :

n—oo

is a subspace of ¢*°. The function L : ¢ — F defined by
L(f) = lim f(n)

is a linear functional and it satisfies |L(f)| < || f|loo- Hence L is continuous and ||L|| < 1.
On the other hand, letting o : N — F denote the function that is constantly equal to
1, we see 1 = |L(0)| = ||o||. Hence ||L|| = 1. Thus, by the Hahn-Banach Extension
Theorem, L extends to a bounded linear functional on all of ¢*° of norm 1. Any such

extension of L is a Banach limit.
leg:dual:1-infty 1 .
By example 270, elements A € (¢')* are precisely of the form L; for some f € ¢,

where L;(g) = Y f(n)g(n) for g € ¢*. Thus g € ¢' thus determines an element § in

g(f) = Ls(9)-

Let 0, : N — F denote the function o0, (j) = 0 for j < n and 0,(j) =1 for j > n and

observe,
oo

gloa) =Y g(n)
j=n+1
and L(o,) =1 for all n (where L is a Banach limit). It follows that L # g and therefore
the natural embedding of ¢! into (¢*)** = (¢*°)* is not onto.

In fact more is true. Namely, there is no isometric isomorphism between ¢! and
(£>°)*. As an outline of a proof, show, if X’ is a normed vector space and X* is separable,
then X is also separable. This fact, applied to ¢, shows (¢*°)* is not separable. Since
¢! is separable, the result follows. O

END Monday 2025-01-24

Remark 2.30. After we have studied the LP and /P spaces in more detail, we will see
that LP is reflexive for 1 < p < oc.

We note in passing that if X is reflexive, then its dual X* has a unique predual:
that is, if ) is another Banach space and Y* is isometrically isomorphic to X*, then
in fact ) is isometrically isomorphic to X'. However this conclusion can fail when X
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. . . . 1 .
is not reﬂ%}lgo\@q?rQEPG}%%%%%&B%%&QR&)Ghat (" does not have a unique predual. See
Problems Z:TU and 2 15. 0

The embedding into the bidual has many applications; one of the most basic is the
following.

Proposition 2.31 (Completion of normed spaces). If X is a normed vector space, then
there is a Banach space X and an isometric linear map  : X — X such that the image
L(X) is dense in X.

Proof. Embed X into X** via the map # — & and let X be the closure of the image of
X in X**. Since X is a closed subspace of a complete space, it is complete. [l

The space X is called the completion of X. It is unique in the sense that if ) is
another Banach space and j : X — ) embeds X" isometrically as a dense subspace of ),
then ) is isometrically isomorphic to X'. The proof of this fact is left as an exercise.

2.5. Dual spaces and adjoint operators. [Optional] Let X',) be normed spaces
with duals X*, Y*. If T: X — Y is a linear transformation and f : ) — F is a linear
functional, then T* f : X — F defined by

(10) (T f)(x) = f(Tx)
is a linear functional on X. If 7" and f are both continuous (that is, bounded) then the

composition 7™ f is bounded, and more is true:

Theorem 2.32. Let T : X — Y be a bounded linear transformation. The function
T : Y* — X* defined, for f € Y*, . Then:
legn:adjoint-def

(i) For f € Y* the function T*f defined by the formula (TU) us wn X
(ii) The mapping T* : Y* — X* is a bounded linear map with || T*| = ||T||.

Proof. Since T is assumed bounded, for a fixed f € Y* and all v € X

T f ()| = [F(To)| < (IFNT]] < 1T 2]
It follows that 7™ f is bounded on X’ (thus, belongs to A*) and

(11) 1T £l < AT
Thus T maps V* into X* a[gél‘ jl_tS %sa lggg%%%}elgforward to verify that T™ is linear. Moreover,

the inequality of equation (TT) also shows that 7% is bounded and ||| < |||

It remains to show ||7*|| > ||7’||. Toward this end, let 0 < € < 1 be given and choose

x € X with ||z| = 1 anc 7;@# > (1 —¢€)||T||. Now consider Txz. By the Hahn-Banach
Theorem (Corollary Z.25(t)), there exists f € Y* such that ||f|| = 1 and f(Tz) = || Tz||.

For this f,
1T % T fl = [T ()| = | f(Tz)| = | T=] > (1= )T
Hence, ||T*|| > (1 — €)||T||. Since € was arbitrary, || 77| > ||T]|. O
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L. prop:bdd-1f-iff-cns
END Monday 2025-01-27 also covered Proposition 2:12

2.6. Duality for Sub and Quotient Spaces. [Optional. Not covered Spring 2025]
The Hahn-Banach Theorem allows for the identification of the duals of subspaces and
quotients of Banach spaces. Informally, the dual of a subspace is a quotient and the dual
of a quotient is a subspace. The precise results are stated below for complex scalars, but
they hold also for real scalars.

. uotient-norm | .
to the quotient X'/ M. Recall (see Problem [[.2Z]; the quotient is a Banach space with

the norm,

Given a (closed) subspace M of the Barllgggll)sgace,X let 7 denote the map from X

I2]l = inf{[ly] : =(y) = 2}.
In particular, if x € X, then

|7(z)]] = inf{||z —m] : m € M}.
It is ev1dlg£1;cb:flgg];lréSghﬁegggstructlﬁgotl}ag_gt is continuous and ||| < 1. Further, by

Problem [["ZU {or see Proposition [Z. elow) if M is a proper (closed) subspace, then
|7|| = 1. In particular, 7* : (X /M)* — X* (defined by 7*A = A o ) is also continuous.
Moreover, if z € M, then

Let
ME={fe X f(x)=0for all z € M}.
(M is called the annihilator of M in X*.) Recall, given x € X, the element & € X**
is defined by #(7) = 7(x), for 7 € X*. In particular,
M = Myep ker(2)
and thus M is a closed subspace of X*. Further, if A € (X /M)*, then 7\ € M.

Proposition 2.33 (The dual of a quotient). The mapping ¢ : (X/M)* — M=t defined
by

b(A) =7"A
is an isometric isomorphism; i.e., the mapping 7 : (X/M)* — X* is an isometric
isomorphism onto M.

Informally, the proposition is expressed as (X /M)* = ML

. . [thm:adjointmap
Proof. The linearity of ¢ follows from Theorem 232 as does |[¢|| = ||7]| < 1. To prove

that 1 is isometric, let A € (X' /M)* be given. Automatically, |[+/(\)]| < ||\]]. To prove
the reverse inequality, fix » > 1. Let ¢ € X/ M with ||g|| = 1 be given. There exists an
x € X such that ||z|| < r and 7(z) = ¢. Hence,

A= A (@) = [N (@) < [zl <l ()]]-
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Taking the supremum over such ¢ shows || A < r||¢>(N\)||. Finally, since 1 < r is arbitrary,
A< Tl (M-

To prove that 1 is onto, and complete the proof, let 7 € M= be given. Fix q € X/ M.
If z,y € X and 7(x) = ¢ = 7(y), then 7(z) = 7(y). Hence, the mapping A\ : X/ M — C
defined by A(¢q) = 7(z) is well defined. That X is linear is left as an exercise. To see that
A is continuous, observe that

A = @) < I l=]],

for each € X such that m(z) = ¢. Taking the infimum over such = gives shows

M| < [I7lHqll
Finally, by construction ¢ () = 7. O

Since M is closed in X*, the quotient space X*/M= is a Banach space. c}re:’%b_cor
p: X* — X*/ M=+ denote the quotient mapping. Suppose A € M*. By Corollary E_Z'F
there is an f € X™* such that f|y = A; that is f is a bounded extension of A (and
indeed f can be chosen such that ||f]| = [|A]]). If f and g are two extensions of A to
bounded linear functionals on X*, then f(z) — g(z) = 0 for # € M. Hence f —g € M+
or equivalently, p(f) = p(g). Consequently, the mapping ¢ : M* — X*/ M=+ defined
by @©(A) = p(f) (where f is any bounded extension of A to X') is well defined. It is
easily verified that ¢ is linear. Further, given ¢ € X*/ M, there is an f € X* such that
p(f) = q. In particular, with A = f|, we have p(\) = p(f). Therefore ¢ is onto.

Proposition 2.34 (The dual of a subspace). The mapping ¢ : M* — X*/ ML is an
1sometric isomorphism.

Proof. Tt remains to show that ¢ is an isometry, a fact that is an easy consequence of the
Hahn-Banach Theorem. Fix A € M* and let ¢ = ¢(A). If f is any bounded extension
of A to X*, then ||f|| > ||A]|. Hence,

eI =l
=inf{|[fl|: f € X", p(f)=q}
=inf{|[fl|: f € X", flm=A}
>||A][-

On the other hand, by the Hahn-Banach Theorem there is a bounded extension g of A
with [[g] = [[All. Thus |[A]] < lq]]. m

A special case of the following useful fact was used in the proofs above. If X', ) are
vector spaces and T : X — ) is linear and M is a subspace of the kernel of T, then T
induces a linear map T : X/M — Y. A canonical choice is M = ker(T) in which case
T is one-one. If X is a Banach space, ) is a normed vector space and M is closed, then
X /M is a Banach space.
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Lemma 2.35. If X' is a Banach space, M is a (closed) subspace of ker(T), Y is a
normed vector space and T : X — ) is continuous, then the mapping T is bounded and

171 = 117l

ent-
quotient map 7 has norm 1 (see Problem [I.2Z]; we see that ||TH < ||T||. For the opposite

inequality, let 0 < ¢ < 1 and choose x € X such that ||z|| =1 and | Tz| > (1 — €)||T|].
Then ||7(z)|| <1 and

Proof. Let m: X — X /M denote the quclgzlent map and observe that T = T. Since the

T = [T ()] = ITz]| > (1= e)|IT].
Letting € go to zero finishes the proof. 0

2.7. Hahn-Banach separation theorems. [Optional. Not covered Spring 2025]

Besides the extension theorem and its corollaries, the other important applications
of the Hahn-Banach theorem consist of various separation theorems. We begin with a
few definitions.

Definition 2.36. Let X' be a vector space. A hyperplane in X is a subspace M of
codimension 1. An affine hyperplane is a set of the form x + M C X, for some fized
x € X and hyperplane M.

If L:X — F is a nonzero linear functional (bounded or not), the space M = ker L
is a hyperplane, and if we fix any scalar ¢ € F then the set {z € X' : L(z) = t} is an affine
hyperplane. Conversely, any hyperplane is the kernel of a nonzero linear functional. (To
see this, observe that if M is a hyperplane in X, then, since it has codimension 1, for
any fixed choice of a vector y € X'\ M we can write every z € X’ uniquely as x = m+ty
with m € M and t € F. Then define L(z) = t.) Consequently, every affine hyperplane
has the form H = {x € X : L(z) = t} for some nonzero linear functional L and some
scalar .

Lemma 2.37. If M is a hyperplane in a normed vector space X, then M is either
closed, or dense in X.

Proof. Tt is easy to check that the closure of subspace of X is again a subspace. It follows
that M is a subspace with M C M C X. Since M has codimension 1, we must have
either M = M or M = X. O

Proposition 2.38. Let X be a normed vector space and L : X — F a linear functional.
Then L is continuous (that is, bounded) if and only if ker L is closed. Consequenlty, L
s continuous if and only if there exists a nonempty open set U such that U Nker L = &.

Proof. Trivially, if L is continuous then ker L is closed. Conversely, suppose M = ker L
is closed. We can then form the quotient space X' /M, and since M is a hyperplane
this space is one-dimensional. If we let m denote the quotient map and define L :
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X/M — F by Lw = L, then the linear functional L is continuous (since its domain is
finite-dimensional), and since the quotient map is also continuous, we conclude that L

1s continuous.

.. . [Lem:hyperplane-closed-oz
The second statement follows by combining the first statement with Lemma Z.37-

O

Recall that a set K in a real vector space X is called conver if for every z,y € K and
every 0 <t <1, we have tx+ (1 —t)y € K. Let X be a normed vector space over R and
let U C X be a convex, open set containing 0. We define a function p : X — [0, +00) by

“gauge-ast| (12) (@) = inf{r >0~z € U},
T

(To see that the definition makes sense, observe that since U is open and 0 € U, there
exists 6 > 0 so that z € U whenever ||z|| < §. It follows that for every z € X, we
have %x e U for all r > @; thus the set appearing in the definition is nonempty.) The
functional p is sometimes called a gauge for the set U, it is important because of the

following lemma.

Lemma 2.39. Let X be a normed vector space ove eR-maLﬁl ée_tdgé C X be a convex open
set containing 0. Then the function p defined by (7%'25 a Minkowsk: functional, and

U={re X px) <1}

Proof. If r,s > 0 then trivially 2z € U if and only if %x € U, and it follows that
p(sx) = sp(z) for all s > 0. Likewise it is immediate from the definition of p that
p(0) = 0, so that p(sz) = sp(x) for all s > 0. Next we show that p(z) < 1 if and only if
x € U: indeed, if x is in U then since U is open, there is a § > 0 such that (1+ )z € U,
thus p(z) < (1+6)"" < 1. On the other hand if p(z) < 1 then 1z € U for some
0 <7 < 1, but then since U is convex and 0 € U, we can write z = r(¥)+(1—7)-0 € U.

Finally, let us show that p(x +y) < p(x) +p(y). Fix any r, s > 0 such that ¥ and ¥
belong to U. Since U is convex, the convex combination

T $+ S y xT+y
r+s,/)r r+s S_r+s
T+y

belongs to U, so by what was just proved we have p(T—JrS) < 1. By homogeneity we
conclude that p(x + y) < r + s, and finally by taking the infimum over r and s we get

p(xz+y) < plx)+p(y).

O

Theorem 2.40 (Separation). Let X be a normed vector space over R. If U C X is a
nonempty, open, convex set, and x € X \U, then there exists a bounded linear functional
L € X* and a real number a such that L(y) < a = L(x) for ally € U.
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Proof. We first assume that 0 € U, the general case will follow by translation. Let
N be the one-dimensional subspace Rz. Define L on N by putting L(z) = 1 and
extending linearly. Let p be the gauge functional for U. Since z ¢ U, we have p(x) > 1,
so 1 = L(z) < p(x). Since both L and p are positive homogeneous, we also have
L(tx) < p(tx) for all t > 0. For ¢ < 0, we have L(tx) < 0 < p(tz) (since p > 0 by
definition). Thus, we have L(y) < p(y) for all y in the subspace N. It follows from the
Hahn-Banach theorem that there exists an extension of L to all of X (still denoted L)
such that L(y) < p(y) for all y € X. It follows that L(x) = 1 and L(y) < p(y) < 1 for
all y € U. To see that this extension L is bounded, let V' = U — x; then V is an open
set in X an% r%gﬁ.’i-ﬁdg-ﬁ%l;n%]%-%%slfv that is, V Nker L = &, so by the second part of
Proposition 2331t follows that L 1s bounded.

Finally, in the case that U does not contain 0, we choose a point xg € U and apply
the theorem to U’ := U — x¢ and 2’ =  — ¢, to obtain a bounded functional such that
L(z) =1+ L(xo) and L(y) < 14 L(zo) for all y € U; the details are left to the reader.

O

Lemma 2.41. i) If X is a normed vector space over R, K C X is a convex set,

and xg 15 an interior point of K, then for every x € K and every 0 <t < 1, the
point xog + t(x — xy) is an interior point of K.

ii) If K is convex then int(K) is convex.

iii) If K is a closed, conver subset of X and K has nonempty interior, then K is
equal to the closure of its interior.

iv) Let K be a closed, convex subset of X and suppose 0 is an interior point of K. If
p is the gauge functional for the convex set U = int(K), then K = {x € X|p(x) <

1.

Proof. For (i), by translation, there is no loss of generality in supposing that zo = 0.
Fix z € K, and fix ¢ such that y € K for all ||y|| < 0. For 0 <t < 1, put e = (1 — t)¢.
If ||z — tz]| < €, then we can write z = tx +y with ||y|| < (1 —¢)d. It follows that
[(1—t)"'y|] < d,s0y = (1—t)"'y belongs to K. We have thus written z = tx+ (1 —1)y/
with x,y € K, so z € K. That is, the open ball B(tx,¢€) is contained in K.

(ii) follows immediately from (i).

For (iii), since = = lim(zg + t,(x — x¢)) for any sequence ¢, increasing to 1, we see
that every x € K is a limit of interior points.

For (iv), let p(x) < 1. If p(x) < 1 then x € U and thus z € K. If p(xz) = 1, then by
the definiton of p we have tx € U for every 0 < ¢t < 1, so taking a sequence of scalars

t, increasing to 1, we get that x belongs to the closure of U so x € K. Conversely, if
x € K, then by part (i) tx € U for every 0 <t < 1, so p(z) < 1. O

Corollary 2.42 (Strict separation). Let X be a normed vector space over R. If K C X
is a closed, conver set with nonempty interior, and v € X\ K, then there exists a bounded
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linear functional L € X*, and real numbers a < b such that L(y) < a < b= L(x) for all
ye K.

Proof. Again we assume that 0 is an interior point of K, and leave the general case to the
reader. Let U = int(K') and let p be the gauge functional for U; by the lemma we have
K ={z € X|p(x) < 1}. Thus, if z ¢ K, then p(z) > 1. We may then choose a number
0 <t < 1so that tx ¢ K. Applying the previous separation theorem to U and tx, we
obtain a bounded linear functional L and a real number a such that L(y) < a = L(tx)
for all y € U, we put b := ¢ = L(z). Since L(y) < a on U, and L is continuous, and
K is the closure of U (by item (iii) of the Lemma), we conclude that L(y) < a for all
a € K, which completes the proof. O

2.8. Problems.

Problem 2.1. Prove, if X is any normed vector space, {z1, ...z,} is a linearly indepen-
dent set in X, and g, ..., are scalars, then there exists a bounded linear functional f
on X such that f(z;) = o for j = 1,...n. (Recall linear maps from a finite dimensional
normed vector space to a normed vector space are bounded.)

Problem 2.2. Let X',) be normed spaces and T : X — ) a linear transformation.
Prove T is bounded if and only if there exists a constant C' such that for all x € X and
fey,

(13) |f(Tz)| < CllfNl=ll;

. . . . . legn:bilinear-bdd-prob
in which case ||| is equal to the best possible C' in (T3],

Problem 2.3. Let X’ be a normed vector space. Show that if M is a closed subspace of
X and ¢ M, then M + Fz is closed. Use this result to give another proof that every
finite-dimensional subspace of X is closed.

Problem 2.4. Prove, if M is a finite-dimensional subspace of a Banach space X, then
there exists a closed subspace N' C X such that M NN = {0} and M + N = X. (In
other words, every x € X can be written uniquely as z = y + 2 Wlt}l%? YE d@é{’bgs?s/\/ )
Hint: Choose a basis x1, ...z, for M and construct, using Problem Z'T and the Hahn-
Banach Theorem, bounded linear functionals fi,... f, on X such that f;(z;) = d;;. Now
let N'= N ker f;. (Warning: this conclusion can fail badly if M is not assumed finite
dimensional, even if M is still assumed closed. Perhaps the first known example is that
co is not complemented in ¢>°; though it is nontrivial to prove.)

. prop:complexify
Problem 2.5. Prove Proposition 2722

Problem 2.6. Prove every finite-dimensional Banach space is reflexive.

Problem 2.7. Let B denote the subset of /> consisting of sequences which take values
in {—1,1}. Show that any two (distinct) points of B are a distance 2 apart. Show, if C
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is a countable subset of £>°, then there exists a b € B such that ||[b—c¢|| > 1 for all ¢ € C.
Conclude £ is not separable. Prove there is no isometric isomorphism A : ¢g — £>°.

rnC(X)star| Problem 2.8. [This problem belongs in the section with signed measures] Prove, if p
is a finite regular (signed) Borel measure on a compact Hausdorff space, then the linear
function L, : C(X) — R defined by

Lu(f) = /X i

is bounded (continuous) and ||L,|| = [|x| := |[#|(X). (See the Riesz-Markov Theorem
for positive linear functionals.)

oint-facts| Problem 2.9. Let & and ) be normed vector spaces and T' € L(X,)).

a) Consider T** : X** — Y**. Identifying X', ) with their images in X** and Y**,
show that T**|y = T.

b) Prove T* is injective if and only if the range of T" is dense in ).

c) Prove that if the range of T is dense in X', then T is injective; if X is reflexive
then the converse is true.

d) Assuming now that X and ) are Banach spaces, prove that 7' : X — ) is
invertible if and only if T* is invertible, in which case (T*)~! = (T—!)*.

-and-duals| Problem 2.10. a) Prove that if X’ is reflexive, then X* is reflexive. (Hint: let
t: X — X* be the canonical inclusion; by assumption ¢ is invertible. Compute
(1))
b) Prove that if X is reflexive and M C X is a closed subspace, then M is reflexive.
c¢) Prove that a Banach space X is reflexive if and only if X'* is reflexive.
d) Prove that if X is reflexive and ) is another Banach space with }* isometrically
isomorphic to X*, then ) is isometric%lllgb'somor hic to X. {This conclusion can

. . . :nonunique-predua
fail if X' is not reflexive; see Problem [Z7T57)

rable-dual| Problem 2.11. Prove, if X' is a Banach space and X* is separable, then X is separable.
[Hint: let {f,} be a countable dense subset of X*. For each n choose z, such that
.|| = 1 and | fn(2,)] > || fnll- Show that the set of Q-linear combinations of {x,} is
dense in X'.]

infty-dual| Problem 2.12. a) Prove there exists a bounded linear functional L € (£>°)* with
the following property: whenever f € (> and lim,,_,, f(n) exists, then L(f) is
equal to this limit. (Hint: first show that the set of such f forms a subspace
M C (*°). Such an L is a Banach limit.
b) Show that such a functional L is not equal to L, for any g € ¢'; thus the map
T.: (t — (£>)* given by T(g) =1L, ig no‘F surje?tive. brob: separable—dual
c¢) Give another proof that T' is not surjective, using Problem [Z.TT.

ints-basic| Problem 2.13. Let X be a normed space and let K C X be a convex set. (Recall,
this means that whenever x,y € K, then %(x +y) € K; equivalently, tz + (1 —t)y € K
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forall 0 <t <1.) A point x € K is called an eztreme point of K whenever y,z € K,
0<t<l,and x =ty+ (1 —t)z, then y = z = z. (That is, the only way to write = as a
convex combination of elements of K is the trivial way.)

a) Let X be a normed space and let B = ball(X) denote the (closed) unit ball of
X. Prove that = € B is not an extreme point of B if and only if there exists a
nonzero y € B such that ||z +y| < 1.

b) Prove that if X and ) are normed spaces, and T : X — ) is a surjective
linear isometry, (so that X and ) are isometrically isomorphic) then 7" induces
a bijection between the extreme points of ball(X) and ball(}).

c) Let /2 denote the (real) Banach space R™ equipped with the % norm, 1 < p < oc.
Prove that (3 and (5° are isometrically isomorphic, but that there is no isometry
between £} and (5°.

t-examples| Problem 2.14. a) Show that the extreme points of the unit ball of ¢! are precisely
the points of the form Ae, where |\| =1 ermpnd ey s the sequence which is 1 in the
h Pro :%Xtreme-po nts-basic
n' entry and 0 elsewhere. (See Problem [Z7T37.
b) Determine the extreme points of the unit ball of ¢*.

c¢) Show that the unit ball of ¢y has no extreme points.

ue-predual | Problem 2.15. Let

c:{f:N—>IF

lim f(n) exists } :
n—oo
and equip ¢ with the supremum norm || f|| := sup |f(n)].

a) Show that ¢* = ¢! isometrically.
b) Prove that ¢ is boundedly isomorphic to ¢g.
c¢) Prove that c¢ is not isometrically isomorphic to Co: o cg;lint: exabmine the extreme

pextirembapbint-examples

. extripme

points of the unit balls of ¢ and ¢q; see Problems .13 and 5 )
(This problem provides an example of Banach spaces X and ) such that X and ) are
not isometrically isomorphic, but X* and Y* are. So in general we cannot recover X
(isometrically) from X*. In fact the situation is worse, ¢! has isometric preduals which
are not even boundedly isomorphic to ¢y, but the construction is more involved and
outside the scope of these notes.)

3. THE BAIRE CATEGORY THEOREM AND APPLICATIONS

This section contains three important applications of the Baire category theorem in
functional analysis. These are the Principle of Uniform boundedness (also known as the
Banach-Steinhaus theorem), the Open Mapping Theorem, and the Closed Graph The-
orem. (In learning these theorems, keep careful track of what completeness hypotheses
are needed.)
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3.1. Bajre’s Theorem. Recall, a set D in a metric space X is dense (in X)if D = X.
Lemma El below should be familiar. We will use the notation B(z,r), for the open ball
of radius r > 0 center to the point = in a metric space X = (X, d)

B(z,r)={y € X : d(z,y) <r};
and F° for the interior of a subset F' of a metric space X.

Lemma 3.1. Suppose X is a metric space.

(a) For a subset D C X of X, the following are equivlalent:
(i) D is dense in X
(1) D¢ does not contain a nonempty open set ((D°)° = &;
(i17) if @ # U is open, then D NU # &.

(b) If U C X is open and x € U, then there is an r > 0 such that B(x,r) C U.

(c) A subset F' of X is closed with empty interior if and only if F° is open and dense.

Theorem 3.2 (The Baire Category Theorem). Suppose X is a complete metric space.
(a) If (U,)2, is a sequence of open dense subsets of X, then N U, # (.
(b) If (Fy,)n is a sequence of closed sets with empty interior, then UF, # X.

Remark 3.3. We will actually prove that NU,, is dense in X. This conclusion is in fact
equivalent to the conclusion that NU,, # @.

hm:baire
Theorem EZ 1s true if X is a locally compact Hausdorff space and there are connec-
tions between the Baire Category Theorem and the axiom of choice. 0

The following lemr%?n -%}é?}_«%d be familiar from advanced calculus. It will be used in
the proof of Theorem .2

Lemma 3.4. Let X be a complete metric space and suppose (Cy,) is a sequence of subsets
of X. If

(i) each C,, is nonempty;

(i1) (C) is nested decreasing;
(i11) each C,, is closed; and
(iv) (diam(C,,)) converges to 0,

then there is an x € X such that
{z} = NC,,.

Moreover, if (z,,) is a sequence from X and x,, € C,, for each n, then (x,) converges to
some .
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hm:baire . . L.
Proof of Theog@m t? Z. The twq items are equivalent, but for oyr purposes it is enough to
:balre:a 1 : : l:Dalre’a

: LTS,
show item (IS‘IJ implies item (IbJ. 5 this end, suppose item (] holds, (F},) is a sequence

of closed sets such that F77 = & for all n and X = UF,. Taking conEQlerrgzebna‘Lclsfeg = NFY.

By Lemma EZ. l, the sefs F) are open and denge in X by Lemma B.T.  Hence X js_not
. i:baire:a . i:baire:b: . 1:baire:a
complete and therefore item (E ) 1mplies item (%i Thus it suffices to prove item (IS ).

. i:baire:a .
To prove item (&), Iet (U,,)22 ; be a sequence of open dense sets in X and let I = NU,,.

To prove I is dense, it suffices t :shroe\ybatgagz I has ngntnwal 1ntersec£1:or%e\;xgg£1rgvery
nonempty open set W by Lemma E% . Fix such a W. Since, by Lemma tZ. , Uy 1S dense,
there is a point x E wn U'l. S1gce U, and W are open,ltzherrée:tsa%rgadmsp <r < 1 such
that the B(zy,71) is contained in W N U; by Lemma [3. | Similarly, since Us is dense
and open there is a point x5 € B(x1,r1) N Uy and a radius 0 < g < % such that
B(iL’Q,Tg) g B(a:l,rl) N U2 g W n U1 N UQ.
Continuing inductively, since each U, is dense and open there is a sequence of points
(24)22, and radii 0 < r,, < = such that
B(zn,mn) C B(wp-1,7m-1) N U, €W N (N}, Uy).

=Y lem:weakfi
The sequence of sets (B(x,, ,)) satisfies the hypothesis of Lemma k}ZI and X 1s complete.
Hence there is an x € X such that

x € N B(xy,r,) CWNI. O

3.2. Category. Baire’s theorem is used as a kind of pigeonhole principle: the “thick”
complete metric space X cannot be expressed as a countable union of “thin” closed sets
without interior.

d:category| Definition 3.5. A subset E of a metric space X is nowhere dense (in X) if its closure
has empty interior; that is (£)° = @.

A set F' in a metric space X is first category (or meager) if it can be expressed as a
countable union of nowhere dense sets. In particular, a countable union of first category
sets is first category.

A set G is second category if it is not first category.
reinaction| Corollary 3.6 (The Baire Category Theorem restated). If X is a complete metric space,

then X is not a countable union of nowhere dense sets; that is, X is of second category
in itself.

Proof. Suppose X = nzﬁn‘ where each E.n is nowh(?re d‘ense. It follows that X = baire
use  F, W?egga each F,, = F, is closed and with empty interior. Hence, by Theorem [%2

n=1"R1paire:b
item (), X 1s not complete. O

Corollary 3.7. An infinite dimensional Banach space can not have a countable basis.
In particular, there is no norm on coy that makes it a Banach space; ditto for the vector
space of polynomials.
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Proof. The proof is left as an exercise. As a starting point, show, if M is finite dimen-
sional subspace of an infinite dimensional Banach space X', then M is nowhere dense in

X. U

3.3. The Principle of Uniform Boundedness.

Theorem 3.8 (The Principle of Uniform Boundedness (PUB)). Suppose X, ) are normed
spaces and {T,, : o € A} C B(X,Y) is a collection of bounded linear transformations
from X to Y. Let B denote the set

(14) B :={z € X :sup ||Toz| < co}.

If B is of the second category (thus not a countable union of nowhere dense sets) in X,
then

sup || T, < oo.
6}

In particular, if X is complete and if the collection {T, : a € A} is pointwise bounded,
then it is uniformly bounded.

Proof. For notational convenience, set M (x) = sup,, ||Taz|| < co.

For each integer n > 1 consider the set
Vioi={zxeX: Mx)>n}.

Since each T, is continuous (bounded), the sets V;, are open. (Indeed, for each a the map
x — ||Tox|| is continuous from X to R, so if || T,z| > n for some a then also | T,y|| > n
for all y sufficiently close to x.) Let E,, denote the complement of V,, and observe that
B = U2 E,. Since B is assumed to be of the second category, there is an /N such that
(Ex)° is not empty. Since Ey is closed, it follows that Ey has nonempty interior; i.e.,
there is an zg € Ey and r > 0 so that B(zo,7) C Ey. « and every ||z|| < r, expressing
x = (x — xo) + o as the sum of two elements of B(zg,r) gives

[Tall < ITa(x = zo)l| + [ Tazol| < N + N.
That is, if ||z|] < r, then M(z) < 2N. By rescaling we conclude that if ||z|| < 1, then
|Toz|] < 2N/r for all a and thus sup,, ||T,] < 2N/r < co. O

The following result is one of the many corollaries to the PUB.

Corollary 3.9. Suppose X is a Banach space and Y is a normed vector space. If (T},)
is a sequence of bounded operators T, : X — Y that converges pointwise to a (necessarily
linear) map T : X — Y, then T is bounded.

Outline of proof. In a metric space, convergent sequences are bounded. Hence (7},x),, is
bounded in Y for each x € X. Thus the set X = {z € X : sup{||Tz|| : n € N} < oo}
is of second category in X'. Thus C' = sup{||7,|| : » € N} < oo. Thus the proof reduces
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to showing ||Tz|| < C|z|| for all z € X, a task that is left as an exercise for the gentle
reader. U

3.4. Open mapping. Given a subset B of a vector space X and a scalar s € T, let
sB = {sb : b € B}. Similarly, for x € X, let B—2 = {b—x :b € B}. Let X,) be
normed vector spaces and suppose 1" : X — ) is linear. If B C X and s € F is nonzero,
then T'(sB) = sT(B) and further, an easy argument shows T(sB) = sT(B). It is also
immediate that if B is open, then so is B — x.

Recall that if XY are topological spaces, a mapping f : X — Y is called open if
f(U) is open in Y whenever U is open in X. In particular, if f is a bijection, then f is
open if and only if f~! is continuous. In the case of normed linear spaces theh%(?%dé%i%%
that a linear map is open is refined by the Open Mapping Theorem, Theorem . elow.
But first a lemma.

ate dilate| Lemma 3.10 (Translation and Dilation lemma). Let X', be normed vector spaces, let
B denote the open unit ball of X, and let T : X — Y be a linear map. The following are
equivalent.

i:dil:i (i) The map T is open;

(11) T(B) contains an open ball centered at 0;

(iii) there is an s > 0 such that T'(sB) contains an open ball centered at 0; and
i:dil:iv| (iw) T'(sB) contains an open ball centered at O for each s > 0.

-

.o -
Q.-
Pl
Ll
e ||
e ]
e || -
- -

. hm:open:ma
In the proof of this lemma and that of Theorem E% [0 Tol ow, we use B¥(x,7) and
BY(y,s) to denote the open balls centered to z and y with radii » and s in X and Y
respectively when needed to avoid ambiguity.

Proof. This result is more or less immediate from the fact that, for fixed zp € X and
r € F, the translation map z — z 4 2y and the dilation map z — rz are continuous in a
normed vector space.

. . ) . i:dil:i . i:dil:ij .
The implication item (%Tpﬁes |11tgrlr m%lﬁdlﬁe The fact that T(sB) =

sT(B) for s > 0 readily shows items (ii], (ii1) and (iv) are all equivalent.

T ifi(i]iif%lighe proof it suffice to show item (L%)d%lTS‘l!les item (i%)%ordingly, suppose
item Eiﬁ)_lﬁrd’s and let U C X be a given open set. To prove that T'(U) is open, let
y € T(U) be given. There is an « € U such that T'(z) = y. There is an s > 0 such that
the ball B(z, s) lies in U; that is B(x,s) C U. The ball B(0,s) = B(z,s) —x is an open
ball centered to 0. By hypothesis there is an r > 0 such that BY(0,r) C T(B(0, s)). By
linearity of T,
BY(y,r) =B>(0,r) +y S T(B(0,5)) +y
=T(B(0,s)) + T(x) =T(B(0,s) + ) = T(B(x,s)) C T(U).

Thus T'(U) is open and the proof is complete. O
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m:open:map| Theorem 3.11 (Open Mapping). Suppose that X is a Banach space, Y is a normed
vector space and T : X — Y is bounded. If the range of T is of second category, then

open:map:i (i) T(X) =
pen:map:ii| (i) Y is complete (so a Banach space); and
en:map:iii| (iii) T is open.

In particular, if X,) are Banach spaces, and T : X — Y is bounded and onto, then
T s an open map.

Llem:translate dilate

Proof. Assuming T is open and letting B denote the open unit ball* in X', by Lemma 3. 10,
there is an 7 > 0 such that BY(0,r) C T'(B). Hence,

y = U, BY(0,nr) C T(nB) C T(X),

so that item ( o [ ere the Sl%)[éeI‘SCI'lpt Y is used to emphasize this ball is in ).)

pen:map:i
That is, item (iii) implies ffein (h)
|i:open:map:ii
To prove item (iii), let Bz, r) denote the open ball of radius r centered at = in X.

Trivially X = (J;~, B(0,n) and thus rangeT = T'(X) = |J.—, T(B(0,n)). Since the
range of T is assumed second category, there is an N such that T'(B(0, N)) is second
category and hence somewhere dense In other words, T'(B(0, N)) has nonempty interior.

By scaling (see Lemma (Id 1U)), (0,1)) i nonempty interior. Hence, there exists
p € Y and r > 0 such that T(B(0, 1)) contains the open ball BY(p,r). It follows that
for all ||y|| < r,

y=(+p)—peT(B(0,1)) + T(B(0,1) € T(B(0,2)),
where we have used —7'(B(0,1)) = T(B(0,1)). In other words,
BY(0,r) S T(B(0,2)).
By scaling, it follows that, for n € N,

r 1
B(0, gnr1) € T(B(0, 5))-

END Friday 2025-01-31

We Wﬂ]l use the hypothesis that A" is complete to prove BY(0,%) C T(B(O 1)), which,
by Lemma 3 1U 1mp11es T is open. Accordingly let y such that ||y[| <  be glven Since
y is in the closure of T(B(0, 1)), there is a y; € T'(B(0, 3)) such that ||y y1|l < §. Since
y—y € BY(0,%) it is is in the closure of T'(B(0, 1)). Thus there is a y, € T(B(O, 1)
such that [[(y — y1) — y2l| < 5. Continuing in this fashion produces a sequence (y;)32,
from ) such that,

(a) [ly — Z;L Y5l £ 55 and
(b) yn € T(B(0, £))

“Without a center specified, we take the center as 0.
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for all n. It follows the sequence (s,, = >_7", y;)m converges to y. Further, for each
j there is an x; € B(0, 57) such that y; = Tx;. Thus, setting ¢, = > iy xj, we have

) 927

Ts,, =t,, and
o oo
Dol <D 2k =1
j=1 k=1

thus the sequence (t,), converges to some x with [z < >°°° [[z;|| < 1, that is,
x € B(0,1). It follows that&ymapTx by continuity of 7. Consequently y € T(B(O, 1))
and the proof of item (hn) 1s complete.

To prove item (E‘)Q%ote the kernel of T and T the mapping T : X /M — Y
determined by T7T = leéctelg1 gt Is %’ W(lep T(x) for x € X. By construction T is one-one
and by Lemma u db 1t 1S continuous. burther its range is the same as the range of T,
namely ), and is thus second category. Hence, by what has already been proved, T is
an open map. and consequently T is continuous. Hence X /M and Y are isomorphic
(though of course not necessarily isometrically 1somogg 1021 nggﬁned vector spaces.

Therefore, since X' /M is complete (Proposition I1 19), SO 18 ). O

i:open:map:ii

Note that the proof of item (i1] 1n the Open Mapping Theorem shows, in the case
that in the case that T is one-one and its range is of second category, that T" is onto and
its inverse is continuous. In particular, if T : X — ) is a continuous bijection and ) is
a Banach space (so the range of T is second category), then 7! is continuous.

somorphism| Corollary 3.12 (The Banach Isomorphism Theorem). If X', are Banach spaces and
T :X — Y is a bounded bijection, then T~ is also bounded (hence, T is an isomor-
phism).

Proof sketch. Note that when T is bijection, T is open if and only if 77! is contlbré%ouigf ens
The result thus follows from the Open Mapping Theorem and Proposition I1 35

The following examples show that the hypothesis that X atr)l ;/ are Banach spaces,
an 1somorp ism
and not just normed vector spaces, is needed in Corollary Id .

Example 3.13. This example shows t?%pgleegsggmption that the range of T is second
category in ) is necessary in Theorem [ '

Let X denote the Banach space ¢! and let ) = ¢! as a linear manifold in ¢, with
the ¢y (sup) norm. So ) is a normed space, but not a Banach space. The identity map
t: X — ) is a bijection. It is also continuous since the supremum norm of an element
of ¢* dominates its ¢! norm. Let G = B¥(0,1) C X denote the (open) unit ball in X.
Thus G is open in X. Given r > 0 choose n € N such that n > % and let x = %Z?Zl e,
where e; € ¢! is the function e; : N — F defined by

o (m) = 1 ifm=j
00 ifm £
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Observe that ||z||« < 7, but ||z|; > 1. Hence z € BY(0,r), but ¢ G. Thus BY(0,r)
G for any choice of r > 0, which means 0 is not an interior point of G (in )). Hence G
is not open in ).

The argument above of course shows that the range of ¢ is not second category in
Y. Here is simple direct proof of this fact. First note that the sequence g, = %Z?:l e;
converges to 0 in ¢y and g, € ¢! with ||g,]|1 = 1. For N € N, let By = {f € £ : || f]1 <
N} C Y. Verify that each By is closed in ). On the other hand, given N, the sequence
fx = f+3Ng converges to f in ¢y and so in Y, but ||f +3Ngk|| > 3N — || f|| > 2N > N.
Thus f is not in the interior of By and so By is nowhere dense and YV = UX_; Bn.

Example 3.14. This example shows that the assumption X ].Sh% ']gag%la%}% space can not

be relaxed to X is simply a normed vector space in Theorem B.TT.

Let Y be an infinite dimensional Banach space. Let d%xslo_el 2 discontinuous linear
functional, whose existence is the content of Proposition Ef [1. As an exercise, show that
the function || - ||s : ) — [0, 00) given by

]l = [lzlly + [A(z)]

is a norm on Y. Let X’ denote the normed space ) with this norm; that is X = (), ||-||+)-
Let T': X — Y denote the identity map (so bijective). Let G denote the unit ball in X.
We claim 0 is not in the interior of G as a subset of ). Indeed, since \ is not continuous,
there is a sequence (z,) of unit vectors in ) such that |A(z)| > n. Consequently, given
r > 0 and choosing n sufficiently large, |52, ||y <7, but |[§z,[[. > 1. Thus B(0,r) £ G
proving the claim.

A consequence of the argument is that X is not a Banach space. To verify this fact
directly, let y ¢ ker A be given. By Proposition prop:bdd-lf-iff-cns, there is a sequence
() from ker A that converges to x (in ). Since ||z,||« = ||z|y, the sequence (z,) is
Cauchy in X. However, since ||z, — y|l. = ||z, — ylly — A(y), the sequence (z,,) does
not converge to y in X. Now suppose (z,) converged to some z € X. Thus z € ) and
|zn — 2|« = ||z — 2]|y + A(z) converges to 0 from which it follows that z = y and the
proof is complete.

This result depends on the a i_(glqlscqfl i(%lf%ige. In this proof, choice is smuggle in
through the appeal to Propostion Ef [1, whose proof in turn depended on the existence

of a Hamel basis, which in turn uses Zorn’s Lemma (choice). 0

END Monday 2025-02-03 - except had not discussed the Banach Isomorphism The-
orem.

3.5. The Closed Graph Theorem. Recall that the Cartesian product X Xs%}e é)f ]r?)oeh—ucts
nach spaces X and Y with its default product topology from Subsection [.Z2.7. In
particular, the product topology on X x ) is the coarsest topology that makes both
coordinate projections my and 7y from X x Y to X and Y respectlvellex char%lt(}éll%g%gb Crl-‘l[‘l

. . . . El%s:norms
topology is the same as that determined by the norms in equation (IJ.
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Definition 3.15. The graph of a linear map T : X — ) between normed vector spaces
is the set

G(T)={(r,y) e X xY:y="Tz}.

Observe that since T is a linear map, G(T') is a linear subspace of X x ). The transfor-
mation 7" is closed if G(T') is a closed subset of X x V. O

It is an easy exercise to show that G(7T') %rgL():scel% Sl£ d@rﬁgtggggngegfhenever (@U Tx,)
converges to (z,y), we have y = T'z. Problem B.Z gives an example where G(T) is closed,
but 7" is not continuous. On the other hand, the next theorem says that if X', ) are

complete (Banach spaces), then G(T') is closed if and only if 7" is continuous.

Theorem 3.16 (The Closed Graph Theorem). If X, ) are Banach spaces and T : X —
Y is closed, then T is bounded.

Proof. We prove T closed implies T' is bounded, leaving the easy converse as an exercise.
With the norm ||(z, ¥)||cc = max{||z]|, ||y||} the vector space X x ) is a Banach space with
the product topology. The coordinate projections my, Ty are bounded with norm one.
Let 71, 3 be the coordinate projections 7y, my restricted to G(T'); explicitly m (z, Tx) =
x and my(x, Tx) = Tx. Note that m is a bijection between G(T') and X’ and in particular
77 (x) = (x,Tx). By hypothesis G(T) is a closed subset of a Banach space and hence
a Banach space. Thu:?c o, blasn a lhggggoer%hlliggar bijection between Banach spaces and
therefore, by Corollary B.1Z, 7, © : X — G(1I) is bounded. Since s, is bounded, mom;

X — Y is continuous. To finish the proof, observe 7 o m; }(x) = mo(z, Tx) = Tx. O

3.6. Problems.

Problem 3.1. Show that there exists a sequence of open, dense subsets U,, C R such
that m((,—, U,) = 0.

Problem 3.2. Consider the linear subspace D C ¢, defined by
D={f€c: lim |nf(n)| =0}
n—oo

and the linear transformation T : D — ¢q defined by (T'f)(n) = nf(n).

a) Prove T is closed, but not bounded. b) Prove T is bijective and T : ¢y — D is
bounded (and surjective), but not open. ¢) What can be said of D as a subset of ¢?

Problem 3.3. Suppose X is a vector space equipped with two norms || - ||, - ||, such
that || - ||, <|| - ||,- Prove that if X' is complete in both norms, then the two norms are
equivalent.

Problem 3.4. Let X', ) be Banach spaces. Provisionally, say that a linear transforma-
tion T': X — Y is weakly bounded if f oT € X* whenever f € V*. Prove, if T is weakly
bounded, then 7" is bounded.



b:TntoTPUB

amel-basis

2firstinl1

h-analytic

ment-v-bdd

48

Problem 3.5. Let X', ) be Banach spaces. Suppose (7},) is a sequence in B(X,)) and
lim,, T,,x exists for every x € X. Prove, if T is defined by Tx = lim, T,,x, then T is
bounded.

Problem 3.6. Suppose that X" is a vector space with a countably infinite basis. (That
is, there is a linearly independent set {z,} C X such that every vector x € X is
expressed uniquely as a finite linear combination of the z,’s.) Prove there is no norm
on X under which it is complete. (Hint: consider the finite-dimensional subspaces
X, = span{z,...2,}.)

Problem 3.7. The Baire Category Theorem can be used to prove the existence of
(very many!) continuous, nowhere differentiable functions on [0,1]. To see this, let F,
denote the set of all functions f € C]0, 1] for which there exists xy € [0,1] (which may
depend on f) such that |f(x) — f(zo)| < n|z — x| for all z € [0,1]. Prove the sets E,
are nowhere dense in C[0, 1]; the Baire Category Theorem then shows that the set of
nowhere differentiable functions is second category. (To see that £, is nowhere dense,
approximate an arbitrary continuous function f uniformly by piecewise linear functions
g, whose pieces have slopes greater than 2n in absolute value. Any function sufficiently
close to such a g will not lie in £,,.)

Problem 3.8. Let L?([0,1]) denote the Lebesgue measurable functions f : [0,1] — C
such that |f]? is in L'([0,1]). Tt turns out, as we will see later, that L?([0, 1]) is a linear
manifold (subspace of the vector space L'([0, 1])), though this fact is not needed for this
problem.

Let g, : [0,1] — R denote the function which takes the value n on [0, %] and 0
elsewhere. Show,

(i) if f € L*([0,1]), then lim, o [ gnf dm = 0;
(ii) L, : L*([0,1]) = C defined by L, (f) = [ gnf dm is bounded, and || L,|| = n;
(iii) conclude L*([0,1]) is of the first category in L'([0,1]).

Problem 3.9. A Banach space of functions on a set X is a vector subspace B of the
space of complex-valued functions on X with a norm || || making B a Banach space such
that, for each = € X, the mapping E, : B — C defined by E,.(f) = f(z) is continuous
(bounded) and if f(x) =0 for all x € X, then f = 0.

Suppose g : X — C. Show, if gf € B for each f € B, then the linear map
M, : B — B defined by M, f = gf is bounded.

Problem 3.10. Suppose X is a Banach space and M and N are closed subspaces.
Show, if for each x € X there exist unique m € M and n € N such that

Tr=m-+n,

then the mapping P : X — M defined by Px = m is bounded.
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Problem 3.11. Let X be a Banach space and M C X a closed subspace. A linear
transformation P : X — M is called a bounded projection if it is bounded and P(m) = m
for all m € M. Prove that if M is a closed subspace and there exists a bounded
projection P : X — M, then there exists a closed subspace N' C X such that MNN =
{0} and X = M + N. Show also that in this case there exists a bounded projection
Q: X — N.

Remark: Given a closed subspace M C X, we say M is (topologically) comple-
mented if there exists a closed subspace N' C X such that MNN = {0} and M+N = X.
Taken together, the last two problems show that a closed subspace M C X is comple-
mented if and only if there is a bounded projection P : X — M. Not every subspace of
a Banach space is necessarily complemented, for example ¢q is not complemented in £°°,
though this is nontrivial to prove.

Problem 3.12. Here, for definiteness we take the scalar field R.
Let T : £>° — (> denote the backward shift operator defined by T'f(n) = f(n+ 1)
A bounded linear functional A : /> — R satisfying,
(i) if f € £>° and (f(n)) converges, then A(f) = lim,_,~ f(n); and
(if) A(T'f) = A(f)
is a Banach Limit.

Prove

(a) Banach limits exist.
(b) If A is a Banach limit and f € ¢*°, then

liminf f(n) < A(f) < limsup f(n).

A sequence f € (> for which (f(n)) does not converge, but A\(f) = u(f) for all
Banach limits A and p is almost convergent. Show that g defined by g(n) = (—1)" is
almost convergent. (Suggestion: given a Banach limit A, consider A\(g + Tg).

Problem 3.13. Prove that Q is not a Gy set.

4. LP SPACES

Throughout this section, (X, .#, 1) is a measure space and X # &.

Definition 4.1. For 0 < p < oo, let LP(u) denote the space of measurable functions

f X — [ that satisfy
1/p
1= ([ 1rPan) <o

Lemma 4.2. Suppose 0 < p < oo. If f,g € LP(n) and ¢ € F, then | f + g||f <
22 (IL£115 + llgliz) and llefll, = le[ I f|l- Hence LP(u) is a vector space.
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Later we will show, for 1 < p < oo, that || - ||, is a semi-norm on LP(u).

Sketch of proof. The equality ||cf]|, = |c| || f]|, is immediate. As a pointwise inequality,
[f + gl < [fI+ lg] < 2 max{|f], |g]} Hence,

|f +gl” < 2Pmax{|f], [g]}* = 2" max{[f[", |g|"} < 2°(|/]" + |g]"),

from which the rest of the result follows. O

END Wednesday 2025-02-05

Definition 4.3. A measurable function f : X — F is essentially bounded if there is a
t > 0 such that

plfl>13) =0

and let £°(u) denote the set of essentially bounded functions on (X, .7, p).
Define || - ||loo : £2(1) — [0, 00) by

(15) [flloe = inf{t >0 u({lf] > t}) = 0}.

Propg_sigir(r)nr_liél 4. The set L(u) is a vector space. Further, the infimum in equa-

_ nft _ .
tion (IIH %% altained and | - |0 78 @ semi-norm on L(u).

It is customary to write £? instead of £P(u) when the y is understood (or generic).

Proof. 1t is evident that, if ¢ € F and f € £ then ¢f € L* and ||cf]lec = |¢| || f]loo-
Now suppose f,g € L. Let s,t > 0 be given such that s > || f||cc and t > [|g||c. By
definition, the (measurable) sets A = {|f| > t} and B = {|g| > s} have measure 0.
Let C = {|f + g| > s+ t}. Hence A U B has measure 0 and by the triangle inequality
AN B¢ C C° Thus C € AU B and hence C has measure 0. Thus f + g € £>(u) and
[f+ gl < s+t It now follows that ||f + g|| < [|f]lec + [|g]lc and hence £ is a vector
space and || - ||o is a semi-norm on L.
d:norm-inft

That the infimum is attained in equation (IIH) 1s left as an (easy) exercise based

upon the fact that a countable union of sets of measure zero has measure zero. 0

We record the following simple observation for later use - often without comment.

Lemma 4.5. If 0 < p < oo and f € LP(u), then ||f||, = 0 if and only if f = 0 almost
everyewhere.

Proof. For 0 < p < oo, by assumption g = |f|P is unsigned [g = [f][p. Since g = 0
almost everywhere if and only if [ g = 0, the result follows. O
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4.1. Conjugate indices and the inequalities of Young, Holder and Minkowski.
We now restrict our attention to 1 < p < oo.

Definition 4.6. The conjugate index or dual exponent to 1 < p < oo is the unique
1 < ¢ < oo satisfying

1 1
- +-=1
p q
The dual index to p = o0 is ¢ = 1; and the dual index to p =1 is ¢ = 0. 0

Note that (p — 1)q = p and likewise (¢ — 1)p = ¢. The significance of dual indices is
apparent in the following result.

Lemma 4.7 (Young’s inequality). If a,b are nonnegative numbers and 1 < p,q < oo

are dual indices, then

a? bl
ab < — + —
p q

and equality holds if and only if b9 = aP.

Proof. It a or b is 0 there is nothing to prove. So suppose a,b > 0. Define ¢ : R - R
by (t) = a?~Dbe. A bit of rearranging gives 1 (t) = a” - exp(ct), where ¢ = log(b?/a?).
The function 1 is infinitely differentiable and

Y(t) = 2 P(t) > 0.

Thus ¢ is convex. In particular, (using the fact that % + % =1)

1 1 1 1 1 P b4
(16) w(—>:w(—'0+—~1>§—¢(0)+—w(1):a—+—.

q p q p q p q
For the case of equality, note that t(¢) is strictly convex unless ¢ = 0 (a” = b?), in which
case 1 is constant. 0

lprob:adjoint-facts

lem:youn
For an alternate geometric proof of Lemma IZI [, see Problem B9,

Theorem 4.8 (Hélder’s inequality). Suppose 1 < p < oo and q is the conjugate index
top. If f € LP and g € LY, then fg € L', and

(17) 1Fglle < I f1lnllglla-

Further, assuming 1 < p < oo and f € LP(u), if ||fll, # 0, then there exists a
g € LYu) such that

(1) llglla = 1;
(i) fg > 0; and

(iii)
(18) 1 flls = / £9= 1o lglla = 111l
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If © has the property that every set of positive measure contains a set of positive,
but finite, measure and f € L(u), then

1/l = sup{ll fgll : g € L' (1), gl = 1}.

. . . e:holder:ine
Remark 4.9. For f € £'(u) of course equality holds in equation ( 7 with g=1.

The assumption that (X,.#, ) has the property that every (measurable) set of
positive measure contains a set of finite measure is needed as the following example
shows. For the measure space ({0}, {<,{0}}, 1), where u(@) = 0 and u({0}) = oo, we
have £'(p) = {0} and thus ||fg|ls =0 for all f € £>(u) and g € L' (). O

hm:holder
Proof of Theorem 5.8. ['he proof is easy in the cases p = oo or p = 1. Now suppose

1 <p<oo.
L: seminormO:an

If ||f]|, = 0, then l{ = Onormob&’a Lemma 5. Hence jg = 0 a.e. a(&, E)ifdglgoi%}éer
7 holds. B

application of Lemma 7. o, Ifglli = 0. Thus the inequality of equation y
symmetry, the same is true for g. Hence we may assume || f||, # 0 # ||g/l,-

By homogeneity we may assume || f||, = ||g||, = 1. We are to show
/\fg! dp < 1.
Applying Lemma Ile_.e%njglo%fue%g
(19) |[f(2)g(x)| < %|f($)|p + %L{J(I)!q-

:4
Integrating (65) with reEep%c‘i (;co 1 and applying the normalizations on p, ¢, f, g gives the

inequality of equation ( ur er observe, in the case 1 < p,q < oo, that e ciuahty

holds in Hélders in inequality if andloe%l 1f equahty holds a.e. p in equation (}T%‘)_lf and
only if |f|? = |g|? a.e. pu by LemmalZ[ .

To prove the further portion of the theorem, suppose 1 < p < oo and f € LP(u)
satisfies || f|l, = 1. Let g = |f|P f~! (interpreting g as 0 when f is 0). From |g|? =
|f|P~Da = | f|P it follows that g € L£L(u ngiid(ﬂlg = 1. Further, fg = |f|” so that
I fglli = 1 = ||fll, and hence equation ( 8(; holds. (Note that a small tweak to this
argument also handles the case p = 1.)

For the last statement, suppose every subset S of X with u(S) = oo contains a set
T for which 0 < u(T) < oo and let f € L£>®(u) be given. Without loss of generality,
|fllo = C > 0. Given 0 < p < C, the set £ = {|f| > p} has positive measure. Thus
there is a set F© C E such that 0 < u(F) < oo. Let g = ﬁxp, where yp is the
characteristic function of F. Observe g € L£!(u1) and ||g||; = 1. Moreover, |fg| > pg and
hence || fg|l1 > pllg||1 and the result follows. O

END Friday 2025-02-07
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Example 4.10. One can get a more intuitive feel for what Holder’s inequality says by
examining it in the case of step functions. Let E, F' be sets of finite, positive measure

and put f = 1g,9 = 1p. Then || fg|s = u(E N F) and

1 Inllglly = p(E)Pu(F) 1,

so Holder’s inequality can be proved easily in this case using the relation % + % =1 and
the fact that u(E N F) < min(u(E), u(F)).

Corollary 4.11 (Minkowski’s inequality). Let (X, .#, i) be a measure space and sup-
pose 1 <p<oo.If f,g € LP(u), then

1F+ gl < [ fllp + [lgllp-

Hence || - ||, is a semi-norm on LP(p).

Proof. The result has already been established for p = 1 and P 500 80 suppose 1<
p < oo and let ¢ denote the conjugate index to p. By Lemma IZE'Z f+ g€ LP(u). The

result is vacuous if f +¢g =0 (almE%m egchywhere) equivalenlty, ||f + ¢|, = 0. Now

suppose || f + g|l, # 0. By Theorem ere is an h € L9(u) such that ||A, = Land
I(f + g)hlli = || f + gllp- On the other hand, two more applications of Theorem Izi 8 and
the fact that || - ||; is a semi-norm gives,

1f +gllp = I + @)l < N2l + llghlls < [[Fllpl1P1 + lgllpllAll = [1fllp + gl O

4.2. Th(i Lebesuge spaces LP(u). The proof of the following proposition, based on

seminorm
Lemma I4 b 1s leff To the gentle reader.

:cLp-to-Lp| Proposition 4.12. The set N'(v) = {f € L(u) : || fll, = 0} is a subspace of LP(1) and
the function || - ||, descends to a norm on the quotient space LP(u)/N ().

Definition 4.13. The normed vector space (LP(u)/N(u), || - |l,) (for 1 < p < o0) is
denoted LP(u) and is known as a Lebesque space.

Suppose 1 < p < oo and ¢ EE( t]%e Cé)r}]ugate index to p. Fix g € L(u). For f € LP(p),

Holder’s inequality (Theorem mplies gf € L'(p) and moroever || fgllr < || fllp [l9ll4-
Thus, we obtain a bounded linear functional L, : Lp(,u) — F of norm at most ||g||,
defined by

Ly(f) =g/
Hence we obtain a bounded map (with norm at most one) ® : L9(p) — LP(p)*.
Lq:duality| Proposition 4.14. For 1 < p < oo, the mapping ® : L% (u) — LP(u)* defined by
®(g) = L, is isometric.

When p = 1, if u is o-finite, then ® : L>=(u) — L*(p)* is isometric.
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. . r:post:hold
Remark 4.15. Returning to the example in Remark IZI‘E where L] p) = {0}, the map
® : L>®(pn) — L'(u)* is not one-one. Since in this case £'(p)* = {0}, but L>®(u) = F
isometrically, ® is the zero map and, in particular, (1) = 0.

On the other hand, in the case p = 1 it suffices to assume that (X, ., u) has the

property that every set S such that u(S) = oo contains a subset 7" with 0 < u(T") < oo.
. . L. p:pre:Lp-Lq:duality . .
Later we will see that the map ® in Proposition 1. T4 is an 1sometric isomorphism

for 1 < p < oo, with the proviso that u is o-finite in the case p = 1.
lprob:ell-prbbyddadtof-linfty .
Problems [Z-TZ and 1.6 says that ® need not be onto in the case that p = oo.

~ p:pre:Lp-Lq:duality )
Proof of Proposition [7.17. Let g € L7(yi) be given. If ||g||, = 0, then L, = 0 so that the

results holds, even when p = 1 without conditions on the measure space (X, .Z, ).

Now suppose 1 < p < oo and ||g||, # 0. As already observed, ||[U(g)|| = || Ly]| < ||gll4,
for g € Lq(u).: On the other‘ hand, since 1 < 4,589 for 0 7£ g € L%(u), the moreover
portion of Hélder’s Inequality (Theorem E%i gives a function f € LP(u) such that
[ /]l =1 and

L,(f) = / f9= llglla
Hence [|L|| > [lgll, and thus [[Z,] = [lg]l.

In the case p = 1 and p satisfies the hypothesis of the additional hypotheses given,
Holder’s inequality implies that, for each 0 < p < [|g]|o, there is an f € L'(u) such
that || f|l1 = 1 and |Ly(f)| = ||fglli > p- Thus ||Ly]| > ||g||cc and consequently ||L,|| =
Il .

Proposition 4.16. For 1 < p < oo, the normed vector space LP(u) is a Banach space.

L. prop:Lp:Banach . .
Proposition B-T6 1S a near immediate consequence of the following lemma.

Lemma 4.17. Suppose 1 < p < 0o and (f,)5>, is a sequence from LP(u). If for each
€ > 0 there is an N such that if m,n > N, then ||f, — full, < € then there is an
f e LP(u) such that

(a) the sequence (|| f, — f|lp)n converges to 0;
(b) there is subsequence (fn,) of (fn) that converges to f pointwise almost everywhere.

END Monday 2025-02-10

Sketch of proof. The proof for the case 1 < p < oo is very much like the case p = 1 that
has already been established and is just sketched here.

There is a subsequence (g3 )%, of (f,) such that ||gr11 —gr| < 27% for k > 1. Setting
go = 0, the series > [|gk+1 — gk, converges. (The subsequence (gj) is super-Cauchy.)
Let

Iy, = Z |gk+1 - gk|
k=0
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and let h denote the pointwise limit (in [0, 00]) of the non-negative increasing sequence
(hm). By the Monotonne Convergence Theorem,

/hp = lim/hﬁl.
Thus,

(20) [12]], = Lim [| P [ -5
The inequality,

p
1l < ZHng 9illp < [Z 1gr+1 = 9k||p] <00

pre:Lp: complete 1
and equation (IzU) imphes v € L7. Thus

h = Z |Grt1 — Gkl
k=0

is finite almost everywhere and hence,

m

Z(gk-l—l — Gk) = gm+1

k=0
also converges almost everywhere to a measurable function f. That is, the sequence (gx)
converges pointwise to f. Further, since |f| < h and h € L?, it follows that f € LP.

By construction, for m fixed, if n > m, then ||g, — gm|l, < 2™ and (|gn — gm|)n
converges pointwise almost everywhere to |f — g,,|P. Thus, by Fatou,

I = gull = / 1 — gul? < liminf / 9 — Goal? = liminf [l g, — g2 < 2.

Thus the sequence (||f — gm/||p)m converges to O.

A standard fact that, in a metric space X, if (x,) is Cauchy and if there is an z € X
and a subsequence (x,,) of (x,) that converges to z, then (x,) converges to x. Thus,
from what has been proved, (f,,) converges to f in £? and the subsequence (gi) of (f,)
converges to f pointwise, completing the proof for 1 < p < oo.

The case p = oo follow rfggrfln?evf%gg that, for g € £>(u), the set {|g| > ||g]loo}
has measure 0 (Proposition K2} so that it can be assumed that |g| is bounded by ||¢||co-

From here the proof is very much like the proof of completeness of the Spacer]g (%{ " %Of
bounded functions on a set X with the supremum norm. (See Proposition Hfr%)'_lﬁar—
ticular, a Cauchy sequence (f,,) converges pointwise almost everywhere (no subsequence

is needed). The details are left to the reader. O

Corollary 4.18. If (f,) is a sequence from LP(n) (1 < p < o0) that converges to f
in LP(p), then there is a subsequence (fn,) of (fn) that converges to f pointwise almost
everywhere.
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Proof. The sequence (f,,) (viewed %, reIprise]%tatlve of their respective equivalence classes)
satisfies the hypotheses of Lemma I4 P ibnce there is a g € LP(u) and subsequence (gx,)
of (f,) that converges to g both in LP(u) and pointwise almost everywere. By uniqueness
of limits, g = f as elements of LP(u); that is, almost everywhere. Thus (gx) converge to
f pointwise almost everywhere. 0

-pointwise| Corollary 4.19. Suppose 1 < p < oo and (f,) is a sequence from LP(u). If (f,) con-
verges to f in LP(p) and to g pointwise a.e., then f = g a.e.; that is, the pointwise limit
and LP(u) limit are the same (almost everywhere).

typewriter| Example 4.20. [The typewriter sequence] Define f, : [0,1] — R by

Ful®) = X, psk par_ok,, for 28 <m < 2FFL
( 2]9 ) 2k ]

(here  is the indicator function) viewed as functions in L'(m) for Lebesgue measure m
on [0, 1]. The sequence (f,) converges to 0 in L'(m), but does not converge pointwise
anywhere. On the other hand, the subsequence (gr = for) converges to 0 pointwise
(everywhere).

Example 4.21. Let (X, .#, ) denote a measure space and suppose h : X — T is
a measurable function. Given 1 < p,r < oo, if hf € L" for each f € L, then the
linear mapping Mj : LP — L" is bounded. As an example of what more can be said, if
w(X) <ooand p=2=r, then h € L™,

Use the Closed Graph Theorem as follows. SE gm My f,) is a sequence that
COr: :
converges to (f, g) in LP x L". Apply Corollary IZI 315 E T ; and f to obtain a subseguerlce

B h
(gr) of (f,) converging to f pointwise a.e. and of course in £P. Apply Corollarylzl Sto
(hgy) and g to deduce g = hf. Now use Closed Graph.

For the bit about L?, make an argument like the one at the end of the proof of
Holder’s inequality.

4.3. Problems.

young:ineq| Problem 4.1. Suppose f : [0, 4] — [0,00) is differentiable, strictly increasing and
f(0) = 0. Prove, for each 0 < a < A, that

/ N / " e,

[Suggestion: Differentiate g(x fo f+ fo @) [t —xf(z).] Deduce Young’s inequality.

truncation| Problem 4.2. [Truncation of L? functions| Suppose f is an unsigned function in LP(u),
1<p<oo. Fort>D0let

E,={x: f(x) > t}.
Show:
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(a) For each real number ¢ > 0, the horizontal truncation 1g, f belongs to L9 for all
1<qg<p

(b) For each real number ¢ > 0, the vertical truncation f; := min(f,t) belongs to L9 for
all p < ¢q < o0.

(c) Every f € LP, 1 < p < oo, can be decomposed as f = g + h where g € L' and
h e L.

m-1lp-norms | Problem 4.3. Suppose f € LP°NL*> for some pg < oo. Prove f € LP for all pg < p < o0,
and im0 || fllp = [1fllo-

fty-basics| Problem 4.4. Prove f, — f in the L*™ norm if and only if f,, — f essentially uniformly,
and that L*° is complete.

inments-rn| Problem 4.5. Show that LP(R) ¢ LY(R) for any pair p,q.
-of-linfty| Problem 4.6. Consider L>*(R).

a) Show that M := Cy(R) is a closed subspace of L>°(R) (more precisely, that the
set of L™ functions that are a.e. equal to a Cy function is closed in L*). Prove
there is a bounded linear functional A : L(R)>* — F such that Ay = 0 and
A1g) = 1.

b) Prove there is no function g € L'(R) such that A(f) = [, fgdm for all f € L.
(Hint: look at the restriction of A to Cy(R).)

e

5. HILBERT SPACE

5.1. Inner product spaces.

ef:semi:ip| Definition 5.1. Let V denote a vector space over C. A function (-,-) : VxV — Cis a
inner product if, for all f,g,h € V and ¢ € C,

=L

ipa] () (L) 2 0
irip:b+| (b) (f, f) =0if and only if f = 0;
irip:b| (c) (f+eg,h) = (f,h) +c(g,h);
i:ip:c| (d) {9, /) = (f. 9).

END Wednesday 2025-02-12

prop:CS| Proposition 5.2. An inner product on a vector space V satisfies the the Cauchy—
Schwarz inequality,

[(fo ) < (f 1) {g.9).
Equality holds if and only if f and g are linearly dependent.

The function || - || : V — C defined by || f|| = +/{f, f) is a norm on V and, with this
notation, the CS inequality becomes

[(F )l < 1N gl
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Further, ||f + g|| = || fll + llgl| of and only if either f = 0 or there is a t > 0 such
that g = tf.

Remark 5.3. Given an inner product space V = (V, (-, -)), we endow it with the norm
- and hence metric - arising from the inner product.

Lemma 5.4 (Joint continuity of the inner product). Let H be an inner product space
equipped with its norm topology. If (x,) converges to x and (y,) converges to y in H,
then ((xn,yn)) converges to (x,y).

Proof. By Cauchy-Schwarz,

(s yn) = (2, 9)| < (@ v = )] + 20 — 2,9 < lzallllyn =yl + llzn = 2]yl = 0,

since ||z, — ||, ||y» — y|| = 0 and the sequence ||z,|| is bounded. O

Definition 5.5. A Hilbert space H over F is an inner product space over F that is
complete in the metric d(z,y) = ||z — y|| = /{z — y,z — y). (Here, as usual, F is either

Cor R.)
We contmuﬁ—: to use the notatio op M < H to indicate M is a (closed) subspace of H

sub Space:close
from Definition T.70.

Example 5.6 (F"). It is easy to check that the standard scalar product on R" is an
inner product; it is defined as usual by

1) @9 =Y wm,

where we have written x = (x1,...2,); ¥y = (Y1,...Y,). Similarly, the standard inner
product of vectors z = (z1,...2,), w= (wi,...w,) in C" is given by
n
(22) (z,w) = Z 2;W;.
j=1
(Note that it is necessary to take complex conjugates of the w’s to obtain positive

definiteness.)
:rn_inegun:pnaodnerprod
It is straightforward to check that equations (u [) and (ZZ) define mner products on

R™ and C" respectively that induce the Euclidean norm. Since these Euclidean spaces
are complete, they are Hilbert spaces.

Example 5.7 (L*(n)). Let (X A ) be a measure space. Given f,g € L*(p), by
Holder’s inequality (Theorem IZ%) the function fg € LY(p) and ||fql < |Ifll2 lgll2-

From here it is a simple exercise to verify that the Banach space L?(u) is the inner
product space with the inner product,

(23) (f.9) = /X f7du.
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. . legn:L2_inner_prod 9 . .
That is, equation (3)1s an mner product and the norm on L*(x) is the norm derived

from this inner product.

Example 5.8 (/*(N)). Let
CN) ={(a1,a2, ... an,...) | an €F, > |ay|* < o0},
j=1

This space is L?(c) for the measure space (N, P(N), c), where ¢ is counting measure. In
particular, /*(N) is a Hilbert space with the inner product,

(24) S o
n=1

for sequences a = (ay,as,...) and b= (by, by, ...) in (%

e:Hilby:FFn
Note too, that example IS.G, is the special case of L*(v) for v equal to counting
measure on P({1,2,...,n}).

5.2. Orthogonality. In this section we show that many of the basic features of the
Euclidean geometry of F"™ extend naturally to the setting of an inner product space.

Definition 5.9. Let H be an inner product space.

(i) Two vectors x,y € H are orthogonal if (z,y) = 0, written x L y.
(ii) Two subsets A, B of H are orthogonal if z L y for all x € A and y € B, written
ALl B.
(iii) A subset A of H is orthogonal if x L y for each z,y € A with x # y and is
orthonormal if also (x,z) = 1 for all z € A.
(iv) The orthogonal complement of a subset E of H is

Et={rec H:(zx,e)=0forallec E}.

The proof of the fOHOVﬁ%l,ﬁ llglrlr(lagl% 4831 easy oxercise. Indeed, the first item follows

immediately from Lemma 5.4 and the second from the positive definiteness of a norm.

Lemma 5.10. If E is a subset of an inner product space H, then

(i) E+ is a closed subspace of H;

(ii) ENE+ C{0}; and

(iii) E C (E+)*t = B+
Theorem 5.11 (The Pythagorean Theorem). If H is an inner product space and fi, ... f,
are mutually orthogonal vectors in H, then

Lfo - fall? = NAN A+ 1l



ogram:weak

allelogram

i

1lel:proof

larization

lar:weak:R

olar:R:alt

weak:R:alt

DBl

arizationC

60

Proof. When n = 2, we have
11+ Il = 12 )1? + (frs f2) + (fa o) + Dl

2 2
= A7+ LA™
The general case follows by induction. 0
Suppose V' is a yector space over F. A function [-,:] : V xV — F satisfying the
axioms of items lé'ané Ia'ls bali car f(érm in the case F = R and a sesquilinear form when

F = C. If it also satisfies item b, then it is positive semi-defininite.

Theorem 5.12 (The Parallelogram Law). If [-, -] is a bilinear (resp. sesquilinear) form
on a vector space over R (resp. C) and f,h € V, then
(25) f+o.f+a+f—g f—g=2(f fl+19.49])-
In particular, if H is an inner product space, then
(26) L+ gl + 1f = all* =201 £11* + [lglI*)-
Proof. By linearity (resp. sesquilinearity),
(27) g fEgl =11 f1£1f, 9l 19, [T £]g,9]
. . . . . . legn:parallelogram:weak
Adding these two equations together gives the identity of equation (Z5).
. . legn:parallelogram . lean:parallelogram:weak
In the case of Hilbert space, equation (20) Tollows from equation (25) Dy the defini-
tion of the norm coming from the inner product. O

Subtracting, instead of adding, in the proof of the Parallelogram Law gives the
polarization identity

2([f, 9l + Mo, f)=1f+9. f+9 = f =9, f—9]

Theorem 5.13 (The Polarization identity). If |-, -] is a bilinear form on a vector space
over Rand f,h € V, then

In particular, if H is an inner product space over R, then
1
(29) (fr9) =7 (I +al* = 1If = glF)-
If [-,] is a sesquilinear form on a vector space over Cand f,h € V, then
3
(30) Alf, 9] =D _*lf +itg, | +itg).
k=0

If H is a complex Hilbert space, then

(31) A(f.g) =Y _i*(f +iFg, f +i*g).

3
k=0
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Remark: Note that, in a Hilbert space, the polarization identity says that the inner
product is determined by the norm.

An elementary (but tricky) theorem of von Neumann says, in the real case, thal‘gqié.parallelogram

H is any vector space equipped with a norm || - || such that the parallelogram law (Z0)
holds for | 3(31111: é,o 7.5, F{-f él’gchen H is an inner product space lvg%ti}%altra%% product given by

F)C
formula (29) in the case of real scalars and formula (B1) in the cgse:og £ Eg]ﬁlg& Pfé%%{%'n c

(The proof is simply to define the inner product by equation ( or (B1), and check
that it is indeed an inner product.)

5.3. Best approximation in Hilbert space.

Definition 5.14. A subset K of a vector space V is convex if whenever a,b € K and
0 < s,t sum to 1, it follows that sa + tb € K as well. (Geometrically, this means that
when a,b lie in K, so does the line segment joining them.)

A normed vector space X is strictly convezr if z,y € X and ||z +y| = ||z|| + ||yl
then either z = 0 or there is a ¢ > 0 such that y = tx.

onvex:sets| Example 5.15. Subspaces and balls (B(x,r)) in a normed vector spaces are convex.
The closure and interior of a convex set are convex.

ict:convex| Remark 5.16. Hilbert spaces are strictly convex. The Lebesgue spaces LP are convex
for 1 < p < oo, but not for p =1, c0.

That a normed vector space is strictly convex if and only if z # y and [|z|| = |ly|| = 1,

then ||3(z + y)|| < 1 offers an explanation for the terminology.

END Friday 2025-02-14 (though we had not finished with the remark immediately
above)

:unique:ba| Proposition 5.17. Suppose X is a strictly convexr normed vector space. If K C X is
convex, h € X and there exists a y,z € K such that

|h —y|| = dist(h, K) = inf{||h — k| : k € K} = ||h — 2|,
then z = y.

Proof. Let d = dist(h, K). By convexity, k = % € K and by the triangle inequality,
1 1 1
d< b=kl =l5h -y + 5= <=yl +]h-=2]]=d

Hence equality holds in the triangle inequality. Without loss of generality, h—y # 0 and,
by strict convexity, there is a ¢ > 0 such that h—y = t(h—z). Since ||h—y|| = d = ||h—z]|,
it follows that ¢t = 1 and therefore y = z. O

Hilby:best| Theorem 5.18. Suppose H is a Hilbert space. If @ # K C H 1is a closed, convexz,
nonempty set, and h € H, then there exists a unique vector kg € K such that

|h — kol|| = dist(h, K) := inf{||h — k| : k € K}.
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. . prop:CS jp:unique:ba
Proof. Uniqueness follows from Propositions b-Z and b.17.

Let d = dist(h, K) = infyeck ||h — k||. First observe, if z,y € K, then, by convexity,
so is v = ¥ and in particular, ||h —v||* > d*. Hence, by the parallelogram law, applied
tof:xg—handg:%,

2 2

Tr—y r+y

2

—h

(e = RlI* + lly = hII*) —

x_para_law| (32)

<5 (llz = Al* + [ly — hll*) — d*.

N|— N —

There exists a sequence (k,) in K so that (||k, — h||) couverges to d. Given € > 0

nvex_para

choose N such that for all n > N, ||k, — h|> < d* + 2. By (5Z), 1f m,n > N then

l

Consequently ||k, — k|| < € for m,n > N and (k,) is a Cauchy sequence. Since H is
complete, (k,) converges to a limit k € H, and since K is closed, k € K. Since (k,, — h)
converges to (k — h) and ||k, — h|| converges to d it follows, by continuity of the norm,

that ||k — A = d. O

S| 1
< §<2d2 + 562) — d2 = 62.

km — kn
2

The most important application of the preceding approximation theorem is in the
case when K = M is a (closed) subspace of the Hilbert space H. What is significant
is that in the case of a subspace, the minimizer k£ has an elegant geometric description,
Tlamely, it .is qbtained by “dropping a perpendicular” from A to M. This geom{?ﬁi&ilbv:best
interpretation is the content of the next theorem, whose statement uses Theorem H.TS.
Recall M < H to means that M is a (closed) subspace of H.

:dropaperp| Theorem 5.19. Suppose H is a Hilbert space, M < H, and h € H. If fq is the unique
element of M such that |h— fo|| = dist(h, M), then (h— fo) L M. Conversely, if fo € M
and (h — fo) L M, then ||h — fol| = dist(h, M).

Proof. Let fy € M with ||h — fo]| = dist(h, M) be given. Given f € M, for t € R, let
A =t{h — fo, f). Since fo+ Af € M,

0 < [Ih— (fo+ AN~ lIh— foll?
=[(h — fo) + ALI? = 1B — foll?
= —2veal X (h — fo, f) + I\PIIfII?
= [=2t+2|IfIP) [¢h— fo. 1)

for all t. Thus |[(h — fo, f)| = 0.
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Conversely, suppose fo € M and (h — fo) Jﬁ:hjy bvlt% ag_zggte}iglllﬂar, we have (h — fo) L
(fo— f) for all f € M. Therefore, by Theorem b.1T, for all ] € M

1= fI* = [I(h = fo) + (fo = I
= lh = fol* +lfo = FI? > I = foll*.
Thus ||k — fol| = dist(h, M). 0

_perp_perp| Corollary 5.20. If H is a Hilbert space and M < H, then (M*)t = M.

|lem:perpbasicsL N Nl hm:dropaper
Proof. By Lemma b.T0; M C (M~)*. Now suppose that = € (M-)+. By Theorem E [9
applied to x and M, there exists m € M such t&léxn‘f x —m € M*. On the other hand,

. :perpbasics
both z and mn are 111})(&]\42l and thus by Lemma b.10, z —m € (M*+)1. Hence x —m =0
[Lem:perpbasic
by Lemma bTU, and © € M. O

If F is a subset of the Banach space X, and & is the collection of all closed subspaces
N of X such that £ C N, then

M ::fjAfegV\[

is the smallest closed subspace containing E.

_perp_perp| Corollary 5.21. If E is a subset of H, then (E+)% is equal to the smallest closed
subspace of H containing E. In particular, if E is a linear manifold (vector subspace)
in H, then E = (E+)*.

[Lem: basi
Proof. The proof uses Lemma b?flupfr%%l;élilsl particular, £ C (E1)* and (E+)t is a

closed subspace. If M is a closed subs%ace containing F, then F+ O M+ and hence
|ICOT :I_perp_perp
(EH)*t C (M)t = M by Corollary 5.70.

For the last statement, from the fact that £ and E++ are both the smallest closed

.. . . |ICor :m_perp_perp
subspace containing the linear maniforld E. See Corollary b.20. O

END Monday 2025-02-17

Corollary 5.22. A vector subspace E of a Hilbert space H is dense in H if and only if
E+ ={0}.

by:dir-sum| Proposition 5.23. Suppose M, N < H. If M and N are orthogonal, then M + N is
closed. In particular, M + N s again a subspace of H.

Proof. Tt suffices to prove that M + N is complete. Accordingly suppose (my + ny) is a

Cauchy sequence from M + N. From orthogonality, for k,¢ € N,
I = mell® + [Ing = nell® = [|(ms + 1) = (mg + n) ||

and hence (my) and (ng) are both Cauchy. Since H is complete and M, N are closed,

M and N are each complete. Thus (my) converges to some m € M and (ny) converges

to some n € N and thus (my + ny) converges to m +n € M + N. O
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by:dir:sum| Definition 5.24. Given subspaces M, N < H of a Hilbert space H, the notation M & N
is used for M + N in the case M and N are closed subspaces and M 1 N and is called
the orthogonal direct sum. Hence, M @ N indicates that M, N are orthogonal closed
subspaces of H.

prob: complement-v-bdd
The following corollary should be compared with Problem B-TU.

MplusMperp| Corollary 5.25. If M < H, then H = M & M.

hm:dropaper
Proof. Given x € H, there exists m € M such that x — m € M~ by Theorem E) 9.
Hence z =m + (x —m) € M & M*. O

Example 5.26. In a Banach space, a best approximation to a subspace need not exist as
the following example illustrates. Consider the real Banach space C(]0, 1]), the subspace
U = ker A\; Nker Ay where ); are the linear functionals on C/([0, 1]) defined by A\ (f) = [ f
and Ao(f) = f(1). Since these linear functionals are bounded with norm 1, the linear
manifold U is closed (so a subspace). Let f = 1 — z and observe, for g € U, that
(f —g)(1) =0and [(f —g) = 5. Thus the average of f — g is 3 but (f — g)(1) < 1.
Consequently, there is a point p € [0, 1] such that (f — g)(p) > 3 and we conclude that
there does not exists a g € U such that [|g — f|| = 3

Given 0 < € < £, choose 0 < § = 215:;6

the piecewise linear functlon that takes values % —e—ux for 0 < x <4, and then connects
the points (6,7) to (1,0) (draw the picture). By construction, g € C([0,1]) and ¢g(1) = 0.
Further, § was chosen to insure that ¢ = 0. Thus g € U and || f — g||c = 3 + €. Hence
dist(f,U) = % but there does not exist a g € U where this distance is achieved.

<1Lety= %—e—éamdletg:g€ denote

Example 5.27. This example show that in a Banach space, there can be more than
one closest point from a point to a subsapce.

Consider the real Banach space (R?, || - ||o) (thus ||(z1, 22)||ec = max{|z1], |za|}. Let
M = {(z1,0) : z; € R} C R? and note M is a subspace of R%. Let y = (0,1) and observe
dist(y, M) = 1 and this distance is attained for each (x,0) € M with |z| < 1.

cor:Lp-v-pointwisdeg:typewriter

END Wednesday 2025-02-19 - we also discussed Corollary LL 19 and example #.20.

sec:riesz

5.4. The Riesz Representation Theorem and Hilbert space adjoint operators.
In this section we investigate the dual H* of a Hilbert space H. One way to construct
bounded linear functionals on Hilbert space is as follows. Given a vector ¢ € H define,

Lg(h) = {h, g).

Indeed, linearity of L is just the linearity of the inner product in the first entry, and the
boundedness of L follows from the Cauchy-Schwarz inequality,

[Lg(R) = [, )| < NlglllIn]]-
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So || Lg|l < |lg]|, but in fact it is easy to see that ||L,| = ||g||; just apply L, to the unit
vector g/[|g|| (assuming g # 0). Hence, L : H — H* defined by g — L, is a conjugate
linear isometry (thus linear in the case of real scalars).

In fact, it is clear from linear algebra that every linear functional on F" takes the
form L,. More generally, every bounded linear functional on a Hilbert space has the form
just described.

Theorem 5.28 (The Riesz RepresentationTheorem). If H is a Hilbert space and A :
H — F is a bounded linear functional, then there exists a unique vector g € H such that
A = Lgy. Thus the conjugate linear mapping L is isometric and onto.

Proof. Tt has already been established that L is isometric and in particular one-one.

Thus it only remains to show L is onto. Accordingly, let A € H* b giveg If A= 0, then
. . ) . (% op:bdd-iff-cng

A = Ly. So, assume A # 0. Since A is continuous, by E}}rodt%osnlon L322 ker N = /\**éiO})

. [thm: dropaperp, lcor :MplusMperp

is a proper, closed subspace of H. Thus, by Theorem bH.T9 (or Corollary H.Zb) There exists

a nonzero vector f € (ker \)* and by rescaling we may assume A(f) = 1.

Given h € H, observe
Alh = A(h)f) = A(h) = A(R)A(f) = 0.
Thus h — A(h)f € ker A and consequently,
0= (h =R, )
= (b, ) = MBS 1)

Thus A = L,, where g = H]f”2 and the proof is complete. 0

5.4.1. Duality for Hilbert space. In the case F = R the Riesz representation theorem
identifies H* with H. In the case F = C, the mapping sending A € H* to the vector
ho is conjugate linear and thus H* is not exactly H (under this map). However, it is
customary when working in complex Hilbert space not to make this distinction. This
convention creates some conflicts that must kept in mind. For instance, given Banach
spaces X and ) and a bounded linear map T : X — ), the adjoint of T, denoted T
is the uniquely determined (by Hahn-Banach) linear map 7% : yr:hm—:>a dé]\’:i Igt%ig%ed by
Tf = foT sothat Tf(x) = f(T(x)) for x € X. See Theorem Z:37 Because of our
conjugate linear identification of H with H*, the notion of the adjoint of a operator
in the context of Hilbert space differs from the of operators between Banach spaces as

described in the following proposition.

Proposition 5.29. If H, K are Hilbert spaces and T : H — K is a bounded operator,
then there is a unique bounded operator S : K — H satifying,

(Th,k) = (h, Sk).
Moreover, ||S|| = ||T|.
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ol . . . prop:Hilby:adjoint
Definition 5.30. The operator S associated to 17" in Propo 1t10n}_*5 3 1s the éﬂzlbert
rop:Hilby:adjoin

space) adjoint of T, denoted T™* (sic). Note that Proposition b.29 says =||T. It
is easy to verify that (7%)* = T and if ¢ € IF, then (¢1')* = ¢T™.

. . . L. prop:Hilby:adjoint
The following elementary lemma will be used in the proof of Proposition b-Z9 and

elsewhere without comment.

Lemma 5.31. Suppose H, K are Hilby spaces and Y : H — K. If (Th,k) = 0 for all
he Handk € K, thenY =0

Proof. Given h choose k = Th and use positive definitiness of the inner product. O

y-norm:alt| Lemma 5.32. Suppose H and K are Hilbert spaces. A linear mapping T : H — K 1is
bounded if and only if there is a C' such that |[(Th,k)| < C||h| ||k|| for all h € H and
k € K. Moreover, in this case |T|| is the smallest such C.

Proof sketch. Suppose C exists. Given h € H and choosing k = Th gives,
T[] = (Th, Th)| < C||l[ | T
If Th # 0, it follows that ||Th|| < C||h||. Hence T' is bounded and ||T']| < C.
Assuming 7' is bounded, it is immediate from the Cauchy-Schwarz inequality that
[(Th, k)| < ([T [[RA] [1E]-

Assuming 7' is bounded, the argument in the first paragraph shows ||T']| is the
smallest possible C. O

o [prop:Hilby:adjoint )
Proof of Proposition 15.29. Define S© K — H as follows. Given k € K, observe that the

mapping A : H — C defined by A(f) = (T'f, k) is (li tgl%yrairelglg (%%ntinuous. Hence, by the
Reisz Representation Theorem (for Hilbert space), b.Z8, there 1s a vector Sk such that

(T'f,h) = A(f) = (f, Sk).

It is an exercise to verify that S is linear.

Conversely, if S": K — H is linear and

(Tf, k) ={f,5'k)

for all f,€ H and k € K, then ((S — S")k, f) =0 for all f € H and k € K and hence
S'=S.

Finally to prove that S is bounded and ||.S|| = ||T||, observe, given h € H and k € K
that

(B, SE)| = [(Th, k)| < I T|[[AI 1]
lem:Hilby-norm:alt .

Hence, by Lemma b.3Z, 5 1S bounded and [|S|| < [|T||. By symmetry, it follows that
|17l < [|S]]. Hence equality holds. O

. .. . . prob:Hilbyadjoint
Further properties of the adjoints on Hilbert space appear in Problem 5.2

A bounded operator T on a Hilbert space H is self-adjoint or hermitian if T* =T.
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Proposition 5.33. If T is a bounded self-adjoint operator on a Hilbert space H, then
[-,] : Hx H—TF defined by [f,g] = (Tf,g) is a bilinear/sesquilinear form on H. If, in
addition, (Th,h) =0 for all h € H, then T = 0.

Proof. Define [-,-] : H x H— F by

[f,9]=(Tf,9).

Since T is self-adjoint, [g, f] = (T'g,f) = (9, Tf) = (T'f,9) = [f,g], from which it
follows th%éh,tgoifa%igi&%r{g%r /sesquilinear form on H. Hence, by the polarization identity
(Theorem b. 137,

3
AUTf,g) =Y *(T(f +i*g), f+i*g) =0,
1: The0"
for all f,g € H. By Lemma b:3T, T = 0. [l
5.4.2. Projections. Returning to Theorem H.1U; 1 < H and h € H, there exists

a unique fy € M such that (h — fy) L M. We thus obtain a well-defined function
P:H — H (or, we could write P : H — M) defined by

(33) Ph = f.
That is, Ph is characterized by Ph € M and (h — Ph) € M L. If the space M needs to

be emphasized we will write Py, for P.

Definition 5.34. A bounded operator QQ on a Hilbert space H (meaning @ : H — H s
linear and bounded) is a projection if Q* = Q and Q* = Q. U

The following Theorem says if () is a projection, then () = Py, where N is the
range of C%éetfh-%ti ljﬁii @rcl)% eté%i%uely determined by its range, justifying the use of the in

ion
Definition b.37; and conversely, if M < H, then P, is a projection (onto M).

Theorem 5.35. Suppose M < H. The mapping P = Py is a projection with range M.
Moreover, if () is a projection with range N, then

(i) if h € N, then Qh = h;
(ii) |QRI < |kl for all b€ H;
(i) N < H;
(iv) Nt is the kernel of Q;
(v) I —Q is a projection with range N*; and
(’UZ) Q = PN.
Definition 5.36. For M < H and () the operator P, is called the orthogonal projection
of H on M and, for h € H, the vector Pyh is the orthogonal projection of h onto M.

. |cor :MplusMperp . . . .
Proof. In view of Corollary 6257 M @& M~ = H, from which it follows readily that P is

a linear map.
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Evidently P maps into M and if f € M, then Pf = f and hence P maps onto M
and PPf = Pf (and so P? = P).
If h € H, then h = Ph+ (h— Ph). But (h— Ph) € M+ and Ph € M, and thus, by
the Pythagorean Theorem
[ = || — PR||* + || Ph|*.

EHrefuc)e ulplem JUzu 4 dIn particular, P is a bounded operator on H. (See also Problem

Given g, f € H, since g — Pg is orthogonal to M and Pf is in M,
(Pf,Pg) =(Pf, Pg(+(Pf, (g — Pg))
=(Pf,9) = ([, P"g).
On the other hand, by the same reasoning
=(f. Pg).

Hence P* = P and all the claims about P have now been proved.

Turning to @, suppose ) is a projection and let N denote the range of ). Since
Q? = Q it follows that Qh = h for h € N (the range of Q). Also from Q% = @ we have
QI —Q)=0. Thus if h, f € H, then

(@h,(I =Q)f) = (h,QU = Q)f) =

Choosing f = h, it follows that h = Qh + (I — Q)h is an orthogonal decomposition and
hence ||Qh| < ||h|| and so @ is continuous.

If (h,) is a sequence from the range of () that converges to h € H, then, by continuity
of @, the sequence (h,, = Qh,) converges to Qh and thus h = Qh so that the range of
Q@ is closed.

Next, f € N+ if and only if

0=(Qh, ) =(h,Qf)
for every h € H; if and only if Qf = 0. Thus N+ = ker(Q).

An easy argument shows I — (@) is a projection too. In particular, f is in the range
of I —@Q if and only if (I — Q)f = f. On the other hand (I — Q)f = f if and only if
@f = 0. Thus the range of I — @ is the kernel of ). Finally, given h € H, we have
Qh € N and h — Qh = (I — Q)h € N*. Thus Q = Py. OJ

ﬁrop Hdlaf}_’y ]50 1912t 21rprl; hlg)u a\%vfz}é‘?d not proved the assertions about () in Propo-

sition b.ZY nor Proposmon 0.395.
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5.5. Orthonormal Sets and Bases. Recall, a subset E of a Hilbert space H is or-
thonormal if ||e|]| =1 for all e € F, and if e, f € F' and e # f, then e L f.

ilby:basis| Definition 5.37. An orthonormal set is mazimal if it is not contained in any larger
orthonormal set. A maximal orthonormal set is called an (orthonormal) basis or a Hilbert
space basis for H.

basis:alts| Proposition 5.38. An orthonormal set E is mazimal if and only if E+ = {0} if and
only if the span K = H.

An subset F of a Hilbert space H is a complete orthonormal set if E is orthonormal
and E+ = {0}. Thus, F is a Hilbert space basis if and only if F is a complete orthonormal
set.

Proof. Suppose E is not maximal. Hence there is an orthonormal set F' O E and a vector
f € F\ E. In particular, 0 # f € E+. Conversely, if 0 # f € E+, then F = E' U {ﬁ}
is an orthormal set that properly contains F and hence E is not maximal.

For the second part, from what has been proved, E is maximal if and Oq%rifl"l%‘lt Foerp
{0} if and only if E*+ = H. On the other hand span E = E++ by Corollary 5.75

Remark 5.39. It must be stressed that a basis in the above sense need not be a basis
in the sense of linear algebra; that is, a basis for H as a vector space. In particular,

it is always true that an orthonormal set is linearly independent (Exercise: prove this
statement), but in general an orthonormal basis need not span H. In f%ct if £ ]ls an .
) ; rdb:Hamel-basis
infinite orthonormal subset of H, then E does not span H. See Problem B.5.

If F is an orthonormal set in a Hilbert space H, then E is a basis for the Hilbert
space span F.

Example 5.40. Here are some common examples of orthonormal bases.

(a) Of course the standard basis {ey,...,e,} is an orthonormal basis of F".

(b) In much the same way we get a orthonormal basis of ¢?(N); for each n define

1 ifk=n
nk:
en(k) {0 itk +£n

It is straightforward to check that the set E = {e,}52, is orthonormal. In fact, it is
a basis. To see this, notice that if 4 : N — F belongs to £*(N), then (h,e,) = h(n),
and hence if h L E, we have h(n) = 0 for all n, so h = 0.

(c) Let H = L?[0,1]. Consider for n € Z the set of functions E = {e,(z) = *™* : n €

Z}. An easy exercise shovv%rto i_sbgg‘gslﬁ gfthonormal. Though not obvious, it is in

fact a basis. (See Problem H.0.) Here 1s an outline of a proof. Given a (Lebesgue)
measurable set E C [0, 1], by regularity there exists an open set U and a closed set
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F such that FF C E C U and m(U \ F) < ¢, where m is Lebesgue measure. Let
K =[0,1]\ U and define f: [0,1] = R by
dt, K
()= B
d(t, F') + d(t, K)

where d(t,S) = inf{|t —s| : s € S} is the distance from a point ¢ to the set S C [0, 1].
Because F, K are compact, the infima in these distance are attained. In particular,
f(t)=1fort € F, and f(t) =0 for t € K, while otherwise 0 < f(¢) < 1. It follows
that

1
/ |f = xe?dmn < WU\ F) <,
0

Since simple functions are dense in L?([0,1]) (an exercise), it follows that con-
tinuous functions are too. Stone Weierstrass implies that the span of E (the set of
trigonmetric polynomials) is uniformly dense in C([0, 1]).

END Monday 2025-02-24

Theorem 5.41. Fvery Hilbert space H # {0} has an orthonormal basis.

Proof. The proof is essentially the same as the Zorn’s lemma proof that every (non-
trivial) vector space has a basis. Let H be a Hilbert space and £ the collection of
orthonormal subsets of H, partially ordered by inclusion. Since H # (0), the collection
€ is not empty. If (E,) is an ascending chain in £, then it is straightforward to verify
that U, E, is an orthonormal set, and is an upper bound for (E,). Thus by Zorn’s
lemma, £ has a maximal element, say E. O

Proposition 5.42 (Bessel’s Inequality). If E is an orthornormal set in a Hilbert space
H, then, for each h € H,

Dl e < |nl.

ecE

In particular, E, ={e € E : (h,e) # 0} is at most countable.

Proof. For a finite subset F' of E, observe that h is the sum of the orthogonal vectors
f =2 cep(h,e)e and h — f. Hence,

1R1P = AP+ DR = FIP = AP =D K e) .
eck

Thus,
1R]1? > sup{Y _|(h,e)? : F C B, [F| < oo} = |(h,e)f. N

ecF eck
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5.6. Convergent series in Hilbert space and basis expansions. This section be-
gins with a discussion of convergence of infinite series in Hilbert space before turning to
basis expansions and Parseval’s equality.

We have already encountered ordinary convergence and absolute convergence in our
discussion of completeness: recall that the series Y7 | h,, converges if limy_, ZnN:l hy,
exists; its limit h is called the sum of the series. The series converges absolutely if
> > ||hnl] < 0o and absolute convergence implies convergence.

Definition 5.43. Suppose H is a Hilbert space and (h,,)5°, is a sequence from H. The
series >~ h, is unconditionally convergent if there exists an h € H such that for
each bijection ¢ : N — N the series ) | hy(n) converges to h. (In other words, every
reordering of the series converges, and to the same sum.)

Remark 5.44. Of course absolute convergence implies unconditional convergence. For
ordinary scalar series, or in a finite dimensional Hilbert space such as F”, unconditional
convergence implies absolute convergence; however in infinite dimensional Hiielbpggc%gace

-not-abs

unconditional convergenc genglclicgot imply absolute convergence as example H. 16 follow-
ing the proof of Theorem .45 shows.

Theorem 5.45. Suppose E = {ey,eq,...} C H is a countable orthonormal set and (ay,)
s a sequence of complexr numbers. The following are equivalent.

(i) the series 3 7, aje; converges;
(i) D32, laj|* converges; and
(iii) the series Z;’il a;je; converges unconditionally.

If E;; aje; converges to g, then (g,e;) = a; for all j.
Further, if h € H, then the series

(34) Z<h7€j>ej
j=1
is unconditionally convergent and, letting g denote the (unconditional) sum,

(9,€5) = (h,€;)

for all .

Proof. Let s, denote the partial sums of the series 2 a; e,

n
Sp — E ;€.
j=1
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Since H is complete, the series > 7% | a;e; converges (meaning (s,,) converges) if and only
if for each € > 0 there is an N so that for all m > n > N,

m
(35) lsw = sal’ = 3 Jasf? <
j=n+1

it:
(meamiin:% (isﬁ)eés Cauchy) if and only if the series > 7", |la;|? converges. Hence items (Ii) cOnverRs

and (i) are equivalent.

Now suppose s, = Z? L aje; converges to, say, g and ¢ : N — N is a £er mutation

(bijection). Let s;, = > 7 ay(j)ep(j). Given € > 0, choose N so that ( olds. In
particular,
> gl <e
J=N+1

Now choose M > N° so that

Ty = {12, N} C {p(1), 0(2), ... o(M)}.
For n > M let J, = {1,...n} and J, = {p(1),...¢(n)} and let G,, denote their
symmetric difference; that is G,, = (A, \ By) U (B, \ 4,). From

:E:ajej—E:ajej: E a;€; — E a;€j,

jEJIn jedl JjEI\JL JEII\JIn
it follows that
s = spll> =D llall”.
keGp

On the other hand G,, C J§, since Jy C J,, J. Therefore,

s = s, = faxl* < Z Jaxl® < e

keGn N+1

:squares it:uncond
Hence (s!) converges to g too. Hence item (Ii ] Tmplies ite (uli .2 51(':1 the proof of the
first part of the theorem is complete, since evidently item (Eni 1mplles item (ES

0o n [Lem:inner-product-con
Now suppose » . . a;e; converges to g and set s, = 1 aje;. Using Lemma 577,
7j=1""7"J 75

since (s,,) converges to g, for each m, the sequence ((s,, em>) converges to (g, e,,). On
the other hand, (s,,e,;,) = a,, for n > m. Hence (g, e,,) = ap,.

:B 1
For h € H Bessel’s inequality, Theorem E; 45 Herfseles the convergence of Y |(h, €;)|?
and thus, by what has already been proved, the series > (h,e;) e; converges (uncondi-
tionally) to some g € H and (g, e,,) = (h, e,,) for all m. O

on-not-abs | Example 5.46. Suppose {eq,es,...} is a countable orthonormal set in a Hilbert space

H. The series
=€
=17

SFor instance M = max ¢~ (Jy).
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is Cauchy Ig/'el"lfé/ this as an exer(nse) and hence converges to some h € H. From
Theorem }STWfollows that (h,e;) = 5 and the series above converges unconditionally
to h. On the other hand, this series does not converge absolutely and hence unconditional
convergence does not imply absolute convergence.

END Wednesday 2025-02-26

There is another notion of convergence in Hilbert space.

Definition 5.47. Suppose @ # S C H and let F denote the collection of finite subsets
of S. The series
PBE

ses
converges as a net if there exists h € H such that for every € > 0 there exists an F' € F
such that for every I C G € F,
1Y s—hl<e

seG
Often S is presented as an indexed Set, so that S = {h; : i € I} for some set I, in which

case the series is written as ) ., h

Proposition 5.48. If E is an orthonormal subset of a Hilbert space H and h € H, then

the series
Z (h,e)e

ecE

converges (as a net). Moreover, if g is the limit (as a net) of this series, then, for each
eel,

<97 6) = <h'> 6).
:B 1
Proof. Let Ey, = {e € E : (h,e) # 0}. From Bessel’s inequality, Proposition PJ 2[5 Ee: Sat
most countabl%.m .Sulggpose E), is countable and choose an enumeration, £, = {61, €y, .. }.
By Theorem b.45, the series
Z<h7 €j>ej
j=1

converges unconditionally to some g € H and moreover (g,e;) = (h,e;) for all j. On
the other hand, since the partial sums s, = »>7_, (h, ¢;)e; converge to h (in norm), for
each e € E'\ E}, the sequence (0 = (s,, €)),, converges to (g, e) and so (g,e) = 0. Hence
(g9,e) = (h,e) for all e € E. In particular, £, = E,.

To prove the series ) ., (h,e)e converges to g as a net, let € > 0 be given. There

is an N so that
N

lg = (hej)es|l < e

j=1
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and hence

Z [(h,e;)|? < €.

j=N+1
Let FF={ey,...,ex}. If G C E is finite and F' C G, then, letting T'= G \ F,

1 (heeyellP=11 Y (hee+ Y (he)el’

eeT eeE,NT e€(E\ER)NT
= D> (eel’< Y Khe)l <€
e€BR\F j=N+1
Hence
lg =D (heyell <llg =Y (he)l +11D_{he)l
ecG ecF ecT
N
=g = {g.en) el + 1D (g, e)ell < 2e.
j=1 ecT
Hence .. (h, e) converges as a net to g. O

i:parseval:d

Item () m .10 gs%gng theorem is known as Parseval’s equality. Forr%aq:%le@ € H,
the series in item (lfii'converges (as a net) to some g € H by Proposition b.43.

m:parseval | Theorem 5.49. If E C H s an orthonormal set, then the following are equivalent:
parseval:a| (a) E is a (orthonormal) basis for H;
it:basis| (b)) h =) p(h,e)e for each h € H;
parseval:c| (c) (g9,h) = > . cp(g.e)(e,h) for each g,h € H; and
parseval:d| (d) ||h||* =3 .5 |(h,e)|* for each h € H.

i

it :basi
Proof. Suppose E is an orthonormal set in H, but item 5 i d I?):@Clssnot hold. Thus there
is an h € H such that h # > (h, e)e. By Proposition b.13;

Z(h, e)e

converges (as a net) to some g € H and moreover (g,e) = (h,e) for all e € E. By
assumption, f = g — h # 0. On the other hand,

<fae>: <g_h7€>:Oa

1 . prop:Hilby:basis:alts . i:parseval:a
and thus F fé’igiigo that, by Proposition b.33, £ 18 not maximal. Hence item (i
implies item (I5).
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. it:basis . . :
Now suppose item (Bi holds and let h,g € H be given. Given ¢, choose a finite
subset F' of E such that if ' C G C FE, then

Ih =Y (h.edell, lg =Y (g e)ell < Ve

ecG eeG
and observe, using the Cauchy-Schwarz inequality,

e>[(h=Y (heje,g—Y (9./)f

eeG feG

:‘<h7g> - Z(ha €> <€7g>|
ecG
it:basi i 1:
Hence item (IBi 15%1?68 item (IEIS SERETAsS
i:parseval:d . i:parseval:c . . i:parseval:a

Item (l?]i follows from item (l?:i by choosing g = h. Finally, suppose that item (&
does not hold. In that case there exists a unit vector h € H such that h is orthogonal

to E. Thus (h,e) =0 for all e € E so that

Y e =0#1=|h|?

ecE
. i:parseval:d
and item (i) does not hold. O

Given a set E, let V' denote the vector space of ﬁnite linear combinations of elements

of E and define an inner product on V' by declaring (e, f) = 0 if e, LZ: € Fande é and
complete—-a-‘sp

(e,e) =1 for e € E. The completion H of V' (see Pr0p051t10n I dl) 1s a Hilbert space,

denoted ¢*(F).

Corollary 5.50. If E is a basis for a Hilbert space H, then H is isomorphic, as a Hilbert
space, to (*(E).

5.7. Gram-Schmidt and Hilbert space dimension.

hm:fd_proj| Theorem 5.51. Let{ey,...e,} be an orthonormal set in H, and let M = span{ey, .. .e,}.
The orthogonal projection P = Py onto M 1is given by, for h € H,

qn:fd_proj| (36) Ph = Z<h’ej>63
j=1

Proof. Given h € H,let g =37 (h,e;)e;. Since g € M, it suffices to show (h—g) L M.
For 1 <m <n,

(h—g,em) =(h,em) — <Z<hvej>€jvem>

=1
n

= <h7 €m> - Z<h7 €j><€j7 €m>

1

= (h,em) — (h,en) = 0.
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It follows that h — g is orthogonal to {ej,...,e,} and hence to M. O

END Friday 2025-02-28

Theorem 5.52 (Gram-Schmidt process). If (f,)>2, is a linearly independent sequence
in H, then there exists an orthonormal sequence (e,)0, such that span{fi,... fn} =
span{ey,...e,} for each n.

Proof. The proof proceeds by induction. Put e; = f; /|| f1|| and note {e;} is an orthormal
set and span{e;} = span{f;}. Assuming ey, ...e, have been constructed satisfying the
conditionsn of the theorem, let P = P, where M, timsgg_ni% 5. en} and let g, =
fra1 — Zj:1<fn+1, ej)ej = fuy1 — Pf. By Theorem b.5T g, 41 1s orthogonal to M,,. It is

also not 0 by the independence assumption on the f;. Let e, 1 = HanH' 0

Corollary 5.53. Suppose H is a Hilbert space. If H has finite dimension n > 1 as
a vector space, then there exists an orthonormal set {ey,...,e,} in H that spans H.
Conversely, if there is a positive integer n and an orthonormal set {ei,...,e,} that
spans H, then H has finite dimension n as a vector space.

In particular, if H contains a finite mazximal orthonormal set, then every mazimal
orthornormal set in E has the same cardinality and moreover this cardinality is the
dimension of H as a vector space.

%Ienmjeilrslg agiEsM If H has a finite orthonormal basis E = {ey, ..., e,}, then by Theorem
Sl ;, F spans (in the sense of linear algebra) and is therefore a vector space (Hamel)

basis for H. Hence H has dimension n as a vector space and further every orthonormal
basis of H has exactly n elements.

On the other hand, if H has an infinite orthonormal basis E, then it contains an
infinite linearly independent set (the basis F) and so has infinite dimension as a vector
space. ]

Theorem 5.55. Any two bases of a Hilbert space H have the same cardinality.

The proof uses some basic facts about cardinality. Two sets A and B have the same
cardinality, written |A| = |B| if there is a bijection f : A — B. If there is a one-one
map f : A — B we write |A| < |B|. By the Cantor-Schréder—Bernstein theorem, if
|A] < |B| and |B| < |A], then |A| = |B|. If A is an infinite set, then |A x N| = |A[°
and if A is an infinite set and B, is an at most countable set for each a € A, then
| Ugea Ba| < |A x B| = |A|. The theorem says if F, F' are orthonormal bases for H, then
|El = [F].

5That |S x S| = | S| for an infinite set S in ﬁé?}]lmg%qﬁlit&irgquires the axiom of choice. On the other

hand, since |[N| = [N x N the proof of Theorem b.55 given below shows if H has a countable orthonormal
basis, then all orthonormal basis of H are countable.
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Proof. Suppose E, F' are orthonormal bases for H. If F is finite, then E is a basis in
the vector space sense and thus H is finite dimensional as a vector space. Since F is
orthonormal, it is linearly independent and hence |F| < |E|; in particular, F is finite.
By symmetry, either both E and F' are finite and have the same cardinality or both are
infinite. Accordingly suppose both are infinite.

Fix e € FE and consider the set
Fo={feF|(fe) #0}.

rop:Bessel
Since F' is orthonormal, each F, is at most countable by Proposition BTLE and since F
is a basis, each f € F belongs to at least one F,. Thus |J,., Fe = F, and

Jr

eck

|Fl = < |ExN|=|E]

where the last equality holds since F is infinite.

By symmetry, |E| < |F| and the proof is complete. O

In light of this theorem, we make the following definition.

Definition 5.56. The (orthogonal) dimension of a Hilbert space H is the cardinality
of any orthonormal basis, and is denoted dim H. If dim H is finite or countable, H is
separable and in this case the terminology H is a separable Hilbert space is commonly
used.

Corollary 5.57. Suppose H is a Hilbert space. If H is finite dimensional as a vector
space, then H 1s separable as a metric space.

If H is not finite dimensional as a vector space, then H is separable as a metric
space if and only if there is a a countable orthonormal set E = {ey, e, ...} such that
span ¥ = H.

Proof. We consider the complex case of ' = C, the real case being similar. If H has
a countable orthonormal basis £ = {ej, e, ...}, then the set D = {3°7_  aje; : a; €
Q +1Q, n € N} is dense in H since E C D so that H =span £ C spanD C H.

The proof that a finite dimensional Hilbert space is separable as a metric space is
similar to the proof above.

Now suppose a basis of E con aillglls lil%:o%qtably many elements (and thus all bases
of E are uncountable by Theorem b.55). Since Jle — f|| = V2 for all e, f € H such that
e # f,if C is a countable subset of H, then F Z U.ccB(c, 1) and hence C' is not dense.
Thus H is not separable as a metric space. O

5.8. Weak convergence. [Optional| In addition to the norm topology, Hilbert spaces
carry another topology called the weak topology. In these notes we will stick to the
seperable case and just study weakly convergent sequences.



akconverge

78

Definition 5.58. Let H be a seperable Hilbert space. A sequence (h,,) in H converges
weakly to h € H if for all g € H,

(hn,g) — (R, g).

The Cauchy-Schwarz inequality implies if (h,) converges to h in norm, then (h,)
converges weakly to h. However, when H is infinite- dimensional, the converse can fail.
For instance, let {e,}22; be an orthonormal basmbg1 1. Then (en) converges to 0
weakly. (The proof is an exercise, see Problem b 9). Un the ofher hand, the sequence
(e,) is not norm convergent, since it is not Cauchy. In this section weak convergence is
characterized as “bounded coordinate-wise convergence” and it is shown that the unit
ball of a separable Hilbert space is weakly sequentially compact.

Proposition 5.59. Let H be a Hilbert space with orthonormal basis {e;}32,. A sequence
(hy) in H is weakly convergent if and only if

i) sup, [|hn|| < oo, and
ii) lim, (h,,€;) exists for each j.

Proof. Suppose (h,,) converges to h weakly. For each n
Ln(g) = (g, hn)

is a bounded linear functional on H. Since, for fixed g, the sequence |L,,(g)| converges, it
is bounded. Thus, the family of linear functionals (L, ) is pointwise bounded and hence,
by the Principle of Uniform boundedness, sup ||, || = sup ||L,|| < oo, showing (i) holds.
Item (ii) is immediate from the definition of weak convergence.

Conversely, suppose (i) and (ii) hold, let M = sup ||h,||. Define
}Alj = hm(hn, €j>.

We will show that |h;|2 < M (so that the series 3 hje; is norm convergent in H);
we then define h to be the sum of this series and show that h,, — h weakly.

For positive integers J and all n,

J
D e < |lhal® < M2

j=1
by Bessel’s inequality. Thus,
J
Zm ? = th| (P, ) |? = Hm >~ [(h, e)[* < M.
Jj=1 j=1

Thus }_; |h;|> < M? and therefore the series 2 h;e; is norm convergent to some h € H
thm:ucc hm: seval
such that (h,e;) = hj by Theorem b. y Theorem E.ZIQ h <M
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Now we prove that (h,) converges to h weakly. Fix ¢ € H and let € > 0 be given.
Since g = Zj (g,€ej)e; (where the series is norm convergent) there exists an positive
integer J large enough so that

J [eS)
9= Z(g, ej)ej|| = Z (9. €5)¢5]| < e
Jj=1 j=J+1

Let go = ijl(g, e;)e;, write g = go + g1, observe ||g1]| < € and estimate,

By (ii), the first term on the right hand side goes to 0 with n, since gy is a finite sum of

e;’s. By Cauchy-Schwarz, the second term is bounded by 2Me. As € was arbitrary, we
see that the left-hand side goes to 0 with n. 0

It turns out, if (h,) converges to h weakly, then ||h| < liminf ||A,|| and further, still
f‘lssuming (hn) COnverges weakly to _f‘L],eMLH = lim ||h,|| if and only if (h,) converges to h
in norm. See Problem b.

Theorem 5.60 (Weak compactness of the unit ball in Hilbert space). If (h,) is a bounded
sequence in a separable Hilbert space H, then (h,) has a weakly convergent subsequence.

Proof. Using the previous proposition, it suffices to fix an orthonromal basis (e;) and

produce a subsequence (h,,, )i such that (h,, ,e;) converges for each j. This is a l:;“g%p‘%% (icompactness
O

“diagonalization” argument, and the details are left as an exercise (Problem b.TT)

5.9. Problems.

Problem 5.1. Prove the complex form of the polarization identity: if H is a Hilbert
space over C, then for all g,h € H

1 : : : :
(g,0) = 7 (lg + BlI* = llg = hlI* + illg + in|l* — illg — ih[*)

Problem 5.2. (Adjoint operators) Let H be a Hilbert space and T': H — H a bounded
linear operator.

a) Prove there is a unique bounded operator 7* : H — H satisfying (T'g,h) =
(9,T*h) for all g,h € H, and || T™|| = ||T|.
b) Prove, if S,T € B(H), then (aS+7T)* =aS*+T"* for all a € F, and that T** = T.
c) Prove | T*T| = ||T|*
d) Prove kerT is a closed subspace of H, (ranT) = (kerT™*)* and kerT™* = (ranT’) .
Problem 5.3. Let H, K be Hilbert spaces. A linear transformation 7" : H — K is

called isometric if | Th|| = ||h|| for all h € H, and wunitary if it is a surjective isometry.
Prove the following:

a) T is an isometry if and only if (T'g,Th) = (g, h) for all g,h € H, if and only if
T*T = I (here I denotes the identity operator on H).
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b) T is unitary if and only if T is invertible and T—! = T*, if and only if T*T =
TT* = 1.

c) Prove, if £ C H is an orthonormal set and 7' is an isometry, then T'(F) is an
orthonormal set in K.

d) Prove, if H is finite-dimensional, then every isometry T': H — H is unitary.
e) Consider the shift operator S € B(¢*(N)) defined by

(37) S(ao,al,ag,...) = (0,@0,(11,...)
Prove S is an isometry, but not unitary. Compute S* and 55*.

Problem 5.4. For any set J, let ¢?(.J) denote the set of all functions f : J — F such
that .., [f(4)? < oo. Then (?(J) is a Hilbert space.

a) Prove 62(]. ) is‘isomet'rically isomorphi%rtc% Eﬁl(i] Vlfl and only if I and J have the
same cardinality. (Hint: use Problem b.3(cJ.)

b) Prove, if H is any Hilbert space, then H is isometrically isomorphic to £2(J) for
some set J.

Problem 5.5. Let (X, .#, ) be a o-finite measure space. Prove the simple functions
that belong to L?(u) are dense in L?(j).

Problem 5.6. (The Fourier basis) Prove the set E = {e,(t) := e*™™|n € Z} is an
orthonormal basis for L?[0,1]. (Hint: use the Stone-Weierstrass theorem to prove that
the set of trigonometric polynomials P = {32 ¢,e2™*} is uniformly dense in the
space of continuous functions f on [0, 1] that satisfy f(0) = f(1). Then show that this
space of continuous functions is dense in L?[0, 1]. Finally show that if f, is a sequence
in L?(0,1] and f,, — f uniformly, then also f, — f in the L? norm.)

Problem 5.7. Let (g, )nen be an orthonormal basis for L?[0, 1], and extend each function
to R by declaring it to be 0 off of [0, 1]. Prove the functions f,, () := Lpnmi1](®)gn (2 —
m), n € N,m € Z form an orthonormal basis for L*(R). (Thus L?*(R) is separable.)

Problem 5.8. Let (X, .#, 1), (Y, /", v) are o-finite measure spaces, and let j x v denote
the product measure. Prove, if (f,,) and (g,) are orthonormal bases for L?(u), L*(v)
respectively, then the collection of functions {h.,(z,y) = fim(2)g,(y)} is an orthonromal
basis for L?(u x v). Use this result to construct an orthonormal basis for L*(R™), and
conclude that L?(R") is separable.

Problem 5.9. (Weak Convergence)

a) Prove, if (h,) converges to h in norm, then also (h,) converges to h weakly.
(Hint: Cauchy-Schwarz.)

b) Prove, if H is infinite-dimensional, and (e,) is an orthonormal sequence in H,
then e, — 0 weakly, but e, # 0 in norm. (Thus weak convergence does not
imply norm convergence.)
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c¢) Prove (h,,) converges to h in norm if and only if (h,) converges to h weakly and
[Pl = [[P]]-
d) Prove if (h,) converges to h weakly, then ||h|| < liminf ||A,]|.

Problem 5.10. Suppose H is countably infinite-dimensional (separable Hilbert space).
Prove, if h € H and ||h|| < 1, then there is a sequence h,, in H with ||h,| =1 for all n,

and (h,,) converges to h weakly, but h,, does not converge to h strongly.
[thm: weak—-compactness

ompactness| Problem 5.11. Prove Theorem H0U.

Problem 5.12. Prove, if (a,) is a sequence of complex numbers, then the following are

equivalent.

(1) >_,en an converges as a net;
(2) >°>° | a, converges unconditionally;
(3) >°>°, a, converges absolutely.

Problem 5.13. Suppose (h,) is a sequence from a Hilbert space H. Show, if >~ | h,,
converges absolutely, then > 7 h, converges unconditionally and as a net.

netvuncond| Problem 5.14. Suppose H is a Hilbert space and (h;) is a sequence from H. Show,
;=1 hj converges unconditionally if and only if 3, h; converges as a net. (Warning:
showing unconditional convergence implies convergence as a net is challenging.)

6. SIGNED MEASURES

In this section we consider measures with codomain F (either R of C) instead of
[0, 00].
6.1. Definitions, examples and elementary properties.

ed:measure| Definition 6.1. Let (X, .#) be a measurable space. A signed measure or an F-measure
is a countably additive function p : .# — T; that is, if (E,)>2, is a disjoint sequence of
measurable sets, then

ed:measure]
additive:F| (38) > p(Ea) = p(| En)-

Sometimes the terminology positive measure is used instead of simply measure to
indicate p takes values in [0, 0co] and then finite positive measure indicates p takes values
in [0, 00).

ed:measure| Remark 6.2. Several remarks are in order before proceeding.
(a) Choosing E,, = @ for all n obtains p(@) = >~ | p(&). Hence p(&) = 0.

(b) Since p(@) = 0, it follows that the countable additivity condition also includes finite
additivity by choosing F, = @ as needed to pass from a finite set of sets to a
countable one.
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:measure:c| (c) Given a p%r:%lutatioPV?raaleci;é:N since p(U,~; En) = p(U,—; Ex)), the series in

ountab
equation (B¥) converges unconditionally and hence, by Riemann’s rearrangement

theorem, absolutely. o
. L. . le:countably:additive:F
Alternately, one can see directly that the series in equation (B¥) must converges
absolutely as follows. First take F = R and let Let K, = {k : p(E)x) > 0} and let
K_ ={k: p(Ex) < 0}. The collections AL = {E} : k € K.} are at most countable
and their elements are pairwisde disjoint. Hence,

£p(Uker. Bi) = £ Z p(Ey) = Z p(E)],

keKy keK+

where the fact that the order of summation is immaterial for series with non-negative
terms has been used. The complex case follows from the real case, since real p and
image p are both real-measures and |p(E)| < |real p(E)| + | image p(E)|.

L i:signed:measure:c . i . e
(d) The argument in item () also proves the following in the case F = R. Given disjoint

sets By, ..., E, € A, let A= U{Ey:p(E;) >0} and B = U{E} : p(E}) < 0} and
observe

(i) p(A), —p(B) = 0;
(i) E=UE; = AU B;
(i) p(E) = p(A) — p(B); and
(iv) 2o 1p(Ej)l = [p(A)] + |p(B)| = p(A) — p(B).

(e) In the case F = R the theory can be developed allowing p to take values in either
(—00, 00| or [—00, 00) (so as to avoid oo — 0o). We will eschew this extra generality.

(f) If p1,. .., p, are finite positive measures on a measure space (X, .#) and ay, ..., a, €

F, then p = Y77 a;p; is an F-measure on .. In this way Mg(.#), the set of

measures on (X, .#) becomes a vector space.
(g) If 1 is a finite positive measure on a measure space (X, .#) and F' € .4, then
p(E) = (ENF) —p(ENF)

defines an R-measure on .Z .

END Monday 2025-03-03, though we had not yet discussed items (d), (e) and (f) in
the remark above

op:rhosubf| Proposition 6.3. If (X,.#, ) is a measure space and f € L'(u), then the function
pr: M — F defined by

s (E) = /Efdu

1S a signed measure.
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In particular, if F = R and f = f* — [~ is the decomposition of f into is positive
and negative parts, then

Hf = K+ — Hf—-
Proof. First consider the case F = R. If f is unsigned, then we have already seen iy
is a finite positive measure. Dropping the assumption that f is unsigned, consider the

decomposition of f into is positive and negative parts, f = fT — f~. Each of ps= is a
finite positive measure and hence so is pg = pip+ — pugp-.

For the complex case, write f = g + ih, for real valued functions h,g € £'(u) and
apply the already proven real case of to each of h and g. 0

Remark 6.4. The measure i is often denoted f dj.

Note that in the real case the real case, by choosing F, = {f > 0} and F_ =
{f < 0}, the proof actually shows there exists finite positive measures p4 such that
pg = p — po— and also such that py (E) = ps(E N Ey) and of course £ NE_ = @. In
particular, if F' C Ey, the puy(F) > 0. O

6.2. Total variation.

Definition 6.5. The total variation, |p|, of an F-measure p on a measure space (X, .Z)
is the function |p| : # — [0, 00] defined for E € .# by

Ip|(E) = sup{z |p(E;)| :n €N, {E,,..., E,} is a measurable partition of E}.

. . |def:total:variation
Remark 6.6. In the notation of Definition 6.5, Tor £ € .7,

(1) |p(E)] < [pl(E);

(i)

(iii) |p(E)| = 0 if and only if p(AN E) =0 for all A € 4

(iv) If F € A4 and F C E, then |p|(F) < |p|(F);
)
)

p(E) = |p(E)| if p is a positive measure;

(V) [pl(E) = sup{>_7_, [p(Ej)| : Er, ..., E, € A ave disjoint and U}, E; C E}.

(vi) If p is a (positive) measure on (X, .#) and |p(f)| < wu(F) for all F € .#, then
|p| < pin the sense that |p|(E) < p(F) for all B € .

(vii) If F = R, then |p(E)| = sup{|p(A)| + |p(B)| : A,Be . #, ANB =2, AUB C E}.

Proposition 6.7. Suppose (X, A, 1) is a measure space. If h € LY(p), then |hdu| =
|\h| dp; that is |hdu|(E) = [, |h|dp for ol E € 4.

Before proving the theorem, we establish a couple of lemmas.

.| fd
Lemma 6.8. In the context of Proposition %?07, %El,tli < |h| dp.
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Proof. For notational ease, let p, = hdu. Given E € .# and a measurable partition
{Ey,...,E,} of E,

> (B = |/ hdp| < Z/ Bl dp = i (E;).
j=1 j=1 “Ej j=1 7 Ej j=1
Thus |hdu|(E) < |h|du(E) as desired. O

END Wednesday 2025-03-05

rop: | fdu|
Lemma 6.9. Proposition 53 7 holds for measurable simple functions h.

Proof. Since h is simple, there exists a measuarable partition {F,..., F,,} of X and
scalars ¢i,...,¢, € F such that h = > " | ¢xxr,. (Since h € L'(p), for each k either
w(Fy) < oo or ¢, = 0.) Let E € .4 and a measurable partition {Ey,..., E,} of E be
given. Thus,

m,n

hxe = Z Ck X E;NF,

jk=1

and {E; N F,:1<j<n,1<k<m}isameasurable partition of E. Further,

Sl NF) =31 [ hdul <Y fedn(E; 0 F
jk=1 k=1 < EiNFk k=1

n m /
j=1 k=1 " FiNFr

ldi=Y" [ il
j=1"Fi
— [ ndu= (B,
E

lem: |fdul:1
Thus |hdu|(E) > |h| du(E). An application of Lemma l(i%m conilpletes the proof. O
N rop: |fdu| ) . ) . .
Proof of Proposition 10.7. Let € > 0 be given. Since simple functions are dense in £(u),

there is a simple function g € £'(x) such that ||h — g||; < €. For a measurable set E,

aB) = [ loldn = [ (bld= [ |b=gldn = up(E) = o = gl > n(B) .
E E E

Thus |g| du(E) > |h|du(E) — €.
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Similarly, for a measurable partition {E1, ..., E,} of E,

> ln(E = | [E

n

haul =321 [ gdul =321 [ (o=

|
J J:l J

>3l B5)| -3 [ 1o hldu
=1 j=1"Fi

> ng(Ep)l = llg = hll =) |ug(Ey)| —e.
j=1 j=1
lem: |fdul;
Thus, |hdu|(E) > |gdp|(F) = € and using Lemma IG?EmJ, ﬁduu (E) > |gdu|(F) — € =
lg| du(E) — € > |h| du(E) — 2¢. 1t follows that |hdu|(E) > |h|du(E). O

ar:measure| Proposition 6.10. If p is an F-measure on a measurable space (X, .#), then |p| is a
(positive) measure on A .

J

Later we will see that |p| is a finite measure.

Proof. Since p(2@) = 0 it follows that |p|(2&) = 0.

Now suppose Ej, Es, ... is a disjoint sequence from .# and let E = U2, E;. Given
measurable partitions {Ej1,..., Ey,,} of Ej, for each N € N the collection of sets
{Ek,j :Nl Snk <N, 1 <75 <n} _1s a finite d1%9n1%to %)Jlilecmoélm %glfiz]‘?asurable sets such
that Up_, UL, By ; C E. Thus, using Remark 0.0 1tem v,

> lp(Ey)| < |pl(E).

k=1 j=1
Since Y 7% [p(Ek ;)| < |p|(E) for each k, it follows that

N
> Ipl(Er) < [pl(E)
k=1

and therefore

> Ipl(Er) < [pl(B).
k=1

To prove the reverse inequality, let {F}, ..., F,,} be a given measurable pau‘tition[rglf1

E. Thlis-iE? IS @pEk for 1 < 5 < n are disjoint measurable subsets Fj. By Remark 5.0
item (IV'E, § =1 1P N Eg)| < |p|(E}) for each k. Therefore, since p is an F-measure,

Z P(ENI =D 1D p(F;NE) <Y 1o N Byl

=1 k= =1 k=1

= ZZ lp(F; N Ey)| < Z Ip|(EL).

k=1 j=1

:total:variation
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Thus [p|(E) < Y22, |p|(Ex) and the proof is complete. O

ure:finite| Proposition 6.11. If p is an F measure on the measurable space (X, #), then |p| is a
finite measure. Equivalently, |p|(X) < oo.

prop:signed-measure:finite

The proof of Proposition .11 uses the following lemma whose proof, based upon
disjointification, is the same as for the case of a finite positive measure.

decreasing| Lemma 6.12. If p is an F-measure on the measurable space (X, . #) and Ey 2O E; D

Es ... is a decreasing sequence of measurable sets, then
PR En) = lim p(Ey).
Similarly, if Ey C E1 C Ey ... is an increasing sequence from # , then

p(UpZi Ey) = lim p(E,).
END Friday 2025-03-07

lprop:signed-measure:finite

Proof of Proposition 16-T1. As a first step i proving the result in the case that p }1 Antotalivi

real measure, Suppose E € . and |p|(F) = oo and let C' > 0 be given. By item (Vi1)
al:variation
of Remark b 0, there exists disjoint sets A, B € .# such that A, B C E and |p(A)| +
lp(B)| > 2(C + |p(E)]). Thus, without loss of generality,
p(A)] > C+ [p(E)|.

prop:signed-measure:finite
Since |p| is a measure (Theorem .11,

[PI(A) + [p[(E\ A)| = [p|(E) = oo,
so that either |p|(A) = oo or |p|(E\ A)| = co. We will show that |p(A)|, [p(E\ A)| > C
which shows that F contains a subset ' € .# such that |p|(F) = oo and |p(F)| > C.

By construction, |p(A)| > C. From p(E \ A) + p(A) = p(E), it follows that
p(E\ A)| = [p(E) = p(A)] = [p(A) = p(E)| = |p(A)] = p(E)] = C.

To prove the proposition still assuming p is a real measure, it suffices to show
|p|(X) < oo. Arguing by contradiction, suppose |p|(X) = oo. Choosing A = X and
C' = 1, there is a measurable set £y C X such that |p(Fy)| > 1 and |p|(E;) = oc.
Suppose now measurable sets By O Fy C E3--- O FE,, have been constructed such
that |p(E,)| > n and |p|(E,) = oo for 1 < n < m. It follows that, with A = FE,, and
C = m + 1, there is a measurable set E,,+1 C E,, such that |p(Em+1)] > m + 1 and
|p|(Em+1) = oo. Thus recursion produce.s a Tlested decreasjng s %negcge%fs meagurable gets
(E,)2; such that |u(E,)| > n. An application of Lemma 6. 12 produces the contradiction

that |p(NE,)| = oo

To complete the proof, suppose now p is a F-measure. From what is already proved,
| real p|(X), |image p|(X) < 0o. On the other hand, |p(F)| < |real p(F')| + |image p(F)|.
Hence |p|(E) < |real p|(E) + |image p|(F) and thus |p|(X)| real p|(X) + | image p|(X) <
00. U
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6.3. Banach spaces of measures.

Proposition 6.13. Suppose (X, .#) is a measurable space. The mapping ||| : Mp(.4) —
[0,00) defined by ||p|| = |p|(X) is a norm on the space of measures.

[rem:total jirardmttiohal : vi
Proof. Suppose p, 7 € Mp(4) and ¢ € F. From Remark B0 ttom (I{‘/,u), ol = 0if and

only if p = 0. It is straightforward to verify that ||cp|| = |¢| ||p]-

Finally, to prove the triangle inequality, simply note that
o+ 7l =1[(p+7)(X)] = [p(X) + 7(X)| < [p(X)] + [7(X)] = [lpl] + |I7]. O

Proposition 6.14. Suppose (X, #) is a measurable space. The normed space My(.4)
1s a Banach space.

It is straightforward to show that if (p,), is a Cauchy sequence from My (.4 ),
then, for each E € .# the sequence (p,(F)), converges. That p : .#4 — F given by
p(E) = lim, p,(FE) that p € Mp(.#) and (p,,) converges to p (in the normed vector space
Mg (#)) is left to the gentle reader.

6.4. The Hahn decomposition.

y:positive| Definition 6.15. Suppose p is an R-measure on a measurable space (X, .#). A set E €
M is totally positive (resp. totally negative) for p if p(FNE) > 0 (resp. p(FNE) <0)
for all F' € . the set E totally null if p(FNE) =0 for all F € ..

y:positive| Remark 6.16. A set E is totally null for p if and only if it is both totally positive and
totally negative for p.

A set E € # is totally positive for p if and only if p(F) < p(FE) for all F' C E.
(Consider E'\ F).
If F is totally positive for p, then p: .# — F defined by p(F') = p(ENF) is a finite

positive measure.

If (E,), is a sequence of totally positive sets, then U, F, is also totally positive;
that is X is totally positive for py and X_ is totally negative for py. 0

. Erop: |fdu] .
ahn:decomp| Example 6.17. In the context of Proposition 6.7, decompose a real-valued function f €
L' (1) into its positive and negative parts f = fT — f~, the sets X, := {x: fT(z) > 0}
and X_ :={z: f~(x) > 0} are disjoint and totally positive for p .

omposition| Theorem 6.18 (Hahn Decomposition Theorem). If p is an R-measure on the measur-
able space (X, . #), then there exists a partition of X into disjoint measurable totally
positive sets X = X, U X_.

The decomposition is unique in the sense that if X'\, X" is another such pair, then
XyAX! and X_AX! are totally null for p.

|
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END Monday 2025-03-10
[thm:hahn-decomposition

The following lemma will be used in the proof of Theorem b.T8

omp:warmup | Lemma 6.19. Suppose p is an R-measure on a measurable space (X, . #). If p(G) > 0,
then there exists a subset E C G such that E is totally positive and p(E) > p(G).

The proof uses the greedy algorithm.

Proof. For notational convenience, let Fy = G.

If E; is totally positive, then there is nothing to prove. Otherwise, there is a
measurable set H C FE) such that p(H) < 0 and thus p(E; \ H) > p(E)); that is,
there is a measurable set F' C F; such that p(F) > p(FE;). Thus the set

1
Ji = {n € N* : there is an F C E; such that p(F) > p(E;) + —}
n

is nonempty and therefore has a smallest element n;. Choose Es such that p(F2) >
p(E1) + Yni. If Ey is totally positive, then the proof is complete. Otherwise, let ng
denote the smallest element of

1
Jo = {n € N* : there is an F C E, such that p(F) > p(Ey) + —}
n

and choose E3 C FEy such that p(FE3) > p(Es) 4+ Yn.. (Note that ne > ny and it could
be the case that ny = ny.) Either this recursion terminates after finitely many steps
producing a totally positive subset E of F; with p(E) > p(FE}); or it generates a nested
decreasing sequence of measurable sets (E;) and a sequence of positive integers (n;) such

that )
p(Eja1) > p(E)) + —,
1

where
1
ahn-greedy| (39) n; = min{n € N* : there is an F' C E; such that p(F) > p(E;) + —}.
n

In particular,

n-greedy:2| (40) p(Eitq) > Z L + p(E1).

k
k=1
Assuming this latter case, let X, = (2, E;. We will show that p(X,) > p(£1) and X}

is totally positive.
[Llem:signed-measure:decreasing . legn:hann-greedy:2
By Lemma .17, p(E;) increases to p(E) > p(G). Thus, by equation (AU) and

the assumption that p is a finite measure, the sequence (n;); converges to infinity (as
otherwise p(E) = o0). To show that F must be totally positive, suppose, by way of
contradiction, there exists a measurable F' C E such that p(F) > p(E). There is an
m € Nt such that p(F) > p(E) + !/m. There is a j such that n; > m. Now F' C E; and

p(E) > p(E) + Y > p(E)) + — > plE}) +
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.. . . . legn:hahn-greedy .
contradicting the choice of n; in equation (39) and completing the proof. O

:hahn-decomposition

[thm
Proof of Theorem [0°18. 1t p(G) < 0 for all G € ., then p is totally negative and the

choices X, = @ and X_ = X satisfies the conclusion of the theorem.
. . prop:signed-measure:finite
Otherwise, by Proposition 61T,

oo >a =sup{p(G):Ge.#}>0.
For each n Eﬁ;ﬁé’ﬁ%h“ a >rléﬁb there exists a set G, such that p(G,) > a —1/n > 0.

ecomp: wa o
By Lemma 6.19, there exists a totally positive §et E,, such t.h'at E, C@G, al}lge rﬁ):@gﬁgl%v:positive
p(G,) > 0. Let F,,, = U | E, and note that F,, is totally positive by Remark 6.16. Thus

p(Ep \ Epg1) > 0 and therefore
P(Emi1) = p(Emi1) + p(Fn \ Eng1) 2 p(Ema).

|1em; signed-measure:decreasing . .
By Lemma 6.1Z, (p(F,))m converges to p(E) where £ = U (;%::to%ﬂ{fﬂ.pgr%t%% (')t.her
hand, (p(F,,)) converges to a. Hence p(E) = a. By Remark 5.10, E 1s totally positive.
Further, if F C £, then a > p(EUF) = p(E)+p(F) = a+p(F') and therefore p(F) < 0.

Hence E° is totally negative and {E, E°} partition X.

For the final statement, observe if /' C X, \ X! = X, N X", then p(F') > 0 since F
is a subset of the totally positive set X ; also p(F') < 0 since F is a subset of the totally
negative set X’ . Hence p(F') = 0 and thus X \ X', is totally null. The remaining details
are left to the gentle reader. O

6.5. The Jordan decomposition.

t:Fmeasure| Definition 6.20. Suppose p is an F-measure on a measurable space (X,.Z). A set E
is a support set for p if E° is totally null for p. Two signed measures p, o are mutually
singular, denoted p_Lo, if they have disjoint support sets; that is, there exists disjoint
measurable sets E' and F' such that E¢ is totally null for p and F is totally null for o.

Remark 6.21. Two positive measures p and o on the same measurable space (X, .#)
are mutually singular if and only if there exists disjoint (measurable) sets E and F' such

that p(E°) =0 = o(F°) (in which case it can be assumed that F' = E° if desired).

Example 6.22. Let m denote Lebesgue measure on (R, £) (where L is the sigma-algebra
of Lebesgue measurable subsets of R) and let 6 : £ — R denote point mass at 0; that is

1 if E
SE) =0
0 if0¢E.
It is immediate that m_LJ.

omposition| Theorem 6.23 (Jordan Decomposition). If p is an R-measure on (X, .#), then there

exist unique positive measures pi,p— such that py Lp_ and p = py — p_. Moreover,
ol = p+ + p-.
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. [thm:hahn-decomposition
Proof. Let X = X, U X_ be a Hahn decomposition for p (Theorem b.18) and dehne

p+ M — Rby pi(E) = £p(ENXy). It is immediate from the properties of the Hahn
decomposition that p,, p_ have the desired properties; uniqueness is left as an exercise.

To prove the last statement let 7 = p, + p_. For £ € .#,
PI(E) = |p(E N0 X[+ [p(EN XD = p(E) + p-(E) = 7(E).
On the other hand,
T(F) = p(F) + p-(F) = [p(F 0 X3 + [p(F N X_)]|
= |p(F N X))+ p(FNX2)| = |p(F)|

rem: total jvanremtbeoml : vii
for F' € .# and hence 7 > |p| by Remark 6.6 item (V1). s O

END Wednesday 2025-03-12

. L prop:rhosubf leg:Hahn : decomp .
Example 6.24. Referring to Proposition 6.3 and example 6517, 1t 1s now immediate that

the decomposition py = pp+ — piy- is the Jordan decomposition of py. Thus the Jordan
decomposition theorem is analogous to the decomposition of a real-valued function into
its positive and negative parts.

6.6. The Radon-Nikodym derivative.

continuous| Definition 6.25. Suppose (X, ., i) is a measure space. An F-measure p : # — F
is absolutely continuous with respect to p, written p < p provided p(E) = 0 whenever
E € # and u(E) = 0.

continuity| Remark 6.26. Given a measure space (X,.#,u) and an f € L'(p), the measure p; :
M — T defined by

/M@Z/fw

:rhosubf E

(see Proposition E%ﬁ?ot s f;)BSélolutely continuous with respect to . That is py = fdp < p.
If p is an F-measure on (X, .#), then p < |p|. O

Theorem 6.27 (Radon-Nikodym). Suppose pu and v are o-finite positive measures on a

measurable space (X, ). If v < u, then there ezists (an essentially unique) measurable
function h : X — [0,00) such that v = pp; that is

v(E) = / hdu
E
forall B € #.
In the case that v is finite, h € L'(p).
The function h is the Radon-Nikodym derivative of v with respect to u, denoted fl—z.

:RN:signed| Corollary 6.28. Suppose (X, #,u) is a o-finite measure space and p : # — F is an
F-measure. If p < u, then there exists an h € L*(u) such that p = hdp.
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Proof. Suppose p is an R-measure and let p = p. — p_ denote its Jordan decomposi-
tion. It is routine to check if u(E) = 0, then both py(F) = 0. Two applications of
Theorem B.27 produces unsigned functions hs € L'() such that p+ = hs dy. Hence the
function h = hy — h_ is in L*(u) and p = hdpu.

Finally, if p is a C-measure, then real p and image p are R-measures. Thus there

exists h,g € L'(u) such that real p = hdp and image p = g du. Hence (h +ig) € L'(u)
and p = (h + ig) du. O

r:RN:total| Corollary 6.29. If p is an F-measure on a measurable space (X, #), then, there exists
an h € L*(n) such that |h| =1 a.e. |p| and p = hdpy; that is
p(E) = [ h
E
forall E € /.

Proof. Note that p is absolutel 1g:n(l).r}k‘g\}nuoUls with respect to 1 = |p| and hence the Radon-

Nikodym Theorem, Theorem .27, produces an h € L'( gosufpdltl?at p = hdu. To see
that |h| = 1 almost everywhere p, note that Proposition n'§.7 implies i = |p| = |h|dp. In

particular,

[ phda=o
E
and the result follows by choosing E = {|h| # 1}. O

A consequence of the Lebesgue-Radon-Nikodym theorem is the existence of condi-
tional expectations.

Corollary 6.30. Suppose (X, # , 1) be a o-finite measure space (1 a positive measure),
N a sub-o-algebra of M, and v = |y is o-finite. If f € L'(u) then there exists

g € L'(v) (unique modulo v-null sets) such that
/ fdp = / gdv
E E
for all E € A& . (The function g is called the conditional expectation of f on A".)

Sketch of proof. Since f is .#-measurable, it is also .4 measurable and moreover f €
L*(v) Thus, we may define p: A4~ — F by

E I
:RN:signed
Thus, by Corollary 5.2 : S

It is immediate that p is absolutely continuous with respect to 1
there is an essentially unique g € L'(v) such that equation Izﬂ_ﬁolds. O

END Friday 2025-03-14
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hm: RN . ..
Proof of Theorem %)27 As a first step, assume g and v are finite positive measures.
This step is key and the proof given here is due to von Neumann.

Let m = v + pu. Thus m is a finite positive measure and in particular 1 € L*(m),
where L?(m) denotes the real Hilbert space of real valued square integrable (with respect
to m) functions. Given f € L?(m), observe that the Cauchy-Schwarz inequality gives

(42) / fldv < / L dm = [(f], Dizom| < 112 1

Hence it is sensible to define ¢ : L?(m) — R by

:RN:0
and moreover, the estimate of equation (IZIGZE gives |o(f)| < ||[1|lz||f]l2 so that ¢ is a
bounded linear functional (with norm at most [|1]]2).

. . . thm:riesz_rep,
By the Reisz representation Theorem (for Hilbert space), Theorem b.Z8, there exists
a g € L*(m) (real-valued) such that

[tav=ot)= [ roam= [ tadn+ [ roav
and therefore,

(13) [ra=9dv= [ sgau
for all f € L*(u). With Gy = {g > 1}, equation (IZEeI%;N\;vle have
0<p(Gy) = / dp = /xGlgdu = /x(;l(l —g)dv <0.
G1

Hence u(Gp) = 0. Since v < p, it also is the case th Nl/{Gl) =0 = m(G;).” Now let
G, = {9 < —%} and observe, again using equation (3] that

1
—ulGa) 2 /xGng dp = /XGn(l —g)dv = 0.

Thus ©(G,) = 0 and hence u(Go) = 0, where Gg = Ug, = {g < 0}. As before it follows
that v(Gp) = 0 = m(Gy).
Since m(Gy) = 0 = m(Gy), it is harmless to assume, as we now do, that 0 < g < 1

pointwise. Let ¢ = ﬁ, set h = g1 and note both ¢ and h are unsigned. The sequence
(¢,,) defined by

Y = wX{%ZJS”}

is a pointwise increasing sequence of bounded non-negative functions that converges
pointwise to . Thus each v, € L?*(m) and by the monotone convergence theorem

- %hm:LD sec:LD
7Compare with the proof of Theorem I5.3T in Subsection 6.7, where absolute continuity is not assumed.
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. . e:RN:1
(twice) and equation ( e sequence

/¢n(1—9)XEdV= /wnngdu

converges to both [ xgdv and [ hxpgdy; that is

v(E) = /Ehdu = un(E)

for all £ € .#. Choosing E = X shows h € L'(u) completing the proof in this special
case that both v and p are finite.

We now sketch a proof of the case that both v and p are o-finite (positive) measures.
Since v and p are o-finite, there exists a sequence X; C Xy C ... of measurable
sets of finite measure such that X = UX,. For n € N define p, : # — [0,00) by
wn(E) = pn(ENX,) and define v, similarly. The pair (v, u,,) are finite positive measures
and v, < p,. Hence, by what has already been proved and with n = 1, there exists
hy € L'(py) such that dvy = hy duy. Without loss of generality, we assume h; = 0 on
X¢. With n = 2, there is an hy € L*(uu) such that dvy = hydus and hy = 0 on X§.
Moreover, since hy and hs agree u a.e. on X1, we also assume, without loss of generality,
that h; = he on X;. Continuing in this fashion constructs an increasing sequence (h,,) of
unsigned functions that converges pointwise to some h and satisfies v,, = h,, du,, for each
n. Finally, given £ € ., let E,, = ENE, and apply the monotone convergence theorem
to the sequences x g, and hxg, and the measures v and p respectively to conclude that
the sequence

/XE” dv = v, (E) = hpdpn(E) = /hXEnd,U

converges to both v(E) and to [, hdu. Hence v = hdu. In the case that v is finite,
choosing F = X and using v(X) < co gives h € L'(p). O

[sec:1D]

6.7. The Lebesgue decomposition.

Theorem 6.31 (Lebesgue Decomposition - positive measure version). Suppose (X, 4, )
is a o-finite measure space. If v is a finite positive measure on (X, .#), then there exist
unique positive measures v, and vy such that

(i) Vo < pi;
(i1) vsLpu; and
(111) v = Uy + Vs.

Moreover, there exists a measurable set F' such that

(i) vo(E) =v(ENF)=0;
(i) vs(E) = v(EN F°) = 0; and
(iii) u(Fe) = 0.
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Remark 6.32. The result holds if v is assumed o-finite, a result that follows easily from
the case of v finite. The details are left to the interested reader. O

. . %_hgal@ .
The uniqueness asserted in Theorem .31 15 a consequence of the following lemma.

Lemma 6.33. Suppose (X, .# ,p) is a measure space and p : M — R is a measure. If
p <L pand plu, then p = 0.

Proof. Since pLu, there exist a set F' € .# such that p(E) = p(E N F°) and p(F) =
w(ENF) for all E € #. Hence, for £ € A/,
w(ENF)=pENFNE)=0.

Since p < p, it follows that p(E N F¢) = 0. Thus both F and F* are totally null for p.
Hence p = 0. U

hm:LD ' ' '
Proof of Theorem %)?7 Let m =v+ p. In ﬁg%ﬁular, m is o-finite and v < m. Hence,
by the Radon Nikodym Theorem, Theorem I5.27. there is a uniquely (a.e. m) determined
unsigned function g : X — [0, 00) such that v = m,. Thus, for all measurable E,

V(E)Z[Egd(quV):[Egdm

An easy argument shows g < 1 a.e. m.

Let F = {g < 1} and note F° = {g = 1}.* Define v,(E) = v(ENF) and vy (E) =
v(ENF°) for E € . Both are positive measures, vs(F) =0 and v = v, + v5. Next,

o(F) = [ gdlntv) = ulF) 4 o(F),

Since v(F°) € [0,00) it follows that, p(F¢) = 0 and thus v Lp.

To prove v, is absolutely continuous with respect to u, suppose E is measurable and
u(E) = 0. Letting F,, = {g <1 — 1} C F (for positive integers n),

VWENFE,) < (1- %)[u +U(ENE,) = (1— %)V(E NE,).

Hence v(E N F,) = 0. Since EN F = U(E N F,) it follows that v,(E) =v(ENF) =0
and therefore v, < p.

To prove uniqueness, suppose v = p, + ps. Since these are finite measures, p, — v, =
vs — ps. Now the R-measure on the right hand side is singular with respect to p while
the R—meatffe on tlllne left hand,sid(i is absolutely continuous with respect to p. Hence,

em:bot ar

:abs-cont:singu

by Lemma 633, both are 0. 0

END Monday 2025-03-24

The Lebesgue decomposition easily extends to the case of F-measures

In the case that v < p < m the set F° is m-null. Compare with the proof of Theorem G.27.
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Theorem 6.34 (Lebesgue Decomposition - F-measure version). Suppose (X, .#, ) is
a o-finite measure space. If p : M — F is an F-measure, then then there exist unique
measures p, and ps such that p, < p and psLp and p = p, + ps.

hm:LD
Proof. Let v = |p|. By Theorem E%.B'l_t"here exists measures v, and v, such that v, 1 u
and v; < p. Moreover, there exists a measurable set F' such that v,(E) = v(E N F)
and vs(E) = v(EN F°) for E € A and p(F°) = 0. In particular, vs(F) = 0. Define
Pas Ps : M — F by po(E) =p(ENF) and ps(E) = p(ENF°). If E C F is measurable,
then ps(F) = p(ENF°) = p(&) = 0 and hence F is totally null for p,. Thus psLpu, since
also p(F°) = 0. On the other hand, if u(E) = 0, then, writing £ = (ENF)U (E N F°)

Pa(E)| = [p(ENF)| < [pl(ENF) = va(E) =0,

since v, < p. Hence p,(E) = 0 and we conclude that p, < u. By construction p = p,+ps.
. . lem:both:abs-cont:singular
Once again, uniqueness follows from Lemma 633, 0

6.8. Duality for Lebesgue spaces - conclusion. This sub eh(l:r’llzl B contains a sketch

of a proof, based on the R%doIEl—Nikqd m Theorem (Theorem B.27), that the isometric
... [p:pre:Lp-Lg:duality . .

map of Proposition .17 1S in tact onto (unitary). Recall, given 1 < p < oo and a

g € L (u), h.eﬁ"gigeirs the conjugate index to p, that for f € LP(u), Holder’s inequality
(Theorem E‘%)’ mmphies gf € L'(u) and moroever || fg|l1 < ||f|l, [lglly- Thus, we obtain a

bounded linear functional L, : L(p) — F of norm at most ||g||, defined by

Lg(f) =gf.

Let & : L9(u) — LP(u)* denote the bounded map (with norm at most one) given by
O(g) = L,.

Lq:duality| Theorem 6.35. If (X, . #, ) is a o-finite measure space and 1 < p < oo, then the
mapping © : LI(pn) — LP(p)* defined by ®(g) = L, is an isometric isomorphism.

prob:ell-indthyddmbdof-1infty o . .
Recall, Problems [Z-TZand 1.0 says that the result fails in the case Olfrg = 00. Like ise ,
. . . . m:post:pre:Lp-Lg:duality
the result fails for p = 1 without the o-finite hypothesis. See Remark 1.T5.

hm:Lp-Lg:duality . L. p:pre:Lp-Lg:duality
Proof of Theorem [6-35 wn the case of a finite measure. Proposition .11 says @ 1s 1S0-

metric. Thus it remains to show that & is onto under the assumption that p is a
finite (positive) measure. Let ¢ € LP(u)* be given. Define v : .# — F as follows.
Given E € .# the function xyp € L'(u) since p is finite. Set v(F) = ¢(xg). In par-
ticular, v(@) = 0. To prove that v is countably additive and hence an F-measure,
suppose (E,);2, is a sequence of disjoint measurable sets and let F = U, E;. Let
Sp = Z?Zl 1p,. In particular, (s,) increases pointwise with limit s = 1g. Further,
0 < (s—s,)? <1€ LP(u) and thus, by dominated convergence, (s,) converges to s in
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LP(p).” Using continuity and linearity of ¢,

n

v(E) = ¢(s) = lim ¢(s,) = lim ZV(Ej) = ZV(EJ)

n—00 n—00 £
Jj=1

If u(E) = 0, then xg = 0 in L? and therefore v(F) = 0. Thus, the measure
v is absolutely continuous with respect to p. Consequently, by the Radon-Nikodym
Theorem, there exists an h € L'(u) such that

Cqraual 1] (44) olxm) = v(E) = / hdp.
E p:pre:Lp-Lg:duality

Temporarily, view Ly, as defined (and continuous) on L>(u). (See Proposition M.14.)
le:Lp-Lg:dual:1
If s is a measurable simple function, then, by equation (777,

o(s) =/Xshdu-

Now suppose f is a bounded unsigned measurable function. Since p is a finite
measure, f is in LP(u) as well as L>®(u). Hence, both A\, (f) and ¢(f) are defined.
There exists a sequence (s,) of measurable simple functions 0 < s,, < f such that (s,)
converges to f uniformly and therefore in both LP(u) and L*°(u) (again because p is
finite). It follows

o(f) = limp(s,) = Lp(sn) = Ln(f).
It now follows that if f is bounded and measurable, then ¢(f) = Ly(f).

To prove h € L4, first assume p > 1. For positive integers N, let Exy = {|h| < N}
and let hy = hyg,. Thus hy is bounded and so is fy = hy|hy|72 (where we set
fn(z) =0if x ¢ Ey). Thus all are in each L"(u) since p is finite. By LP(u) continuity
of ¢,

al-lp-step| (45)  [lfwllpllell = lo(fw)] = [La(fn)] :/ fnhdp :/ || dp = || hx]§-

n:dual-lp-st
On the other hand, ||fy||, = [[Ax]|¢~", and combining this equality with (I4b) Jwe sce that -

|hnllg < |l¢ll- By monotone congvergence, h € L9(4) and moreover ||hll, < ||¢]|.

In the p = 1 case, put E; = {|h| > t} and let f; = %XEt- Thus || fi|l1 = p(Ey) for
all ¢, and, since f € L*>(u),

5] (46)  p(E)llell = Il 1Al > 1ol = [Za(f)] = /X Fohdy / Bl dp > t u(Ey).

Ey
Hence u(E;) =0 for t > ||| and thus h € L>(u) and in fact ||¢]| > ||h]] -

Now that we know h € L9, it follows that L;, is continuous. It also agrees with ¢
on simple functions. Since simple functions are dense in L?(u), the conclusion ¢ = Ly,
follows. O

90n the other hand, (s,,) does not necessarily converge to s in L™ (y).
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END Wednesday 2025-03-26
[thm:Lp-Lg:duality .

The following lemmas will be used to prove Theorem b.35 1n the case j is o-finite.

Lemma 6.36. If u (X, .#, 1) is a o-finite measure space, then there exists a measurable
function w € L'(u) such that 0 < w(x) < 1 for all z.

Proof. Write X = U2, X,,, a countable union of disjoint measurable sets of finite mea-

sure. Let w,, = mlxn and w =" wy. d

Lemma 6.37. Suppose u is a o-finite measure, w € L'(p) and 0 < w(z) < 1 for all x.

Let T denote the measure w dy.

For1 < p < 0o, a measurable function f is in LP(u) if and only if g = wﬁf € LP(7)
and in this case || f||, = ||gllp; that is, the mapping U, : LP(1) — LP(u) defined by

U, (f) = w%f

is a (linear) isometric isomorphism.

Proof. 1t is easy to check that U, is isometric with inverse given by f — wr f. U

:Lp-Lg:duality

Proof of Theoremlr(g 75. For the o-lnite case, with p > 1, let w be as in Lemma Iblhegl’bwigl
Likewise, let 7 = wdp. By Lemma l%‘3’7_'6175‘111auppmgs U, : LP(1) — LP(u) defined by
V,.h = w%h are linear isometric isomorphisms. Thus, ¥ = ¢ o ®, is a bounded linear
functional on LP(7). Since 7 is a finite measure, by what is already proved, there is a

g € L(7) such that ¢ = L,. Let h = W,g = weh. Thus h € L9(y) and ||hll, = [lg]lq-
Moreover, if f € LP(u), then F:= W' f = wr f € LP(r) and

p(f) =y (F) = Ly(F)

:/ngT:/Fgwd,u

:/wép(wég)du:/fhduzLh(f)-

In the case p = 1, write X = U2, X,,, where X, are measurable sets of finite measure
and apply what has already been proven in the to the measure space (X,,, .#,, ), where
My, ={FE € M :FE CX,} and p, = ul|.4,. The details are left to the gentle reader. O

6.9. Problems.

rop:CE
Problem 6.1. a) Prove Proposition E‘Bﬁ_b) In the case u = Lebesgue measure on
[0,1), fix a positive integer k and let .4 be the sub-o-algebra generated by the intervals
[%, 3%1) for 7 =0,...k — 1. Give an explicit formula for the conditional expectation g
in terms of f. ¢) Show that the o-finite hypothesis on v is needed.
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7. THE FOURIER TRANSFORM

We assume all functions are complex-valued unless stated otherwise.

Definition 7.1. [The Fourier transform] Let f € L*(R). The Fourier transform of f is
the function F(f) = f : R — C defined at each t € R by

(47) Flt) == / Flx)e 2 dg.
The terminology Fourier transform is often used for the mapping that sends f to ]/“\ O

Note that fmakes sense, since f € L'(R) and, for each ¢, the function exp(—2witz) €
L>®(R). In fact, | f(t)] < || f|l so that f € Fy(R), the Banach space of bounded functions
on R with the supremum norm, and || f||s < ||f|1.

The basic properties of the Fourier transform listed in the following proposition stem
from two basic facts: (1) Lebesgue measure is translation invariant; and (2) that, for
each t € R, the function

Xt : ¢ — exp(2mitx)

is a character of the additive group (R, +);'" that is, x; is a homomorphism from R into
the mulitplicative group of unimodular complex numbers. Explicitly for all x,y,t € R

Xe(r +y) = xe(2)xe(v).

Example 7.2. Given real numbers a < b, let f = X[q4 (that the interval is closed, open,
or neither is not important here) and verify

—2mibt —27iat
~ e —¢ = ¢ 7§ 0
t) = 2mt
1) {b —a t=0.
Note that the derivative of exp(—2miat) at t = 0 is —2mia. In particular, for b > 0 and
f = %X-b0)s ~
f(t) = sinc(27bt).

(The sinc : R — R is the function w;ﬂ) Since for k € N,

/(’“H)7r sin(z) S 2

the sinc function is not in L'(R); that is, in general f € L'(R), does not imply fe
L'(R). 0

The following example will be used later when the Poisson kernel for the upper half
plane is introduced.

10The characters of the multiplicative group T (the unit circle in the complex plane) are parameterized
by Z with n € Z corresponding to the character x,(y) = 7™; that is y,(e®) = et (for t € R).
Proceeding in this way lead to the theory of Fourier Series.
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Example 7.3. For a > 0, let
(48) Qa(t) _ 6—2a7r|t\

(the extra factor of 27 turns out to be a convenient normalization).

a

—~ , 1
o _t — a t 27T’Lt27dt: R —
Q= = [ Qe s

Note, thils fuli_lcgi,on Q ii, in a sense, a smoother version of the indicator function from
eg:ck:Xinterva

example [7-Z. It has the virtue that is Fourier transform is in L'(R). O

7.1. Basic Properties. Before going further we introduce some notation: for fixed
y € R and a function f: R — C, define f,(z) := f(z —y).

Proposition 7.4 (Basic properties of the Fourier transform). Let f,g € L'(R) and let
a e R.

(a) (Linearity) cT—l—\g —cf+7
(b) (Translation) f;(t) = e~ 2mity f(¢)
(c) (Modulation) If g(x) = e*™* f(x), then §(t)

~

ft—a)

R —~

(d) (Reflection) If g(x) = f(—x), then g(t) = f(t). R
(e) (Scaling) If X > 0 and g(x) = f(x/\) then g(t) = \f(\t).

Proof. Each of these properties is verified by elementary transformations of the integral
defining f; the details are left as an exercise. O

Proposition 7.5. If f € L'(R), then [ is continuous and bounded (f € Cy(R)) and
1 flle < Ifll1- In particular, the mapping L*(R) > f — f € Cy(R) is a bounded linear

map of norm at most 1.

Proof. Fix t € R and a sequence t,, — t. The sequence f(z)e 2™ converges to
f(x)e 2™ pointwise on R, and since trivially |f(z)e 2™ < |f(z)| for all n, we have
by dominated convergence

f) = [ sy as
= /_oo lim [f(z)e”*™""] dx

n—oo
o0
o

= lim f(z)e 2™ dy

n—oo J_ o

= lim f(t,).
n—oo

The second statement of the theorem follows immediately from the estimate sup,cp | f(¢)] <

[f1]2- O
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In fact, falways belongs to Cy(R), a result that is known as the Riemann-Lebesgue
Lemma. To prove it we first need the following result, which we will apply often (recall
the notation f,(z) := f(x —y)):

Lemma 7.6 (Translation is continuous on LP). If 1 < p < oo and f € LP(R), then
limy o || fy — fll, = 0. In particular, if (y,) converges to y, then (f,,)n converges to f,
in LP(R).

Sketch. We sketch the proof of an approximation argument, leaving the details as an
exercise. Let X C LP denote the set of all f for which the conclusion of the theorem is
true.

Verify X is a vector space and contains y for all finite intervals I. By Littlewood’s
first principle, a measurable set of finite measure is nearly a finite union of intervals. Thus
X contains the indicator functions of all sets of finite measure and therefore all simple LP
functions. Since simple L? functions are dense in L?, it suffices to show that X is closed.
Toward this end, note if f, g € L? and || f — ¢, <, then || f —g||, = || fy — gyll, < € for
all y € R by the translation invariance of Lebesgue measure. Now suppose that g is in
the closure of X and let € > 0 be given. Choose f € X with ||f — ¢g||, < €, and choose
d > 0 so that || f, — fl|, < € for all |y| < 6. Then for all |y| < 0,

lgy = 9lly <llgy = Fulls + ILfy = Fllp + I1f — gllp < 3e.
Thus g € X as well and hence X is closed. The proof is finished. ([l
END Friday 2025-03-28
Lemma 7.7 (The Riemann-Lebesgue Lemma). If f € L'(R), then f € Co(R).

L. propfourier-continuity
Proof. From Proposition [7-5,"f 1S confinuous.

The proof ng{:eﬂb%t_ afsfél%lgges at infinity appeals to the continuity of translation

in L' (Lemma [7.6), and a simple trick. First, since e™™ = —1,

(49) f(t) — /R f(x)e—th(x-‘r(l/?t)) dr — — /Rf <x o 2%) o—2mint g

. : h_g%_ei L:1 L n
Combining equation (A9) with the usual definition of f, we have

Fo=3 [ (1@-1(s-3)) e

~ 1
F0) < 507 = 3
lem:Li-translation
By Lemma 70 ||j—j2%||1—>Uast—>ioo. O

Thus

Continuing our catalog of basic properties, we see that the Fourier transform also
interacts nicely with differentiation.
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Proposition 7.8 (Multiplication becomes differentiation). Suppose f € LY(R). Ifg(z) :=
zf(x) belongs to L'(R), then f is differentiable and

—1d ~

S = 24
9(t) = == ),
for allt € R.
The proof uses the standard estimate,
1= <[

for t real and dominated convergence.

Proof. For real numbers s # ¢

s—1 s—1

(50) f(z) da.

oo

The estimate

—2misx __ ,—2milx
¢ ‘ < 2m|x|
s—1t
holds for all zﬁ ftougléllgsall%_the gssumption z f (r) € L', a dominated convergence
argument in (IbU) shows that the llmlt as s — t exists and moreover
N _ At oo —2misx __ ,—2mitx
lim Jls) = /() = lim c c f(z)dx
st s—t s—=t | _ oo s—1
:/ (—2mi)e ™y f () dw
= —2mig(t).
Thus ]?is differentiable and the claimed formula holds. 0

Note that if f € L' and also g(x) := 2" f(x) € L' for some integer n > 1, then
2% f(x) belongs to L! for all 0 < k < n. The previous proposition can then be applied
inductively to conclude:

Corollary 7.9. If f € L' and g := a™f € L', then f is n times differentiable, and

a:'kf (_1) ]?(k for each 0 < k < n.

One also expects a theorem in the opposite direction: the Fourier transform should
convert differentiation to multiplication by the independent variable. Under reasonable
hypotheses, this is the case.

Proposition 7.10. If f € Co(R) and f' is continuous and in L', then
F(f)(t) = F'(t) = 2mit f(t).
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Proof. Compute
f/(t) — / f’(x)e_%im dr

b
= lim/ f(x)e 2™ dy
b

b—o0

b
= lim ([f(b)e%ibt — f(=b)e*™™] + 27Tit/ f(x)e 2t d:v)
b

b—o0

o~

= 2mit f(t),
where the second equality follows from the Dominated Convergence Theorem, the third

using integration by parts, and the fourth from the Cy(R) assumption on f and another
application of Dominated Convergence. O

T:gaussian| Example 7.11. For a > 0 let g = g, denote the Gaussian,

7'('&.1‘2

g(z) =e"

(The factor of 7 will be convenient given our choice of normalization in the definition of

the Fourier transform.)
prop:mult-to-diff

mrop%%tfl%g;; otllln%%tcomputmg the transform of g, directly, we exploit Propositions [/-8 and

(10 We may alsg assume a. = 1 since the general case follows from this by scaling
rop:iourier—paslc

(Proposition [7-4{e]). Note that h € L'(R) and ¢’ = —27h. Thus,
()'(t) = —2mih(t)

. 1,
eq:ftgauss| (51) __27”]:(_%9)

= 12mit§(t)
= —2mtg(t),
. . prop:mult-to-diff ,
where the first equality fol%aows grofr%l Prog?swlon 78, the second from ¢’ = —2mh and
. .. rop:diff-to-mult . eq:ftgauss
the third from Proposition [7-TU. It follows from equation (b1) an e product rule that

Ce5) = 0,

Hence the function e”tzﬁ(t) is constant. To evaluate the constant, we set t = 0 and use
the well-known Gaussian integral

§(0) = / ™ dr = 1.

(e o]

We note in passing that F(hi) = —ih; too.

As a final remark, the F(Hy,g1) = Hyng1, where H,, are (appropriately normalized)
hermite polynomials. U
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7.2. Convolution and the Fourier transform. The last set of basic properties of the
Fourier transform concern its interaction with convolution, which we now introduce. If
f, g are measurable functions on R, the convolution of f and g is the function

(52) (f+g)(x) = / £z - y)g(y) dy

defined at each x for which the integral makes sense. In particular, if f € L* and
g € L', then f * g is defined on all of R. Observe, using the invariance of Lebesgue
measure with respect to x — —x and a simple change of variable,

(53) fgla) = / o(e — ) f (W) dy = g % f(z).

The next most basic facts about convolution are the following.
Proposition 7.12. If f,g € L*(R) and g € L*(R), then

(a) The function H : R* — C defined by H(z,y) = f(x — y)g(y) is (jointly) measurable
and in L'(R?) and || H|[x = [ f[l [lgl,;

(b) f*g is defined for almost every x € R;

(c) f* g is measurable;

(d) fxge LYR); and

() 1 =gl < 1F1h Nl

Proof. That H is jointly measurable as a function of z and y is left as an easy exercise.
By Tonelli

o [y = [ low) ( / |f(:v—y)|dw> dy = I/ hllglh,

where we have used the translation invariance of Lebesgue measure in the second equal-
ity. Hence H is in L'(R?). Thus by Fubini, [, [f(z—y)g(y)|dy = [, |H(z,y)| dy is finite
for almost every € R and the function z — [, f(z —y)g(y) dy is measurable (and real)
for almost every z; that is f * ¢ is defined almost everywhere, in L' and

£9(a)| < [ 1Hlzy)dy
R
: -L1:1
Hence, by equation (EZI;OHVO

1 % gl = /fx— dy‘dx</|nyldydx—||f|| ol O

We will also have use of the following result when studying the L? theory of the
Fourier transform on R. It holds more generally with 2 replaced by 1 < p < oo.

Proposition 7.13. If g € L*(R) and f € L*(R), then fx*g is defined almost everywhere
and in L*(R) and || f * gll2 < [|f]l1 l|gl|2-
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Sketch of proof. First suppose f,g : X — [0,00). Thus the function f g : R — [0, 00]
is defined everywhere. If also h € L?, then hf_, € L' for each t and thus, using Tonelli
and Cauchy-Schwartz,

/|f*g |dx—//|h |/fa;—t dtda:—/Rg(t)/R|h(x)|f(z—t)dxdt

< llgllxll 12l Al2-

It follows that the function (f * g)h is in L'(R) for each h € L% In particular, f * g is
finite almost everywhere. Further, the mapping A : L*(R) — C defined by

AW=4UWW

is continuous (with norm at most llgllillfll2). Hence, by the Riesz Representation The-
orem (Theorem .78 cre 1s an L?(R) function ¢ such that

— [ni= [ nr9)

Thus f * g = v almost everywhere and so f * g isin L? and ||f * g2 = ||\ < g/l | f]|2.

Finally, dropping the assumption that f,g map into [0,00), from what is already
proved, | f| * |g| € L*(R). Thus, since |f * g| < |f] * |g| pointwise, it follows that f * g €
L*(R) and [[f * glla < If] = [glll2 = lgll[Lf1]2- O

END Monday 2025-03-31

ion-basics| Proposition 7.14. Let f,g,h € L'(R).

a) (Commutativity) f*g=g=* f.

b) (Associativity) (f xg)*h = f *(g*h).

c) (Distributivity) (f +g)«h = f*xg+ f = h.

d) (Scalar multiplication) If ¢ € C, then (c¢f) *x g = c(f * g).
prop:convolution-basics i

Remark 7.15. The properties listed in Proposition I7. 14, taken together, say L'(R) with

the usual addition of functions and convolution as multiplication is a commutative ring.

(In fact it has even more structure, that of a Banach algebra, but we will not pursue

this direction in this course). O

We can now describe how convolution behaves under the Fourier transform.

convo-mult| Proposition 7.16 (Convolution becomes multiplication). Let f,g € L'(R). Then m(t) =
f(®)g(t).
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. o rop:convo-L1 | izt .
Proof. By virtue of Proposition P T the Tunction G(z,y) = flx —y)g(y)e ™" is in
L'(R?) and thus we can use Fubini to compute f x g(t):

Frao = [ ([ o=t dy) e a
= [t ([ e = wpemeac) ay

= | f()e*™g(y) dy

L. prop:fourier-basic . .
where we have used Proposition [-4{b) To obfain the third equality. O

Given what we have proved so far, it follows that the Fourier transform is a ring
homomorphism from L!'(R) (with addition and convolution) to Cy(R) (with pointwise
addition and multiplication). We will see later that the Fouhrzie tf_:ia,nsform is injective.

L. . . rob:FInotonto
It turns out that it is not surjective, however. (See Problem [7.77)

The following basic properties of convolution are immediate. Their proofs are left
as an exercise.

7.3. The Poisson kernel for the upper half plane. Let us fix the notation

1 a

a2+ 22

Notice that P;(z) is nonnegative and [, Pi(z)dz = 1. Moreover, P,(z) = 1P ().

T a

oisson-def | (55) P,(z) =

g

em:Pkernel| Remark 7.17. The function P,(z) (viewed as a function of the two arguments (a and
x) is known as the Poisson kernel.

Viewing (x,a) € R? = C, the set UHP = {(z,a) : x € R, a > 0} is the upper half

plane. Thus P,(x) = P(x,a) determines a function P : UHP — R. It is not hard to

verify that P(z,a) is harmonic; that is %QTI; + 2271; = 0. O

pprox-unit| Definition 7.18. An L' approzimate unit is a collection of functions ¢, € L'(R) in-
dexed by A > 0 such that:

i:AIl:a| (a) ¢x(t) > 0 almost everywhere, for each A,
i:AI:b] (b) [ #a(t)dt =1 for all A, and
i:AI:c| (c) For each fixed § > 0, we have ||1y5s¢a]1 — 0as A — 0.

Proposition 7.19. The Poisson kernel {P,}a~0 is an L' approzimate unit.

LR

af-to-f:L1| Theorem 7.20. If1 <p < oo and f € LP(R), then P, x f converges to f in LP(R).

fthm:Paf-to-f:L1
Only the cases p = 1,2 of Theorem .20 are needed for the purposes here and that

is what is proved below. The proof uses the following lemma.
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pprox-unit| Lemma 7.21. Suppose ¢y is an L'(R) approzimate unit and g : R — C is a bounded

measurable function. If g is continuous at a point x € R, then
lim(g + op)(z) = g().
Proof. Using the trick g(x) = [, oa(y)g(x) dy (item (ETT?,I_&
(9% 6x)(x) — g(2) = / (902 ) — 9(a)) 62(y) dy
By positivity of ¢, (item (%)“)‘%

Tenna-step] (50) (g% x)(x) — g(2)] < / 9 — ) — 9(0)|éa(y) dy

To estimate the right-hand side, let € > 0 be given. By the continuity of g at T choose

eqn: approx unit-lemma-stej

d > 0 so that |g(z —y) — g(z)| < € when |y| < 6. We then split the integral in (b0) into
two integrals, over the regions |y| < § and |y| > o:

[late =) = gta)ionto) d
= / l9(z —y) — g(z)|oaA(y) dy + / l9(x —y) — g(x)|Pa(y) dy
{lyl<d} {ly|>3}

The first integrand is bounded by €¢,, so

[ le-n-s@nwd<e [ owdy<e

{lyl<é} {lyl<s}

since [, da(y) dy = 1. ih%ls_egond integrand is bounded by 2||g||s X {ly/>s1@2(¥), 50 goes
to 0 as A — 0 by item (Cj in the definition of approximate unit. 0

END Wednesday 2025-04-02

tthm:Paf-to—f:L1 o o
Proof of &“he(irem I/ 720 Let = 1 or p = 2. By continuity of translation in LP(R)

tion
(Lemma [75), the function

Wt) = |1f - fth—/|f o — D de

is continuous and in particular it is continuous at 0. It is also in L*(R) since h(t)
If = fell, < 2| f]|, for all ¢. Co&seqcoeilrltnsl/ﬁlatsy aarf)%{_lgl{]l%llof a > 0, the function P, * h(0)
has limit 4(0) at 0 by Lemma [72T.

rop:convo-L1

For a > 0 the function P, is in ngRa)\ alﬁd fis LP(R) and thus, by Proposition [/-TZ2n
the L'(R) case and Proposition n 2(R) case, P, * f is measurable and defined




107

. i:Al:a  Ji:AI:b
almost everywere and in LP(R). Using items (Ia) and (D) of the approximate identity

property of the Poisson kernel,
£0) = Pux £(0)| = | (/fx—t 0t

|/ Flo— 1)) Put) di].

Let p denote the measure P,(t)dt. In particular u(R) = 1 and therefore applying the
Cauchy-Schwarz inequality to (f(z) — f(z — t) and the function 1 n} tpe Hilberf space
L?*(p) when p = 2 and the obvious inequality when p = 1, equation (b/ ] gives

1

-to-f:L1:2] (58) |f(x) — P, f(x |<</|f x—t)|pP()dt)p

le:Paf-to-f:L1:2
Hence by Tonelli and equation (53],

4u< PaﬂWM<//u e — O Pa(t)dt d

= [| [ 1560~ se = | o a

/w f( — DIEP.) dt
—4<W@ﬁ

— / h(t)P,(0 —t)dt = P, % h(0).

Therefore, ||f — P, * f||, tends to 0 as a tends to 0+ and the proof is complete. 0

-to-f:L1:1| (57)

7.4. Inversion and uniqueness. In this section we study the problem of recovering
f from J/C\ Loosely, the Fourier transform can be thought of as a resolution of f as a
superposition of sinusoidal functions e**: the value of f(t) measures the “amplitude”
of f in the “frequency” t. This suggests that a formula like

sion-intro| (59) f(x) :/Rf(t)e%m dt

ought to hold, at least if f € L. If we formally substitute the definition of ]/”\and switch
the order of integration, we are confronted with

/f(u) (/ 2mi(z—u) dt> du
| eqgn : inversion-intro

and the inner mtegral is not convergent, regardless of any assumption on f In fact (bY)
does hold when f € L', but a more delicate argument is necessary. So, the goal of this
section will be to prove:




—-inversion
—-inversion

fhat-in-L1
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Theorem 7.22 (Fourier inversion, L' case). If f and f belong to L, then
(60) fla) = [ T a

R

for almost every x € R.

:Li-inversion

~ hm
Remark 7.23. If both f and f are in L', then, by Theorem Ih;z )

f@:4ﬂ4kat

Thus f is the Fourier transform of the L! function f(—z) and therefore f € Co(R). By
symmetry f € Cy(R) too.

From f(z) = Ff(—) it follows that F4 = I. O

The inversion formula implies that L' functions are determined by their Fourier
transforms.

Corollary 7.24. Suppose f,g € L'. If f =G, then f = g a.e.

Proof. From the inversion theorem, if f € L' and ]?: 0, then f = 0. By the linearity of
the Fourier transform, f — g = f — g, and the corollary follows. OJ

So, in principle, f is fully determined by f, even if f ¢ ]%gg %qitlglg,rl‘?a(iften the cgs.e7
e.g., for b > 0 the the function f = x[_4, from example [/"Z"To Tecover f from f in
these cases, we turn to summability methods; in fact summability methods will already

be of use in proving the inversion theorem. The idea is this: suppose we have a divergent

integral
/ h(t) dt
R

where the function h is, say, locally L', but not L*. We might try to make sense of the
integral as

a

lim h(t) dt,
a——+00 —a
effectively we have introduced the cutoff function 1,(t) := 1{_q4, which is positive,

integrable, and increases to 1 pointwise as a — oo. Given any family of functions ),
with these three propertes, we can consider the integrals

[ ey

The square cutoft x|_,q has some undesirable properties; e.g., its Fourier transform is
not L' (and not of constant sign).
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. X Lem:poisson—-computation
We will work first the smoother cutoff functions @, () from example [7.3."Note that

example also computes the inverse Fourier transform of @), for a > 0 as

, 1 a
X 2mitx _ —
omputation| (61) /RQa(t)e dt = gl R P,(z),
the Poisson kernel. Further, Q,(t) increases pointwise to the constant function 1 as a

tends to 0.
:inversion-intro
We are now able to compute the integral (Iog) modified by the cutoff function Q,(¢):

onvolution| Proposition 7.25. If f € L', then for alla >0 and all x € R
(f * P /Qa 27mtx dt

In particular, g, [ Qa(t ) f(£)e*™ it dt converges to f in L.

prop:poisson-convolutien
Remark 7.26. The last statement of Proposition [77Z5 tecovers f from f, but only

in the L' norm. The proposition says nothing about the pointwise covergence, of the
oisson-convolution

reguralized integrals. In fact, it is true that the integrals (see Proposition I/ zb) converge

to f a.e., but this requires a more delicate argument. In the proof below, it is shown

that there is a sequence a, such that g,, converges to f pointwise (almost everywhere.

Proof. For a > 0 and z fixed, let G(t,y)[a, z] = Q. (t) f(y)e 2™@=¥! Observe that

/|G (t,y)[a, z||dydt = || f||1 ||Qallr = Hf”l

Thus Gla, z] is L'(R?) and hence we can apply Fubini (explamlng the role of the cut-off

function Q,)
/Qa 271'11 dt = /Qa /f 27m(:): y)t dy dt

= [ Qv [ sla=pemaya
/f x— /Qa 27”yt dt dy

= (f * Po) (),

where the second equah]ty comes from a change of variable; the third from Fubini, and
e poisson—-computation

the last from equation (B6T). U

[thm:Lil-inversion ~
Proof of Theorem 7.22. Assume J, f € L*(R). Define

/ f 27rztw dt

We are to show g = f a.e.
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For a > 0 and =z € R, let

~

haw(t) = Qa(t) f(t)e™.
and for a > 0, let

ga(@) = / Qu(t) f(t)e*™ ™ dt = / R dt.

. Iprop:poisson—c%nvolution_‘. R . .
From Proposition 720 g,(z) = J * F,(z). Fix a sequence a,, — 0. Since (),, increases

pointwise to the constant function 1, for fixed z, the sequence h,, converges pointwise
to h, = fte?™ and at the same time |k, ()] < ||he(8)]| = [ f(¢)]| for all ¢; that is, g,
is dominated by the L'(R) function f. Thus, by the dominated convergence theorem,

1im Ya, (x) = hm/ hn,z dt = / hm dt = g(x)
R R hm:Paf-to—f:L1

ft
— : 1 T
On the |?F§f£;£?;%d?agﬁ = [ P, converges to f in L'(R) by Theorem .I/.AU.. By
Lemma M.T7, there 1s a subsequence (gn, )r of (g,) that converges to f pointwise al-

most everywhere. Thus f = g almost everywhere as claimed. U

Remark 7.27. Observe that the above proof did not really use the explicit form of P,;
rather the point was that Q,(t) = {e2%"} .- was a cutoff function (uniformly bounded
and converging pointwise to the constant function 1) whose Fourier transform {P,} was
an L' approximate unit. Any other cutoff function with this property could have been
used. 0

END 2025-04-04

7.5. The L? theory. In this section we study th F%ui er transform on L2 Tl}ere ifshan
. . . rob: lp-no-containments-rn eqgn:fhat-def
immediate problem, of course, since by Problem U5 L L*so the integral (17) need
not be defined. However, we can observe that L' N L? is dense in L? (why?), and start

there.
plancherel| Lemma 7.28. If f € L' N L2, then f belongs to L* and || flla = || f|.

Proof. Let f(x) = .f(—ag)o. §é%ggofo€ L', the convolution g = f * f is defined a.e. and
g € L' by Proposition I7.1Z.

ow
:Licapl2:1 (62) g(x) = /Rf(:v — y)f(—y) dy = /Rf(x + y)mdy
Since f and f_, are both in L2(§gmez%111ation I‘Siz;gglgn%élmterpreted as g(x) = (f-z, f)12

—trans
almost everywhere. By Lemma (7.6, the map # — f_, is continuous from R into L? and
of course the vector f determines a continuous linear functional. Thus g is a continuous

function of z, and g(0) = || f||3. By Cauchy-Schwarz again,
l9@)] < [1f=all2 I fll2 = I £12,

so ¢ is bounded.
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prop:poisson-convoluti

Let, as before Q,(t) = exp(—2ar|t]). Since g € L'(R) we can apply Proposition s
to compute

(g% P,)(0) = / Qa(t)g(t) dt.

. . |1em:continuié%—approx—unit
As ¢ is continuous, by Lemma [7.2T

:

herel-step| (63) 1715 = 9(0) = lim(g » Po)(0) = lim | Qu(e)ait) .

Let us compute the limit of this lgfxgst integral i different way. Recall that by

rop:convpropiiourier—pasic

definition g = f * f, so by Propositions [/- 10 and 17-4(d),

~ n 2
g9@t) = [f(@).
. . . i X . . legn:plancherel-step
Making this substitution in the integral in (63) and applying the monotone convergence

theorem (recall 0 < Q,(t) < 1 converges pointwise increasing to 1 as a — 0+),

)
1115 = tiny [ @u()3t0) e = i limy [ @u01F0)at = [ |7

a—0a—0
Consequently f € L2(R) and || f]l2 = [|f]]2. O
fourier-L2| Theorem 7.29 (The Fourier transform on L?). There is a unique bounded linear trans-

formation F : L? — L? satisfying the following conditions:

i:F:L2:a| (a) Forall f € L'N 12 Ff=7.

i:F:L2:b| (b) (The Plancherel theorem) || F flla = || fll2 for all f € L.

i:F:L2:c| (c¢) The mapping f — Ff is an Hilbert space isomorphism of L? onto L*.
i:F:L2:d| (d) (The Parseval identity) (f,g) = (Ff,Fg) for all f,g € L*.

Remark: Note that when f,g € L' N L?, the Parseval identity reads

/R f(@)g(@) do = / Flya a.

[thm:fourier-L2 lem:plancherel -~ .
Proof of Theorem [7.279. By Lemma [7.28, The map f — f is bounded linear transforma-

tion from a denrglgogl_liaxspace of L? into L?. Thus, since the codomain L? is complete,

by P 4 ending-bounded-operators b ded I ¢ . ¢
y Proposition [I.34 the mé%P:Ff:Lz_?aj has Lla: ﬂ,uil,,q%e ounded linear extension to a map

F : L?> — L?. Hence iten]i (a] iolds and (] Tollows since | f[l2 = | F |2 on a dense st ion

1 2 . . . . T
(namely ]%ro@:ﬁiibvlfiegc}mgt JolTows f}rom 11;&}%:8” y Polarization ‘(Theorem'b.ld). See
Problem b:3(a). It remains to prove item (IE:i; what we must show is that F is onto.

We show that F has dense range; combined with the fact that F is an isometry, it
follows that F is in fact onto. (The proof of this last assertion is left as an exercise). Let
M denote the set of all functions g € L? such that ¢ = f for some f € L' N L2. Clearly
the range of F contains M, so it will suffice to prove that M is dense, or equivalently,
that M+ = {0}.
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: . . . def : Qsuba
Recall the cutoff functions Q,(z) = e 22"l g > 0 introduced in equation (

The functions e*™*e=27l#| helong to L' N L? for all @ > 0 and b € R, so their Fourier
transforms

Pa(t . b) — / 627rib:1: Qa<x> 6727ritz dx
R
belong to M. So, let h € M+ be given and let H(x) = h(—x). Thus,
(P, + TT)(—b) = / Pu(—b — (=) dt = / Pu(t — bYR(E) dt = 0
|thm:Paf-toH§f ;L1 _R

for all b. Theorem (/.20 implies P, * H converges to H in L?. Hence h = 0 and conse-
quently M is dense in L? and the proof is finished. O

-inversion| Theorem 7.30 (L? inversion). Let f € L?. Define

N

on(t) = /_N F@)e 2 de, () _/ (FF)(t)e2me d.

-N
Then || — Fflla — 0 and ||vn(t) — fll2 = 0 as N — oc.

Proof. Let fn := 1y f. Then fy € L' N L? and ¢y = ?]\\7 An application of
dominated convergence shows that (fx)n convergss to f in the L? norm. Hence, (o5 =
— . hm:fourier-L2

fn = Ffn)n converges in L? to Ff by Theorem 7.29.

grl%)% ?E%E?gllgggifg}‘ ¥y is proved by similar methods and is left as an exercise (Prob-

lem [79). O

Remark 7.31. It is important to note that, for a general function f € L?, its Fourier
transform is defined only as an element of L?. In particular it is defined only a.e., and
cannot be evaluated at points. It is customary to write ffor Ff when f € L? with the
understanding that the integral definition is only valid when f € L' N L2

END Monday 2025-04-07
7.6. Problems.

. prop:fourier-basic
Problem 7.1. Prove Proposition [/

lem:Li-translation

Problem 7.2. Complete the proof of Lemma [75:

E—-FE={x—y:z,y€FE}

contains an interval centered at the origin. (Hint: let —E = {—z : x € E'} consider the

uous-convo | Problem 7.3. Prove, if £ C [0, 1] has positive Lebesgue measure, then the set
function h(z) = 1_g * 1g.)

pprox-unit| Problem 7.4. Suppose ¢ is an unsigned L' function with [¢ = 1, and let ¢,(z) =
1 T
30 (5):
2P X

a) Prove {¢)} >0 is an L' approximate unit.
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lem:continuity—-approx-unit

b) Give 8 s1 rPler roof f Lemma [7ZT by making a change of variables in equa-
pro unlt emma step
tion (bb)

h-dense-Lp| Problem 7.5. a) Prove, if f € C}(R) and g is a compactly supported L! function,
then f x g is C! with compact support. (Hint: justify differentiation under the
integral sign.)
b) By induction, conclude that if f € C>°(R) and g € L' is compactly supported,
then f g € C°(R).
c¢) Conclude that C2°(R) is dense in L? for all 1 < p < co. (Suggestion: Construct
a C'*° approximate identity with compact support.)

Llem:poisson—-computation

omputation| Problem 7.6. Compute the integral in Lemma 73
:FTnotonto| Problem 7.7. This problem gives a proof that the Fourier transform™: L' — Cy(R) is

not surjective.

a) Draw a picture of h, := 1[_, ) * 1[_11) and determine its Cy(R) norm.
b) Show that h, is, up to a multiplicative constant independent of n, the Fourier
transform of the L' function

fn =

(Hint: you can compute integrals, or use the L' inversion theorem.)
c¢) Show that || f,||1 — oo as n — oo. Conclude that the Fourier transform is not
surjective. (Hint: if it were surjective... .)

sin 27z sin 2mnx

xr2

Problem 7.8. Suppose that f € L', f is differentiable a.e., f' € L', and f(z) =
f f'(y) dy for a.e. x € R. Prove f’—2mtf()

[thm:L2-inversion

-inversion| Problem 7.9. Complete the proof of Theorem [7-30.

Problem 7.10. Let ¢, be an L'(T) approximate unit. Prove, if f € C(T), then
f * oy — f uniformly as A — 0.

prop:fourier-basic
Problem 7.11. State and prove an analog of Proposition [7-4 Tor Fourier series.

Problem 7 A2, Show if f: R — R is twice continuously differentiable and has compact
support, then f € L'(R). Now show t%e lgolg,}:ler transform F : L'(R) — Cy(R) has
dense range. (It is not onto by Problem I7.7.)

8. COMPACT OPERATORS ON HILBERT SPACE

We begin our treatment of compact self-adjoint operators on Hilbert space with the
following introductory extended example.

1:operator| Example 8.1. Let (X,.#,u) and (Y, 4", v) be o-finite measure spaces and fix K €
L?(uxv).
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For z € X, let K, : Y — C denote the slice function K,(y) = K(z,y). Since K is
pxv measurable, each K, is v-measurable. Since K? € L'(u x v), by Fubini K2 is in
L'(v) for almost every z; that is K, € L*(v) for almost every z. Thus, if f € L*(v),
then K, f € L'(v) for almost every x. Define ¢ : X — C by

:/YKxfdu

) S/y!Ksz\dVS VI I

and, by Cauchy-Schwarz,

Given f € L*(v)

an 1) it is straightforward to check that f(y)g(z) € L2(u)
and therefore, K (z,y)f

nd g € L*(
f(y)g(z) € L*(uxv). Hence, by Fubini,

@)
o)) = /Y FDKLf dv

(exists almost everywhere and) is a measurable function. Given £ € .# with p(E) < oo,
choosing g = x g, gives xg is measurable. Since X is o-finite, 1 is measurable.
Using Tonelli

[ w@ra=[ | [ Ko |

S/X(/Y\le\f!dvydu

< / 1K1 1P
X

~1* [, < / |K<x,y>|2du) du = | FIBIKIE.

Hence ¢ € L*(p) and |||l < ||K2]|f||2. In this way we obtain a bounded mapping
Ik : L*(v) — L*(u) given by

dp

T f(x /Kf@

with [|Zg[| < [|K]l2.
The mapping Zx is known as an integral operator. Note that, for f € L*(v) and

g9 € L*(n),
(Txf,g _//KfWg@ //ny g(z)dvdp

/ny g(x)d pxv.
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Setting K*(y,z) = K(x,y) a similar computation reveals,

(f Tiog) = /Y £(2)Tig () dv

:/f(z)/K*(T)g(w)

/f VI (2, w)g(w)dpxv(w, 2)

/ 1z 9(w) dyxv(w, 2) = (Tic f, g).
Thus Zj, = Zk-~.

It is instructive to consider the case where the measure spaces are the following.
Let X = {1,2,...,m} and Y = {1,2,...,n}; let .# and .4 denote the power sets of
X and Y respectively and let g and v denote the counting measures Thus L*(u) and
L?(v) are naturally identified with C™ and C" respectively. A function K : X x Y — C
is identified with the matrix K = (K(j,k))7;~,. Given a function f : Y — C (a vector
in C")

i f(0) ZKM

Thus Kxf = Kf is just the product of the matrix K times the vector f. Finally,
K*(¢,7) = K(j,¢) is just the usual adjoint of the matrix K.

The Volterra operator is the following integral operator V' : L*([0,1]) — L*(]0, 1])

defined by
0= [ fw)

Thus here (X, ., 1) = ([0, ]ﬁm) (Y, 4, v) and

K(ﬂf,y)z{

1 ifx>y
0 ifx<uy.

Now

1 ifx<y.

1= [ [/ - [ s

Suppose now that V*f = 0. Since L?([0,1]) € L'([0,1]) the Lebesgue differentiation
theorem implies V* f is differentiable almost every Where and

0=(V"f)(x) = —f(x)

almost everywhere. Thus V* is injective.

. 0 ifx>
K(x,y>=f<<y7x>={ Y

and therefore,
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Finally, if T': H — K is a bounded linear operator and ker 7% = {0} (equivalently
T* is injective), then the range of T is dense. Indeed, if k € (ranT)*, then, for all h,

0= (Th,k) = (h,T + k)

and therefore 7%k = 0. Thus k¥ = 0 and consequently (ranT)* = {0}. In fact, this
argument proves'' (ranT)* = ker T* and consequently ran T = (ker T*)=. O

END Wednesday 2025-04-09

8.1. B(H) as a C-star algebra. The second item in the lemma below is the C-star
identity. It says that B(H) is a C-star algebra. We leave it to the interested reader to
read more about C-star algebras.

rad:normal| Lemma 8.2. If T € B(H), then |T*T| = ||T|*.

. lem:Hilby-norm:alt
Proof. Using Lemma 532, observe

|77 = sup{[{T"T'g, h)| : llgll = 1 = ||A]|}

rad:normal |
:gelfand:a| (64) = sup{|(Th,Tg)| : |lg|| =1 = ||h||}.
:gelfand:b]

Cauchy-Schwarz gives [(T'g, Th)| < ||T||*. Thus,

:gelfand:b| (65) ||T|]* = sup{[(Th,Tg)| : |lgll = 1 = [|h[l} = sup{(T'g, Tg) : [lgll = 1} = | T||*.

.. . pre:gelfandeagelfand:b
Combining equations (64) and (b65) completes the proof. 0]

8.2. Invertible operators. Throughout this subsection H is a Hilbert space; B(H) is
the space of bounded linear operators on H viewed as a Banach space with the operator
norm; and [ € B(H) is the identity operator on H.

. |cor :banach-isomorphism
Recall, by The Banach Isomorphism Theorem, Corollary B.TZ, 1if H and K are

Hilbert spaces and T : H — K is bijective, then the (algebraic) inverse of T is also
bounded; that is, T Is boundedly invertible.

Iminusnorm| Proposition 8.3. If A € B(H) and ||A|| < 1, then
(i) I — A is invertible;

(i) the (geometric) series (.S,,)

3

Sy, = Al
§=0
converges in the operator norm to (I — A)~!; and
HThe relations between ker T* and range T from matrices that you are familiar with from under-

graduate linear algebra extend to bounded operators on Hilbert space with the caveat that at times
ran 7 needs to be replaced by ran7.
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(i)
1

- A< —
I =47 < T

Proof. Since, ||ST|| < ||S||||T|| for S, T € B(H), for all n € N we have ||A™]| < ||A]|™.
Thus, the triangle inequality and [|A| < 1, give (A") converges to 0 and

inusnorm:1| (66) |55 < ZHAH] ||A||

for all n. Hence the serieﬁ) S 1s absoluteky convergent in the Banach space B(H). It
[<H a s-cvg-complet
follows from Proposition [[77 that there 1s an Scn (H) such that (S,,) converges to S.

Now since (5,,) and (A™) converge to S and A respectively and
(I —A)S, =1 — A" = 8, (I — A),

usnorm

it follows that ( { A)S = I = S(I — A). Hence I — A is invertible and S = (I — A)~t
From equation (Ibb) and contlnulty of the norm, ||S|| < (1 —||A])~! O

Iminusnorm| Remark 8.4. Note, for T' € B(H) the inequality ||7"|| < |||, implies

U

r = limsup HT"H% < [|T7].

prop:Iminusnorm
The obvious modification of the proof of Proposmon R.3shows it r < 1, then (I —T) is

invertible and the series S,, converges to (I —T)~! in operator norm.

vopen-more | Proposition 8.5. The set Z(H) of invertible operators on H is an open subset of B(H)
and the mapping F': Z — Z defined by

F(A)=A""

1S continuous.

Proof. Fix A € Z(H). Choose n = m and suppose ||H|| <n. In this case,

1
I = AT HI < AT < 5

1 prop: Imlnusnorm
and hence I + A~'H is invertible by Proposition R.3. Consequently,

A+ H=A+AH)

is invertible, proving that the n-neighborhood of A lies in Z, (since if B is n&) this

. rop: Iéﬁnusnorm
neighborhood, then H = B — A has (operator) norm at most 7). Proposition B3 also

gives

I(A+H)7 < 475 <2[lA7.

— AT H]]
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To see that F' is continuous, again suppose ||H|| < n and note
IF(A+ H) - F(A)| =[I(A+ H)"'[A = (A+ H)]JA™|
<|[A+H|[7" [ H| A
<2[|ATH* (1]

To complete the proof, given € > 0, choose 0 < § < n and such that § < m. O

8.3. The spectrum of a bounded linear operator on Hilbert space.
Definition 8.6. The spectrum of T € B(H), traditionally denoted by o(T), is set
o(T)={X € F:T — A is not invertible }.
The set p(T') = F \ o(T) is the resolvent set of T.
Remark 8.7. It is customary to write 7" — X\ instead of T — AI.

Example 8.8. When F = R it is possible that o(T") = &. For instance, consider the

matrix
0 1
(4 )

viewed as an element of B(R?) (where of course R? is the usual real Euclidean space).
For A € R, it is routine to verify that

1 A1
S T (—1 A)

satisfies both ST = I = T'S. Thus T is invertible for each A € R.

Lemma 8.9. The spectrum o(T) of an operator T € B(H) is closed and bounded (and
hence compact). In fact o(T) C{N € F : |A| < ||T||}.

Proof. If [\ > ||T, then [|X|| < 1 and hence A = % is invertible. Thus AA = T is also
invertible. Hence o(T) C{A € F: |A| < ||T]|}.

If A\ € p(T), then T'— X is invertible. Since Z(H) is open, there is a § > 0 such
that if |\ — p| < 6, then T'— p is invertible. Hence p(T') is open. Equivalently o(T) is
closed. ]

In particular, p(T) is an open subset of C.

Proposition 8.10. If H is a complex Hilbert space and T € B(H), then for each h,k €
H, the function f: p(T) — C defined by

f(z) ={(T = 2)""h, k)
18 analytic.

Further, o(T) # .
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The proof assumes some knowledge of Liouville’s Theorem from complex analysis.
Given an open set 2 C C, a function f : 2 — C is analytic if, for each z € ) the limit

o £2) = F(w)

exists (and naturally we call this limit the derivative of f at z, denoted f’(z).) An analytic
function f : C — C is entire. Liouville’s Theorem says a bounded entire function is
constant.

Proof. To prove f is analytic, suppose z € p(T) and N is a neighborhood of z that lies
in p(T). For w € N,

(T—2)"'=(T—w)™" = (T=2)" (T —w) = (T = 2)) (T—w) ™" = (w—2)(T—2)"(T—w) ™

Hence

f(Zz : i(w) _ (Z _1 w) (((T — Z)_lh, k‘) B <(T . w)_lh, /C})
= (T —2)"(T —w)"'h, k)

rprop invopen-more 9
By Proposition B.5; the tight hand side converges to —((T' — z)~*h, k) as w tends to z

through p(T). Hence f is analytic.

Arguing by contradiction, suppose J(T) @ In this case, p(T) = C a%d o{; Is entire.
Now suppose |z| > 2||T||. In this case [|1T|| < 3 and thus, by Proposmon B3,
T 2
(T —2) ] = |||(f— =)= T

It now follows that f has limit 0 as |z| tends to infinity. Thus f is constantly 0 and
therefore ((T' — 2)~'h,k) = 0 for all h,k and all z € C, which gives the contradiction
(T—2)"1t=0. O

END Friday 2025-04-11

Proposition 8.11. An operator T' € B(H, K) is invertible if and only if T* € B(K, H)
is and in this case (T*)™1 = (T1)*.
In particular, o(T*) = o(T) for T € B(H).

We sometimes write T-* for (T*)~! = (T~1)*.
Sketch of proof. For all g,h € H,
(9.h) =(T'Tg,h) = (¢.T*(T~")"N)

and for all f, k € K,
(f. k) =TT~ f.k) = (f.(T7')'T"k). 0
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8.4. Gelfand’s spectral radius formula.

Definition 8.12. The spectral radius of T € B(H) is
r(T) = max{|u| : p € o(T)}.

rem:spec:rad: Iminusnorm

c:rad:more| Remark 8.13. Recall from Remark B4 that (1) < |[T] and if »(7) < 1, then [ — T

is invertible.

thm:spec:r| Theorem 8.14. For an operator T € B(H) on a complex Hilbert space H,
r(T) = limsup || 77| =

hm:spec:

The proof of Theorem % [11s verry similar to the proof that the radius of convergence
of the power series of a function f is the radius of the largest disc (centered to 0) to
which the function extends analytically. Not surprisingly, it involves the Cauchy integral
formula.

Proof. Set s = r(T)™' and ¢ = limsup ||T7||%. Let p < s be given and sD = {z € C :
|| < s}. For z € sD, the operator I — 2T is invertible as |1| > 2 = r(T"). Moreover, for
|2 < T,

(I 211 = ZT”Z"
with convergence in the operator norm. For unit vectors g, h € H, the function f : sD —
C defined by f(z) = ((I — 2T) " 'g, h) is analytic and hence the power series

(I =2T)"'g,h) =) (T"g,h)z"
has radius of convergence at least s. Consequently, by Cauchy’s integral formula, for
n €N,

|2l=p

Arguing by contradiction, suppose there does not exists a ¢ > 0 such that ||(T" —

2)h|| > c||h|| for all |z| = p. Thus there exists a sequence of unit vectors (h,) and

complex numbers (z,) with |z,| = p such that (|(T — z,)h,||) converges to 0. Passing to
a subsequence as needed, there is a z such that (z,) conveges to z. Now,

(T = 2)hall = [I(T = 20) + (20 = 2)]hnll < T = 20) | + |20 — 2]

The right hand side tends to 0 with n and hence so does the left. Hence T — z is
not bounded below and therefore not invertible, a contradiction that shows there is a
constant C, such that |[(T — zI)7|| < C, for all |z| = p. Hence, since g, h are unit

vectors,
for(2), _ G
[ < =
2" p"
for |z| = p. Thus

C, > p"|{T"g, h)|.
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Taking the supremum g, h,
Cp > p"[|T™].
Thus /C, > p||T"||% and hence 1 > pt. Finally, 1 > f so that r > .
prop: Iminusnorm

For the other inequality, note that the proof that I — A is invertible in Proposition 83
really only requires limsup ||A"||= < 1. Thus, for |z| < t, we have I — 2T is invertible.
Equivalently, if |z| > ¢ then T'— z is invertible and so z ¢ o (7). Hence if z € (T, then
|z| <t and thus r <t. O

8.5. The spectrum of normal and self-adjoint operators. As a convention and
in context, when a set S is generically a subset of C (e.g., o(T") for a complex Hilbert
space), by S C R we mean S C {\ € C: image A\ = 0}.

@ Proposition 8.15. If H is a complex Hilbert space and T € B(H) is self-adjoint, then

o(T) CR.

If H is a real Hilbert space and T € B(H) is self-adjoint, then o(T) # &.

m:Fred:alt| Lemma 8.16 (The Fredholm alternative). If T € B(H, K), then

(a) ﬂL = ker T*; and

(b) ranT = (ker T*)*.

Proof. Fix k € K and let h € H be given and observe

(Th,k) = (h,T"k) =0
for all h if and only if k& € ker T* if and only if k € ranT+.

Taking orthogonal complements in the first identity and noting that (ranT
ran T’ gives the second identity. 0

L =

An operator T : H — K is bounded below if there is a ¢ > 0 such that ||Th|| > ¢||h||
for all h € H.

nded:below| Lemma 8.17. IfT € B(H, K) is bounded below, then T has closed range.

Proof. By assumption there is ¢ > 0 such that ||k < @ for all h € H. Suppose

g € ranT. Thus there exists a sequence (h,) from H such that (Th,) converges to g.

From ||h, — hpl| < w it follows that (h,) Cauchy and so converges to some

h € H. Thus (Th,) converges to Th and g. So g =Th € ranT. O
o lprop:spec:self-adjoint

Proof of Proposition |S-T5. The proot of the second statement is accomplished by com-

plezification and applying Proposition BT The Si%:t%?gsggécreader can find the details

outlined in an exercise in Axler.
Let a + bi € C with b # 0 be given. Since, for h € H, both (Ah,h) and (h, h) are
real, by the Cauchy-Schwarz inequality,

BlIIAIE < [(AR, h) +ib(h, h)| = [{(A + ib)h, k)| < [[(A +ib)|| [|All.
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[Lem:bounded:below .
Thus, by Lemma B.T7,” A+ 0 1s bounded below and hence has closed range. Replacing

b with —b it also fol'oeWnS:Ftrlé%t: Ehetr(A —ib) = {0}. Hence the range of (A —ib)* = A+ b
is dense by Lemma R.T10. Consequently, ran(A + ib) = H. Thus A + ib is bijective and
hence invertible so that a + b ¢ o(T).

|(A + ib)h|| > ||h|| for all h € H. Thus, if ((A + ib)h,) is a Cauchy, then so is
(h,). Hence (h,,) converges to some h and therefore, (A + ib)h,, converges to (A + ib)h.
Consequently the range of A — ib is closed. Since it also dense, A — ib is onto and thus
A — b is invertible. O

eigenvalue| Definition 8.18. A y € C is an eigenvalue for T € B(H) provided there is an 0 # h €
H such that Th = ph. The vector h is an eigenvector of T corresponding to .

The set of eigenvalues for 7" is denoted o,(T"). (The point spectum of T'.)

Note if A is an eigenvalue for T, then A € o(7'); that is 0,(T") C o(T).

point:spec| Problem 8.1. Let D = {z € C : |z| < 1} denote the open unit disc in C. Show ¢(S) = D
and o0,(S) = @ where S is the shift operator. Suggestion, first show ¢,(S) = @ and
then argue as follows:

(i) [|S]] = [|S*|| = 1 so that ¢(S*) C Dj
(ii) a,(5™) = Dy
(ili) o(5*) = Dy
(iv) o(5) =D.

:normal:op| Definition 8.19. An operator N € B(H) is normal if N*N = NN*.

It is evident that if T" is either self-adjoint or unitary operators, then 7' is normal.

|

pec:normal | Proposition 8.20. If N € B(H) is normal g,h € H and X\, u € C, then

(i) (Ng, Nh) = (N*g, N*h);
(i1) if Nh =0, then N*h = 0;
(111) if Nh = ph, and Ng = \g, then N*h = Tih, and, assuming \ # p,

(Nh,g) = 0.

Proof. If A is normal and g, h € H, then
(Ag, Ah) = (A*Ag,h) = (AA*g,h) = (A*g, A*h).
Thus Ah = 0 if and only if A*h = 0.

Now suppose N is normal and Nh = ph. It is straightforward to verify that (N —
w)* = N* — @ and N — p is normal. Setting A = N — u, we have Ah = 0 and hence
A*h = 0; that is (N* —@)h = 0 as desired.

To complete the proof, suppose also that Ng = A\g and observe,
ph, g) = (Nh,g) = (h, N*g) = Ah, g).
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Since p # A it must be the case that (h, g) = 0. O

prop:pointspec: normal _—
Note Proposition BZU says that 0,(/V") = 0,(/N) for a normal operator N.

Theorem 8.21. If N € B(H) is normal and H is a complex Hilbert space, then there
exists a 1 € o(N) such that |u| = || N||.

[thm: spec:rad:normal .
Proof of Theorem [5.21. It suffices to prove the spectral radius 7(N) is equal ||N||. For
N € B(H) a normal operator, N**N? = (N*N)2. Thus for h € H,

|N?R|* = (N?h, N?R) = (N**N?h,h) = (N*NN*Nh,h) = ||[N*Nh|?>.

It follows thﬁt IUN z(ﬂ SDJL]\Q . |Lorm|g@7 |2, where the second equality is the C-star identity.
See Lemma R

Replacing N by the normal operator N, gives ||[N?"|| = || N||?*". Thus,
lissup || N5 = || V]|

On the other hand, ||[N"|| < ||N||™ an fhus gNan < ||N|| for all n, from which it
follows immediately that from Theorem

limsup | N"[[+ = | N]| = r(N),
the spectral radius of N. The result follows. O

[thm: spec:rad:normal
While it was not needed in the proof of Theorem KZT, 1t 1s not hard to verify that

in fact [|[N"|| = || V|| for all n € N for a normal operator .

8.6. Introduction to compact operators on Hilbert space. We continue to let
B(H, K) denote the bounded linear maps from the Hilbert space H to the Hilbert space
K.

Definition 8.22. An operator T' € B(H, K) is compact if every bounded sequence (h,,),
from H has a subsequence (h,, ) such that (Th,, ), converges.

Remark 8.23. It is enough to assume that 7' : H — K is linear; that is, if 7" is linear
and satisfies the compactness condition, then 7" is bounded.

If either H or K is finite dimensional, then every T' € B(H, K) is compact.

END Monday 2025-04-14

Definition 8.24. An operator T' € B(H, K) is finite rank if its range is finite dimen-
sional. In this case the rank of T is the dimension of its range.

Proposition 8.25. Finite rank operators are compact.
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Example 8.26. Given h € H and k € K, define kh* : H — K by
kh*x = (x,h)k, x € H.
It is easy to verify kh* is bounded. Its range is one-dimensional. Hence kh* is compact.
More generally, given hy,...,h, € H and ki,..., k, € K, the operator ) k;h} :

H — K is also compact. Its range is (contained in) the span of {ki,..., k,}.

Proposition 8.27. If T : K — H is finite rank, then there exists hy,..., h,, € H and
ki,...,km € K, such that T = Y k;hj.

Proof. Choose an orthonormal basis {ki, ..., k,} for the range of T'. Thus, for h € H,

Th=>> (Th,kj)k; = (h,T"k;)k;.
ThUS T = Z(T*k]>*kfj |:|

Let C(H,K) C B(H, K) denote the compact operators from H to K. Let C(H) =
C(H, H).

Proposition 8.28. The set C(H, K) is subspace of B(H, K).

If either of T € B(H,K) or S € B(K, L) is compact, then ST is compact; Hence
C(H)=C(H) is a two sided ideal in B(H).

Importantly, C(H, K) is a closed subspace of B(H, K), a fact we will prove if time
permits.

Proof. Suppose (h,) is a bounded sequence. Suppose T" is compact (and S is bounded).
Since T" is compact, there is a subsequence (g, = hy, )i of (hy,) such that T'g, converges.
Thus, by continuity of S, the sequence (STg) converges. Hence ST is compact.

Now suppose S is compact (and 7" is bounded). To prove T'S is compact, first
note (T'h,) is a bounded sequence. Hence, by compactness of S, there is a subsequence
(fe = Thy,)i of (Thy,), such that (STgy) converges. Thus ST' is compact.

The proof that C(H) is a subspace of B(H) is left as an exercise. O

8.7. The spectrum of compact operators.

Proposition 8.29. If H is an infinite dimensional Hilbert space and T € B(H) is
compact, then 0 € o(T).

Proof. We prove the contrapositive. If 0 ¢ o(7'), then T is invertible. Since H is infinite
dimensional it contains an orthonormal sequence (e,),. This sequence is bounded, but
has no convergent subsequence. The sequence (h,, = Te,) is bounded and (T 'h,) =
(e,) has no convergent subsequence. Hence (h,) has no convergent subsequence and
thus T is not compact. O
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END Wednesday 2025-04-16
ormal:eigs| Proposition 8.30. If N € B(H) is compact and normal, then o(N)\{0} = o,(N)\{0}.

The result holds without the normality assumption.

Example 8.31. Let {¢e, : n € N} denote the usual basis for /*(N) and let (a,) be any
sequence from C \ {0}. that converges to 0. The operator D € B({*(N)) defined by

De,, = ane, is easily seen to be compact and of course it is evident that 0,(7") = {a,, :
n € N}. Thus

o,(T)U{0} = {a, :n e N} Co(D) C 0,(T) U{0}.
The claim follows. ]

. prop:cpt:normal:eigs .
The proof of Proposition B30 given below uses the following lemma.

ormal:eigs| Lemma 8.32. If T € B(H) is compact and p # 0, then, setting S =T — p,

i:pcne:i (1) if (1) is a bounded sequence from H such that (Sv,) converges to g, then there is
a subsequence (1, ) that converges to some h € H such that Sh = g. In particular,
g €Eran S;

i:pcne:ii| (4i) range(T — p) is closed; and

0 ik

i:pcne:iii| (44) ker(T — ) is finite dimensional.

Proof. To prove item (Ii i:, BCI;/e(::(l)mpactness of T, there is an f and a subsequence (¢, )k
such that (7%, ), converges to f. Since also (S, ) converges to g and

it now follows that (¢, ) converges to some h and (S, ) converges to both Sh and g;
-pcne:l
that is Sh = g and Sh = g € ran .S, completing the proof of item (Ii ).

i:pcne:ii _

Turning to item (ET)‘?SlJW)se g € ranS. Thus there exists a sequence (h,) from
ker St such that (Sh,,) converges to g. If (h,) is bounded, then g € ran S by item (E)'TP"%?E
(hy,) is not bounded, then, passing to a subsequence if needed, it can be assumed that
(|[2n ) tend to infinity with n. Let 1, = ”h—f‘H.CI;Iee_n_ce (1) is a sequence of unit vectors
and (S,,) converges to 0. Hence, by item EF)_,E’EM is an h and a subsequence (1, ) of
(1) that converges h and Sh = 0. On the other hand, i, C%ek:%ri S+ and thus h € ker S+
so that Sh # 0. This contradiction completes of item (Eﬂ.

i:pcne:iii
Finally, for item (Iin‘, a simple exercise shows that, for 4 # 0 compactness and
infinite dimensionality of ker(7 — ) are incompatible. O

[prop:cpt:normal:eigs

Proof of Proposition |8.30. Suppose INV_1s normal and compact and 0 # u ¢ 0,(N). Thus
o rop:pointspec:norma
ker(N — u) = {0}. By Proposition B.2U, ker(N — p)” = i()n} too. Hence the range of
. - ) ) [Tem:pre:cpt:normal:eigs
N — p is dense in H. This range is also closed by Lemma K32, Thus NV — pz 1s bounded

and bijective and hence invertible. Hence p ¢ o(N). O
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Proposition 8.33. If N is compact and normal, then

(a) for each € > 0 the set {\: |\ > e} Na(N)} is finite;
(b) the set o,(N) \ {0} is at most countable;
(c) for each p € o(N) the eigenspace ker(N — ) is finite dimensional.

Remark 8.34. Again, the proposition is true without the normality assumption.

Proof. Suppose N € B(H) is normal, ¢ > 0 and
Se={N: |\ > €} Na(N)

is not finite. Choose a countable set {y, : n € ETI}O gr(():_g% _Lgs.r nl;;(ir. giapgzsh n there is a unit
vector h, such that Nh, = p,h, by Proposition B?{g) The set é&l -n € N} is bounded.

. . . . L. rop:points normal
Since N is normal, an application of Proposition B.2U gives (h,, h,) = 0 for n # m.
and therefore (Nh, = p,hy), is an orthgonal sequence of vectors each with norm at
least € so that ||h, — hn| > ev/2. It follows that (Nh,) does not contain, a convergent

subsequence and hence N is not compact, completing the proof of item (&)
. |i:cpt:normal:b i . .
To prove item (Ib], note that o(N)\ {0} = U ,S1 is a countable union of finite sets

and hence at most countable. O

8.8. Diagonalization.

Definition 8.35. Two (orthogonal) projections P, Q) € B(H) are mutually orthorgonal
if their ranges are orthogonal. Equivalently, PQ) = QP = 0.

Lemma 8.36. Suppose (P;); is a sequence of non-zero finite rank pairwise orthogonal
projections and (u;); is a sequence of complex numbers. The following are equivalent,

(a) The series
(67) > P
j=1

converges in the operator norm,

(b) the sequence (u;) converges to 0;
. ) ) le:pre:norm:diag:1 o . )
(c) the series in equation (67) converges unconditionally; that is there is an operator S
such that if T : N — N is a bijection, then the series then the series

Dt Pre
J

converges in operator norm to S.

. L i:pre:norm:diag:b . .
The condition in item () 1S equivalent for each € > 0 the set {j € N : |u;| > €} is

finite.
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Proof. First simply assume that (x;) is a bounded sequence; that is, there is a C' such
that |u;] < C. Given h € H, by Bessel’s inequality, ), || Pjh[|* < [|2[|>. With

5% ::jzjﬁﬁjaa
j=1
by orthogonality,
1SuRl7 = s PIPRIP < C|lA|P,

j=1
Thus > 7, p1;P;h converges absolutely (in H) to s e 2o In particular, Sh does not
depend upon the order of summation. By Corolla(@/ [)3 9 f fhe PU]% it follows that S is
bounded. Thus it suffices to prove items (la) and (D) are equlvalent

2

For m > n, let M, ,,, = max{|p;|* : n+1 < j < mj}. and apply Bessel’s inequality

and orthogonality as above to obtain,

1S = S )lI* = Z Iug\zPh

orm:diag:2| (68) 7 n+1nl
< Mum D PRI < M|

j=n+1

= > IlPlIBnlP

j=n+1

Now suppose there is an € > 0 such that the set {j € N : |p;| > €} is infinite. In

this case, For cach N there is an m > N such that |u,| > €. Setting n =m —1 > N,
pre:norm:diag:?2

equation (I()ES) gives,

2 2
1Sm = Sull® = |t Pl = [ |* > €*.
li:pre:norm:diag:H :pre:norm:diag:b
Thus (.S,,) is not Cauchy. Hence item () 1mp11es item (D).
:pre:norm:dia

Conversely, suppose item (Ib) holds and let e > 0 be given. By assumptﬂon rtglen C nidiagia

is an N such that if j > N, then |u;] < e. For m > n > N, equation (ld) gives,
1S — S|l < €. Thus the sequence (S,) is Cauchy and hence converges to in operator

norm to S = 3. u; P;. O

END Friday 2025-04-18



i:diag:iii
trong:diag

t :subspace

nt:subpace

128

Definition 8.37. An operator T' € B(H) is norm unitarily diagonalizable'* if there is
exists

(i) k e NU{o0};
(ii) pn € Cfor 1 <n < k; and
(iii) non-zero mutual orthogonal finite rank projections P, for 1 <n < k&,

such that
(69) T = Z v, P,
m=1

with the sum converging in the operator norm.

Remark 8.38. If P is a finite rank projection of rank m and hq, ..., h,, is an orthonormal
basis for ran P, then
P=> " hhi;
j=1

that is,
Px = Z<ZL’, hj)hj,
for x € H.
. . . . . . e:strong:dia,
Assuming 7' is norm diagonalizable as in equation (bﬂ%mgm%ng

Py = hnshi,
j=1
we have, for the obvious choices of A\, € C\ {0} and orthonormal sequence (ug)y
T = Z /\kukuz,
k

with the sum converging in the operator norm.

8.9. Invariant and reducing subspaces.

Definition 8.39. An invariant subspace for T € B(H) is a subspace M < H such that
TM C M.

An invariant subspace M < H for T € B(H) is reducing if M~ is also invariant for
T.

Proposition 8.40. Suppose H is Hilbert space, M < H and T € B(H).
(i) If M is invariant for T, then M+ is invariant for T*.
(i) M is reducing for T if and only if it is invariant for both T and T*.

2Non-standard terminology: there arE sg\{%rg,l pofions of diagonalizable and unitarily diagonalizable.

Here norm and unitarily refers to item (in1).
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(111) If T is self-adjoint and M < H is invariant for T, then M reduces T.

(iv) If T is normal and M reduces T, then T |y is also normal.

Proof. Suppose M < H is invariant for 7" and h € M*. Given m € M, since Tm € M,
(T*h,m) = (h,Tm) = 0.

It follows that T*h € M+ and so M~ is invariant for T*.

Assuming M is invariant for T, note M~ is invariant for T if and only if M = M+
is invariant for 7.

Likewise since M is invariant for T, it follows that M = M+ is invariant for T*.
Thus M reduces T*.

That an invariant subspace for a self-adjoint operator is reducing is a consequence
of what has already been proved.

Now suppose M < H is reducing for 17" and let g, h € M be given. Using T'g, T*h €
M,

(T |a)g, )y = (Tg, My = (g, T )y = (9, T" |ms h)ma-
Thus (T |p)* = S* =T |5 . Finally, under the assumption that 7" is normal,
(T a)* T [ar=T" |ar T [ag= (T°T) |ar= (TT") |ay=T |as T |ae=T s (T |ar)"
and thus 7' |5/ is normal. O

Lemma 8.41. Suppose M < H and D C M is dense in M. If T € B(H) and T D C M,
then M 1is invariant for T.

Proof. Given m € M, there is a sequence (h,,) from D such that (h,) converges to m.
By continuity (T'h,) converges to T'm. Since Th,, € M for each m and M is closed,
Tm € M. O

8.10. Unitary equivalence and diagonalization. This subsection is optional. It is
not needed for further developments here.

Definition 8.42. Recall an operator U € B(H, K) is unitary if U*U = Iy and UU* =
Ig.

Likewise an operator V' € B(H, K) is an isometry if V*V = I.

Operators T' € B(H) and S € B(K) are unitarily equivalent if there is a unitary
operator U € B(H, K) such that UT = SU.
Remark 8.43. Note, if U € B(H, K) is unitary, then U is an isometry and U* €
B(K, H) is also unitary.

If S and T are unitarily equivalent, then ||S|| = ||T||.



t :subspace

130

Proposition 8.44. IfV € B(H, K) is an isometry, then (Vg,Vh) = (g, h) forg,h € H.
If V e B(H,K) is an isometry and M < H, then VM < K; that is VM is closed.

If U € B(H, K) is unitary and P,Q € B(K) are mutually orthogonal projections,
then U*PU,U*QU € B(H) are mutually orthogonal projections. Moreover, U*PU is the
projection onto U* ran P.

If H C K, then the inclusion V : H — K is an isometry and moreover, VV* is the
projection of K onto H.

Proof. We leave it as an exercise to verify the first two claims.
Assuming U € B(H, K) is unitary and P,Q) € B(K) are mutually orthogonal
projections, observe U* PU is self-adjoint and
U*PU ifA=P=B5;
(U*AU)(U*BU) =U*A(UU*)BU =U*ABU =< 0 if A=P, B=Q
0 itA=Q, B=P.
Thus U*PU, U*QU are mutually orthogonal projections. It is evident that ker U* PU is
the set U* ker P and (U* ker P)* = U* ker P+ = U* ran P. Hence ran U*PU = U* ran P.
Note that VV* is self adjoint and (VV*)(VVx) = V(V %« V)V* = VV*. Hence
P =VV~*is a projection. If Pk =0, then for all f € K,
0 = (Pk, k) = (V*k,V*k) = |[V*k|]?

Thus V*k = 0. The converse is immediate. Hence ker P = ker V* and consequently,
ran P = ker P+ = (ker V*)* =ranV. O

Proposition 8.45. If S € B(K) is norm diagonalizable and T € B(H) is unitarily
equivalent to S, then T is norm diagonalizable.

Sketch of proof. By assumption,
S ::jgzlﬁ}%?
J

where p1; € C and the P; are mutually orthogonal projections on K and the sum con-
verges in the operator norm. By continuity of P,

J

with the sum on the right hand side converging in the operator norm. U

Remark 8.46. If M < H is invariant for T' € B(H), then T|p; : M — M is in B(M).

Suppose M < H is reducing for T. Letting M; = M and M, = M* and let
K = M; © M,. Let and Tj = T'|p; : My — M; and define S : K — K by Sm; @ my =
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T1m1 @Tgmg, for m; S Mj .

M, M,
S=<T01 TO): D~ .
2/ My, M,

Let V; : M; — H denote the inclusion and define U : K — H by U(m; @ ms) =
Vimy + Voms. It is an easy exercise to verify that U is unitary and UT = SU; that is, T’
and S are unitarily equivalent.

8.11. The spectral theorem for compact operators on Hilbert space.

Theorem 8.47 (Spectral Theorem for compact normal operators). Suppose H is an in-
finite dimensional complex Hilbert space. If0 # N € B(H) is normal and compact, then
N is norm diagonalizable.

In fact either,

(a) N is finite rank and there exists an n and iy, ..., u, € C (not necessarily distinct)
and mutually orthogonal projections Py, ..., P, such that
N=> 1P
j=1

and o(N) ={p1,..., n}; or
(b) N is not finite rank and there ezists a sequence (u,)o>, from C\ {0} and a sequence
of mutually orthogonal projections (P,) such that (|pn|), converges to 0

and o(N) ={0} U {p, : n € N}.
Further, N is self-adjoint if and only if the p; are real.

The result remains true in for compact self-adjoint operators on real Hilbert space.

[thm:spec:cpt:sa . . prop:cpt:normal:eigs:2
Proof of Theorem 5777 By Proposition B33, 0(/V) 1s an at most countable set. Enumer-

ate (either finite or countable) o(N)\ {0} as j1, pio, . ... For each j let K; = ker(N — ;)
and let P; denote the pr(r)pjlgggion,of H ontom{&. Let Ky = ker N and F, the projection

. :pointspec:nor )
onto Ky. By Proposition 82U, The P} are mutually orthogonal; equivalently, K; L K, for

J#L.
Let K denote the closure of the span of the Kj. Explicitly, letting D denote the
linear manifold (vector subspace of H)

L

D={) fj:lEN, f; € K;},

J=0
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K is the closure of D. If f € K; then N f = i;f and N*f = [i;f. Hence if f =Y\, f; €
D, then

l l
(70) Nf=) wf N'f=) @heD.
=1 =1
! ! lem:densepinpatinwatiant : subpace

Hence D is invariant for both N and N* and it follows from Lemmas 84T and ®.4U that
K is reducing for N.

Suppose M # {0}. Since M = K= reduces N the operator S.= N |y is a normal
. . o rop:invari :subpace
operator acting on a non-zero Hilbert space by ProIBnosmlon s A0 L5 7 U, then N |u
. [thm:spec:rad:normal ’ .

has a (non-zero) eigenvalue p € C by Theorem B.ZT with corresponding eigenvector
0 # h € M. Now p is an eigenvalue of N. Hence u = p; for some j and we reach
the contradiction 0 # h € K; N M = {0}. If S = 0, then M C K, which is also a
contradiction. Hence M =0 and K = H.

. prop:cpt:normal:eigs:2 . . [lem:pre:norm:diag
By Propostion B.33the sequences (F;) and () satisfy the hypothesis of Lemma R.30.

Hence .
T =Y uP;
j=1

converges in operator norm. It is immediate that TTh = Nh for h € D and since both

T and N are continuous and D is dense in H we conclude that N = 2;21 1; P; and is

thus norm diagonalizable. O

END Monday 2025-04-21

8.12. The polar decomposition for compact operators.

Definition 8.48. An operator 1" € B(H) is positive if T = T* and (T'h, h) > 0 for all
h e H.

Remark 8.49. If A € B(H, K), then, as is easily seen, A*A € B(H) is positive. The
converse, if T € B(H) is positive, then there exists an A € B(H) such that T'= A*A, is
also true, but beyond the scope of these notes.

It is straightforward to verify if 7" is compact and positive, then o(7") C [0, 00).
op:pos:ops| Proposition 8.50. If T € B(H) is compact with diagonalization

T=3 vP
and if f: o(T) — C is continuous at 0 (if applicable), then
F(T) =3 )P,
is also compact. In the case f takes non-negative values, f(T) = 0.

When T is positive and f : [0,00) — R is the square root function, f(T) is positive
and f(T)> =T and ker f(T) = ker(T). We write f(T) =Tz = /T.
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lem:pre:norm:diag

Proof. The first statement follows Lemma 830 since contlnulty of f at 0 implies (f(v;));
converges to 0. If f takes real values then

=D fw)P =% 7P
then, letting 7,, = > f(v;) P}, from 7; = f(v;) € R it follows that T = T}, and hence T,,
converges to both f(7') and f(7')* in norm. If f takes non-negative values, then 7; > 0

and we find,
hy = 7i(Pih,h) >0
J

Hence f(7') is positive.

Assuming T is positive, o(T") C [0,00). Hence f(T') is defined for the square root
function and further,

DEDINCIF
with the sum converging in operator norm. Thus f(T) is positive and straightforward
calculations, along the lines of those above, shows f(T)? = T. U

Definition 8.51. An operator W : H — K is a partial isometry if W |geepr: W — K
18 an isometry.

Proposition 8.52 (The polar decomposition for a compact operator). If A € B(H, K)
and T = A*A is compact, then A is compact and there is a positive operator R € B(H)
and a partial isometry W € B(H, K) such that A =UR.

Trop:posS:ops

Proof. Let T'= A*A. Since T is positive and compact, by Proposition B ere 1s (a
unique) positive compact operator R such that 7 = R? and ker(R) = ker(T'); equiva-
lently, M :=ran R =ranT. Define V : ran R — K by V Rx = Ax and observe,
(VRx,VRy) = (Ax, Ax) = (A" Az, x)
= (Tx,z) = (R? 2) = (Rw, Rx).
Hence V extends to an isometry V : M — K. Extend V to a partial isometry W &
B(H, K) by declaring W =V on M and W = 0 on M*. Finally WRxz = VRx = Ax
for x € H, since Rx € M. O

Corollary 8.53. If A € B(H, K) is compact, then there is a positive operator R € B(H)
and a partial isometry W € B(H, K) such that A = WR.

. . . . rop:CH:ideal .
Proog.rc?mlgg A is compact, A*A is compact by Proposition §2§ Now apply Proposi-

tion 0
Corollary 8.54. If A € B(H) and A*A is compact, then A is compact.

Proof. By Proposmlo&ﬁ EE ?I W R where R is compact and W is bounded. Hence,

by Proposition lg 2§ A1S compact. [l

Corollary 8.55. If A € B(H, K) is compact, then A* € B(K, H) is also compact.
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L. jprop:CH:ideal |cor:PD:1
Proof. Apply Proposition B. 28 and Corollary B.53. Namely, A* = W R for some compact

self-adjoint operator R and partial isometry W. Now A = RW™* is the product of a
compact operator and a bounded operator and is hence compact. O

Corollary 8.56. Compact operators are norm limits of finite rank operators.

Proof. By the Spectral Theorem a compact self-adjoint operator R is norm limits of
finite rank operator. Indeed,
R= 25217}%7

where the sum converges in operator norm and each finite sum is a finite sum of finite
rank operators and hence finite rank.

Now if T € B(H, K) is compact, then 7' = WR for some compact self-adjoint
R € B(H) and W € B(H, K) by the polar decomposition. Hence T'= W R is a norm
limit of finite rank operators. [l

Theorem 8.57. The subspace C(H, K) is closed.

[thm:C(H) : closed . . . . .
The proof of Theorem B-57 will use the following variant of the usual diagonalization

argument.

Lemma 8.58. Suppose (T),) is a sequence of compact operators from B(H). If (hy) is
a bounded sequence from H, then there is a subsequence (g;) of (hx) such that (T,g¢)e
converges for each n.

Proof. Since T} is compact, and (hy) is bounded, there is a subsequence (hy ) of (hy)
such that (Thhy ), converges. Since (hl, k) is bounded and T3 is compact, there is a
subsequence (hg ), of (h1y) such that (Thhgy)r converges. Continuing in this fashion
constructs a sequence of sequences (h,x)x)n such that each (7,h, ), converges. Let
ge = hgg. Thus for each ¢ the sequence (gy) is, eventually, a subsequence of each (hy, )k
and thus (7},g,), conveges for each ¢. O

fthm:C(H) : closed .
Proof of Theorem 18.57. Suppose (T,,) is a sequence from C(H, K) that converges to

T e B([ﬁég g.r;f_% 860_\(7301; Jg compact, let a bounded sequence (hy,) from H be given. By
Lemma B.58, (%,,) has a subsequence (f;); such that (T),f;); converges for each n. Now,

ITf; = Tfell < Tf; = Tofill + | Tu(fy — fll + 1T fi — T £l
<NT =Tl I+ N fell) + 1T (f5 = fll-

The first term on the right hand side goes to 0 with n since (h,,) is a bounded sequence
and (7},) converges to T in norm. The second term can be made small for any given n
by choosing j, k large as (7, f;) is Cauchy. Hence (T'f;); is Cauchy and hence converges
and thus 7' is compact. 0

Let Coo(H, K) denote the finite rank operators from H to K.
Corollary 8.59. The subspace C(H, K) is the norm closure of Coo(H, K).
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cor:cpt:lim:fr prop:finite:rank: c _—
Proof. By Corollary Its b0 and PropoFlhmog(E)ZO LoglH, K] C C(H, K) C Cy(H,K).
Since C(H, K) is closed by Theorem R.57 the result follows. O

Remark 8.60 (An advertisement for the Fredholm index). Thus C(H) is a closed two
sided ideal in B(H) and the quotient space K(H) = B(H)/C(H) is both a x-algebra
and a Banach space with the quotient norm || - || 5. This normed algebra K(H) is the
Calkin algebra. Let m denote the quotient map. The norm on K (H) satisfies the C-star
identity ||7(T)*n(T)||x = |7(T*T)||x = ||m(T)||%. The kernel of 7 is of course exactly
C(H). Now let H = ¢* and let S denote the shift operator. I — SS* = egej, is rank 1
and thus compact. Consequently, 0 = 7(I —SS5*) = n(I) — w(S)7(S)*. Since 7 is unital,
7n(S)m(S)* =1, where 1 = (/) is the unit in K(H). Since S*S = I it is also true that
m(S)*n(S) = 1. So 7(9S) is a unitary operator. It turns out that if K is compact, then
S + K is not invertible. Hence the fact that m(S) is unitary is far from obvious.

8.13. Examples.

Example 8.61 (The Volterra operator - again). Let V : L?([0,1]) — L*(]0, 1]) denote

the Volterra operator. Consider S = V — V*  Evidentl S is normal. In fact S is
leg:integral :operator

skew-symmetry: S* = —S. From Example BT,

z) =2 0 f—/olf.

The function g = Sf is continuous, g(1) = —g¢(0). Moreover,
g (z) =2f(z)

for almost every x. As we show below, the set ex(z) =
for L*([0,1]). Moreover,

T 1 —9
Sek(m)—Q/O ex(t) dt—/o ex(t) dt = T

We conclude that S is compact and, letting P, denote the projection onto the span of

—9i

S = P..
Z2k+1 b
keZ

The mapping U : L*([0,1]) — L?([0,1]) defined by Uf = €™ f has, as is easy to
check, adjoint U* f = e~ f. It is immediate that UU* = I = U*U. Hence U is unitary.
Thus U maps the orthonormal basis {€™ : n € Z} to an orthonormal basis, namely
{en :n€Z}/

e2im@ 2k ig an orthonormal basis

€k,




INDEX

B(H,K), 123 Banach algebra, 15, 104
B(X,Y), 14 Banach Limit, 49

B(x,r), 40 Banach limit, 30, 38

B¥(x,r), 43 Banach space, 1

C(H,K), 124 Banach space of functions, 48
C(X), 6 bidual, 29

Co(X), 6 bilinear form, 60

Cy(X,)), 6 bounded, 13

F(T,V),5 bounded below, 121

F°, 40 bounded linear transformation, 13
Fb(T7 X)a 5

L' approximate unit, 105 Calkin algebra, 135

LP(p), 53 category, 41

M < H, 58 Cauchy—Schwarz inequality, 57
M & ]\]7 64 chain7 25

Py, 67 character, 98

D, 122 closed transformation, 47
M(.4), 82 compact, 123

complete orthonormal set, 69

£>°-norm, 3
completion, 31

fP-norms, 3

dv g complex-valued measurable function, 7
dp’ " .
F-measure, 81 conditional expectations, 91
I(H), 117 conjugate index, 51

LP (), 49 converges absolutely, 2, 71
1y, 82 converges as a net, 73
1,59 convolution, 103

0 < 11, 90 cutoff function, 108

ol 83 dense, 10, 40

fdp, 83 double dual, 29

fys 99 dual exponent, 51

(Hilbert space) adjoint, 66

dual space, 20
(orthogonal) dimension, 77 P

(orthonormal) basis, 69 eigenvalue, 122

eigenvector, 122
converges weakly to h € H, 78 entire. 119
convex, 61 X

equivalent norms, 1

isometric, 79 essentially bounded, 50

maximal, 69
shift operator, 80 finite positive measure, 81
unitary, 79 finite rank, 123

first category, 41

absolutely, 90 Fourier transform, 98

absolutely integrable, 8

adjoint, 65 Gaussian, 102
algebraic direct sum, 11 graph, 47
algebraic quotient, 12 greedy algorithm, 88

almost convergent, 49

analytic, 119 Hahn Decomposition Theorem, 87

Hamel basis, 24
backward shift, 49 hermitian, 66
136



137

Hilbert space, 58 positive semi-defininite, 60
Hilbert space basis, 69 projection, 67

horizontal truncation, 57 )
quotient norm, 12

inner product, 57

integrable, 8

integral operator, 114

interior, 40

invariant subspace, 128

invertible linear transformation, 15
isometrically isomorphic normed spaces, 15
isometry, 16

isomorphic normed spaces, (boundedly), 15 Schauder basis, 24

Radon-Nikodym derivative, 90
rank, 123

reducing, 128

reflexive, 29

regular, 22

resolvent set, 118
Riemann-Lebesgue Lemma, 100

second category, 41

Jordan D ition Th 89
ordan Decomposition Theorem, self-adjoint, 66

Lebesgue space, 53 separable, 20
linear functional, 20 separable Hilbert space, 77
linear manifold, 11 series converges, 2
linear transformation, bounded, 13 sesquilinear form, 60
Lipschitz continuous, 13, 18 shift, 122
shift operator, 16
meager, 41 signed measure, 81
Minkowski functional, 25 signed measures, 23
mutually orthorgonal, 126 smallest closed subspace containing, 63
mutually singular, 89 strictly convex, 61

subspace, 11

summability methods, 108
super-cauhcy, 2

support set, 89

norm topology, 1
norm unitarily diagonalizable, 128
normal, 122
nowhere dense, 41
total variation, 83

open mapping, 43 total variation norm, 18

open mapping theorem, 44 totally null, 87

open unit disc, 122 totally ordered, 25

operator norm, 14 totally positive, 87

orthogonal, 59

orthogonal complement, 59 unconditionally convergent, 71

orthogonal direct sum, 64 unit ball, 4

orthogonal projection of H on M, 67 unit sphere, 17

orthonormal, 59, 69 unitarily equivalent, 129
upper bound, 25

Parseval’s equality, 74 upper half plane, 105

partial isometry, 133

partial order, 25 vanishes at infinity, 6

partial sums, 2 vertical truncation, 57

partially ordered set, 25
point spectum, 122
Poisson kernel, 105
poset, 25 Zorn’s Lemma, 25
positive, 132

positive function, 22

positive linear functional, 22

weak topology, 77
weakly bounded, 47



	1. Normed vector spaces
	1.1. Definitions and preliminary results
	1.2. Examples
	1.2.1. Euclidean space
	1.2.2. The Banach space of bounded functions
	1.2.3. L1 spaces over R
	1.2.4. Complex L1() spaces
	1.2.5. Sequence spaces
	1.2.6. Lp spaces
	1.2.7. Subspaces and products
	1.2.8. Qoutient spaces

	1.3. Linear transformations between normed spaces
	1.4. Examples
	1.5. Problems

	2. Linear functionals and the Hahn-Banach theorem
	2.1. Examples
	2.2. Continuous linear functionals
	2.3. The Hahn-Banach Extension Theorem
	2.4. The bidual and reflexive spaces
	2.5. Dual spaces and adjoint operators
	2.6. Duality for Sub and Quotient Spaces
	2.7. Hahn-Banach separation theorems
	2.8. Problems

	3. The Baire Category Theorem and applications
	3.1. Baire's Theorem
	3.2. Category
	3.3. The Principle of Uniform Boundedness
	3.4. Open mapping
	3.5. The Closed Graph Theorem
	3.6. Problems

	4. Lp spaces
	4.1. Conjugate indices and the inequalities of Young, Holder and Minkowski
	4.2. The Lebesuge spaces Lp()
	4.3. Problems

	5. Hilbert Space
	5.1. Inner product spaces
	5.2. Orthogonality
	5.3. Best approximation in Hilbert space
	5.4. The Riesz Representation Theorem and Hilbert space adjoint operators
	5.4.1. Duality for Hilbert space
	5.4.2. Projections

	5.5. Orthonormal Sets and Bases
	5.6. Convergent series in Hilbert space and basis expansions
	5.7. Gram-Schmidt and Hilbert space dimension
	5.8. Weak convergence
	5.9. Problems

	6. Signed measures
	6.1. Definitions, examples and elementary properties
	6.2. Total variation
	6.3. Banach spaces of measures
	6.4. The Hahn decomposition
	6.5. The Jordan decomposition
	6.6. The Radon-Nikodym derivative
	6.7. The Lebesgue decomposition
	6.8. Duality for Lebesgue spaces - conclusion
	6.9. Problems

	7. The Fourier transform
	7.1. Basic Properties
	7.2. Convolution and the Fourier transform
	7.3. The Poisson kernel for the upper half plane
	7.4. Inversion and uniqueness
	7.5. The L2 theory
	7.6. Problems

	8. Compact operators on Hilbert space
	8.1. B(H) as a C-star algebra
	8.2. Invertible operators
	8.3. The spectrum of a bounded linear operator on Hilbert space
	8.4. Gelfand's spectral radius formula
	8.5. The spectrum of normal and self-adjoint operators
	8.6. Introduction to compact operators on Hilbert space
	8.7. The spectrum of compact operators
	8.8. Diagonalization
	8.9. Invariant and reducing subspaces
	8.10. Unitary equivalence and diagonalization
	8.11. The spectral theorem for compact operators on Hilbert space
	8.12. The polar decomposition for compact operators
	8.13. Examples

	Index

