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1. Normed vector spaces

In this section F stands for either R or C. Let X be a vector space over F.

1.1. Definitions and preliminary results.

Definition 1.1. A normed vector space X = (X , ∥ · ∥) consists of a vector space X over
F together with a norm ∥ · ∥ : X → [0,∞) (see definition

def:semi:ipdef:semi:ip
5.1 – which does not change

with R replaced by C). We often denote the normed vector space as X , with the norm
∥ · ∥ implicit.

As we noted before, using the properties of a norm, it is straightforward to check
that d : X × X → [0,∞) defined by

d(x, y) := ∥x− y∥
is a metric on X . The resulting topology is the norm topology and it is the default
topology on X .

def:banach:space Definition 1.2. A normed vector space X is a Banach space if it is complete (with its
norm topology). □

d:equiv:norms Definition 1.3. Two norms ∥ · ∥1, ∥ · ∥2 on X are equivalent if there exist constants
C, c > 0 such that

c∥x∥1 ≤ ∥x∥2 ≤ C∥x∥1,
for all x ∈ X . □

r:equiv:norms Remark 1.4. Equivalent norms determine the same topology on X and the same Cauchy
sequences (Problem

prob:equivalent-normsprob:equivalent-norms
1.4). In particular, it follows that if X is equipped with two equiv-

alent norms ∥ · ∥1, ∥ · ∥2 then it is complete (a Banach space) in one norm if and only if
it is complete in the other.

Equivalence of norms is an equivalence relation on the set of norms on X . □

The next proposition is simple but fundamental; it says that the norm and the
vector space operations are continuous in the norm topology.

prop:normed-tvs Proposition 1.5 (Continuity of vector space operations). Let X be a normed vector space
over F.

a) If (xn) converges to x in X , then (∥xn∥) converges to ∥x∥ in R.
b) If (kn) converges to k in F and (xn) converges to x in X , then (knxn) converges

to kx in X .
c) If (xn) converges to x and (yn) converges to y in X , then (xn + yn) converges to
x+ y in X .
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Proof. The proofs follow readily from the properties of the norm, and are left as exercises.
□

The following proposition gives a convenient criterion for a normed vector space to
be complete.

d:conv:series Definition 1.6. Given a sequence (xn) from a normed vector space X , the expression∑
n=1∞ xn denotes the sequence (sN =

∑N
n=1 xn), called the sequence of partial sums of

the series. The series converges if the sequence of partial sums converges in the norm
topology. In this case we use

∑
n=1∞ xn to also denote the limit of this sequence and

call it the sum.

Explicitly, the series
∑∞

n=1 xn converges means there is an x ∈ X such that for each
ϵ > 0 there is an N such that ∥sn − x∥ < ϵ for all n ≥ N.

The series
∑∞

n=1 xn converges absolutely if the series
∑∞

n=1 ∥xn∥ converges (in the
normed vector space (R, | · |)). □

prop:abs-cvg-complete Proposition 1.7. A normed space (X , ∥ · ∥) is complete if and only if every absolutely
convergent series in X is convergent.

Before proving the Proposition we collect two lemmas. A definition is needed for
the first.

d:super:cauchy Definition 1.8. A sequence (yk) from a normed vector space X is super-cauhcy if the
series

∑∞
k=1(yk+1 − yk) converges absolutely.

l:super:cauchy Lemma 1.9. If (xn) is a Cauchy sequence from a normed vector space X , then there is
a subsequence (yk) of (xn) that is super-cauchy.

Proof. With ϵ = 1
2
, there exists an N1 such that ∥xn − xm∥ < 1

2
for all m,n ≥ N1 since

(xn) is Cauchy. Assuming N1 < N2 < · · · < Nk have been chosen so that ∥xn−xm∥ < 1
2j

for 1 ≤ j ≤ k and n,m ≥ Nj, there is an Nk+1 > Nk such that ∥xn − xm∥ < 1
2k+1 since

(xn) is Cauchy. Hence by recursion we have constructed a (strictly)increasing sequence
of integers Nk such that ∥xn − xm∥ < 1

2k
for all m,n ≥ Nk. Set yk = xNk

and note

that ∥yk+1 − yk∥ < 1
2k
, from which it follows that (yk) is a super-cauchy subsequence of

(xn). □

The proof will also use the following standard lemma from advanced calculus.

l:cauhcy:sub:converge Lemma 1.10. If (xn) is a Cauchy sequence from a metric space (X, d) and if (xn) has
a subsequence (yk) that converges to some x, then (xn) converges to x.

Proof of Proposition
prop:abs-cvg-completeprop:abs-cvg-complete
1.7. First suppose X is complete and

∑∞
n=1 xn is absolutely con-

vergent. Write sN =
∑N

n=1 xn for the N th partial sum and let ϵ > 0 be given. Since
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n=1 ∥xn∥ is convergent, there exists an L such that

∑∞
n=L ∥xn∥ < ϵ. If N > M ≥ L,

then

∥sN − sM∥ =

∥∥∥∥∥
N∑

n=M+1

xn

∥∥∥∥∥ ≤
N∑

n=M+1

∥xn∥ < ϵ.

Thus the sequence (sN) is Cauchy in X , hence convergent by the completeness hypoth-
esis.

Conversely, suppose every absolutely convergent series in X is convergent and that
(xn) is given Cauchy sequence from X. By Lemma

l:super:cauchyl:super:cauchy
1.9 there is a super-cauchy subse-

quence (yk) of (xn). Since (yk) is super-cauchy, the series
∑∞

k=1(yk+1 − yk) is absolutely
convergent and hence, by hypothesis, convergent in X . Thus there is an z ∈ X such
that the sequence of partial sums

n∑
k=1

(yk+1 − yk) = yn+1 − y1

converges to z. Rearranging, (xNn+1 = yn+1) converges to x = z+y1.Hence (xn) is Cauchy
and has a convergent subsequence. Thus (xn) converges (to x) by Lemma

l:cauhcy:sub:convergel:cauhcy:sub:converge
1.10. □

1.2. Examples.

1.2.1. Euclidean space. Observe that the Euclidean norm on the complex vector space
Cn agrees with the Euclidean norm on the real vector space R2n (via that natural real
linear isomomorphism R2 → C sending (x, y) to x + iy). Thus, Fn with the usual

Euclidean norm ∥(x1, . . . xn)∥ = (
∑n

k=1 |xk|2)
1/2

is a Banach space.

The vector space Fn can also be equipped with the ℓp-norms

∥(x1, . . . xn)∥p :=

(
n∑
k=1

|xk|p
)1/p

for 1 ≤ p <∞, and the ℓ∞-norm

∥(x1, . . . xn)∥∞ := max(|x1|, . . . |xn|).

For 1 ≤ p < ∞ and p ̸= 2, it is not immediately obvious that ∥ · ∥p defines a norm.
We will prove this assertion later. It is not too hard to show that all of the ℓp norms
(1 ≤ p ≤ ∞) are equivalent on Fn (though the constants c, C depend on the dimension
n). For instance, for n ∈ N,

∥x∥∞ ≤ ∥x∥2 ≤ ∥x∥1 ≤ n∥x∥∞.

The first and third inequalities are evident. For the middle inequality, observe

(∥x∥1)2 =
n∑

j,k=1

|xj| |xk| ≥
n∑
j=1

|xj|2 = ∥x∥22.
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Given a normed vector space X = (X , ∥ · ∥), denote its closed unit ball by

X1 = {x ∈ X : ∥x∥ ≤ 1}.
It is instructive to sketch the closed unit ball in R2 with the three norms above.

It turns out that any two norms on a finite-dimensional vector space are equivalent.
As a corollary, every finite-dimensional normed space is a Banach space. See Problem

prob:findim-basicsprob:findim-basics
1.5.

Lemma 1.11. If ∥·∥1 and ∥·∥2 are norms on X and there is a constant C > 0 such that
∥x∥1 ≤ C∥x∥2 for all x ∈ X , then the mapping ι : (X , ∥ · ∥2) → (X , ∥ · ∥1) is (uniformly)
continuous.

Proof. For x, y ∈ X , we have ∥ι(x)− ι(y)∥1 = ∥ι(x− y)∥1 = ∥x− y∥1 ≤ C∥x− y∥2. □

Proposition 1.12. If ∥x∥ is a norm on Rn, then ∥x∥ is equivalent to the Euclidean
norm ∥ · ∥2.

Sketch of proof. Let {e1, . . . , en} denote the usual basis for Rn. Given x =
∑
ajej ∈ Rn,

∥x∥ ≤
∑

|aj| ∥ej∥ =
∑

|aj|∥ej∥ ≤M ∥x∥1 ≤ nM ∥x∥2,

whereM = max{∥e1∥, . . . , ∥en∥}. It now follows that the map ι : (Rn, ∥·∥2) → (Rn, ∥·∥)
is continuous and therefore so is the map f : (Rn, ∥·∥2) → [0,∞) defined by f(x) = ∥x∥.
Since

Sn−1 = {x ∈ Rn : ∥x∥2 = 1}
(the unit sphere) is compact in Rn, by the Extreme Value Theorem, f attains its infimum;
that is, there is a point p ∈ Sn−1 such that f(p) ≤ f(x) for all x ∈ Sn−1. But f(p) =
∥p∥ > 0 since p ̸= 0. Let c = f(p) = ∥p∥.We conclude that if ∥x∥2 = 1 then ∥x∥ ≥ c∥x∥2,
from which it follows by homogeneity that ∥x∥ ≥ c∥x∥2 for all x ∈ Rn. □

Corollary 1.13. All norms on a finite dimensional vector space are equivalent. Further,
if V is a finite dimensional normed vector space, then V1 is compact and V is a Banach
space.

Proof. Suppose V is a normed vector space of dimension n and let {v1, . . . , vn} denote
a basis for V . The function ∥ · ∥′ : V → [0,∞) defined by

∥v∥′ = ∥
∑

ajvj∥′ =
∑

|aj|

is easily seen to be a norm.

Now let ∥ · ∥ be a given norm on V. This norm induces a norm ∥ · ∥∗ on Rn given by

∥
∑

ajej∥∗ = ∥
∑

ajvj∥.

Since all norms in Rn are equivalent, the norm ∥ · ∥∗ is equivalent to the norm ∥ · ∥1.
Hence there exist constants 0 < c < C such that

c∥v∥′ = c
∑

|aj| = c∥
∑

ajej∥1 ≤ ∥
∑

ajej∥∗ ≤ C∥
∑

ajej∥1 = C
∑

|aj| = C∥v∥′.
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Thus, as ∥
∑
ajej∥∗ = ∥

∑
ajvj∥,

c∥v∥′ ≤ ∥v∥ ≤ C∥v∥′

for all v ∈ V. Thus all norms on V are equivalent.

Further, by definition, f : (V, ∥ · ∥) → (Rn, ∥ · ∥∗) is bijective and isometric. Thus,
f−1 is continuous, f−1(S) where S is the unit ball in (Rn, ∥·∥∗, is the unit ball in (V, ∥·∥)
and is compact as its the continuous image of a compact set. It is now routine to pass
from compactness of the unit ball in (V, ∥ · ∥) to completeness of (V, ∥ · ∥). □

ssec:Fb(X,Y)

1.2.2. The Banach space of bounded functions. If V is a vector space over F and ∅ ̸= T

is a set, then F (T, V ), the set of functions f : T → V is a vector space over F under
pointwise operations; e.g., if f, g ∈ F (T, V ) then f + g : T → V, is the function defined
by (f + g)(t) = f(t) + g(t).

d:bounded:xx Definition 1.14. A subset R of a normed vector space X is bounded if there is a C
such that ∥x∥ ≤ C for all x ∈ R; that is, R ⊆ CX1.

A function f : T → X is bounded if f(T ) ⊆ X is bounded.

Let Fb(T,X ) denote the vector space (subspace of F (T,X )) of bounded functions
f : T → X .

r:bounded:xx Remark 1.15. The function ∥ · ∥∞ : Fb(T,X ) → [0,∞) defined by

∥f∥∞ = sup{|f(t)| : t ∈ T}
is a norm on Fb(T,X ) as you should verify. Let d∞ denote the resulting metric:
d∞(f, g) = ∥f − g∥∞.

Note that convergence of a sequence in the metric space (Fb(T,X ), d∞) is uniform
convergence; in particular, a sequence is Cauchy in Fb(T,X ) if and only if it is uniformly
Cauchy. (Exercise.)

prop:Fsubb Proposition 1.16. If X is a Banach space, then Fb(T,X ) is also Banach space.

Proof. We are to show Fb(T,X ) is complete, assuming X is complete. Accordingly,
suppose (fn) is a Cauchy sequence from Fb(T,X ) and X is complete. In particular,
given ϵ > 0 there is an N such that d∞(fn, fm) = sup{∥fn(t) − fm(t)∥ : t ∈ T} < ϵ. It
follows that, for each s ∈ T, the sequence (fn(s)) is a Cauchy in X and hence converges
to some x ∈ X . Define f : T → X by f(s) = x. It remains to see that f is bounded and
(fn) converges to f.

Since Cauchy sequences are bounded and (fn) is Cauchy in the metric space Fb(T,X ),
there is a C such that

sup{∥fn(t)∥ : t ∈ T} = d∞(fn, 0) ≤ C

for all n. It follows from Proposition
prop:normed-tvsprop:normed-tvs
1.5 that (∥fn(t)∥)n converges to |f(t) and hence

∥f(t)∥ ≤ C for all t ∈ T. Thus f is bounded; that is f ∈ Fb(T,X ).
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It only remains to show that (fn) converges to f in Fb(T,X ). To do so let ϵ > 0
be given. There is an N such that if m,n ≥ N, then ∥fn(t) − fm(t)∥ < ϵ for all t ∈ T.
Given s ∈ T, there is an M ≥ N such that ∥fm(s) − f(s)∥ < ϵ for all m ≥ N. Since,
(fm(s) − fn(s))m converges (with m) to (f(s) − fn(s)) in X , another application of
Proposition

prop:normed-tvsprop:normed-tvs
1.5 gives (∥fm(s)− fn(s)∥)m converges to ∥f(s)− fn(s)∥. Thus

∥f(s)− fn(s)∥ ≤ ϵ,

for all s ∈ T. Hence d∞(f, fn) = ∥f − fn∥ ≤ ϵ and the proof is complete. □

There are important Banach spaces of continuous functions. Before going further,
we remind the reader of the following result from advanced calculus.

thm:ulimit-cont Theorem 1.17. Suppose X, Y are metric spaces, (fn) is a sequence fn : X → Y and
x ∈ X. If each fn is continuous at x and if (fn) converges uniformly to f , then f is
continuous at x. Hence if each fn is continuous, then so is f.

Proof. Let x and ϵ > 0 be given. Choose N such that if n ≥ N and y ∈ X, then
dY (fn(y), f(y)) < ϵ. Since fN is continuous at x, there is a δ > 0 such that if dX(x, y) < δ,
then dY (fN(x), fN(y)) < ϵ. Thus, if dX(x, y) < δ, then

dY (f(x), f(y)) ≤ dY (f(x), fN(x)) + dY (fN(x), fN(y)) + dY (fN(y), f(y))

< 3ϵ,

proving the theorem. □

Given a normed vector space Y , let Cb(X,Y) denote the subspace of Fb(X,Y) con-
sisting of continuous functions. Since uniform convergence is the same as convergence in
the normed vector space (Fb(X,Y), d∞), by Theorem

thm:ulimit-contthm:ulimit-cont
1.17, Cb(X,Y) is a closed subspace

of Fb(X,Y). In particular, in the case Y is a Banach space, so is Cb(X,Y).

When X be a compact metric space, let C(X) = C(X,F) denote the set of con-
tinuous functions f : X → F. Thus C(X) is a subspace of Fb(X,F) and we endow
C(X) with the norm it inherits from Fb(X,F). Since F is complete, C(X) is a Banach
space. Of course here we could replace F by a Banach space X and obtain the analogous
conclusion for the space C(X,X ).

Now let X be a locally compact metric space. In this case, a function f : X → F
vanishes at infinity if for every ϵ > 0, there exists a compact set K ⊆ X such that
supx/∈K |f(x)| < ϵ. Let C0(X) denote the subspace of Fb(X,F) consisting of continuous
functions f : X → F that vanish at infinity. Then C0(X) is a normed vector space with
the norm it inherits from C(X) (equivalently Fb(X,F). It is routine to check that C0(X)
is complete.
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1.2.3. L1 spaces over R. Let (X,M , µ) be a measure space and let L1(µ) denote the
(real) vector space of (real-valued) absolutely integrable functions on X. The function
∥ · ∥1 : L1(µ) → [0,∞) defined by

∥f∥1 :=
∫
X

|f | dm

for f ∈ L1(µ) is a norm on L1(µ), provided we agree to identify f and g when f = g a.e.
(Indeed the chief motivation for making this identification is that it makes ∥ · ∥1 into a
norm.

prop:L1-complete Proposition 1.18. The real vector space L1(µ) is a Banach space.

We will construct a complex vector space analog of L1(µ) a bit later.

Proof. It suffices to verify the hypotheses of Proposition
prop:abs-cvg-completeprop:abs-cvg-complete
1.7. Accordingly suppose∑∞

n=1 fn is absolutely convergent (so that
∑∞

n=1 ∥fn∥1 < ∞). By Tonelli’s summation
theorem, ∫ ∞∑

n=1

|fn| dm =
∞∑
n=1

∫
|fn| dm =

∞∑
n=1

∥fn∥1 <∞.

Thus the function g :=
∑∞

n=1 |fn| belongs to L1 and is thus finite m-a.e. In particular

the sequence of partial sums sN =
∑N

n=1 fn is a sequence of measurable functions with
|sN | ≤ g that converges pointwise a.e. to a measurable function f . Hence by the DCT
and its corollary, f ∈ L1 and the partial sums (sN)N converge to f in L1. □

1.2.4. Complex L1(µ) spaces. In this subsection we describe the extension of L1(µ) to a
complex vector space of complex valued functions (equivalence classes of functions).

Again we work on a fixed measure space (X,M , µ). As a topological space, C and
R2, are the same. A function f : X → C = R2 is measurable if and only if it is M −B2

measurable. Measurability of f can also be described in terms of the real and imaginary
parts of f.

p:fuv:mble Proposition 1.19. Suppose (X,M ) is a measurable space and f : X → C. Writing
f : X → C as f = u+ iv, where u, v : X → R, the function f is measurable if and only
if both u and v are.

Moreover, if f is measurable, then so is |f | : X → [0,∞).

We begin with the following elementary lemma whose proof is left to the reader.

lem:compose:right Lemma 1.20. Suppose (X,M ) is a measure space and Y and Z are topological spaces.
If f : X → Y is M −BY measurable and g : Y → Z is BY −BZ measurable, then g ◦ f
is M − BZ measurable. In particulr, the result holds if g is continuous.
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Sketch of proof of Proposition
p:fuv:mblep:fuv:mble
1.19. The Borel σ-algebra B2 is generated by open rect-

angles; that is, a set U ⊆ C is open if and only if it is a countable union of open rectangles
(with rational vertices even). For an open rectagle I = J ×K = (a, b) × (c, d) observe
that

f−1(J) = u−1(J) ∩ v−1(K).

Thus, if u and v are measurable, then f−1(J) ∈ M . Consequently, f is measurable.
Hence if u, v are both measurable, then so is f.

Now suppose f is measurable. In this case

M ∋ f−1((t,∞)× R) = {u > t}.

Since the sets {(t,∞) : t} generate B1, u is measurable. By symmetry v is measurable.

To prove the second statement, since f is measurable and g : C → [0,∞) defined
by g(z) = |z| is continuous, the function g ◦ f = |f | is measurable by Lemma

lem:compose:rightlem:compose:right
1.20. □

d:C-valued:measurable Definition 1.21. A measurable f : X → C is integrable (or absolutely integrable) if |f |
is integrable.

Remark 1.22. From the inequalities

|Ref |, |Imf | ≤ |f | ≤ |Ref |+ |Imf |

it follows that f : X → C is (absolutely) integrable if and only if Ref and Imf are.

Definition 1.23. If f is complex-valued and absolutely integrable (that is, f is mea-
surable and |f | is integrable), we define the integal of f by∫

f =

∫
Ref + i

∫
Imf.

We also write ∥f∥1 :=
∫
X
|f | dµ in the complex case. Finally, we write L1 = L1(µ) to

denote the set of absolutely integrable complex-valued functions on X.

Generally, we leave it to context to indicate if we are considering the real or complex
version of L1; but for the following theorem we temporarily adopt the notation L1

R and
L1
C to distinguish between the real and complex vector space versions of L1(µ).

thm:basic-properties-L1:C Theorem 1.24 (L1 as a C normed vector space). The set L1
C of is a vector space over

C (with the usual addition and scalar multiplication of functions). Morever, if f, g ∈ L1
C

and c ∈ C, then

it:int-linear (a) the mapping Λ : L1 → C defined by Λ(f) =
∫
f is linear;

it:absint v intabs (b)
∣∣∫ f ∣∣ ≤ ∫ |f |.

it:scaling (c) ∥cf∥1 = |c|∥f∥1.
it:triangle ineq (d) ∥f + g∥1 ≤ ∥f∥1 + ∥g∥1.
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Sketch of proof. Write f = u + iv and g = x + iy. In particular, u, v, x, y are all L1
R.

Given c = a + ib, the functions au, bv, av, bu are all L1
R and so are au− bv and av + bu

since L1
R is a real vector space. Therefore, cf = (au−bv)+ i(av+bu) is in L1

C. A similar,
but easier, argument shows f + g is in L1

C. Hence L
1
C is a vector space over C. Moreover,

since the integral is real linear on L1
R,

Λ(cf) = Λ((au+ bv) + i(av + bu)) = Λ((au+ bv)) + iΛ((av + bu))

= aΛ(u) + bΛ(v) + i[aΛ(v) + bΛ(u)]

= (a+ ib)[Λ(u) + iΛ(v)] = cΛ(f).

Likewise Λ(f + g) = Λ(f) + Λ(g). Thus Λ is C-linear on L1
C and item (

it:int-linearit:int-linear
a) is proved.

If
∫
f = 0, then f = 0 almost everywhere and the last three items hold. Otherwise,

write
∫
f = reit in polar coordinates and observe

e−it
∫
f ∈ R+.

Thus, from the definition and linearity of the integral

R+ ∋ e−it
∫
f =

∫
e−itf =

∫
real e−itf + i

∫
image e−itf.

Thus
∫
image e−itf = 0 and using results for L1

R,∣∣∣∣ ∫ f

∣∣∣∣ = ∣∣∣∣e−it ∫ f

∣∣∣∣ = ∫ e−itf =

∫
real e−itf ≤

∫
| real e−itf | ≤

∫
|f |,

proving item (
it:absint v intabsit:absint v intabs
b).

Next, ∫
|cf | =

∫
|c| |f | = |c|

∫
|f |.

Hence item (
it:scalingit:scaling
c) holds. Similarly,the triangle inequality, item (

it:triangle ineqit:triangle ineq
d), follows from |f + g| ≤

|f |+ |g| (pointwise). □

Remark 1.25. Proposition
thm:basic-properties-L1:Cthm:basic-properties-L1:C
1.24 says ∥ · ∥1 is a semi-norm on L1. As usual, we identify

functions that differ by a null vector; that is, f ∼ g if ∥f − g∥1 = 0; equivalently,
identifying functions that are equal a.e., we obtain a normed complex vector space of L1

functions (which of course are not actually functions).
ssec:seq:space

1.2.5. Sequence spaces. Define

c0 := {f : N → F| lim
m→∞

|f(m)| = 0}

ℓ∞ := {f : N → F| sup
m∈N

|f(m)| <∞}

ℓ1 := {f : N → F|
∞∑
m=0

|f(m)| <∞}.
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Note that ℓ∞ = Fb(N,F) and is a Banach space with the norm

∥f∥∞ = sup
m

|f(m)|.

Further, c0 ⊆ ℓ∞ is the subspace C0(N) of ℓ∞ again with the norm ∥ · ∥∞. In particular,
c0 is a Banach space.

Observe that ℓ1 is the space (N, P (N), c), where c is counting measure on N and
∥ · ∥1 is the corresponding ℓ1 norm. Since only set of measure zero in this measure space
is the emptyset, two functions in ℓ1 = L1(c) are equivalent if and only if they are equal.

Along with these spaces it is also helpful to consider the vector space

c00 := {f : N → F|f(n) = 0 for all but finitely many n}

Notice that c00 is a vector subspace of each of c0, ℓ
1 and ℓ∞. Thus it can be equipped with

either the ∥ · ∥∞ or ∥ · ∥1 norms. It is not complete in either of these norms, however.
What is true is that c00 is dense in c0 and ℓ1 (but not in ℓ∞). (See Problem

prob:c00prob:c00
1.11).

sec:Lp:spaces

1.2.6. Lp spaces. Again let (X,M ,m) be a measure space. For 1 ≤ p < ∞ let Lp(m)
denote the set of measurable functions f for which

∥f∥p :=
(∫

X

|f |p dm
)1/p

<∞

(again we identify f and g when f = g a.e.). It turns out that this quantity is a norm on
Lp(m), and Lp(m) is complete, though we will not prove this yet (it is not immediately
obvious that the triangle inequality holds when p > 1).

Choosing (X,M , µ) = (N, P (N), c), counting measure on N, obtains the sequence
spaces ℓp; that is, the F-vector space of functions f : N → F such that

∥f∥p :=

(
∞∑
n=1

|f(n)|p
)1/p

<∞

and this quantity is a norm making ℓp into a Banach space.

When p = ∞, we define L∞(µ) to be the set of all functions f : X → F with the
following property: there exists M > 0 such that

eqn:L-infty-defeqn:L-infty-def (1) |f(x)| ≤M for µ− a.e. x ∈ X;

as for the other Lp spaces we identify f and g when there are equal a.e. When f ∈ L∞,
let ∥f∥∞ be the smallest M for which (

eqn:L-infty-defeqn:L-infty-def
1) holds. Then ∥ · ∥∞ is a norm making L∞(µ)

into a Banach space.
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ssec:products

1.2.7. Subspaces and products. If (X , ∥ · ∥) is a normed vector space and Y ⊆ X is a
vector subspace, then the restriction of ∥ · ∥ to Y is clearly a norm on Y . If X is a
Banach space, then (Y , ∥ · ∥) is a Banach space if and only if Y is closed in the norm
topology of X . (This is just a standard fact about metric spaces—a subspace of a
complete metric space is complete in the restricted metric if and only if it is closed.)

def:subspace:closed Definition 1.26. A subspace Y of a normed vector space X is a closed vector subspace
of X , denoted Y ≤ X . The terminology linear manifold is used synonymously with
vector subspace.

If X ,Y are vector spaces then the algebraic direct sum is the vector space of ordered
pairs

X ⊕ Y := {(x, y) : x ∈ X , y ∈ Y}
with entrywise operations. If X , Y are equipped with norms ∥ · ∥X , ∥ · ∥Y , then each of
the quantities

|∥(x, y)∥∞ := max(∥x∥X , ∥y∥Y),
∥(x, y)∥1 := ∥x∥X + ∥y∥Y

∥(x, y)∥2 :=
√

∥x∥2X + ∥y∥2Y

e:standard:product:normse:standard:product:norms (2)

is a norm on X ⊕ Y . These three norms are equivalent; indeed it follows from the
definitions that

∥(x, y)∥∞ ≤ ∥(x, y)∥2 ≤ ∥(x, y)∥1 ≤ 2∥(x, y)∥∞.
If X and Y are both complete, then X ⊕ Y is complete in each of these norms. The
resulting Banach spaces are denoted X ⊕∞ Y , X ⊕1 Y and X ⊕2 Y .

Since the three norms in the previous paragraph are equivalent, the resulting spaces
are indistinguishable topologically. There is a more abstract description of this topology.

d:product:topology Definition 1.27. Given topological spaces (X, τ) and (Y, σ), the product topology on the
Cartesian product X ×Y is the smallest topoology that makes the coordinate projections
πX : X×Y → X and πY : X×Y → Y defined by πX (x, y) = x, πY(x, y) = y continuous.
That is, the topology generated by the sets U × Y and X × V for open sets U ⊆ X and
V ⊆ Y.

Proposition 1.28. Suppose (X, τ) and (Y, σ) are topological spaces. The collection of
sets

B = {U × V : U ⊆ X, V ⊆ Y are open}
is a base for the product topology.

For normed vector spaces X and Y , the product topology on X ×Y is metrizable and
is the norm topology on X × Y with any of the norms of equation (

e:standard:product:normse:standard:product:norms
2). Consequentely,

a sequence zn = (xn, yn) from X × Y converges (in the product topology) if and only if
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both (xn) and (yn) converge; and zn converges to z = (x, y) if and only if (xn) converges
to x and (yn) converges to y. In particular, if X and Y are Banach spaces, then so is
X × Y .

It is evident how to extend the discussion here to finite products. The product topol-
ogy is the default topology on (finite) products of Banach spaces (and more generally
normed vector spaces).

1.2.8. Qoutient spaces. If X is a normed vector space and M is a proper subspace, then
one can form the algebraic quotient X/M, defined as the collection of distinct cosets
{x + M : x ∈ X}. From linear algebra, X/M is a vector space under the standard
operations. Let π : X → X/M denote the quotient map.

prop:quotient:Banach Proposition 1.29. If M is a closed subspace of a normed vector space X , then the
quantity

∥π(x)∥ = ∥x+M∥ := inf
y∈M

∥x− y∥

is a norm on X/M. Moreover, if X is a Banach space, then so is X/M.

The norm in Proposition
prop:quotient:Banachprop:quotient:Banach
1.29 is called the quotient norm. Geometrically, ∥x+M∥

is the distance in X from x to the closed set M. The assumption that M is closed in
needed to ensure that the quotient norm is indeed a norm. For instance M = C([0, 1])
is dense subspace of L1([0, 1]) (with Lebesgue measure) and hence for any

inf
g∈M

∥f − g∥ = 0

for all f ∈ L1([0, 1]).

Proof. We will verify a couple of the axioms of a norm for the quotient norm, leaving the
remainder of the proof as an exercise. First suppose x ∈ X and ∥π(x)∥ = 0. It follows
that there is a sequence (mn) form M such that (∥x−mn∥) converges to 0; that is, (mn)
converges to x. Since M is closed, x ∈ M and hence π(x) = 0.

Now let x, y ∈ X and ϵ > 0 be given. There exists m,n ∈ M such that

∥x−m∥ ≤ ∥π(x)∥+ ϵ, ∥y − n∥ ≤ ∥π(y)∥+ ϵ.

Hence

∥π(x)+π(y)∥ = ∥π(x+y)∥ ≤ ∥x+y−(m+n)∥ ≤ ∥x−m∥+∥y−n∥ ≤ ∥π(x)∥+∥π(y)|∥+2ϵ,

from which it follows that the triangle inequality holds and we have proved the quotient
norm is indeed a norm.

To prove X/M is complete (with the quotient norm) under the assumption that
X is a Banach space (complete), suppose (yn) is a sequence from X/M and

∑
yn is

absolutely convergent. For each n there exists xn ∈ X such that ∥xn∥ ≤ ∥yn∥+ 1
n2 and
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π(xn) = yn. It follows that
∑
xn is absolutely convergent. Since X is a Banach space

the sequence of partial sums sN =
∑N

n=1 xn converges to some x ∈ X . In partiulcar,

∥sN − x∥ ≥ ∥π(sN − x)∥ = ∥π(sN)− π(x)∥ = ∥
N∑
n=1

yn − π(x)∥.

Since (∥sN − x∥) converges to 0, it follows that
∑
yn converges to π(x). Hence X/M is

complete by Proposition
prop:abs-cvg-completeprop:abs-cvg-complete
1.7. □

More examples are given in the exercises and further examples will appear after the
development of some theory.

1.3. Linear transformations between normed spaces.

d:bounded:linear Definition 1.30. Let X ,Y be normed vector spaces. A linear transformation T : X →
Y is bounded if there exists a constant C ≥ 0 such that ∥Tx∥Y ≤ C∥x∥X for all x ∈ X .

Remark 1.31. Note that in Definition
d:bounded:lineard:bounded:linear
1.30 it suffices to require that ∥Tx∥Y ≤ C∥x∥X

just for all x ̸= 0, or for all x with ∥x∥X = 1 (why?). □

The importance of boundedness and the following simple proposition is hard to
overstate. Recall, a mapping f : X → Y between metric spaces is Lipschitz continuous
if there is a constant C > 0 such that d(f(x), f(y)) ≤ Cd(x, y) for all x, y ∈ X. A simple
exercise shows Lipschitz continuity implies (uniform) continuity.

prop:bdd-iff-cns Proposition 1.32. If T : X → Y is a linear transformation between normed spaces,
then the following are equivalent:

i:bbcns:i (i) T is bounded.
i:bbcns:ii (ii) T is Lipschitz continuous.

i:bbcns:iii (iii) T is uniformly continuous.
i:bbcns:iv (iv) T is continuous.
i:bbdcns:v (v) T is continuous at 0.

Moreover, in this case,

∥T∥ := sup{∥Tx∥ : ∥x∥ = 1}

= sup{∥Tx∥
∥x∥

: x ̸= 0}

= inf{C : ∥Tx∥ ≤ C∥x∥ for all x ∈ X}

and ∥T∥ is the smallest number (the infimum is attained 1) such that

eqn:op-norm-ineqeqn:op-norm-ineq (3) ∥Tx∥ ≤ ∥T∥ ∥x∥
for all x ∈ X .

1The suprema need not be attained.
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Proof. Suppose T is bounded; that is, there exists a C ≥ 0 such that ∥Tx∥ ≤ C∥x∥ for
all x ∈ X . Thus, if x, y ∈ X , then, ∥Tx− Ty∥ = ∥T (x− y)∥ ≤ C∥x− y∥ by linearity of
T . Hence (i) implies (ii). The implications (ii) implies (iii) implies (iv) implies (v) are
evident.

The proof of (v) implies (i) exploits the homogeneity of the norm and the linearity
of T and not nearly the full strength of the continuity assumption. By hypothesis, with
ϵ = 1 there exists δ > 0 such that if ∥x∥ = ∥x− 0∥ < 2δ, then ∥Tx∥ = ∥Tx− T0)∥ < 1.
Given a nonzero vector x ∈ X , the vector δx/∥x∥ has norm less than δ, so

1 >

∥∥∥∥T ( δx

∥x∥

)∥∥∥∥ = δ
∥Tx∥
∥x∥

.

Rearranging this we find ∥Tx∥ ≤ (1/δ)∥x∥ for all x ̸= 0.

Assuming T is bounded, it is immediate that sup{∥Tx∥ : ∥x∥ = 1} exists (and is a
real number). From homogeneity of the norm, it is also clear that

sup{∥Tx∥ : ∥x∥ = 1} = sup{∥Tx∥
∥x∥

: x ̸= 0}.

Likewise assuming T is bounded the set S = {C : ∥Tx∥ ≤ C∥x∥ for all x ∈ X} ⊆ [0,∞)
is not empty and bounded below (by 0) and hence the infimum exists. From the definition
of ∥T∥ we see that ∥T∥ ∈ S. Hence the infimum is at most ∥T∥. On the other hand, if

C ′ < inf S, then there is an x ∈ X such that ∥Tx∥ > C ′∥x∥ so that ∥Tx∥
∥x∥ > C ′. Thus

C ′ < ∥T∥. □

The set of all bounded linear operators from X to Y is denoted B(X ,Y). It is a
vector space under the operations of pointwise addition and scalar multiplication. The
quantity ∥T∥ is easily seen to be a norm. It is called the operator norm of T .

Problem 1.1. Prove the ∥ · ∥1 and ∥ · ∥∞ norms on c00 are not equivalent. Conclude
from your proof that the identity map on c00 is bounded from the ∥ · ∥1 norm to the
∥ · ∥∞ norm, but not the other way around.

prob:extending-bounded-operators:inline Problem 1.2. Consider c0 and c00 equipped with the ∥ · ∥∞ norm. Prove there is no
bounded operator T : c0 → c00 such that T |c00 is the identity map. (Thus the conclusion
of Proposition

prop:extending-bounded-operatorsprop:extending-bounded-operators
1.34 can fail if Y is not complete.)

Proposition 1.33. For normed vector spaces X and Y, the operator norm makes
B(X ,Y) into a normed vector space that is complete if Y is complete.

Proof. That B(X ,Y) is a normed vector space follows readily from the definitions and
is left as an exercise.

Suppose now Y is complete, and let Tn be a cauchy sequence in B(X ,Y). Let
E = X1 denote the closed unit ball in X . For x ∈ E,

eq:TnTmeq:TnTm (4) ∥Tnx− Tmx∥ = ∥(Tn − Tm)x∥ ≤ ∥Tn − Tm∥∥x∥ ≤ ∥Tn − Tm∥.
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Hence the sequence (Tn|E) is a cauchy sequence (so uniformly cauchy) from Cb(E,Y),
the space of bounded continuous functions from B to Y . Since Y is complete, there is
an F ∈ Cb(E,Y) such that (Tn|E) converges to F in Cb(E,Y) and moreover ∥F (x)∥ ≤
C := sup{∥Tn∥ : n} < ∞. See Subsection

ssec:Fb(X,Y)ssec:Fb(X,Y)
1.2.2. An exercise shows, given x, y ∈ B and

c ∈ F if x + y ∈ B and c x ∈ B, then F (x + y) = F (x) + F (y) and F (cx) = cF (x).
Hence F extends, by homogeneity, to a linear map T : X → Y such that ∥T∥ ≤ C and,
by equation (

eq:TnTmeq:TnTm
4), (Tn) converges to T in B(X, Y ). □

If T ∈ B(X ,Y) and S ∈ B(Y ,Z), then two applications of the inequality (
eqn:op-norm-ineqeqn:op-norm-ineq
3) give,

for x ∈ X ,
∥STx∥ ≤ ∥S∥∥Tx∥ ≤ ∥S∥∥T∥∥x∥

and it follows that ST ∈ B(X ,Z) and ∥ST∥ ≤ ∥S∥∥T∥. In the special case that Y = X
is complete, B(X ) := B(X ,X ) is an example of a Banach algebra.

The following proposition is very useful in constructing bounded operators—at least
when the codomain is complete. Namely, it suffices to define the operator (and show
that it is bounded) on a dense subspace.

prop:extending-bounded-operators Proposition 1.34 (Extending bounded operators). Let X , Y be normed vector spaces
with Y complete, and E ⊆ X a dense linear subspace. If T : E → Y is a bounded linear

operator, then there exists a unique bounded linear operator T̃ : X → Y extending T (so

T̃ |E = T ). Further ∥T̃∥ = ∥T∥.

Sketch of proof. Recall, if X, Y are metric spaces, Y is complete, D ⊆ X is dense and
f : D → Y is uniformly continuous, then f has a unique continuous extension f̃ :
X → Y . Moreover, this extension can be defined as follows. Given x ∈ X, choose a
sequence (xn) from D converging to x and let f̃(x) = lim f(xn) (that the sequence f(xn)
is Cauchy follows from uniform continuity; that it converges from the assumption that
Y is complete and finally it is an exercise to show f̃(x) is well defined independent of

the choice of (xn)). Thus, it only remains to verify that the extension T̃ of T is in fact

linear and ∥T∥ = ∥T̃∥. Both are routine exercises. □

Example 1.35. Equip c0 and c00 with the sup norm, ∥ · ∥∞ and consider the identity
map ι : c00 → c00. If T is an extension of ι to the completion c0 of c00 (in the sup norm),
then, letting sn ∈ c00 denote the sequence sn(m) = 1

m
for m ≤ n and sn(m) = 0 for

m > n, the sequence (sn) is converge in c0 to the sequence s with s(m) = 1
m

for all m.
Hence (T (sn) = sn) converges to some t ∈ c00. But now there is a K such that t(k) = 0
for all k ≥ K so that ∥sn − t∥ ≥ 1

K
for all n ≥ K, a contradiction. This example shows

completeness of Y is essential in Proposition
prop:extending-bounded-operatorsprop:extending-bounded-operators
1.34. □

d:inv:lin Definition 1.36. A bounded linear transformation T ∈ B(X ,Y) is said to be invertible
if it is bijective (being bijective, automatically T−1 exists and is a linear transformation)
and T−1 is bounded from Y to X . Two normed spaces X ,Y are said to be (boundedly)
isomorphic if there exists an invertible linear transformation T : X → Y .
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Example 1.37. As an example, given equivalent norms ∥ · ∥1 and ∥ · ∥2 on a vector
space X , the identity mapping ι : (X , ∥ · ∥1) → (X , ∥ · ∥2) is (boundedly) invertible and
witnesses the fact that these two normed vector spaces are boundedly isomorphic.

d:iso:iso Definition 1.38. An operator T : X → Y such that ∥Tx∥ = ∥x∥ for all x ∈ X is an
isometry . Note that an isometry is automatically injective and if it is also surjective then
it is automatically invertible and T−1 is also an isometry. The normed vector spaces are
isometrically isomorphic if there is an invertible isometry T : X → Y .

Example 1.39. If X is a finite dimensional vector space and T : X → X is an isometry,
then T is onto. However, when X is not finite dimensional, an isometry need not be
surjective. As examples, let ℓp = ℓp(N) denote the sequence spaces from Subsection

ssec:seq:spacessec:seq:space
1.2.5.

The linear map S : ℓp(N) → ℓp(N) defined by Sf(n) = 0 if n = 0 and f(n− 1) if n > 0
(for f = (f(n))n ∈ ℓp) is the shift operator . It is straightforward to verify that S is an
isometry but not onto.

Example 1.40. Following up on the previous example, a linear map T : X → X can
be one-one and have dense range without being (boundedly) invertible. Let en ∈ ℓ2(N)
denote the function en(m) = 1 if n = m and 0 otherwise for non-negative integers

0 ≤ m,n. The set of c00 = {
∑N

n=0 anen : N ∈ N, cn ∈ F} is dense in ℓ2(N) and the
mapping D : c00 → ℓ2(N) defined by

D(
N∑
n=0

anen) =
N∑
n=0

an
n+ 1

en

is easily seen to be bounded with ∥D∥ = 1. It is also injective. Hence D extends to an
injective bounded operator, still denoted D, from ℓ2 → ℓ2, with ∥D∥ = 1. The range of
D contains {en : n ∈ N} and is thus dense in ℓ2(N).

Since
∑∞

n=0 |
1

n+1
|2 <∞, the vector f =

∑∞
n=1

1
n+1

en is in ℓ2(N). On the other hand,

if g ∈ ℓ2(N) and Dg = f, then

1

n+ 1
g(n) = (Dg)(n) = f(n) =

1

n+ 1

and thus g(n) = 1 for all n; however, since
∑

|g(n)|2 = ∞, we obtain a contradiction.
Hence f is not in the range of D.

sec:bounded-operator-examples

1.4. Examples.

eg:finite:dim:continuous (a) If X is a finite-dimensional normed space and Y is any normed space, then every
linear transformation T : X → Y is bounded. See Problem

prob:finitedimboundedprob:finitedimbounded
1.16.

(b) Let X denote c00 equipped with the ∥ · ∥1 norm, and Y denote c00 equipped with the
∥ · ∥∞ norm. Then the identity map idX ,Y : X → Y is bounded (in fact its norm is
equal to 1), but its inverse, the identity map ιY,X : Y → X , is unbounded. To verify
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this claim, For positive integers n, let fn denote the element of c00 defined by

fn(m) =

{
1 if m ≤ n

0 if m > n.

Now ∥ιY,X (fn)∥1 = n, but ∥fn∥∞ = 1.

(c) Consider c00 with the ∥ ·∥∞ norm. Let a : N → F be any function and define a linear
transformation Ta : c00 → c00 by

eqn:Ta-defeqn:Ta-def (5) Taf(n) = a(n)f(n).

The mapping Ta is bounded if and only if M = supn∈N |a(n)| < ∞, in which case
∥Ta∥ = M . In this case, Ta extends uniquely to a bounded operator from c0 to c0
by Proposition

prop:extending-bounded-operatorsprop:extending-bounded-operators
1.34, and one may check that the formula (

eqn:Ta-defeqn:Ta-def
5) defines the extension.

All of these claims remain true if we use the ∥ · ∥1 norm instead of the ∥ · ∥∞ norm.
In this case, we get a bounded operator from ℓ1 to itself.

(d) Define S : ℓ1 → ℓ1 as follows: given the sequence (f(n))n from ℓ1 let Sf(1) = 0 and
Sf(n) = f(n − 1) for n > 1. (Viewing f as a sequence, S shifts the sequence one
place to the right and fills in a 0 in the first position). This S is an isometry, but is
not surjective. In contrast, if X is finite-dimensional, then the rank-nullity theorem
from linear algebra guarantees that every injective linear map T : X → X is also
surjective.

(e) Let C∞([0, 1]) denote the vector space of functions on [0, 1] with continuous deriva-
tives of all orders. The differentiation map D : C∞([0, 1]) → C∞([0, 1]) defined by
Df = df

dx
is a linear transformation. Since, for t ∈ R, we have Detx = tetx, it follows

that there is no norm on C∞([0, 1]) such that d
dx

is bounded.

1.5. Problems.

Problem 1.3. Prove Proposition
prop:normed-tvsprop:normed-tvs
1.5.

prob:equivalent-norms Problem 1.4. Prove equivalent norms define the same topology and the same Cauchy
sequences.

prob:findim-basics Problem 1.5. (a) Prove all norms on a finite dimensional vector space X are equivalent.
Suggestion: Fix a basis e1, . . . en for X and define ∥

∑
akek∥1 :=

∑
|ak|. It is routine

to check that ∥ · ∥1 is a norm on X . Now complete the following outline.
(i) Let ∥ · ∥ be the given norm on X . Show there is an M such that ∥x∥ ≤M∥x∥1.

Conclude that the mapping ι : (X , ∥ · ∥1) → (X , ∥ · ∥) defined by ι(x) = x is
continuous;

(ii) Show that the unit sphere S = {x ∈ X : ∥x∥1 = 1} in (X , ∥ · ∥1) is compact in
the ∥ · ∥1 topology;
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(iii) Show that the mapping f : S → (X , ∥ · ∥) given by f(x) = ∥x∥ is continuous
and hence attains its infimum. Show this infimum is not 0 and finish the proof.

(b) Combine the result of part (a) with the result of Problem
prob:equivalent-normsprob:equivalent-norms
1.4 to conclude that every

finite-dimensional normed vector space is complete.
(c) Let X be a normed vector space and M ⊆ X a finite-dimensional subspace. Prove

M is closed in X .

prob:norm-examples Problem 1.6. Finish the proofs from the examples subsections.

Problem 1.7. A function f : [0, 1] → F is called Lipschitz continuous if there exists a
constant C such that

|f(x)− f(y)| ≤ C|x− y|
for all x, y ∈ [0, 1]. Define ∥f∥Lip to be the best possible constant in this inequality.
That is,

∥f∥Lip := sup
x̸=y

|f(x)− f(y)|
|x− y|

Let Lip[0, 1] denote the set of all Lipschitz continuous functions on [0, 1]. Prove ∥f∥ :=
|f(0)|+ ∥f∥Lip is a norm on Lip[0, 1], and that Lip[0, 1] is complete in this norm.

Problem 1.8. Let C1([0, 1]) denote the space of all functions f : [0, 1] → R such that
f is differentiable in (0, 1) and f ′ extends continuously to [0, 1]. Prove

∥f∥ := ∥f∥∞ + ∥f ′∥∞
is a norm on C1([0, 1]) and that C1 is complete in this norm. Do the same for the norm
∥f∥ := |f(0)|+ ∥f ′∥∞. (Is ∥f ′∥∞ a norm on C1?)

Problem 1.9. Let (X,M ) be a measurable space. Let M(X) denote the (real) vector
space of all signed measures on (X,M ). Prove the total variation norm ∥µ∥ := |µ|(X)
is a norm on M(X), and M(X) is complete in this norm.

Problem 1.10. Prove, if X ,Y are normed spaces, then the operator norm is a norm on
B(X ,Y).

prob:c00 Problem 1.11. Prove c00 is dense in c0 and ℓ
1. (That is, given f ∈ c0 there is a sequence

fn in c00 such that ∥fn − f∥∞ → 0, and the analogous statement for ℓ1.) Using these
facts, or otherwise, prove that c00 is not dense in ℓ∞. (In fact there exists f ∈ ℓ∞ with
∥f∥∞ = 1 such that ∥f − g∥∞ ≥ 1 for all g ∈ c00.)

Problem 1.12. Prove c00 is not complete in the ∥ · ∥1 or ∥ · ∥∞ norms. (After we have
studied the Baire Category theorem, you will be asked to prove that there is no norm
on c00 making it complete.)

prob:extending-bounded-operators Problem 1.13. Consider c0 and c00 equipped with the ∥ · ∥∞ norm. Prove there is no
bounded operator T : c0 → c00 such that T |c00 is the identity map. (Thus the conclusion
of Proposition

prop:extending-bounded-operatorsprop:extending-bounded-operators
1.34 can fail if Y is not complete.)
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Problem 1.14. Prove the ∥ · ∥1 and ∥ · ∥∞ norms on c00 are not equivalent. Conclude
from your proof that the identity map on c00 is bounded from the ∥ · ∥1 norm to the
∥ · ∥∞ norm, but not the other way around.

prob:c0rn) Problem 1.15. a) Prove f ∈ C0(Rn) if and only if f is continuous and lim|x|→∞ |f(x)| =
0. b) Let Cc(Rn) denote the set of continuous, compactly supported functions on Rn.
Prove Cc(Rn) is dense in C0(Rn) (where C0(Rn) is equipped with sup norm).

prob:finitedimbounded Problem 1.16. Prove, if X ,Y are normed spaces and X is finite dimensional, then
every linear transformation T : X → Y is bounded. Suggestion: Let d denote the
dimension of X and let {e1, . . . , ed} denote a basis. The function ∥ · ∥1 on X defined by
∥
∑
xjej∥1 =

∑
|xj| is a norm. Apply Problem

prob:findim-basicsprob:findim-basics
1.5.

Problem 1.17. Prove the claims in Example
sec:bounded-operator-examplessec:bounded-operator-examples
1.4(c).

Problem 1.18. Let g : R → F be a (Lebesgue) measurable function. The map Mg :
f → gf is a linear transformation on the space of measurable functions. Prove, if
g /∈ L∞(R), then there is an f ∈ L1(R) such that gf /∈ L1(R). Conversely, show if
g ∈ L∞(R), then Mg is bounded from L1(R) to itself and ∥Mg∥ = ∥g∥∞.

Problem 1.19. Prove the claims about direct sums.

prob:FRiesz-lemma Problem 1.20. Let X be a normed vector space and M a proper closed subspace.
Prove for every ϵ > 0, there exists x ∈ X such that ∥x∥ = 1 and infy∈M ∥x− y∥ > 1− ϵ.
(Hint: take any u ∈ X \M and let a = infy∈M ∥u− y∥. Choose δ > 0 small enough so
that a

a+δ
> 1− ϵ, and then choose v ∈ M so that ∥u−v∥ < a+δ. Finally let x = u−v

∥u−v∥ .)

Note that the distance to a (closed) subspace need not be attained. Here is an
example. Consider the Banach space C([0, 1]) (with the sup norm of course and either
real or complex valued functions) and the closed subspace

T = {f ∈ C([0, 1]) : f(0) = 0 =

∫ 1

0

f dt}.

Using machinery in the next section it will be evident that T is a closed subspace of
C([0, 1]). For now, it can be easily verified directly. Let g denote the function g(t) = t.
Verify that, for f ∈ T , that

1

2
=

∫
g dt =

∫
(g − f) dt ≤ ∥g − f∥∞.

In particular, the distance from g to T is at least 1
2
.

Note that the function h = x− 1
2
, while not in T , satisfies ∥g − h∥∞ = 1

2
.

On the other hand, for any ϵ > 0 there is an f ∈ T so that ∥g − f∥∞ ≤ 1
2
+ ϵ

(simply modify h appropriately). Thus, the distance from g to T is 1
2
. Now verify, using

the inequality above, that h is the only element of C([0, 1]) such that
∫
h dt = 0 and

∥g − h∥∞ = 1
2
.
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Problem 1.21. Prove, if X is an infinite-dimensional normed space, then the unit ball
ball(X ) := {x ∈ X : ∥x∥ ≤ 1} is not compact in the norm topology. (Hint: use the
result of Problem

prob:FRiesz-lemmaprob:FRiesz-lemma
1.20 to construct inductively a sequence of vectors xn ∈ X such that

∥xn∥ = 1 for all n and ∥xn − xm∥ ≥ 1
2
for all m < n.)

Problem 1.22. (The quotient norm) Let X be a normed space and M a proper closedprob:quotient-norm
subspace.

a) Prove the quotient norm is a norm.
b) Show that the quotient map x→ x+M has norm 1. (Use Problem

prob:FRiesz-lemmaprob:FRiesz-lemma
1.20.)

c) Prove, if X is complete, so is X/M.

Problem 1.23. A normed vector space X is called separable if it is separable as a metric
space (that is, there is a countable subset of X which is dense in the norm topology).
Prove c0 and ℓ1 are separable, but ℓ∞ is not. (Hint: for ℓ∞, show that there is an
uncountable collection of elements {fα} such that ∥fα − fβ∥ = 1 for α ̸= β.)

END FALL TERM

2. Linear functionals and the Hahn-Banach theorem

If there is a fundamental theorem of functional analysis, it is the Hahn-Banach
theorem. The theorem is somewhat abstract-looking at first, but its importance will be
clear after studying some of its corollaries.

Definition 2.1. Let X be a normed vector space over the field F. A linear functional
on X is a linear map L : X → F. The dual space of X , denoted X ∗ is the space B(X ,F)
of bounded linear functionals on X .

Remark 2.2. Since F = R or C is complete, the vector space of bounded linear func-
tionals is itself a Banach space (complete normed vector space) and is known as the .
It is not yet obvious that X ∗ need be non-trivial (that is, that there are any bounded
linear functionals on X besides 0). One corollary of the Hahn-Banach theorem is there
exist enough bounded linear functionals on X to separate points.

sec:dual-examples

2.1. Examples. This subsection contains some examples of bounded linear functionals
and dual spaces.

eg:linfun:sequence:spaces Example 2.3. For each of the sequence spaces c0, ℓ
1, ℓ∞, for each n the map f → f(n)

is a bounded linear functional. That is, λn : X → F defined by λn(f) = f(n) for
f : N → F in X , where X is any one of c0, ℓ

1, ℓ∞, is continuous since in each case it is
immediate that

|λn(f)| = |f(n)| ≤ ∥f∥X .
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eg:c0:dual Example 2.4. Given g ∈ ℓ1, if f ∈ c0, then

e:Lg:l1e:Lg:l1 (6)
∞∑
n=0

|f(n)g(n)| ≤ ∥f∥∞
∞∑
n=0

|g(n)| = ∥g∥1∥f∥∞.

Thus
∑∞

n=0 f(n)g(n) converges and we obtain a functional Lg : c0 → F defined by

e:Lg:l1+e:Lg:l1+ (7) Lg(f) :=
∞∑
n=0

f(n)g(n).

The inequality of equation (
e:Lg:l1e:Lg:l1
6) says Lg is bounded (continuous) and ∥Lg∥ ≤ ∥g∥1. More-

over, it is immediate that Φ : ℓ1 → c∗0 defined by Φ(g) = Lg is bounded and linear and
∥Φ∥ ≤ 1. In fact, Φ is onto so that every bounded linear functional on c0 is of the form
Lg for some g ∈ ℓ1.

prop:dual-of-c0 Proposition 2.5. The map Φ : ℓ1 → c∗0 defined by Φ(g) = Lg is an isometric isomor-
phism from ℓ1 onto the dual space c∗0.

Proof. We have already seen that each g ∈ ℓ1 gives rise to a bounded linear functional
Lg ∈ c∗0 via

Lg(f) :=
∞∑
n=0

g(n)f(n),

that ∥Lg∥ ≤ ∥g∥1 and the the mapping Φ is bounded and linear. We will prove simul-
taneously that this map is onto and that ∥Lg∥ ≥ ∥g∥1.

Let L ∈ c∗0. We will first show that there is unique g ∈ ℓ1 so that L = Lg. Let
en ∈ c0 be the indicator function of n, that is

en(m) = δnm.

Define a function g : N → F by

g(n) = L(en).

We claim that g ∈ ℓ1 and L = Lg. To see this, fix an integer N and define h = hN :
N → F by

h(n) =

{
g(n)/|g(n)| if n ≤ N and g(n) ̸= 0

0 otherwise.

Thus h =
∑N

n=0 h(n)en. Further, by h ∈ c00 ⊆ c0 and ∥h∥∞ ≤ 1. Now

N∑
n=0

|g(n)| =
N∑
n=0

h(n)g(n) = L(h) = |L(h)| ≤ ∥L∥∥h∥ ≤ ∥L∥.

It follows that g ∈ ℓ1 and ∥g∥1 ≤ ∥L∥. By construction L = Lg when restricted to c00, so
by the uniqueness of extensions of bounded operators, Proposition

prop:extending-bounded-operatorsprop:extending-bounded-operators
1.34, L = Lg. Thus

the map g → Lg is onto and

∥g∥1 ≤ ∥L∥ = ∥Lg∥ ≤ ∥g∥1. □
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Example 2.6. Given g ∈ ℓ∞, if f ∈ ℓ1, then equation (
e:Lg:l1e:Lg:l1
6) shows |Lg(f)| ≤ ∥g∥∞ ∥f∥1,

where Lg is defined as in equation (
e:Lg:l1+e:Lg:l1+
7). Thus ∥Lg∥ ≤ ∥g∥∞ and we obtain a bounded

linear map Ψ : ℓ∞ → (ℓ1)∗eg:dual:l-infty

prop:dual-of-ell1 Proposition 2.7. The map Ψ is an isometric isomorphism from (ℓ1)∗ onto ℓ∞.

Proof. The proof follows the same lines as the proof of the previous proposition; the
details are left as an exercise. □

Remark 2.8. The same mapping g → Lg also shows that every g ∈ ℓ1 gives a bounded
linear functional on ℓ∞, but it turns out these do not exhaust (ℓ∞)∗ (see Problem

prob:ell-infty-dualprob:ell-infty-dual
2.12).

Regarding ℓ1 and ℓ∞ as L1 and L∞ for counting measure on N, it is not surprising
that, given a measure space (X,M , µ), a function g ∈ L∞(µ) (see Subsection

sec:Lp:spacessec:Lp:spaces
1.2.6 for

the definition of L∞(µ)) defines a linear functional Lg : L
1(µ) → F by

Lg(f) :=

∫
X

fg dm

for f ∈ L1(µ) is a bounded linear functional of norm at most M . We will prove in
Section

sec:Lpsec:Lp
4 that the norm of Lg is in fact ∥g∥∞, and every bounded linear functional on

L1(m) is of this type (at least when m is σ-finite). □

Example 2.9. A regular Borel measure µ on a locally compact set X such that µ(K) <
∞ for compact subsets of X determines a linear functional λ : Cc(X) → F by

λ(f) = λµ(f) =

∫
X

f dµ.

An f ∈ Cc(X) is a positive function (really non-negative), written f ≥ 0, if f(x) ≥ 0
for all x ∈ X. The linear functional λµ is a positive linear functional in the sense that if
f ∈ Cc(X) is positive, then λµ(f) ≥ 0.

As a second example, let X = [0, 1] and note that the mapping I : C([0, 1]) → C
defined by

I(f) =

∫ 1

0

f dx,

where the integral is in the Riemann sense, is a positive linear functional on C([0, 1]).

END Monday 2025-01-13

thm:RM+ Theorem 2.10 (Riesz-Markov Representation Theorem: positive version). Let X = (X, τ)
be a locally compact Hausdorff space. If λ : Cc(X) → C is a positive linear functional,
then there exists a unique Borel measure µ on the Borel σ-algebra BX , such that

λ(f) =

∫
f dµ

for f ∈ Cc(X). Moreover, µ is regular in the sense that

(i) if K ⊆ X is compact, then µ(K) <∞;
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(ii) if E ∈ BX , then µ(E) = inf{µ(U) : E ⊆ U, U open}; and
(iii) if E ∈ BX and µ(E) <∞, then µ(E) = sup{µ(K) : K ⊆ E, K compact}.

Remark 2.11. In general elements of Cc(X)∗ correspond to signed measures that will
appear later in these notes. □

2.2. Continuous linear functionals. For linear functionals, we can add to the list of
equivalent conditions of Proposition

prop:bdd-iff-cnsprop:bdd-iff-cns
1.32. In particular, the proof of the equivalence of

items (
i:bdd-lf:ai:bdd-lf:a
a) and (

i:bdd-lf:ci:bdd-lf:c
c) in Proposition

prop:bdd-lf-iff-cnsprop:bdd-lf-iff-cns
2.12 requires a map into the scalar field.

prop:bdd-lf-iff-cns Proposition 2.12. If X is a normed vector space and if λ : X → F is a non-zero (not
identically zero) linear functional , then the following are equivalent.

i:bdd-lf:a (a) λ is continuous;
i:bdd-lf:b (b) λ is bounded;
i:bdd-lf:c (c) kerλ is closed;
i:bdd-lf:d (d) kerλ ̸= X .

Proof. Items (
i:bdd-lf:ai:bdd-lf:a
a) and (

i:bdd-lf:bi:bdd-lf:b
b) are equivalent by Proposition

prop:bdd-iff-cnsprop:bdd-iff-cns
1.32 and it is evident that item (

i:bdd-lf:ai:bdd-lf:a
a)

implies item (
i:bdd-lf:ci:bdd-lf:c
c).

Suppose item (
i:bdd-lf:bi:bdd-lf:b
b) does not hold. Thus, there exists a sequence (fn) from X such

that ∥fn∥ ≤ 1, but |λ(fn)| ≥ n. Choose e ∈ X with λ(e) = 1 and let

hk = e − fn
λ(fn)

and note that (hk) converges to e but λ(hk) = 0 for all k. Thus (hk) is a sequence from
kerλ that converges to a point not in kerλ. Thus item (

i:bdd-lf:ci:bdd-lf:c
c) implies item (

i:bdd-lf:bi:bdd-lf:b
b).

Since kerλ ̸= V (since λ is not the zero map), item (
i:bdd-lf:ci:bdd-lf:c
c) implies item (

i:bdd-lf:di:bdd-lf:d
d). Now

suppose item (
i:bdd-lf:ci:bdd-lf:c
c) does not hold. Thus there exists an f ̸∈ kerλ and a sequence (fn)

from kerλ that converges to f. Without loss of generality, λ(f) = 1. Given g ∈ X , the
sequence

gn = (g − λ(g)f) + λ(g) fn

converges to g and λ(gn) = 0. Thus g ∈ kerλ and we conclude X = kerλ. □

Remark 2.13. Note that Proposition
prop:bdd-lf-iff-cnsprop:bdd-lf-iff-cns
2.12 remains true with λ−1({a}) in place of kerλ,

for any choice of a ∈ F. For instance, in the proof that item (
i:bdd-lf:ci:bdd-lf:c
c) implies item (

i:bdd-lf:bi:bdd-lf:b
b), simply

require λ(e) = a + 1 instead of λ(e) = a/ In the proof that item (
i:bdd-lf:di:bdd-lf:d
d) implies item (

i:bdd-lf:ci:bdd-lf:c
c),

suppose the sequence (fn) converges to f and λ(fn) = a, but λ(fn) = b ̸= a. In this

case, given g ∈ X , let gn = (g − cf) + cfn < where c = a−λ(g)
a−b . The details are left as an

exercise.

As a corollary, Proposition
prop:bdd-lf-iff-cnsprop:bdd-lf-iff-cns
2.12 extends to linear maps from a normed space X into

a finite dimensional normed space as an easy argument shows.
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If X is infinite dimensional, the result is false. Just choose a basis B for X and
let B0 = {b1, b2, . . . } denote a countable subset of B. Define L : X → X by declaring
L(bn) = n bn and L(b) = b for b ∈ B \ B0 and extend by linearity. Thus L is one-one so
that kerL = {0} is closed, but L is not bounded (and so not continuous). □

We close this subsection with the following result that should be compared with
item (

eg:finite:dim:continuouseg:finite:dim:continuous
a) from Subsection

sec:bounded-operator-examplessec:bounded-operator-examples
1.4 followed by an example.

p:disc:linfun Proposition 2.14. If V is an infinite dimensional normed vector space, then there ex-
ists a linear map f : V → F that is not continuous.

For a Banach space X , there are notions of a basis that reference the norm. For
instance, a Schauder basis for X is a sequence (en)

∞
n=1 such that for each x ∈ X there

exists a unique choice of scalars xn ∈ F such that the series
∑∞

n=1 xnen converges to
x. Forgetting the norm structure, a Hamel basis B ⊆ X for X is a basis in the sense
of linear algebra. Explicitly, letting F00(B) denote the functions a : B → F such that
ab = a(b) is zero for all but finitely many b ∈ B, the set B is a Hamel basis for X if for
each v ∈ X there exist is a unique function a ∈ F00(B) such that

v =
∑
b∈B

ab b =
finite∑
b∈B

ab b.

In this case any choice of c : B → F determines uniquely a linear functional λ : X → F
via the rule

λ(v) =
∑
b∈B

cb ab,

where cb = c(b). Often this process is described informally as: let λ(b) = c(b) and extend
by linearity. Finally, an argument using Zorn’s Lemma, which we will soon encounter
in the proof of the Hahn-Banach Theorem, shows that every vector space has a basis.
While it is true that every basis for a vector space V has the same cardinality, all that
we need to make sense of the statement V is an infinite dimensional vector space is the
fact that V has a basis that is infinite, then all bases for V are infinite, which is an
immediate consequence of the fact that all bases for a finite dimensional vector space
have the same cardinality. Thus, we can take the statement X is infinite dimensional
to mean that X has a Hamel basis B that contains a countable set B0.

Proof of Proposition
p:disc:linfunp:disc:linfun
2.14. Let B denote a Hamel basis for V. By assumption, B has a

countable subset B0. Write B0 = {b1, b2, . . . } (so choose a bijection ψ : N → B0) and
assume, without loss of generality that ∥bj∥ = 1. Let λ : V → F denote the linear
functional determined by λ(bj) = j for bj ∈ B0 and λ(b) = 0 for b ∈ B \B0 and observe
that λ is not bounded. □

Example 2.15. Let X denote an infinite dimensional normed vector space and suppose
f : X → F denote a discontinuous linear functional. An exercise shows that f−1({1}) =
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X in addition to ker f = X (see Proposition
prop:bdd-lf-iff-cnsprop:bdd-lf-iff-cns
2.12). Let U = {f ≤ 0} ⊆ kerλ and note

V = X \ U = {f > 0} ⊇ f−1({1}). Now U and V are disjoint convex sets such that
X = U ∪ V and U = X = V .

2.3. The Hahn-Banach Extension Theorem. To state and prove the Hahn-Banach
Extension Theorem, we first work in the setting F = R, then extend the results to the
complex case.

Definition 2.16. Let X be a real vector space. A Minkowski functional is a function
p : X → R such that p(x + y) ≤ p(x) + p(y) and p(λx) = λp(x) for all x, y ∈ X and
nonnegative λ ∈ R.

For examples, if L : X → R is any linear functional, then the function p : X → R
defined by p(x) := |L(x)| is a Minkowski functional; and if ∥ · ∥ is a seminorm on X ,
then p : X → R defined by p(x) = ∥x∥ is a Minkowski functional.

thm:r-hb Theorem 2.17 (The Hahn-Banach Extension2 Theorem, real version). Let X denote a
real vector space, p a Minkowski functional on X , and M a subspace of X . If L is a
linear functional on M such that L(x) ≤ p(x) for all x ∈ M, then there exists a linear
functional L′ on X such that

(i) L′|M = L (L′ extends L)
(ii) L′(x) ≤ p(x) for all x ∈ X (L′ is dominated by p).

Remark 2.18. In the statement of Theorem
thm:r-hbthm:r-hb
2.17, X is a vector space, not a normed vec-

tor space and correspondingly M is a subspace in the sense of linear algebra (sometimes
referred to as a linear manifold). □

The proof will invoke Zorn’s Lemma, a result that is equivalent to the axiom of
choice (as well as the well-ordering principle and the Hausdorff maximality principle).
A partial order ⪯ on a set S is a relation that is reflexive, symmetric and transitive;
that is, for all x, y, z ∈ S

(i) x ⪯ x,
(ii) if x ⪯ y and y ⪯ x, then x = y, and
(iii) if x ⪯ y and y ⪯ z, then x ⪯ z.

We call S, or more precisely (S,⪯), a partially ordered set or poset . A subset T of
S is totally ordered , if for each x, y ∈ T either x ⪯ y or y ⪯ x. A totally ordered subset
T is often called a chain. An upper bound z for a chain T is an element z ∈ S such that
t ⪯ z for all t ∈ T . A maximal element for S is a w ∈ S that has no successor; that is
there does not exist an s ∈ S such that s ̸= w and w ⪯ s. An upper bound for a subset
A of S is an element s ∈ S such that a ⪯ s for all a ∈ A.

Theorem 2.19 (Zorn’s Lemma). Suppose S is a partially ordered set. If every chain in
S has an upper bound, then S has a maximal element.
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END Wednesday 2025-01-15

The following Lemma is at the heart of the proof of Theorem
thm:r-hbthm:r-hb
2.17.

l:r-hb Lemma 2.20. With the hypotheses of Theorem
thm:r-hbthm:r-hb
2.17, if x ∈ X \M, then the conclusion

of Theorem
thm:r-hbthm:r-hb
2.17 holds with the subspace M+ Rx in place of X .

Proof. For any m1,m2 ∈ M, by hypothesis,

L(m1) + L(m2) = L(m1 +m2) ≤ p(m1 +m2) ≤ p(m1 − x) + p(m2 + x).

Rearranging gives, for m1,m2 ∈ M,

L(m1)− p(m1 − x) ≤ p(m2 + x)− L(m2)

and thus

sup
m∈M

{L(m)− p(m− x)} ≤ inf
m∈M

{p(m+ x)− L(m)}.

Now choose any real number λ satisfying

sup
m∈M

{L(m)− p(m− x)} ≤ λ ≤ inf
m∈M

{p(m+ x)− L(m)}.

In particular, for m ∈ M,

L(m)−λ ≤ p(m− x)

L(m)+λ ≤ p(m+ x).
eq:chooseleq:choosel (8)

Let N = M + Rx and define L′ : N → R by L′(m + tx) = L(m) + tλ for m ∈ M
and t ∈ R. Thus L′ is linear and agrees with L on M by definition. Moreover, by
construction and equation

eq:chooseleq:choosel
8,

L(m− x) ≤ p(m− x)

L(m+ x) ≤ p(m+ x).
eq:choosel-alteq:choosel-alt (9)

We now check that L′(y) ≤ p(y) for all y ∈ M + Rx. Accordingly, suppose y ∈ N
so that there exists m ∈ M and t ∈ R such that y = m + tx. If t = 0 there is nothing
to prove. If t > 0, then, in view of the second inequality of equation (

eq:choosel-alteq:choosel-alt
9),

L′(y) = L′(m+ tx) = t
(
L(
m

t
) + λ

)
≤ t p(

m

t
+ x) = p(m+ tx) = p(y)

and a similar estimate, using the first inequality of equation (
eq:choosel-alteq:choosel-alt
9), shows that

L′(m+ tx) ≤ p(m+ tx)

for t < 0. We have thus successfully extended L to a linear map L′ : N → R satisfying
L′(n) ≤ p(n) for all n ∈ N and the proof is complete. □

We make one further observation before turning to the proof of the Hahn-Banach
Theorem. If T is a totally ordered set and (Nα)α∈T are subspaces of a vector space X
that are nested increasing in the sense that Nα ⊆ Nβ for α ⪯ β, then N = ∪α∈TNα is
again a subspace of X . By contrast, if X is a normed vector space and Nα are (closed)
subspaces of X , then N will not necessarily be a (closed) subspace of X .
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Proof of Theorem
thm:r-hbthm:r-hb
2.17. Let L denote the set of pairs (L′,N ) where N is a subspace of

X containing M, and L′ is an extension of L to N obeying L′(y) ≤ p(y) on N . Declare
(L′

1,N1) ⪯ (L′
2,N2) if N1 ⊆ N2 and L

′
2|N1 = L′

1. This relation ⪯ is a partial order on L;
that is (L,⪯) is a partially ordered set. Further, Lemma

l:r-hbl:r-hb
2.20 says if (L′,N ) is maximal

element, then N = X .
An exercise shows, given any increasing chain (L′

α,Nα) in L has as an upper bound
(L′,N ) in L, where N :=

⋃
αNα and L′(nα) := L′

α(nα) for nα ∈ Nα. By Zorn’s Lemma
the collection L has a maximal element (L′,N ) with respect to the order ⪯ and the
proof is complete. □

The use of Zorn’s Lemma in the proof of Theorem
thm:r-hbthm:r-hb
2.17 is a typical - one knows how

to carry out a construction one step a time, but there is no clear way to do it all at once.
As an exercise, use Zorn’s Lemma to prove that if V Is a vectors space and S ⊆ V is a
linearly independent set, then there is a basis B for V such that B ⊇ S.

In the special case that p is a seminorm, since L(−x) = −L(x) and p(−x) = p(x)
the inequality L ≤ p is equivalent to |L| ≤ p.

cor:r-hb Corollary 2.21. Suppose X is a real normed vector space, M is a subspace of X , and
L is a bounded linear functional on M. If C ≥ 0 and |L(x)| ≤ C∥x∥ for all x ∈ M,
then there exists a bounded linear functional L′ on X extending L such that ∥L′∥ ≤ C.

Proof. Apply the Hahn-Banach theorem with the Minkowski functional p(x) = C∥x∥.
□

Before obtaining further corollaries, we extend Thoerem
thm:r-hbthm:r-hb
2.17 to complex normed

spaces. First, if X is a vector space over C, then trivially it is also a vector space over
R, and there is a simple relationship between the R- and C-linear functionals.

prop:complexify Lemma 2.22. Let X be a vector space over C.

(a) If L : X → C is a C-linear functional, then u(x) = realL(x) defines an R-linear
functional on X and L(x) = u(x)− iu(ix).

(b) Conversely, if u : X → R is R-linear then L(x) := u(x)− iu(ix) is C-linear.
(c) If L : X → C is a C-linear functional, p : X → R is a seminorm, and u = realL,

then |u(x)| ≤ p(x) for all x ∈ X if and only if |L(x)| ≤ p(x) for all x ∈ X .

Proof. Problem
prob:complexifyprob:complexify
2.5.

To prove the last statement, it is immediate that |u(x)| ≤ |L(x)| for all x ∈ X .

Conversely, given x there is a unimodular3— α such that αL(x) = |L(x)|. Hence,

|L(x)| = L(αx) = |u(αx)| ≤ p(αx) = |α| p(x) = p(x). □

3a complex number z is unimodular if |z| = 1.
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r:c-hb:no-minkowski Remark 2.23. Note that in passing from the real to the complex case, we must give
up the generality of a Minkowski functional and instead content ourselves with the
seminorm p.

END Friday 2025-01-17

thm:c-hb Theorem 2.24 (The Hahn-Banach Theorem, complex version). Let X denote a com-
plex vector space, p a seminorm on X , and M a subspace of X . If L : M → C is a
C-linear functional satisfying |L(x)| ≤ p(x) for all x ∈ M, then there exists a C-linear
functional L′ : X → C such that

(i) L′|M = L and
(ii) |L′(x)| ≤ p(x) for all x ∈ X .

Sketch of proof. Using the Lemma
prop:complexifyprop:complexify
2.22 and its notation: The proof consists of applying

the real Hahn-Banach theorem (Corollary
cor:r-hbcor:r-hb
2.21) to the R-linear functional u = ReL to

obtain a real linear functional u′ : X → R extending u and satisfying u′(x) ≤ p(x) for all
x ∈ X . The resulting complex functional L′ associated to u′ is then a desired extension
of L. The details are left as an exercise. □

The following corollaries are quite important, and when the Hahn-Banach theorem
is applied it is usually in one of the following forms:

cor:hb-cor Corollary 2.25. Let X be a normed vector space over F (either R or C).

it:HB (i) If M ⊆ X is a subspace and L : M → F is a bounded linear functional, then there
exists a bounded linear functional L′ : X → F such that L′|M = L and ∥L′∥ = ∥L∥.

i:HB:ii (ii) (Linear functionals detect norms) If x ∈ X is nonzero, there exists L ∈ X ∗ with
∥L∥ = 1 such that L(x) = ∥x∥.

i:HB:iii (iii) (Linear functionals separate points) If x ̸= y in X , there exists L ∈ X ∗ such that
L(x) ̸= L(y).

i:HB:iv (iv) (Linear functionals detect distance to subspaces) If M ⊆ X is a closed subspace
and x ∈ X \M, there exists L ∈ X ∗ such that
(a) L|M = 0;
(b) ∥L∥ = 1; and
(c) L(x) = dist(x,M) = infy∈M ∥x− y∥ > 0.

i:HB:v (v) if L is a linear submanifold of X and x ∈ X , then x ∈ L if and only if λ(x) = 0
for every λ ∈ X ∗ for which L ⊆ kerλ.

Proof. To prove item (
it:HBit:HB
i) consider the (semi)norm p(x) = ∥L∥ ∥x∥. By construction,

|L(x)| ≤ p(x) for x ∈ M. Hence, there is a linear functional L′ on X such that
L′|M = L and |L′(x)| ≤ p(x) for all x ∈ X . In particular, ∥L′∥ ≤ ∥L∥. On the other
hand, ∥L′∥ ≥ ∥L∥ since L′ agrees with L on M.
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For item (
i:HB:iii:HB:ii
ii), let M be the one-dimensional subspace of X spanned by x. Define a

functional L : M → F by L(t x
∥x∥) = t. In particular, |L(y)| = ∥y∥ for y ∈ M and thus

∥L∥ = 1. By (i), the functional L extends to a functional (still denoted L) on X such
that ∥L∥ = 1.

An application of item (
i:HB:iii:HB:ii
ii) to the vector x− y proves item (

i:HB:iiii:HB:iii
iii).

To prove item (
i:HB:ivi:HB:iv
iv), let δ = dist(x,M). Since M is closed, δ > 0. Define a functional

L : M+ Fx→ F by L(y + tx) = tδ for y ∈ M and t ∈ F. Since for t ̸= 0 and y ∈ M,

∥y + tx∥ = |t|∥t−1y + x∥ ≥ |t|δ = |L(y + tx)|,
by Hahn-Banach we can extend L to a functional L ∈ X ∗ with ∥L∥ ≤ 1.

Let M = L. Thus M is a closed subspace of X . If λ ∈ X ∗ and L ⊆ kerλ, then, by
continuity, M ⊆ kerλ proving one direction of item (

i:HB:vi:HB:v
v). For the remaining direction,

apply item (
i:HB:ivi:HB:iv
iv) to x ∈ X \M to obtain a λ ∈ X ∗ such that M ⊆ kerλ, but λ(x) ̸= 0. □

2.4. The bidual and reflexive spaces. Note that since X ∗ is a normed space, we
can form its dual, denoted X ∗∗, and called the bidual or double dual of X . There is
a canonical relationship between X and X ∗∗. Each fixed x ∈ X gives rise to a linear
functional x̂ : X ∗ → F via evaluation,

x̂(L) := L(x).

Since |x̂(L)| = |L(x)| ≤ ∥L∥ ∥x∥, the linear functional x̂ is in X ∗∗ and ∥x̂∥ ≤ ∥x∥.

Corollary 2.26. (Embedding in the bidual) The map x→ x̂ is an isometric linear mapcor:embedinXss
from X into X ∗∗.

Proof. First, from the definition we see that

|x̂(L)| = |L(x)| ≤ ∥L∥∥x∥
so x̂ ∈ X ∗∗ and ∥x̂∥ ≤ ∥x∥. It is straightforward to check (recalling that the L’s are
linear) that the map x → x̂ is linear. Finally, to show that ∥x̂∥ = ∥x∥, fix a nonzero
x ∈ X . From Corollary

cor:hb-corcor:hb-cor
2.25(

it:HBit:HB
i) there exists L ∈ X ∗ with ∥L∥ = 1 and L(x) = ∥x∥. But

then for this x and L, we have |x̂(L)| = |L(x)| = ∥x∥ so ∥x̂∥ ≥ ∥x∥, and the proof is
complete. □

Definition 2.27. A Banach space X is called reflexive if the map ˆ : X → X ∗∗ is
surjective.

In other words, X is reflexive if the mapˆ is an (isometric) isomorphism of X with
X ∗∗. For example, every finite dimensional Banach space is reflexive (Problem

prob:findim-reflexiveprob:findim-reflexive
2.6).

Reflexive spaces often have nice properties. For instance, the distance from a point to a
(closed) subspace is attained.

Needless to say, the proof of the Hahn-Banach theorem is thoroughly non-constructive,
and in general it is an important (and often difficult) problem, given a normed space X ,
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to find some concrete description of the dual space X ∗. Usually doing so means finding
a Banach space Y and a bounded (or, better, isometric) isomorphism T : Y → X ∗.

Example 2.28. Recall ℓ1 = c∗0 isometrically and ℓ∞ = (ℓ1)∗ isometrically by Proposi-
tions

prop:dual-of-c0prop:dual-of-c0
2.5 and

prop:dual-of-ell1prop:dual-of-ell1
2.7 Moreover it is straightfowrard to show that under the identification of

Corollary
cor:embedinXsscor:embedinXss
2.26, the canonical map c0 → c∗∗0 corresponds to the natural inclusion of c0

into ℓ∞. Since c0 is separable, but ℓ∞ is not, c0 is not reflexive.

Example 2.29 (Banach Limits). The set

c =

{
f : N → F

∣∣∣∣ limn→∞
f(n) exists

}
,

is a subspace of ℓ∞. The function L : c→ F defined by

L(f) = lim
n
f(n)

is a linear functional and it satisfies |L(f)| ≤ ∥f∥∞. Hence L is continuous and ∥L∥ ≤ 1.
On the other hand, letting o : N → F denote the function that is constantly equal to
1, we see 1 = |L(0)| = ∥o∥. Hence ∥L∥ = 1. Thus, by the Hahn-Banach Extension
Theorem, L extends to a bounded linear functional on all of ℓ∞ of norm 1. Any such
extension of L is a Banach limit .

By example
eg:dual:l-inftyeg:dual:l-infty
2.6, elements λ ∈ (ℓ1)∗ are precisely of the form Lf for some f ∈ ℓ∞,

where Lf (g) =
∑
f(n)g(n) for g ∈ ℓ1. Thus g ∈ ℓ1 thus determines an element ĝ in

(ℓ1)∗∗ by

ĝ(f) = Lf (g).

Let on : N → F denote the function on(j) = 0 for j ≤ n and on(j) = 1 for j > n and
observe,

ĝ(on) =
∞∑

j=n+1

g(n)

and L(on) = 1 for all n (where L is a Banach limit). It follows that L ̸= ĝ and therefore
the natural embedding of ℓ1 into (ℓ1)∗∗ = (ℓ∞)∗ is not onto.

In fact more is true. Namely, there is no isometric isomorphism between ℓ1 and
(ℓ∞)∗. As an outline of a proof, show, if X is a normed vector space and X ∗ is separable,
then X is also separable. This fact, applied to ℓ∞, shows (ℓ∞)∗ is not separable. Since
ℓ1 is separable, the result follows. □

END Monday 2025-01-24

Remark 2.30. After we have studied the Lp and ℓp spaces in more detail, we will see
that Lp is reflexive for 1 < p <∞.

We note in passing that if X is reflexive, then its dual X ∗ has a unique predual:
that is, if Y is another Banach space and Y∗ is isometrically isomorphic to X ∗, then
in fact Y is isometrically isomorphic to X . However this conclusion can fail when X
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is not reflexive; for example it turns out that ℓ1 does not have a unique predual. See
Problems

prob:reflexivity-and-dualsprob:reflexivity-and-duals
2.10 and

prob:nonunique-predualprob:nonunique-predual
2.15. □

The embedding into the bidual has many applications; one of the most basic is the
following.

prop:complete-a-space Proposition 2.31 (Completion of normed spaces). If X is a normed vector space, then
there is a Banach space X and an isometric linear map ι : X → X such that the image
ι(X ) is dense in X .

Proof. Embed X into X ∗∗ via the map x → x̂ and let X be the closure of the image of
X in X ∗∗. Since X is a closed subspace of a complete space, it is complete. □

The space X is called the completion of X . It is unique in the sense that if Y is
another Banach space and j : X → Y embeds X isometrically as a dense subspace of Y ,
then Y is isometrically isomorphic to X . The proof of this fact is left as an exercise.

2.5. Dual spaces and adjoint operators. [Optional] Let X ,Y be normed spaces
with duals X ∗,Y∗. If T : X → Y is a linear transformation and f : Y → F is a linear
functional, then T ∗f : X → F defined by

eqn:adjoint-defeqn:adjoint-def (10) (T ∗f)(x) = f(Tx)

is a linear functional on X . If T and f are both continuous (that is, bounded) then the
composition T ∗f is bounded, and more is true:

thm:adjointmap Theorem 2.32. Let T : X → Y be a bounded linear transformation. The function
T ∗ : Y∗ → X ∗ defined, for f ∈ Y∗, . Then:

(i) For f ∈ Y∗ the function T ∗f defined by the formula (
eqn:adjoint-defeqn:adjoint-def
10) is in X ∗.

it:Tstarf (ii) The mapping T ∗ : Y∗ → X ∗ is a bounded linear map with ∥T ∗∥ = ∥T∥.

Proof. Since T is assumed bounded, for a fixed f ∈ Y∗ and all x ∈ X
|T ∗f(x)| = |f(Tx)| ≤ ∥f∥∥Tx∥ ≤ ∥f∥∥T∥∥x∥.

It follows that T ∗f is bounded on X (thus, belongs to X ∗) and

eq:Tstarboundedeq:Tstarbounded (11) ∥T ∗f∥ ≤ ∥f∥∥T∥.
Thus T ∗ maps Y∗ into X ∗ and it is straightforward to verify that T ∗ is linear. Moreover,
the inequality of equation (

eq:Tstarboundedeq:Tstarbounded
11) also shows that T ∗ is bounded and ∥T ∗∥ ≤ ∥T∥.

It remains to show ∥T ∗∥ ≥ ∥T∥. Toward this end, let 0 < ϵ < 1 be given and choose
x ∈ X with ∥x∥ = 1 and ∥Tx∥ > (1 − ϵ)∥T∥. Now consider Tx. By the Hahn-Banach
Theorem (Corollary

cor:hb-corcor:hb-cor
2.25(

it:HBit:HB
i)), there exists f ∈ Y∗ such that ∥f∥ = 1 and f(Tx) = ∥Tx∥.

For this f ,

∥T ∗∥ ≥ ∥T ∗f∥ ≥ |T ∗f(x)| = |f(Tx)| = ∥Tx∥ > (1− ϵ)∥T∥.
Hence, ∥T ∗∥ ≥ (1− ϵ)∥T∥. Since ϵ was arbitrary, ∥T ∗∥ ≥ ∥T∥. □
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END Monday 2025-01-27 also covered Proposition
prop:bdd-lf-iff-cnsprop:bdd-lf-iff-cns
2.12

2.6. Duality for Sub and Quotient Spaces. [Optional. Not covered Spring 2025]
The Hahn-Banach Theorem allows for the identification of the duals of subspaces and
quotients of Banach spaces. Informally, the dual of a subspace is a quotient and the dual
of a quotient is a subspace. The precise results are stated below for complex scalars, but
they hold also for real scalars.

Given a (closed) subspace M of the Banach space X , let π denote the map from X
to the quotient X/M. Recall (see Problem

prob:quotient-normprob:quotient-norm
1.22), the quotient is a Banach space with

the norm,

∥z∥ = inf{∥y∥ : π(y) = z}.
In particular, if x ∈ X , then

∥π(x)∥ = inf{∥x−m∥ : m ∈ M}.

It is evident from the construction that π is continuous and ∥π∥ ≤ 1. Further, by
Problem

prob:FRiesz-lemmaprob:FRiesz-lemma
1.20 (or see Proposition

prop:pi-starprop:pi-star
2.33 below) if M is a proper (closed) subspace, then

∥π∥ = 1. In particular, π∗ : (X/M)∗ → X ∗ (defined by π∗λ = λ ◦ π) is also continuous.
Moreover, if x ∈ M, then

π∗λ(x) = λ(π(x)) = 0.

Let

M⊥ = {f ∈ X ∗ : f(x) = 0 for all x ∈ M}.
(M⊥ is called the annihilator of M in X ∗.) Recall, given x ∈ X , the element x̂ ∈ X ∗∗

is defined by x̂(τ) = τ(x), for τ ∈ X ∗. In particular,

M⊥ = ∩x∈M ker(x̂)

and thus M⊥ is a closed subspace of X ∗. Further, if λ ∈ (X/M)∗, then π∗λ ∈ M⊥.

prop:pi-star Proposition 2.33 (The dual of a quotient). The mapping ψ : (X/M)∗ → M⊥ defined
by

ψ(λ) = π∗λ

is an isometric isomorphism; i.e., the mapping π∗ : (X/M)∗ → X ∗ is an isometric
isomorphism onto M⊥.

Informally, the proposition is expressed as (X/M)∗ = M⊥.

Proof. The linearity of ψ follows from Theorem
thm:adjointmapthm:adjointmap
2.32 as does ∥ψ∥ = ∥π∥ ≤ 1. To prove

that ψ is isometric, let λ ∈ (X/M)∗ be given. Automatically, ∥ψ(λ)∥ ≤ ∥λ∥. To prove
the reverse inequality, fix r > 1. Let q ∈ X/M with ∥q∥ = 1 be given. There exists an
x ∈ X such that ∥x∥ < r and π(x) = q. Hence,

|λ(q)| = |λ(π(x))∥ = ∥ψ(λ)(x)∥ ≤ ∥ψ(λ)∥ ∥x∥ < r∥ψ(λ)∥.
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Taking the supremum over such q shows ∥λ∥ ≤ r∥ψ(λ)∥. Finally, since 1 < r is arbitrary,
∥λ∥ ≤ ∥ψ(λ)∥.

To prove that ψ is onto, and complete the proof, let τ ∈ M⊥ be given. Fix q ∈ X/M.
If x, y ∈ X and π(x) = q = π(y), then τ(x) = τ(y). Hence, the mapping λ : X/M → C
defined by λ(q) = τ(x) is well defined. That λ is linear is left as an exercise. To see that
λ is continuous, observe that

|λ(q)| = |τ(x)| ≤ ∥τ∥ ∥x∥,

for each x ∈ X such that π(x) = q. Taking the infimum over such x gives shows

|λ(q)| ≤ ∥τ∥ ∥q∥.

Finally, by construction ψ(λ) = τ. □

Since M⊥ is closed in X ∗, the quotient space X ∗/M⊥ is a Banach space. Let
ρ : X ∗ → X ∗/M⊥ denote the quotient mapping. Suppose λ ∈ M∗. By Corollary

cor:hb-corcor:hb-cor
2.25,

there is an f ∈ X ∗ such that f |M = λ; that is f is a bounded extension of λ (and
indeed f can be chosen such that ∥f∥ = ∥λ∥). If f and g are two extensions of λ to
bounded linear functionals on X ∗, then f(x)− g(x) = 0 for x ∈ M. Hence f − g ∈ M⊥

or equivalently, ρ(f) = ρ(g). Consequently, the mapping φ : M∗ → X ∗/M⊥ defined
by φ(λ) = ρ(f) (where f is any bounded extension of λ to X ) is well defined. It is
easily verified that φ is linear. Further, given q ∈ X ∗/M⊥, there is an f ∈ X ∗ such that
ρ(f) = q. In particular, with λ = f |M we have φ(λ) = ρ(f). Therefore φ is onto.

Proposition 2.34 (The dual of a subspace). The mapping φ : M∗ → X ∗/M⊥ is an
isometric isomorphism.

Proof. It remains to show that φ is an isometry, a fact that is an easy consequence of the
Hahn-Banach Theorem. Fix λ ∈ M∗ and let q = φ(λ). If f is any bounded extension
of λ to X ∗, then ∥f∥ ≥ ∥λ∥. Hence,

∥φ(λ)∥ =∥q∥
= inf{∥f∥ : f ∈ X ∗, ρ(f) = q}
= inf{∥f∥ : f ∈ X ∗, f |M = λ}
≥∥λ∥.

On the other hand, by the Hahn-Banach Theorem there is a bounded extension g of λ
with ∥g∥ = ∥λ∥. Thus ∥λ∥ ≤ ∥q∥. □

A special case of the following useful fact was used in the proofs above. If X ,Y are
vector spaces and T : X → Y is linear and M is a subspace of the kernel of T , then T

induces a linear map T̃ : X/M → Y . A canonical choice is M = ker(T ) in which case

T̃ is one-one. If X is a Banach space, Y is a normed vector space and M is closed, then
X/M is a Banach space.
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lem:descend to quotient Lemma 2.35. If X is a Banach space, M is a (closed) subspace of ker(T ), Y is a

normed vector space and T : X → Y is continuous, then the mapping T̃ is bounded and

∥T̃∥ = ∥T∥.

Proof. Let π : X → X/M denote the quotient map and observe that T̃ π = T . Since the

quotient map π has norm 1 (see Problem
prob:quotient-normprob:quotient-norm
1.22), we see that ∥T̃∥ ≤ ∥T∥. For the opposite

inequality, let 0 < ϵ < 1 and choose x ∈ X such that ∥x∥ = 1 and ∥Tx∥ > (1 − ϵ)∥T∥.
Then ∥π(x)∥ ≤ 1 and

∥T̃∥ ≥ ∥T̃ π(x)∥ = ∥Tx∥ > (1− ϵ)∥T∥.
Letting ϵ go to zero finishes the proof. □

2.7. Hahn-Banach separation theorems. [Optional. Not covered Spring 2025]

Besides the extension theorem and its corollaries, the other important applications
of the Hahn-Banach theorem consist of various separation theorems. We begin with a
few definitions.

Definition 2.36. Let X be a vector space. A hyperplane in X is a subspace M of
codimension 1. An affine hyperplane is a set of the form x + M ⊆ X, for some fixed
x ∈ X and hyperplane M.

If L : X → F is a nonzero linear functional (bounded or not), the space M = kerL
is a hyperplane, and if we fix any scalar t ∈ F then the set {x ∈ X : L(x) = t} is an affine
hyperplane. Conversely, any hyperplane is the kernel of a nonzero linear functional. (To
see this, observe that if M is a hyperplane in X , then, since it has codimension 1, for
any fixed choice of a vector y ∈ X \M we can write every x ∈ X uniquely as x = m+ ty
with m ∈ M and t ∈ F. Then define L(x) = t.) Consequently, every affine hyperplane
has the form H = {x ∈ X : L(x) = t} for some nonzero linear functional L and some
scalar t.

lem:hyperplane-closed-or-dense Lemma 2.37. If M is a hyperplane in a normed vector space X , then M is either
closed, or dense in X .

Proof. It is easy to check that the closure of subspace of X is again a subspace. It follows
that M is a subspace with M ⊆ M ⊆ X . Since M has codimension 1, we must have
either M = M or M = X . □

prop:L-bdd-kernel-closed Proposition 2.38. Let X be a normed vector space and L : X → F a linear functional.
Then L is continuous (that is, bounded) if and only if kerL is closed. Consequenlty, L
is continuous if and only if there exists a nonempty open set U such that U ∩kerL = ∅.

Proof. Trivially, if L is continuous then kerL is closed. Conversely, suppose M = kerL
is closed. We can then form the quotient space X/M, and since M is a hyperplane
this space is one-dimensional. If we let π denote the quotient map and define L̃ :
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X/M → F by L̃π = L, then the linear functional L̃ is continuous (since its domain is
finite-dimensional), and since the quotient map is also continuous, we conclude that L
is continuous.

The second statement follows by combining the first statement with Lemma
lem:hyperplane-closed-or-denselem:hyperplane-closed-or-dense
2.37.

□

Recall that a set K in a real vector space X is called convex if for every x, y ∈ K and
every 0 ≤ t ≤ 1, we have tx+(1− t)y ∈ K. Let X be a normed vector space over R and
let U ⊆ X be a convex, open set containing 0. We define a function p : X → [0,+∞) by

eqn:gauge-defeqn:gauge-def (12) p(x) = inf{r > 0 :
1

r
x ∈ U}.

(To see that the definition makes sense, observe that since U is open and 0 ∈ U , there
exists δ > 0 so that x ∈ U whenever ∥x∥ < δ. It follows that for every x ∈ X , we

have 1
r
x ∈ U for all r > ∥x∥

δ
; thus the set appearing in the definition is nonempty.) The

functional p is sometimes called a gauge for the set U , it is important because of the
following lemma.

Lemma 2.39. Let X be a normed vector space over R and let U ⊆ X be a convex open
set containing 0. Then the function p defined by (

eqn:gauge-defeqn:gauge-def
12) is a Minkowski functional, and

U = {x ∈ X : p(x) < 1}.

Proof. If r, s > 0 then trivially s
r
x ∈ U if and only if 1

r/s
x ∈ U , and it follows that

p(sx) = sp(x) for all s > 0. Likewise it is immediate from the definition of p that
p(0) = 0, so that p(sx) = sp(x) for all s ≥ 0. Next we show that p(x) < 1 if and only if
x ∈ U : indeed, if x is in U then since U is open, there is a δ > 0 such that (1+ δ)x ∈ U ,
thus p(x) ≤ (1 + δ)−1 < 1. On the other hand if p(x) < 1 then 1

r
x ∈ U for some

0 < r < 1, but then since U is convex and 0 ∈ U , we can write x = r(x
r
)+(1−r) ·0 ∈ U .

Finally, let us show that p(x+ y) ≤ p(x) + p(y). Fix any r, s > 0 such that x
r
and y

s

belong to U . Since U is convex, the convex combination(
r

r + s

)
x

r
+

(
s

r + s

)
y

s
=
x+ y

r + s

belongs to U , so by what was just proved we have p(x+y
r+s

) < 1. By homogeneity we
conclude that p(x + y) < r + s, and finally by taking the infimum over r and s we get
p(x+ y) ≤ p(x) + p(y).

□

Theorem 2.40 (Separation). Let X be a normed vector space over R. If U ⊆ X is a
nonempty, open, convex set, and x ∈ X \U , then there exists a bounded linear functional
L ∈ X ∗ and a real number a such that L(y) < a = L(x) for all y ∈ U .
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Proof. We first assume that 0 ∈ U , the general case will follow by translation. Let
N be the one-dimensional subspace Rx. Define L on N by putting L(x) = 1 and
extending linearly. Let p be the gauge functional for U . Since x /∈ U , we have p(x) ≥ 1,
so 1 = L(x) ≤ p(x). Since both L and p are positive homogeneous, we also have
L(tx) ≤ p(tx) for all t ≥ 0. For t < 0, we have L(tx) < 0 ≤ p(tx) (since p ≥ 0 by
definition). Thus, we have L(y) ≤ p(y) for all y in the subspace N . It follows from the
Hahn-Banach theorem that there exists an extension of L to all of X (still denoted L)
such that L(y) ≤ p(y) for all y ∈ X . It follows that L(x) = 1 and L(y) ≤ p(y) < 1 for
all y ∈ U . To see that this extension L is bounded, let V = U − x; then V is an open
set in X and L(y) < 0 for all y ∈ V , that is, V ∩ kerL = ∅, so by the second part of
Proposition

prop:L-bdd-kernel-closedprop:L-bdd-kernel-closed
2.38 it follows that L is bounded.

Finally, in the case that U does not contain 0, we choose a point x0 ∈ U and apply
the theorem to U ′ := U − x0 and x′ = x− x0, to obtain a bounded functional such that
L(x) = 1 + L(x0) and L(y) < 1 + L(x0) for all y ∈ U ; the details are left to the reader.

□

Lemma 2.41. i) If X is a normed vector space over R, K ⊆ X is a convex set,
and x0 is an interior point of K, then for every x ∈ K and every 0 ≤ t < 1, the
point x0 + t(x− x0) is an interior point of K.

ii) If K is convex then int(K) is convex.
iii) If K is a closed, convex subset of X and K has nonempty interior, then K is

equal to the closure of its interior.
iv) Let K be a closed, convex subset of X and suppose 0 is an interior point of K. If

p is the gauge functional for the convex set U = int(K), then K = {x ∈ X |p(x) ≤
1}.

Proof. For (i), by translation, there is no loss of generality in supposing that x0 = 0.
Fix x ∈ K, and fix δ such that y ∈ K for all ∥y∥ < δ. For 0 ≤ t < 1, put ϵ = (1 − t)δ.
If ∥z − tx∥ < ϵ, then we can write z = tx + y with ∥y∥ < (1 − t)δ. It follows that
∥(1−t)−1y∥ < δ, so y′ = (1−t)−1y belongs to K. We have thus written z = tx+(1−t)y′
with x, y′ ∈ K, so z ∈ K. That is, the open ball B(tx, ϵ) is contained in K.

(ii) follows immediately from (i).

For (iii), since x = lim(x0 + tn(x− x0)) for any sequence tn increasing to 1, we see
that every x ∈ K is a limit of interior points.

For (iv), let p(x) ≤ 1. If p(x) < 1 then x ∈ U and thus x ∈ K. If p(x) = 1, then by
the definiton of p we have tx ∈ U for every 0 ≤ t < 1, so taking a sequence of scalars
tn increasing to 1, we get that x belongs to the closure of U so x ∈ K. Conversely, if
x ∈ K, then by part (i) tx ∈ U for every 0 ≤ t < 1, so p(x) ≤ 1. □

Corollary 2.42 (Strict separation). Let X be a normed vector space over R. If K ⊆ X
is a closed, convex set with nonempty interior, and x ∈ X \K, then there exists a bounded
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linear functional L ∈ X ∗, and real numbers a < b such that L(y) ≤ a < b = L(x) for all
y ∈ K.

Proof. Again we assume that 0 is an interior point of K, and leave the general case to the
reader. Let U = int(K) and let p be the gauge functional for U ; by the lemma we have
K = {x ∈ X |p(x) ≤ 1}. Thus, if x /∈ K, then p(x) > 1. We may then choose a number
0 < t < 1 so that tx /∈ K. Applying the previous separation theorem to U and tx, we
obtain a bounded linear functional L and a real number a such that L(y) < a = L(tx)
for all y ∈ U , we put b := a

t
= L(x). Since L(y) < a on U , and L is continuous, and

K is the closure of U (by item (iii) of the Lemma), we conclude that L(y) ≤ a for all
a ∈ K, which completes the proof. □

2.8. Problems.

prob:dualbasis Problem 2.1. Prove, if X is any normed vector space, {x1, . . . xn} is a linearly indepen-
dent set in X , and α1, . . . αn are scalars, then there exists a bounded linear functional f
on X such that f(xj) = αj for j = 1, . . . n. (Recall linear maps from a finite dimensional
normed vector space to a normed vector space are bounded.)

Problem 2.2. Let X ,Y be normed spaces and T : X → Y a linear transformation.
Prove T is bounded if and only if there exists a constant C such that for all x ∈ X and
f ∈ Y∗,

eqn:bilinear-bdd-probeqn:bilinear-bdd-prob (13) |f(Tx)| ≤ C∥f∥∥x∥;

in which case ∥T∥ is equal to the best possible C in (
eqn:bilinear-bdd-probeqn:bilinear-bdd-prob
13).

Problem 2.3. Let X be a normed vector space. Show that if M is a closed subspace of
X and x /∈ M, then M+ Fx is closed. Use this result to give another proof that every
finite-dimensional subspace of X is closed.

Problem 2.4. Prove, if M is a finite-dimensional subspace of a Banach space X , then
there exists a closed subspace N ⊆ X such that M∩N = {0} and M +N = X . (In
other words, every x ∈ X can be written uniquely as x = y + z with y ∈ M, z ∈ N .)
Hint: Choose a basis x1, . . . xn for M and construct, using Problem

prob:dualbasisprob:dualbasis
2.1 and the Hahn-

Banach Theorem, bounded linear functionals f1, . . . fn on X such that fi(xj) = δij. Now
let N = ∩ni=1ker fi. (Warning: this conclusion can fail badly if M is not assumed finite
dimensional, even if M is still assumed closed. Perhaps the first known example is that
c0 is not complemented in ℓ∞, though it is nontrivial to prove.)

prob:complexify Problem 2.5. Prove Proposition
prop:complexifyprop:complexify
2.22.

prob:findim-reflexive Problem 2.6. Prove every finite-dimensional Banach space is reflexive.

prob:badc0 Problem 2.7. Let B denote the subset of ℓ∞ consisting of sequences which take values
in {−1, 1}. Show that any two (distinct) points of B are a distance 2 apart. Show, if C
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is a countable subset of ℓ∞, then there exists a b ∈ B such that ∥b− c∥ ≥ 1 for all c ∈ C.
Conclude ℓ∞ is not separable. Prove there is no isometric isomorphism Λ : c0 → ℓ∞.

Problem 2.8. [This problem belongs in the section with signed measures] Prove, if µprob:normC(X)star
is a finite regular (signed) Borel measure on a compact Hausdorff space, then the linear
function Lµ : C(X) → R defined by

Lµ(f) =

∫
X

f dµ

is bounded (continuous) and ∥Lµ∥ = ∥µ∥ := |µ|(X). (See the Riesz-Markov Theorem
for positive linear functionals.)

prob:adjoint-facts Problem 2.9. Let X and Y be normed vector spaces and T ∈ L(X ,Y).

a) Consider T ∗∗ : X ∗∗ → Y∗∗. Identifying X ,Y with their images in X ∗∗ and Y∗∗,
show that T ∗∗|X = T .

b) Prove T ∗ is injective if and only if the range of T is dense in Y .
c) Prove that if the range of T ∗ is dense in X ∗, then T is injective; if X is reflexive

then the converse is true.
d) Assuming now that X and Y are Banach spaces, prove that T : X → Y is

invertible if and only if T ∗ is invertible, in which case (T ∗)−1 = (T−1)∗.

prob:reflexivity-and-duals Problem 2.10. a) Prove that if X is reflexive, then X ∗ is reflexive. (Hint: let
ι : X → X ∗∗ be the canonical inclusion; by assumption ι is invertible. Compute
(ι−1)∗.)

b) Prove that if X is reflexive and M ⊆ X is a closed subspace, then M is reflexive.
c) Prove that a Banach space X is reflexive if and only if X ∗ is reflexive.
d) Prove that if X is reflexive and Y is another Banach space with Y∗ isometrically

isomorphic to X ∗, then Y is isometrically isomorphic to X . (This conclusion can
fail if X is not reflexive; see Problem

prob:nonunique-predualprob:nonunique-predual
2.15.)

prob:separable-dual Problem 2.11. Prove, if X is a Banach space and X ∗ is separable, then X is separable.
[Hint: let {fn} be a countable dense subset of X ∗. For each n choose xn such that
∥xn∥ = 1 and |fn(xn)| ≥ 1

2
∥fn∥. Show that the set of Q-linear combinations of {xn} is

dense in X .]

prob:ell-infty-dual Problem 2.12. a) Prove there exists a bounded linear functional L ∈ (ℓ∞)∗ with
the following property: whenever f ∈ ℓ∞ and limn→∞ f(n) exists, then L(f) is
equal to this limit. (Hint: first show that the set of such f forms a subspace
M ⊆ ℓ∞). Such an L is a Banach limit .

b) Show that such a functional L is not equal to Lg for any g ∈ ℓ1; thus the map
T : ℓ1 → (ℓ∞)∗ given by T (g) = Lg is not surjective.

c) Give another proof that T is not surjective, using Problem
prob:separable-dualprob:separable-dual
2.11.

prob:extreme-points-basic Problem 2.13. Let X be a normed space and let K ⊆ X be a convex set. (Recall,
this means that whenever x, y ∈ K, then 1

2
(x+ y) ∈ K; equivalently, tx+ (1− t)y ∈ K
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for all 0 ≤ t ≤ 1.) A point x ∈ K is called an extreme point of K whenever y, z ∈ K,
0 < t < 1, and x = ty+ (1− t)z, then y = z = x. (That is, the only way to write x as a
convex combination of elements of K is the trivial way.)

a) Let X be a normed space and let B = ball(X ) denote the (closed) unit ball of
X . Prove that x ∈ B is not an extreme point of B if and only if there exists a
nonzero y ∈ B such that ∥x± y∥ ≤ 1.

b) Prove that if X and Y are normed spaces, and T : X → Y is a surjective
linear isometry, (so that X and Y are isometrically isomorphic) then T induces
a bijection between the extreme points of ball(X ) and ball(Y).

c) Let ℓpn denote the (real) Banach space Rn equipped with the ℓp norm, 1 ≤ p ≤ ∞.
Prove that ℓ12 and ℓ

∞
2 are isometrically isomorphic, but that there is no isometry

between ℓ13 and ℓ∞3 .

prob:extreme-point-examples Problem 2.14. a) Show that the extreme points of the unit ball of ℓ1 are precisely
the points of the form λen where |λ| = 1 and en is the sequence which is 1 in the
nth entry and 0 elsewhere. (See Problem

prob:extreme-points-basicprob:extreme-points-basic
2.13).

b) Determine the extreme points of the unit ball of ℓ∞.
c) Show that the unit ball of c0 has no extreme points.

prob:nonunique-predual Problem 2.15. Let

c =

{
f : N → F

∣∣∣∣ limn→∞
f(n) exists

}
,

and equip c with the supremum norm ∥f∥∞ := sup |f(n)|.

a) Show that c∗ ∼= ℓ1 isometrically.
b) Prove that c is boundedly isomorphic to c0.
c) Prove that c is not isometrically isomorphic to c0. (Hint: examine the extreme

points of the unit balls of c and c0; see Problems
prob:extreme-points-basicprob:extreme-points-basic
2.13 and

prob:extreme-point-examplesprob:extreme-point-examples
2.14 .)

(This problem provides an example of Banach spaces X and Y such that X and Y are
not isometrically isomorphic, but X ∗ and Y∗ are. So in general we cannot recover X
(isometrically) from X ∗. In fact the situation is worse, ℓ1 has isometric preduals which
are not even boundedly isomorphic to c0, but the construction is more involved and
outside the scope of these notes.)

3. The Baire Category Theorem and applications

This section contains three important applications of the Baire category theorem in
functional analysis. These are the Principle of Uniform boundedness (also known as the
Banach-Steinhaus theorem), the Open Mapping Theorem, and the Closed Graph The-
orem. (In learning these theorems, keep careful track of what completeness hypotheses
are needed.)
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3.1. Baire’s Theorem. Recall, a set D in a metric space X is dense (in X) if D = X.
Lemma

l:pre:bairel:pre:baire
3.1 below should be familiar. We will use the notation B(x, r), for the open ball

of radius r > 0 center to the point x in a metric space X = (X, d)

B(x, r) = {y ∈ X : d(x, y) < r};

and F ◦ for the interior of a subset F of a metric space X.

l:pre:baire Lemma 3.1. Suppose X is a metric space.

(a) For a subset D ⊆ X of X, the following are equivlalent:
(i) D is dense in X;

(ii) Dc does not contain a nonempty open set ((Dc)◦ = ∅;

(iii) if ∅ ̸= U is open, then D ∩ U ̸= ∅.

(b) If U ⊆ X is open and x ∈ U, then there is an r > 0 such that B(x, r) ⊆ U.

(c) A subset F of X is closed with empty interior if and only if F c is open and dense.

thm:baire Theorem 3.2 (The Baire Category Theorem). Suppose X is a complete metric space.

i:baire:a (a) If (Un)
∞
n=1 is a sequence of open dense subsets of X, then ∩∞

n=1Un ̸= ∅.

i:baire:b (b) If (Fn)n is a sequence of closed sets with empty interior, then ∪Fn ̸= X.

rem:baire:1 Remark 3.3. We will actually prove that ∩Un is dense in X. This conclusion is in fact
equivalent to the conclusion that ∩Un ̸= ∅.

Theorem
thm:bairethm:baire
3.2 is true if X is a locally compact Hausdorff space and there are connec-

tions between the Baire Category Theorem and the axiom of choice. □

The following lemma should be familiar from advanced calculus. It will be used in
the proof of Theorem

thm:bairethm:baire
3.2.

lem:weakfip Lemma 3.4. Let X be a complete metric space and suppose (Cn) is a sequence of subsets
of X. If

(i) each Cn is nonempty;
(ii) (Cn) is nested decreasing;
(iii) each Cn is closed; and
(iv) (diam(Cn)) converges to 0,

then there is an x ∈ X such that

{x} = ∩Cn.
Moreover, if (xn) is a sequence from X and xn ∈ Cn for each n, then (xn) converges to
some x.
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Proof of Theorem
thm:bairethm:baire
3.2. The two items are equivalent, but for our purposes it is enough to

show item (
i:baire:ai:baire:a
a) implies item (

i:baire:bi:baire:b
b). To this end, suppose item (

i:baire:ai:baire:a
a) holds, (Fn) is a sequence

of closed sets such that F ◦
n = ∅ for all n and X = ∪Fn. Taking complements, ∅ = ∩F c

n.
By Lemma

l:pre:bairel:pre:baire
3.1, the sets F c

n are open and dense in X by Lemma
l:pre:bairel:pre:baire
3.1. Hence X is not

complete and therefore item (
i:baire:ai:baire:a
a) implies item (

i:baire:bi:baire:b
b). Thus it suffices to prove item (

i:baire:ai:baire:a
a).

To prove item (
i:baire:ai:baire:a
a), let (Un)

∞
n=1 be a sequence of open dense sets inX and let I = ∩Un.

To prove I is dense, it suffices to show that I has nontrivial intersection with every
nonempty open set W by Lemma

l:pre:bairel:pre:baire
3.1. Fix such a W . Since, by Lemma

l:pre:bairel:pre:baire
3.1, U1 is dense,

there is a point x1 ∈ W ∩U1. Since U1 andW are open, there is a radius 0 < r1 < 1 such
that the B(x1, r1) is contained in W ∩ U1 by Lemma

l:pre:bairel:pre:baire
3.1. Similarly, since U2 is dense

and open there is a point x2 ∈ B(x1, r1) ∩ U2 and a radius 0 < r2 <
1
2
such that

B(x2, r2) ⊆ B(x1, r1) ∩ U2 ⊆ W ∩ U1 ∩ U2.

Continuing inductively, since each Un is dense and open there is a sequence of points
(xn)

∞
n=1 and radii 0 < rn <

1
n
such that

B(xn, rn) ⊆ B(xn−1, rn−1) ∩ Un ⊆ W ∩ (∩nj=1Un).

The sequence of sets (B(xn, rn)) satisfies the hypothesis of Lemma
lem:weakfiplem:weakfip
3.4 andX is complete.

Hence there is an x ∈ X such that

x ∈ ∩nB(xn, rn) ⊆ W ∩ I. □

3.2. Category. Baire’s theorem is used as a kind of pigeonhole principle: the “thick”
complete metric space X cannot be expressed as a countable union of “thin” closed sets
without interior.

d:category Definition 3.5. A subset E of a metric space X is nowhere dense (in X) if its closure
has empty interior; that is (E)◦ = ∅.

A set F in a metric space X is first category (or meager) if it can be expressed as a
countable union of nowhere dense sets. In particular, a countable union of first category
sets is first category.

A set G is second category if it is not first category.

cor:baireinaction Corollary 3.6 (The Baire Category Theorem restated). If X is a complete metric space,
then X is not a countable union of nowhere dense sets; that is, X is of second category
in itself.

Proof. Suppose X = ∪∞
n=1En where each En is nowhere dense. It follows that X =

∪∞
n=1Fn, where each Fn = En is closed and with empty interior. Hence, by Theorem

thm:bairethm:baire
3.2

item (
i:baire:bi:baire:b
b), X is not complete. □

Corollary 3.7. An infinite dimensional Banach space can not have a countable basis.
In particular, there is no norm on c00 that makes it a Banach space; ditto for the vector
space of polynomials.
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Proof. The proof is left as an exercise. As a starting point, show, if M is finite dimen-
sional subspace of an infinite dimensional Banach space X , then M is nowhere dense in
X . □

3.3. The Principle of Uniform Boundedness.

thm:pub Theorem 3.8 (The Principle of Uniform Boundedness (PUB)). Suppose X ,Y are normed
spaces and {Tα : α ∈ A} ⊆ B(X ,Y) is a collection of bounded linear transformations
from X to Y. Let B denote the set

eqn:pub-hypeqn:pub-hyp (14) B := {x ∈ X : sup
α

∥Tαx∥ <∞}.

If B is of the second category (thus not a countable union of nowhere dense sets) in X,
then

sup
α

∥Tα∥ <∞.

In particular, if X is complete and if the collection {Tα : α ∈ A} is pointwise bounded,
then it is uniformly bounded.

Proof. For notational convenience, set M(x) = supα ∥Tαx∥ <∞.

For each integer n ≥ 1 consider the set

Vn := {x ∈ X :M(x) > n}.

Since each Tα is continuous (bounded), the sets Vn are open. (Indeed, for each α the map
x→ ∥Tαx∥ is continuous from X to R, so if ∥Tαx∥ > n for some α then also ∥Tαy∥ > n
for all y sufficiently close to x.) Let En denote the complement of Vn and observe that
B = ∪∞

n=1En. Since B is assumed to be of the second category, there is an N such that
(EN)

◦ is not empty. Since EN is closed, it follows that EN has nonempty interior; i.e.,
there is an x0 ∈ EN and r > 0 so that B(x0, r) ⊆ EN . α and every ∥x∥ < r, expressing
x = (x− x0) + x0 as the sum of two elements of B(x0, r) gives

∥Tαx∥ ≤ ∥Tα(x− x0)∥+ ∥Tαx0∥ ≤ N +N.

That is, if ∥x∥ < r, then M(x) ≤ 2N . By rescaling we conclude that if ∥x∥ < 1, then
∥Tαx∥ ≤ 2N/r for all α and thus supα ∥Tα∥ ≤ 2N/r <∞. □

The following result is one of the many corollaries to the PUB.

cor:PUB Corollary 3.9. Suppose X is a Banach space and Y is a normed vector space. If (Tn)
is a sequence of bounded operators Tn : X → Y that converges pointwise to a (necessarily
linear) map T : X → Y , then T is bounded.

Outline of proof. In a metric space, convergent sequences are bounded. Hence (Tnx)n is
bounded in Y for each x ∈ X . Thus the set X = {x ∈ X : sup{∥Tnx∥ : n ∈ N} < ∞}
is of second category in X . Thus C = sup{∥Tn∥ : n ∈ N} < ∞. Thus the proof reduces
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to showing ∥Tx∥ ≤ C∥x∥ for all x ∈ X , a task that is left as an exercise for the gentle
reader. □

3.4. Open mapping. Given a subset B of a vector space X and a scalar s ∈ F, let
sB = {sb : b ∈ B}. Similarly, for x ∈ X , let B − x = {b − x : b ∈ B}. Let X ,Y be
normed vector spaces and suppose T : X → Y is linear. If B ⊆ X and s ∈ F is nonzero,
then T (sB) = sT (B) and further, an easy argument shows T (sB) = s T (B). It is also
immediate that if B is open, then so is B − x.

Recall that if X, Y are topological spaces, a mapping f : X → Y is called open if
f(U) is open in Y whenever U is open in X. In particular, if f is a bijection, then f is
open if and only if f−1 is continuous. In the case of normed linear spaces the condition
that a linear map is open is refined by the Open Mapping Theorem, Theorem

thm:open:mapthm:open:map
3.11 below.

But first a lemma.

lem:translate dilate Lemma 3.10 (Translation and Dilation lemma). Let X ,Y be normed vector spaces, let
B denote the open unit ball of X , and let T : X → Y be a linear map. The following are
equivalent.

i:dil:i (i) The map T is open;
i:dil:ii (ii) T (B) contains an open ball centered at 0;
i:dil:iii (iii) there is an s > 0 such that T (sB) contains an open ball centered at 0; and
i:dil:iv (iv) T (sB) contains an open ball centered at 0 for each s > 0.

In the proof of this lemma and that of Theorem
thm:open:mapthm:open:map
3.11 to follow, we use BX (x, r) and

BY(y, s) to denote the open balls centered to x and y with radii r and s in X and Y
respectively when needed to avoid ambiguity.

Proof. This result is more or less immediate from the fact that, for fixed z0 ∈ X and
r ∈ F, the translation map z → z + z0 and the dilation map z → rz are continuous in a
normed vector space.

The implication item (
i:dil:ii:dil:i
i) implies item (

i:dil:iii:dil:ii
ii) is immediate. The fact that T (sB) =

sT (B) for s > 0 readily shows items (
i:dil:iii:dil:ii
ii), (

i:dil:iiii:dil:iii
iii) and (

i:dil:ivi:dil:iv
iv) are all equivalent.

To finish the proof it suffice to show item (
i:dil:ivi:dil:iv
iv) implies item (

i:dil:ii:dil:i
i). Accordingly, suppose

item (
i:dil:ivi:dil:iv
iv) holds and let U ⊆ X be a given open set. To prove that T (U) is open, let

y ∈ T (U) be given. There is an x ∈ U such that T (x) = y. There is an s > 0 such that
the ball B(x, s) lies in U ; that is B(x, s) ⊆ U . The ball B(0, s) = B(x, s)− x is an open
ball centered to 0. By hypothesis there is an r > 0 such that BY(0, r) ⊆ T (B(0, s)). By
linearity of T ,

BY(y, r) =BY(0, r) + y ⊆ T (B(0, s)) + y

=T (B(0, s)) + T (x) = T (B(0, s) + x) = T (B(x, s)) ⊆ T (U).

Thus T (U) is open and the proof is complete. □
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thm:open:map Theorem 3.11 (Open Mapping). Suppose that X is a Banach space, Y is a normed
vector space and T : X → Y is bounded. If the range of T is of second category, then

i:open:map:i (i) T (X ) = Y;
i:open:map:ii (ii) Y is complete (so a Banach space); and
i:open:map:iii (iii) T is open.

In particular, if X ,Y are Banach spaces, and T : X → Y is bounded and onto, then
T is an open map.

Proof. Assuming T is open and lettingB denote the open unit ball4 in X , by Lemma
lem:translate dilatelem:translate dilate
3.10,

there is an r > 0 such that BY(0, r) ⊆ T (B). Hence,

Y = ∪∞
n=1B

Y(0, n r) ⊆ T (nB) ⊆ T (X ),

so that item (
i:open:map:ii:open:map:i
i) holds. (Here the superscript Y is used to emphasize this ball is in Y .)

That is, item (
i:open:map:iiii:open:map:iii
iii) implies item (

i:open:map:ii:open:map:i
i).

To prove item (
i:open:map:iiii:open:map:iii
iii), let B(x, r) denote the open ball of radius r centered at x in X .

Trivially X =
⋃∞
n=1B(0, n) and thus rangeT = T (X ) =

⋃∞
n=1 T (B(0, n)). Since the

range of T is assumed second category, there is an N such that T (B(0, N)) is second

category and hence somewhere dense. In other words, T (B(0, N)) has nonempty interior.

By scaling (see Lemma (
lem:translate dilatelem:translate dilate
3.10)), T (B(0, 1)) has nonempty interior. Hence, there exists

p ∈ Y and r > 0 such that T (B(0, 1)) contains the open ball BY(p, r). It follows that
for all ∥y∥ < r,

y = (y + p)− p ∈ T (B(0, 1)) + T (B(0, 1)) ⊆ T (B(0, 2)),

where we have used −T (B(0, 1)) = T (B(0, 1)). In other words,

BY(0, r) ⊆ T (B(0, 2)).

By scaling, it follows that, for n ∈ N,

BY(0,
r

2n+1
) ⊆ T (B(0,

1

2n
)).

END Friday 2025-01-31

We will use the hypothesis that X is complete to prove BY(0, r
4
) ⊆ T (B(0, 1)), which,

by Lemma
lem:translate dilatelem:translate dilate
3.10, implies T is open. Accordingly let y such that ∥y∥ < r

4
be given. Since

y is in the closure of T (B(0, 1
2
)), there is a y1 ∈ T (B(0, 1

2
)) such that ∥y−y1∥ < r

8
. Since

y − y1 ∈ BY(0, r
8
) it is is in the closure of T (B(0, 1

4
)). Thus there is a y2 ∈ T (B(0, 1

4
))

such that ∥(y − y1)− y2∥ < r
16
. Continuing in this fashion produces a sequence (yj)

∞
j=1

from Y such that,

(a) ∥y −
∑n

j=1 yj∥ ≤ r
2n+2 ; and

(b) yn ∈ T (B(0, 1
2n
))

4Without a center specified, we take the center as 0.
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for all n. It follows the sequence (sm =
∑m

j=1 yj)m converges to y. Further, for each

j there is an xj ∈ B(0, 1
2j
) such that yj = Txj. Thus, setting tm =

∑m
j=1 xj, we have

Tsm = tm and
∞∑
j=1

∥xj∥ <
∞∑
k=1

2−k = 1,

thus the sequence (tm)m converges to some x with ∥x∥ ≤
∑∞

j=1 ∥xj∥ < 1, that is,

x ∈ B(0, 1). It follows that y = Tx by continuity of T . Consequently y ∈ T (B(0, 1))
and the proof of item (

i:open:map:iiii:open:map:iii
iii) is complete.

To prove item (
i:open:map:iii:open:map:ii
ii), let M denote the kernel of T and T̃ the mapping T̃ : X/M → Y

determined by T̃ π = T ; that is T̃ (π(x)) = T (x) for x ∈ X . By construction T̃ is one-one
and by Lemma

lem:descend to quotientlem:descend to quotient
2.35, it is continuous. Further its range is the same as the range of T ,

namely Y , and is thus second category. Hence, by what has already been proved, T̃ is

an open map. and consequently T̃−1 is continuous. Hence X/M and Y are isomorphic
(though of course not necessarily isometrically isomorphic) as normed vector spaces.
Therefore, since X/M is complete (Proposition

prop:quotient:Banachprop:quotient:Banach
1.29), so is Y . □

Note that the proof of item (
i:open:map:iii:open:map:ii
ii) in the Open Mapping Theorem shows, in the case

that in the case that T is one-one and its range is of second category, that T is onto and
its inverse is continuous. In particular, if T : X → Y is a continuous bijection and Y is
a Banach space (so the range of T is second category), then T−1 is continuous.

cor:banach-isomorphism Corollary 3.12 (The Banach Isomorphism Theorem). If X ,Y are Banach spaces and
T : X → Y is a bounded bijection, then T−1 is also bounded (hence, T is an isomor-
phism).

Proof sketch. Note that when T is bijection, T is open if and only if T−1 is continuous.
The result thus follows from the Open Mapping Theorem and Proposition

prop:bdd-iff-cnsprop:bdd-iff-cns
1.32. □

The following examples show that the hypothesis that X and Y are Banach spaces,
and not just normed vector spaces, is needed in Corollary

cor:banach-isomorphismcor:banach-isomorphism
3.12.

Example 3.13. This example shows that the assumption that the range of T is second
category in Y is necessary in Theorem

thm:open:mapthm:open:map
3.11.

Let X denote the Banach space ℓ1 and let Y = ℓ1 as a linear manifold in c0 with
the c0 (sup) norm. So Y is a normed space, but not a Banach space. The identity map
ι : X → Y is a bijection. It is also continuous since the supremum norm of an element
of ℓ1 dominates its ℓ1 norm. Let G = BX (0, 1) ⊆ X denote the (open) unit ball in X.
Thus G is open in X . Given r > 0 choose n ∈ N such that n > 2

r
and let x = r

2

∑n
j=1 ej,

where ej ∈ ℓ1 is the function ej : N → F defined by

ej(m) =

{
1 if m = j

0 if m ̸= j.
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Observe that ∥x∥∞ < r, but ∥x∥1 > 1. Hence x ∈ BY(0, r), but x /∈ G. Thus BY(0, r) ̸⊆
G for any choice of r > 0, which means 0 is not an interior point of G (in Y). Hence G
is not open in Y .

The argument above of course shows that the range of ι is not second category in
Y . Here is simple direct proof of this fact. First note that the sequence gn = 1

n

∑n
j=1 ej

converges to 0 in c0 and gn ∈ ℓ1 with ∥gn∥1 = 1. For N ∈ N, let BN = {f ∈ ℓ1 : ∥f∥1 ≤
N} ⊆ Y . Verify that each BN is closed in Y . On the other hand, given N, the sequence
fk = f+3Ngk converges to f in c0 and so in Y , but ∥f+3Ngk∥ ≥ 3N−∥f∥ ≥ 2N > N.
Thus f is not in the interior of BN and so BN is nowhere dense and Y = ∪∞

N=1BN .

Example 3.14. This example shows that the assumption X is a Banach space can not
be relaxed to X is simply a normed vector space in Theorem

thm:open:mapthm:open:map
3.11.

Let Y be an infinite dimensional Banach space. Let λ be a discontinuous linear
functional, whose existence is the content of Proposition

p:disc:linfunp:disc:linfun
2.14. As an exercise, show that

the function ∥ · ∥∗ : Y → [0,∞) given by

∥x∥∗ = ∥x∥Y + |λ(x)|
is a norm on Y . Let X denote the normed space Y with this norm; that is X = (Y , ∥·∥∗).
Let T : X → Y denote the identity map (so bijective). Let G denote the unit ball in X .
We claim 0 is not in the interior of G as a subset of Y . Indeed, since λ is not continuous,
there is a sequence (xn) of unit vectors in Y such that |λ(x)| ≥ n. Consequently, given
r > 0 and choosing n sufficiently large, ∥ r

2
xn∥Y < r, but ∥ r

2
xn∥∗ > 1. Thus B(0, r) ̸⊆ G

proving the claim.

A consequence of the argument is that X is not a Banach space. To verify this fact
directly, let y /∈ kerλ be given. By Proposition prop:bdd-lf-iff-cns, there is a sequence
(xn) from kerλ that converges to x (in Y). Since ∥xn∥∗ = ∥x∥Y , the sequence (xn) is
Cauchy in X . However, since ∥xn − y∥∗ = ∥xn − y∥Y − λ(y), the sequence (xn) does
not converge to y in X . Now suppose (xn) converged to some z ∈ X . Thus z ∈ Y and
∥xn − z∥∗ = ∥xn − z∥Y + λ(z) converges to 0 from which it follows that z = y and the
proof is complete.

This result depends on the axiom of choice. In this proof, choice is smuggle in
through the appeal to Propostion

p:disc:linfunp:disc:linfun
2.14, whose proof in turn depended on the existence

of a Hamel basis, which in turn uses Zorn’s Lemma (choice). □

END Monday 2025-02-03 - except had not discussed the Banach Isomorphism The-
orem.

3.5. The Closed Graph Theorem. Recall that the Cartesian product X × Y of Ba-
nach spaces X and Y with its default product topology from Subsection

ssec:productsssec:products
1.2.7. In

particular, the product topology on X × Y is the coarsest topology that makes both
coordinate projections πX and πY from X ×Y to X and Y respectively continuous. This
topology is the same as that determined by the norms in equation (

e:standard:product:normse:standard:product:norms
2).
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d:graph Definition 3.15. The graph of a linear map T : X → Y between normed vector spaces
is the set

G(T ) := {(x, y) ∈ X × Y : y = Tx}.
Observe that since T is a linear map, G(T ) is a linear subspace of X ×Y . The transfor-
mation T is closed if G(T ) is a closed subset of X × Y . □

It is an easy exercise to show that G(T ) is closed if and only if whenever (xn, Txn)
converges to (x, y), we have y = Tx. Problem

prob:closed-not-boundedprob:closed-not-bounded
3.2 gives an example where G(T ) is closed,

but T is not continuous. On the other hand, the next theorem says that if X ,Y are
complete (Banach spaces), then G(T ) is closed if and only if T is continuous.

Theorem 3.16 (The Closed Graph Theorem). If X ,Y are Banach spaces and T : X →
Y is closed, then T is bounded.

Proof. We prove T closed implies T is bounded, leaving the easy converse as an exercise.
With the norm ∥(x, y)∥∞ = max{∥x∥, ∥y∥} the vector space X×Y is a Banach space with
the product topology. The coordinate projections πX , πY are bounded with norm one.
Let π1, π2 be the coordinate projections πX , πY restricted to G(T ); explicitly π1(x, Tx) =
x and π2(x, Tx) = Tx. Note that π1 is a bijection between G(T ) and X and in particular
π−1
1 (x) = (x, Tx). By hypothesis G(T ) is a closed subset of a Banach space and hence

a Banach space. Thus π1 is a bounded linear bijection between Banach spaces and
therefore, by Corollary

cor:banach-isomorphismcor:banach-isomorphism
3.12, π−1

1 : X → G(T ) is bounded. Since π2 is bounded, π2◦π−1
1 :

X → Y is continuous. To finish the proof, observe π2 ◦ π−1
1 (x) = π2(x, Tx) = Tx. □

3.6. Problems.

Problem 3.1. Show that there exists a sequence of open, dense subsets Un ⊆ R such
that m(

⋂∞
n=1 Un) = 0.

prob:closed-not-bounded Problem 3.2. Consider the linear subspace D ⊆ c0 defined by

D = {f ∈ c0 : lim
n→∞

|nf(n)| = 0}

and the linear transformation T : D → c0 defined by (Tf)(n) = nf(n).

a) Prove T is closed, but not bounded. b) Prove T is bijective and T−1 : c0 → D is
bounded (and surjective), but not open. c) What can be said of D as a subset of c0?

Problem 3.3. Suppose X is a vector space equipped with two norms ∥ · ∥1, ∥ · ∥2 such
that ∥ · ∥1 ≤ ∥ · ∥2. Prove that if X is complete in both norms, then the two norms are
equivalent.

Problem 3.4. Let X ,Y be Banach spaces. Provisionally, say that a linear transforma-
tion T : X → Y is weakly bounded if f ◦ T ∈ X ∗ whenever f ∈ Y∗. Prove, if T is weakly
bounded, then T is bounded.
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prob:TntoTPUB Problem 3.5. Let X ,Y be Banach spaces. Suppose (Tn) is a sequence in B(X ,Y) and
limn Tnx exists for every x ∈ X . Prove, if T is defined by Tx = limn Tnx, then T is
bounded.

prob:Hamel-basis Problem 3.6. Suppose that X is a vector space with a countably infinite basis. (That
is, there is a linearly independent set {xn} ⊆ X such that every vector x ∈ X is
expressed uniquely as a finite linear combination of the xn’s.) Prove there is no norm
on X under which it is complete. (Hint: consider the finite-dimensional subspaces
Xn := span{x1, . . . xn}.)

Problem 3.7. The Baire Category Theorem can be used to prove the existence of
(very many!) continuous, nowhere differentiable functions on [0, 1]. To see this, let En
denote the set of all functions f ∈ C[0, 1] for which there exists x0 ∈ [0, 1] (which may
depend on f) such that |f(x) − f(x0)| ≤ n|x − x0| for all x ∈ [0, 1]. Prove the sets En
are nowhere dense in C[0, 1]; the Baire Category Theorem then shows that the set of
nowhere differentiable functions is second category. (To see that En is nowhere dense,
approximate an arbitrary continuous function f uniformly by piecewise linear functions
g, whose pieces have slopes greater than 2n in absolute value. Any function sufficiently
close to such a g will not lie in En.)

prob:L2firstinL1 Problem 3.8. Let L2([0, 1]) denote the Lebesgue measurable functions f : [0, 1] → C
such that |f |2 is in L1([0, 1]). It turns out, as we will see later, that L2([0, 1]) is a linear
manifold (subspace of the vector space L1([0, 1])), though this fact is not needed for this
problem.

Let gn : [0, 1] → R denote the function which takes the value n on [0, 1
n3 ] and 0

elsewhere. Show,

(i) if f ∈ L2([0, 1]), then limn→∞
∫
gnf dm = 0;

(ii) Ln : L1([0, 1]) → C defined by Ln(f) =
∫
gnf dm is bounded, and ∥Lg∥ = n;

(iii) conclude L2([0, 1]) is of the first category in L1([0, 1]).

prob:closed-graph-analytic Problem 3.9. A Banach space of functions on a set X is a vector subspace B of the
space of complex-valued functions on X with a norm ∥·∥ making B a Banach space such
that, for each x ∈ X, the mapping Ex : B → C defined by Ex(f) = f(x) is continuous
(bounded) and if f(x) = 0 for all x ∈ X, then f = 0.

Suppose g : X → C. Show, if gf ∈ B for each f ∈ B, then the linear map
Mg : B → B defined by Mgf = gf is bounded.

prob:complement-v-bdd Problem 3.10. Suppose X is a Banach space and M and N are closed subspaces.
Show, if for each x ∈ X there exist unique m ∈ M and n ∈ N such that

x = m+ n,

then the mapping P : X → M defined by Px = m is bounded.
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Problem 3.11. Let X be a Banach space and M ⊆ X a closed subspace. A linear
transformation P : X → M is called a bounded projection if it is bounded and P (m) = m
for all m ∈ M. Prove that if M is a closed subspace and there exists a bounded
projection P : X → M, then there exists a closed subspace N ⊆ X such that M∩N =
{0} and X = M + N . Show also that in this case there exists a bounded projection
Q : X → N .

Remark: Given a closed subspace M ⊆ X , we say M is (topologically) comple-
mented if there exists a closed subspaceN ⊆ X such thatM∩N = {0} andM+N = X .
Taken together, the last two problems show that a closed subspace M ⊆ X is comple-
mented if and only if there is a bounded projection P : X → M. Not every subspace of
a Banach space is necessarily complemented, for example c0 is not complemented in ℓ∞,
though this is nontrivial to prove.

prop:BanachLimit Problem 3.12. Here, for definiteness we take the scalar field R.
Let T : ℓ∞ → ℓ∞ denote the backward shift operator defined by Tf(n) = f(n+ 1)

A bounded linear functional λ : ℓ∞ → R satisfying,

(i) if f ∈ ℓ∞ and (f(n)) converges, then λ(f) = limn→∞ f(n); and
(ii) λ(Tf) = λ(f)

is a Banach Limit .

Prove

(a) Banach limits exist.
(b) If λ is a Banach limit and f ∈ ℓ∞, then

lim inf f(n) ≤ λ(f) ≤ lim sup f(n).

A sequence f ∈ ℓ∞ for which (f(n)) does not converge, but λ(f) = µ(f) for all
Banach limits λ and µ is almost convergent . Show that g defined by g(n) = (−1)n is
almost convergent. (Suggestion: given a Banach limit λ, consider λ(g + Tg).

Problem 3.13. Prove that Q is not a Gδ set.

4. Lp spaces
sec:Lp

Throughout this section, (X,M , µ) is a measure space and X ̸= ∅.

d:cL-p Definition 4.1. For 0 < p < ∞, let Lp(µ) denote the space of measurable functions
f : X → F that satisfy

∥f∥p :=
(∫

X

|f |p dµ
)1/p

<∞.

l:Lp-vs Lemma 4.2. Suppose 0 < p < ∞. If f, g ∈ Lp(µ) and c ∈ F, then ∥f + g∥pp ≤
2p
(
∥f∥pp + ∥g∥pp

)
and ∥cf∥p = |c| ∥f∥p. Hence Lp(µ) is a vector space.
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Later we will show, for 1 ≤ p ≤ ∞, that ∥ · ∥p is a semi-norm on Lp(µ).

Sketch of proof. The equality ∥cf∥p = |c| ∥f∥p is immediate. As a pointwise inequality,
|f + g| ≤ |f |+ |g| ≤ 2 max{|f |, |g|}. Hence,

|f + g|p ≤ 2pmax{|f |, |g|}p = 2pmax{|f |p, |g|p} ≤ 2p(|f |p + |g|p),

from which the rest of the result follows. □

END Wednesday 2025-02-05

d:cL-infty Definition 4.3. A measurable function f : X → F is essentially bounded if there is a
t > 0 such that

µ({|f | > t}) = 0

and let L∞(µ) denote the set of essentially bounded functions on (X,M , µ).

Define ∥ · ∥∞ : L∞(µ) → [0,∞) by

d:norm-inftyd:norm-infty (15) ∥f∥∞ = inf{t > 0 : µ({|f | > t}) = 0}.

prop:Linfty:norm Proposition 4.4. The set L∞(µ) is a vector space. Further, the infimum in equa-
tion (

d:norm-inftyd:norm-infty
15) is attained and ∥ · ∥∞ is a semi-norm on L∞(µ).

It is customary to write Lp instead of Lp(µ) when the µ is understood (or generic).

Proof. It is evident that, if c ∈ F and f ∈ L∞ then cf ∈ L∞ and ∥cf∥∞ = |c| ∥f∥∞.
Now suppose f, g ∈ L∞. Let s, t > 0 be given such that s > ∥f∥∞ and t > ∥g∥∞. By
definition, the (measurable) sets A = {|f | > t} and B = {|g| > s} have measure 0.
Let C = {|f + g| > s + t}. Hence A ∪ B has measure 0 and by the triangle inequality
Ac ∩ Bc ⊆ Cc. Thus C ⊆ A ∪ B and hence C has measure 0. Thus f + g ∈ L∞(µ) and
∥f + g∥ ≤ s+ t. It now follows that ∥f + g∥ ≤ ∥f∥∞ + ∥g∥∞ and hence L∞ is a vector
space and ∥ · ∥∞ is a semi-norm on L∞.

That the infimum is attained in equation (
d:norm-inftyd:norm-infty
15) is left as an (easy) exercise based

upon the fact that a countable union of sets of measure zero has measure zero. □

We record the following simple observation for later use - often without comment.

l:seminorm0:0ae Lemma 4.5. If 0 < p ≤ ∞ and f ∈ Lp(µ), then ∥f∥p = 0 if and only if f = 0 almost
everyewhere.

Proof. For 0 < p < ∞, by assumption g = |f |p is unsigned
∫
g = ∥f∥pp. Since g = 0

almost everywhere if and only if
∫
g = 0, the result follows. □
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4.1. Conjugate indices and the inequalities of Young, Holder and Minkowski.
We now restrict our attention to 1 ≤ p ≤ ∞.

Definition 4.6. The conjugate index or dual exponent to 1 < p < ∞ is the unique
1 < q <∞ satisfying

1

p
+

1

q
= 1.

The dual index to p = ∞ is q = 1; and the dual index to p = 1 is q = ∞. □

Note that (p− 1)q = p and likewise (q − 1)p = q. The significance of dual indices is
apparent in the following result.

lem:young Lemma 4.7 (Young’s inequality). If a, b are nonnegative numbers and 1 < p, q < ∞
are dual indices, then

ab ≤ ap

p
+
bq

q

and equality holds if and only if bq = ap.

Proof. If a or b is 0 there is nothing to prove. So suppose a, b > 0. Define ψ : R → R
by ψ(t) = ap(1−t)bqt. A bit of rearranging gives ψ(t) = ap · exp(ct), where c = log(bq/ap).
The function ψ is infinitely differentiable and

ψ′′(t) = c2 ψ(t) > 0.

Thus ψ is convex. In particular, (using the fact that 1
p
+ 1

q
= 1)

eq:3eq:3 (16) ψ

(
1

q

)
= ψ

(
1

p
· 0 + 1

q
· 1
)

≤ 1

p
ψ(0) +

1

q
ψ(1) =

ap

p
+
bq

q
.

For the case of equality, note that ψ(t) is strictly convex unless c = 0 (ap = bq), in which
case ψ is constant. □

For an alternate geometric proof of Lemma
lem:younglem:young
4.7, see Problem

prob:adjoint-factsprob:adjoint-facts
2.9.

thm:holder Theorem 4.8 (Hölder’s inequality). Suppose 1 ≤ p ≤ ∞ and q is the conjugate index
to p. If f ∈ Lp and g ∈ Lq, then fg ∈ L1, and

e:holder:ineqe:holder:ineq (17) ∥fg∥1 ≤ ∥f∥p∥g∥q.

Further, assuming 1 ≤ p < ∞ and f ∈ Lp(µ), if ∥f∥p ̸= 0, then there exists a
g ∈ Lq(µ) such that

(i) ∥g∥q = 1;
(ii) fg ≥ 0; and
(iii)

e:holder:eqe:holder:eq (18) ∥fg∥1 =
∫
fg = ∥f∥p ∥g∥q = ∥f∥p.
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If µ has the property that every set of positive measure contains a set of positive,
but finite, measure and f ∈ L∞(µ), then

∥f∥∞ = sup{∥fg∥1 : g ∈ L1(µ), ∥g∥1 = 1}.

r:post:holder Remark 4.9. For f ∈ L1(µ) of course equality holds in equation (
e:holder:ineqe:holder:ineq
17) with g = 1.

The assumption that (X,M , µ) has the property that every (measurable) set of
positive measure contains a set of finite measure is needed as the following example
shows. For the measure space ({0}, {∅, {0}}, µ), where µ(∅) = 0 and µ({0}) = ∞, we
have L1(µ) = {0} and thus ∥fg∥1 = 0 for all f ∈ L∞(µ) and g ∈ L1(µ). □

Proof of Theorem
thm:holderthm:holder
4.8. The proof is easy in the cases p = ∞ or p = 1. Now suppose

1 < p <∞.

If ∥f∥p = 0, then f = 0 a.e. by Lemma
l:seminorm0:0ael:seminorm0:0ae
4.5. Hence fg = 0 a.e. and, by another

application of Lemma
l:seminorm0:0ael:seminorm0:0ae
4.5, ∥fg∥1 = 0. Thus the inequality of equation (

e:holder:ineqe:holder:ineq
17) holds. By

symmetry, the same is true for g. Hence we may assume ∥f∥p ̸= 0 ̸= ∥g∥q.
By homogeneity we may assume ∥f∥p = ∥g∥q = 1. We are to show∫

|fg| dµ ≤ 1.

Applying Lemma
lem:younglem:young
4.7 gives

eq:4eq:4 (19) |f(x)g(x)| ≤ 1

p
|f(x)|p + 1

q
|g(x)|q.

Integrating (
eq:4eq:4
19) with respect to µ and applying the normalizations on p, q, f, g gives the

inequality of equation (
e:holder:ineqe:holder:ineq
17). Further, observe, in the case 1 < p, q < ∞, that equality

holds in Hölders in inequality if and only if equality holds a.e. µ in equation (
eq:4eq:4
19) if and

only if |f |p = |g|q a.e. µ by Lemma
lem:younglem:young
4.7.

To prove the further portion of the theorem, suppose 1 < p < ∞ and f ∈ Lp(µ)
satisfies ∥f∥p = 1. Let g = |f |p f−1 (interpreting g as 0 when f is 0). From |g|q =
|f |(p−1)q = |f |p it follows that g ∈ Lq(µ) and ∥g∥q = 1. Further, fg = |f |p so that
∥fg∥1 = 1 = ∥f∥p and hence equation (

e:holder:eqe:holder:eq
18) holds. (Note that a small tweak to this

argument also handles the case p = 1.)

For the last statement, suppose every subset S of X with µ(S) = ∞ contains a set
T for which 0 < µ(T ) < ∞ and let f ∈ L∞(µ) be given. Without loss of generality,
∥f∥∞ = C > 0. Given 0 < ρ < C, the set E = {|f | > ρ} has positive measure. Thus
there is a set F ⊆ E such that 0 < µ(F ) < ∞. Let g = 1

µ(F )
χF , where χF is the

characteristic function of F. Observe g ∈ L1(µ) and ∥g∥1 = 1. Moreover, |fg| ≥ ρg and
hence ∥fg∥1 ≥ ρ∥g∥1 and the result follows. □

END Friday 2025-02-07
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Example 4.10. One can get a more intuitive feel for what Hölder’s inequality says by
examining it in the case of step functions. Let E,F be sets of finite, positive measure
and put f = 1E, g = 1F . Then ∥fg∥1 = µ(E ∩ F ) and

∥f∥p∥q∥q = µ(E)1/pµ(F )1/q,

so Hölder’s inequality can be proved easily in this case using the relation 1
p
+ 1

q
= 1 and

the fact that µ(E ∩ F ) ≤ min(µ(E), µ(F )).

Corollary 4.11 (Minkowski’s inequality). Let (X,M , µ) be a measure space and sup-
pose 1 ≤ p ≤ ∞. If f, g ∈ Lp(µ), then

∥f + g∥p ≤ ∥f∥p + ∥g∥p.

Hence ∥ · ∥p is a semi-norm on Lp(µ).

Proof. The result has already been established for p = 1 and p = ∞ so suppose 1 <
p < ∞ and let q denote the conjugate index to p. By Lemma

l:Lp-vsl:Lp-vs
4.2, f + g ∈ Lp(µ). The

result is vacuous if f + g = 0 (almost everywhere); equivalenlty, ∥f + g∥p = 0. Now
suppose ∥f + g∥p ̸= 0. By Theorem

thm:holderthm:holder
4.8, there is an h ∈ Lq(µ) such that ∥h∥q = 1 and

∥(f + g)h∥1 = ∥f + g∥p. On the other hand, two more applications of Theorem
thm:holderthm:holder
4.8 and

the fact that ∥ · ∥1 is a semi-norm gives,

∥f + g∥p = ∥(f + g)h∥1 ≤ ∥fh∥1 + ∥gh∥1 ≤ ∥f∥p∥h∥1 + ∥g∥p∥h∥1 = ∥f∥p + ∥g∥p. □

4.2. The Lebesuge spaces Lp(µ). The proof of the following proposition, based on
Lemma

l:seminorm0:0ael:seminorm0:0ae
4.5 is left to the gentle reader.

prop:cLp-to-Lp Proposition 4.12. The set N (ν) = {f ∈ Lp(µ) : ∥f∥p = 0} is a subspace of Lp(µ) and
the function ∥ · ∥p descends to a norm on the quotient space Lp(µ)/N (µ).

Definition 4.13. The normed vector space (Lp(µ)/N (µ), ∥ · ∥p) (for 1 ≤ p ≤ ∞) is
denoted Lp(µ) and is known as a Lebesgue space.

Suppose 1 ≤ p ≤ ∞ and q is the conjugate index to p. Fix g ∈ Lq(µ). For f ∈ Lp(µ),
Hölder’s inequality (Theorem

thm:holderthm:holder
4.8) implies gf ∈ L1(µ) and moroever ∥fg∥1 ≤ ∥f∥p ∥g∥q.

Thus, we obtain a bounded linear functional Lg : Lp(µ) → F of norm at most ∥g∥q
defined by

Lg(f) = gf.

Hence we obtain a bounded map (with norm at most one) Φ : Lq(µ) → Lp(µ)∗.

p:pre:Lp-Lq:duality Proposition 4.14. For 1 < p ≤ ∞, the mapping Φ : Lq(µ) → Lp(µ)∗ defined by
Φ(g) = Lg is isometric.

When p = 1, if µ is σ-finite, then Φ : L∞(µ) → L1(µ)∗ is isometric.
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rem:post:pre:Lp-Lq:duality Remark 4.15. Returning to the example in Remark
r:post:holderr:post:holder
4.9 where L1(µ) = {0}, the map

Φ : L∞(µ) → L1(µ)∗ is not one-one. Since in this case L1(µ)∗ = {0}, but L∞(µ) = F
isometrically, Φ is the zero map and, in particular, Φ(1) = 0.

On the other hand, in the case p = 1 it suffices to assume that (X,M , µ) has the
property that every set S such that µ(S) = ∞ contains a subset T with 0 < µ(T ) <∞.

Later we will see that the map Φ in Proposition
p:pre:Lp-Lq:dualityp:pre:Lp-Lq:duality
4.14 is an isometric isomorphism

for 1 ≤ p <∞, with the proviso that µ is σ-finite in the case p = 1.

Problems
prob:ell-infty-dualprob:ell-infty-dual
2.12 and

prob:dual-of-linftyprob:dual-of-linfty
4.6 says that Φ need not be onto in the case that p = ∞.

Proof of Proposition
p:pre:Lp-Lq:dualityp:pre:Lp-Lq:duality
4.14. Let g ∈ Lq(µ) be given. If ∥g∥q = 0, then Lg = 0 so that the

results holds, even when p = 1 without conditions on the measure space (X,M , µ).

Now suppose 1 < p ≤ ∞ and ∥g∥q ̸= 0. As already observed, ∥Ψ(g)∥ = ∥Lg∥ ≤ ∥g∥q,
for g ∈ Lq(µ). On the other hand, since 1 ≤ q < ∞, for 0 ̸= g ∈ Lq(µ), the moreover
portion of Hölder’s Inequality (Theorem

thm:holderthm:holder
4.8) gives a function f ∈ Lp(µ) such that

∥f∥p = 1 and

Lg(f) =

∫
fg = ∥g∥q.

Hence ∥Lg∥ ≥ ∥g∥q and thus ∥Lg∥ = ∥g∥q.
In the case p = 1 and µ satisfies the hypothesis of the additional hypotheses given,

Hölder’s inequality implies that, for each 0 ≤ ρ < ∥g∥∞, there is an f ∈ L1(µ) such
that ∥f∥1 = 1 and |Lg(f)| = ∥fg∥1 > ρ. Thus ∥Lg∥ ≥ ∥g∥∞ and consequently ∥Lg∥ =
∥g∥∞. □

prop:Lp:Banach Proposition 4.16. For 1 ≤ p ≤ ∞, the normed vector space Lp(µ) is a Banach space.

Proposition
prop:Lp:Banachprop:Lp:Banach
4.16 is a near immediate consequence of the following lemma.

l:pre:Lp:Banach Lemma 4.17. Suppose 1 ≤ p ≤ ∞ and (fn)
∞
n=1 is a sequence from Lp(µ). If for each

ϵ > 0 there is an N such that if m,n ≥ N, then ∥fn − fm∥p < ϵ, then there is an
f ∈ Lp(µ) such that

(a) the sequence (∥fn − f∥p)n converges to 0;
(b) there is subsequence (fnk

) of (fn) that converges to f pointwise almost everywhere.

END Monday 2025-02-10

Sketch of proof. The proof for the case 1 ≤ p <∞ is very much like the case p = 1 that
has already been established and is just sketched here.

There is a subsequence (gk)
∞
k=1 of (fn) such that ∥gk+1−gk∥ < 2−k for k ≥ 1. Setting

g0 = 0, the series
∑∞

k=0 ∥gk+1−gk∥p converges. (The subsequence (gk) is super-Cauchy.)
Let

hm =
m∑
k=0

|gk+1 − gk|
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and let h denote the pointwise limit (in [0,∞]) of the non-negative increasing sequence
(hm). By the Monotonne Convergence Theorem,∫

hp = lim

∫
hpm.

Thus,

e:pre:Lp:complete:1e:pre:Lp:complete:1 (20) ∥h∥p = lim ∥hm∥p.s

The inequality,

∥hm∥p ≤
m∑
k=0

∥gk+1 − gk∥p ≤

[
∞∑
k=0

∥gk+1 − gk∥p

]p
<∞

and equation (
e:pre:Lp:complete:1e:pre:Lp:complete:1
20) implies h ∈ Lp. Thus

h =
∞∑
k=0

|gk+1 − gk|

is finite almost everywhere and hence,
m∑
k=0

(gk+1 − gk) = gm+1

also converges almost everywhere to a measurable function f. That is, the sequence (gk)
converges pointwise to f. Further, since |f | ≤ h and h ∈ Lp, it follows that f ∈ Lp.

By construction, for m fixed, if n > m, then ∥gn − gm∥p < 21−m and (|gn − gm|p)n
converges pointwise almost everywhere to |f − gm|p. Thus, by Fatou,

∥f − gm∥pp =
∫

|f − gm|p ≤ lim inf

∫
|gn − gm|p = lim inf ∥gn − gm∥pp < 21−m.

Thus the sequence (∥f − gm∥p)m converges to 0.

A standard fact that, in a metric space X, if (xn) is Cauchy and if there is an x ∈ X

and a subsequence (xnk
) of (xn) that converges to x, then (xn) converges to x. Thus,

from what has been proved, (fn) converges to f in Lp and the subsequence (gk) of (fn)
converges to f pointwise, completing the proof for 1 ≤ p <∞.

The case p = ∞ follows from the fact that, for g ∈ L∞(µ), the set {|g| > ∥g∥∞}
has measure 0 (Proposition

prop:Linfty:normprop:Linfty:norm
4.4) so that it can be assumed that |g| is bounded by ∥g∥∞.

From here the proof is very much like the proof of completeness of the space Fb(X,F) of
bounded functions on a set X with the supremum norm. (See Proposition

prop:Fsubbprop:Fsubb
1.16) In par-

ticular, a Cauchy sequence (fn) converges pointwise almost everywhere (no subsequence
is needed). The details are left to the reader. □

cor:Lp:Banach Corollary 4.18. If (fn) is a sequence from Lp(µ) (1 ≤ p ≤ ∞) that converges to f

in Lp(µ), then there is a subsequence (fnk
) of (fn) that converges to f pointwise almost

everywhere.
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Proof. The sequence (fn) (viewed as representative of their respective equivalence classes)
satisfies the hypotheses of Lemma

l:pre:Lp:Banachl:pre:Lp:Banach
4.17. Hence there is a g ∈ Lp(µ) and subsequence (gk)

of (fn) that converges to g both in Lp(µ) and pointwise almost everywere. By uniqueness
of limits, g = f as elements of Lp(µ); that is, almost everywhere. Thus (gk) converge to
f pointwise almost everywhere. □

cor:Lp-v-pointwise Corollary 4.19. Suppose 1 ≤ p ≤ ∞ and (fn) is a sequence from Lp(µ). If (fn) con-
verges to f in Lp(µ) and to g pointwise a.e., then f = g a.e.; that is, the pointwise limit
and Lp(µ) limit are the same (almost everywhere).

Example 4.20. [The typewriter sequence] Define fn : [0, 1] → R byeg:typewriter

fn(x) = χ
(n−2k

2k
,n+1−2k

2k
]
, for 2k ≤ n < 2k+1,

(here χ is the indicator function) viewed as functions in L1(m) for Lebesgue measure m
on [0, 1]. The sequence (fn) converges to 0 in L1(m), but does not converge pointwise
anywhere. On the other hand, the subsequence (gk = f2k) converges to 0 pointwise
(everywhere).

Example 4.21. Let (X,M , µ) denote a measure space and suppose h : X → F is
a measurable function. Given 1 ≤ p, r ≤ ∞, if hf ∈ Lr for each f ∈ Lp, then the
linear mapping Mh : Lp → Lr is bounded. As an example of what more can be said, if
µ(X) <∞ and p = 2 = r, then h ∈ L∞.

Use the Closed Graph Theorem as follows. Suppose (fn,Mhfn) is a sequence that
converges to (f, g) in Lp×Lr. Apply Corollary

cor:Lp:Banachcor:Lp:Banach
4.18 to (fn) and f to obtain a subsequence

(gk) of (fn) converging to f pointwise a.e. and of course in Lp. Apply Corollary
cor:Lp:Banachcor:Lp:Banach
4.18 to

(hgk) and g to deduce g = hf. Now use Closed Graph.

For the bit about L2, make an argument like the one at the end of the proof of
Hölder’s inequality.

4.3. Problems.

prob:young:ineq Problem 4.1. Suppose f : [0, A] → [0,∞) is differentiable, strictly increasing and
f(0) = 0. Prove, for each 0 < a ≤ A, that∫ x

0

f +

∫ f(x)

0

f−1 = xf(x).

[Suggestion: Differentiate g(x) =
∫ x
0
f +

∫ f(x)
0

f−1 − xf(x).] Deduce Young’s inequality.

Problem 4.2. [Truncation of Lp functions] Suppose f is an unsigned function in Lp(µ),prob:lp-truncation
1 < p <∞. For t > 0 let

Et = {x : f(x) > t}.
Show:
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(a) For each real number t > 0, the horizontal truncation 1Etf belongs to Lq for all
1 ≤ q ≤ p.

(b) For each real number t > 0, the vertical truncation ft := min(f, t) belongs to Lq for
all p ≤ q ≤ ∞.

(c) Every f ∈ Lp, 1 < p < ∞, can be decomposed as f = g + h where g ∈ L1 and
h ∈ L∞.

prob:lim-lp-norms Problem 4.3. Suppose f ∈ Lp0∩L∞ for some p0 <∞. Prove f ∈ Lp for all p0 ≤ p ≤ ∞,
and limp→∞ ∥f∥p = ∥f∥∞.

prob:Linfty-basics Problem 4.4. Prove fn → f in the L∞ norm if and only if fn → f essentially uniformly,
and that L∞ is complete.

prob:lp-no-containments-rn Problem 4.5. Show that Lp(R) ̸⊆ Lq(R) for any pair p, q.

prob:dual-of-linfty Problem 4.6. Consider L∞(R).

a) Show that M := C0(R) is a closed subspace of L∞(R) (more precisely, that the
set of L∞ functions that are a.e. equal to a C0 function is closed in L∞). Prove
there is a bounded linear functional λ : L(R)∞ → F such that λ|M = 0 and
λ(1R) = 1.

b) Prove there is no function g ∈ L1(R) such that λ(f) =
∫
R fg dm for all f ∈ L∞.

(Hint: look at the restriction of λ to C0(R).)

5. Hilbert Space

5.1. Inner product spaces.

def:semi:ip Definition 5.1. Let V denote a vector space over C. A function ⟨·, ·⟩ : V × V → C is a
inner product if, for all f, g, h ∈ V and c ∈ C,

i:ip:a (a) ⟨f, f⟩ ≥ 0;
i:ip:b+ (b) ⟨f, f⟩ = 0 if and only if f = 0;
i:ip:b (c) ⟨f + cg, h⟩ = ⟨f, h⟩+ c ⟨g, h⟩;
i:ip:c (d) ⟨g, f⟩ = ⟨f, g⟩.

END Wednesday 2025-02-12

prop:CS Proposition 5.2. An inner product on a vector space V satisfies the the Cauchy–
Schwarz inequality,

|⟨f, g⟩|2 ≤ ⟨f, f⟩ ⟨g, g⟩.
Equality holds if and only if f and g are linearly dependent.

The function ∥ · ∥ : V → C defined by ∥f∥ =
√

⟨f, f⟩ is a norm on V and, with this
notation, the CS inequality becomes

|⟨f, g⟩| ≤ ∥f∥ ∥g∥.
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Further, ∥f + g∥ = ∥f∥ + ∥g∥ if and only if either f = 0 or there is a t ≥ 0 such
that g = tf.

r:inner-prod:topology Remark 5.3. Given an inner product space V = (V, ⟨·, ·⟩), we endow it with the norm
- and hence metric - arising from the inner product.

lem:inner-product-continuity Lemma 5.4 (Joint continuity of the inner product). Let H be an inner product space
equipped with its norm topology. If (xn) converges to x and (yn) converges to y in H,
then (⟨xn, yn⟩) converges to ⟨x, y⟩.

Proof. By Cauchy-Schwarz,

|⟨xn, yn⟩ − ⟨x, y⟩| ≤ |⟨xn, yn − y⟩|+ |⟨xn − x, y⟩| ≤ ∥xn∥∥yn − y∥+ ∥xn − x∥∥y∥ → 0,

since ∥xn − x∥, ∥yn − y∥ → 0 and the sequence ∥xn∥ is bounded. □

Definition 5.5. A Hilbert space H over F is an inner product space over F that is
complete in the metric d(x, y) = ∥x− y∥ =

√
⟨x− y, x− y⟩. (Here, as usual, F is either

C or R.)
We continue to use the notation M ≤ H to indicate M is a (closed) subspace of H

from Definition
def:subspace:closeddef:subspace:closed
1.26.

e:Hilby:FFn Example 5.6 (Fn). It is easy to check that the standard scalar product on Rn is an
inner product; it is defined as usual by

eqn:rn_inner_prodeqn:rn_inner_prod (21) ⟨x, y⟩ =
n∑
j=1

xjyj

where we have written x = (x1, . . . xn); y = (y1, . . . yn). Similarly, the standard inner
product of vectors z = (z1, . . . zn), w = (w1, . . . wn) in Cn is given by

eqn:cninnerprodeqn:cninnerprod (22) ⟨z, w⟩ =
n∑
j=1

zjwj.

(Note that it is necessary to take complex conjugates of the w’s to obtain positive
definiteness.)

It is straightforward to check that equations (
eqn:rn_inner_prodeqn:rn_inner_prod
21) and (

eqn:cninnerprodeqn:cninnerprod
22) define inner products on

Rn and Cn respectively that induce the Euclidean norm. Since these Euclidean spaces
are complete, they are Hilbert spaces.

Example 5.7 (L2(µ)). Let (X,M , µ) be a measure space. Given f, g ∈ L2(µ), by
Hölder’s inequality (Theorem

thm:holderthm:holder
4.8), the function fg ∈ L1(µ) and ∥fg∥ ≤ ∥f∥2 ∥g∥2.

From here it is a simple exercise to verify that the Banach space L2(µ) is the inner
product space with the inner product,

eqn:L2_inner_prodeqn:L2_inner_prod (23) ⟨f, g⟩ =
∫
X

fg dµ.
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That is, equation (
eqn:L2_inner_prodeqn:L2_inner_prod
23) is an inner product and the norm on L2(µ) is the norm derived

from this inner product.

Example 5.8 (ℓ2(N)). Let

ℓ2(N) = {(a1, a2, . . . an, . . . ) | an ∈ F,
∞∑
j=1

|an|2 <∞}.

This space is L2(c) for the measure space (N, P (N), c), where c is counting measure. In
particular, ℓ2(N) is a Hilbert space with the inner product,

eqn:l2innerprodeqn:l2innerprod (24)
∞∑
n=1

anbn

for sequences a = (a1, a2, . . . ) and b = (b1, b2, . . . ) in ℓ
2.

Note too, that example
e:Hilby:FFne:Hilby:FFn
5.6, is the special case of L2(ν) for ν equal to counting

measure on P ({1, 2, . . . , n}).

5.2. Orthogonality. In this section we show that many of the basic features of the
Euclidean geometry of Fn extend naturally to the setting of an inner product space.

Definition 5.9. Let H be an inner product space.

(i) Two vectors x, y ∈ H are orthogonal if ⟨x, y⟩ = 0, written x ⊥ y.
(ii) Two subsets A,B of H are orthogonal if x ⊥ y for all x ∈ A and y ∈ B, written

A ⊥ B.
(iii) A subset A of H is orthogonal if x ⊥ y for each x, y ∈ A with x ̸= y and is

orthonormal if also ⟨x, x⟩ = 1 for all x ∈ A.
(iv) The orthogonal complement of a subset E of H is

E⊥ = {x ∈ H : ⟨x, e⟩ = 0 for all e ∈ E}.

The proof of the following lemma is an easy exercise. Indeed, the first item follows
immediately from Lemma

lem:inner-product-continuitylem:inner-product-continuity
5.4 and the second from the positive definiteness of a norm.

lem:perpbasics Lemma 5.10. If E is a subset of an inner product space H, then

(i) E⊥ is a closed subspace of H;
(ii) E ∩ E⊥ ⊆ {0}; and
(iii) E ⊆ (E⊥)⊥ = E⊥⊥.

thm:pythagorean Theorem 5.11 (The Pythagorean Theorem). If H is an inner product space and f1, . . . fn
are mutually orthogonal vectors in H, then

∥f1 + · · ·+ fn∥2 = ∥f1∥2 + · · ·+ ∥fn∥2.
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Proof. When n = 2, we have

∥f1 + f2∥2 = ∥f1∥2 + ⟨f1, f2⟩+ ⟨f2, f1⟩+ ∥f2∥2

= ∥f1∥2 + ∥f2∥2.
The general case follows by induction. □

Suppose V is a vector space over F. A function [·, ·] : V × V → F satisfying the
axioms of items

i:ip:bi:ip:b
c and

i:ip:ci:ip:c
d is bilinear form in the case F = R and a sesquilinear form when

F = C. If it also satisfies item
i:ip:ai:ip:a
a, then it is positive semi-defininite.

Theorem 5.12 (The Parallelogram Law). If [·, ·] is a bilinear (resp. sesquilinear) form
on a vector space over R (resp. C) and f, h ∈ V, then

eqn:parallelogram:weakeqn:parallelogram:weak (25) [f + g, f + g] + [f − g, f − g] = 2 ([f, f ] + [g, g]) .

In particular, if H is an inner product space, then

eqn:parallelogrameqn:parallelogram (26) ∥f + g∥2 + ∥f − g∥2 = 2(∥f∥2 + ∥g∥2).

Proof. By linearity (resp. sesquilinearity),

eqn:parallel:proofeqn:parallel:proof (27) [f ± g, f ± g] = [f, f ]± [f, g]± [g, f ]± [g, g]

Adding these two equations together gives the identity of equation (
eqn:parallelogram:weakeqn:parallelogram:weak
25).

In the case of Hilbert space, equation (
eqn:parallelogrameqn:parallelogram
26) follows from equation (

eqn:parallelogram:weakeqn:parallelogram:weak
25) by the defini-

tion of the norm coming from the inner product. □

Subtracting, instead of adding, in the proof of the Parallelogram Law gives the
polarization identity

2 ([f, g] + [g, f ]) = [f + g, f + g]− [f − g, f − g].

thm:polarization Theorem 5.13 (The Polarization identity). If [·, ·] is a bilinear form on a vector space
over Rand f, h ∈ V, then

eqn:polar:weak:Reqn:polar:weak:R (28) 4[f, g] = [f + g, f + g]− [f − g, f − g].

In particular, if H is an inner product space over R, then

eqn:polar:R:alteqn:polar:R:alt (29) ⟨f, g⟩ = 1

4

(
∥f + g∥2 − ∥f − g∥2

)
.

If [·, ·] is a sesquilinear form on a vector space over Cand f, h ∈ V, then

eqn:polar:weak:R:alteqn:polar:weak:R:alt (30) 4[f, g] =
3∑

k=0

ik[f + ikg, f + ikg].

If H is a complex Hilbert space, then

eq:polarizationCeq:polarizationC (31) 4⟨f, g⟩ =
3∑

k=0

ik⟨f + ikg, f + ikg⟩.
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Remark: Note that, in a Hilbert space, the polarization identity says that the inner
product is determined by the norm.

An elementary (but tricky) theorem of von Neumann says, in the real case, that if
H is any vector space equipped with a norm ∥ · ∥ such that the parallelogram law (

eqn:parallelogrameqn:parallelogram
26)

holds for all f, g ∈ H, then H is an inner product space with inner product given by
formula (

eqn:polar:R:alteqn:polar:R:alt
29) in the case of real scalars and formula (

eq:polarizationCeq:polarizationC
31) in the case of complex scalars.

(The proof is simply to define the inner product by equation (
eqn:polar:R:alteqn:polar:R:alt
29) or (

eq:polarizationCeq:polarizationC
31), and check

that it is indeed an inner product.)

5.3. Best approximation in Hilbert space.

d:convex Definition 5.14. A subset K of a vector space V is convex if whenever a, b ∈ K and
0 ≤ s, t sum to 1, it follows that sa + tb ∈ K as well. (Geometrically, this means that
when a, b lie in K, so does the line segment joining them.)

A normed vector space X is strictly convex if x, y ∈ X and ∥x + y∥ = ∥x∥ + ∥y∥,
then either x = 0 or there is a t ≥ 0 such that y = tx.

eg:convex:sets Example 5.15. Subspaces and balls (B(x, r)) in a normed vector spaces are convex.
The closure and interior of a convex set are convex.

r:strict:convex Remark 5.16. Hilbert spaces are strictly convex. The Lebesgue spaces Lp are convex
for 1 < p <∞, but not for p = 1,∞.

That a normed vector space is strictly convex if and only if x ̸= y and ∥x∥ = ∥y∥ = 1,
then ∥1

2
(x+ y)∥ < 1 offers an explanation for the terminology.

END Friday 2025-02-14 (though we had not finished with the remark immediately
above)

p:unique:ba Proposition 5.17. Suppose X is a strictly convex normed vector space. If K ⊆ X is
convex, h ∈ X and there exists a y, z ∈ K such that

∥h− y∥ = dist(h,K) = inf{∥h− k∥ : k ∈ K} = ∥h− z∥,
then z = y.

Proof. Let d = dist(h,K). By convexity, k = y+z
2

∈ K and by the triangle inequality,

d ≤ ∥h− k∥ = ∥1
2
(h− y) +

1

2
(h− z)∥ ≤ 1

2
[∥h− y∥+ ∥h− z∥] = d.

Hence equality holds in the triangle inequality. Without loss of generality, h−y ̸= 0 and,
by strict convexity, there is a t ≥ 0 such that h−y = t(h−z). Since ∥h−y∥ = d = ∥h−z∥,
it follows that t = 1 and therefore y = z. □

thm:Hilby:best Theorem 5.18. Suppose H is a Hilbert space. If ∅ ̸= K ⊆ H is a closed, convex,
nonempty set, and h ∈ H, then there exists a unique vector k0 ∈ K such that

∥h− k0∥ = dist(h,K) := inf{∥h− k∥ : k ∈ K}.
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Proof. Uniqueness follows from Propositions
prop:CSprop:CS
5.2 and

p:unique:bap:unique:ba
5.17.

Let d = dist(h,K) = infk∈K ∥h− k∥. First observe, if x, y ∈ K, then, by convexity,
so is v = x+y

2
and in particular, ∥h− v∥2 ≥ d2. Hence, by the parallelogram law, applied

to f = x−h
2

and g = y−h
2
,∥∥∥∥x− y

2

∥∥∥∥2 =1

2

(
∥x− h∥2 + ∥y − h∥2

)
−
∥∥∥∥x+ y

2
− h

∥∥∥∥2
≤1

2

(
∥x− h∥2 + ∥y − h∥2

)
− d2.

eqn:convex_para_laweqn:convex_para_law (32)

There exists a sequence (kn) in K so that (∥kn − h∥) converges to d. Given ϵ > 0
choose N such that for all n ≥ N , ∥kn − h∥2 < d2 + ϵ2. By (

eqn:convex_para_laweqn:convex_para_law
32), if m,n ≥ N then∥∥∥∥km − kn

2

∥∥∥∥2 < 1

2
(2d2 +

1

2
ϵ2)− d2 = ϵ2.

Consequently ∥km − kn∥ < ϵ for m,n ≥ N and (kn) is a Cauchy sequence. Since H is
complete, (kn) converges to a limit k ∈ H, and since K is closed, k ∈ K. Since (kn− h)
converges to (k − h) and ∥kn − h∥ converges to d it follows, by continuity of the norm,
that ∥k − h∥ = d. □

The most important application of the preceding approximation theorem is in the
case when K = M is a (closed) subspace of the Hilbert space H. What is significant
is that in the case of a subspace, the minimizer k has an elegant geometric description,
namely, it is obtained by “dropping a perpendicular” from h to M . This geometric
interpretation is the content of the next theorem, whose statement uses Theorem

thm:Hilby:bestthm:Hilby:best
5.18.

Recall M ≤ H to means that M is a (closed) subspace of H.

thm:dropaperp Theorem 5.19. Suppose H is a Hilbert space, M ≤ H, and h ∈ H. If f0 is the unique
element ofM such that ∥h−f0∥ = dist(h,M), then (h−f0) ⊥M . Conversely, if f0 ∈M

and (h− f0) ⊥M , then ∥h− f0∥ = dist(h,M).

Proof. Let f0 ∈ M with ∥h − f0∥ = dist(h,M) be given. Given f ∈ M , for t ∈ R, let
λ = t⟨h− f0, f⟩. Since f0 + λf ∈M ,

0 ≤ ∥h− (f0 + λf)∥2 − ∥h− f0∥2

=∥(h− f0) + λf∥2 − ∥h− f0∥2

=− 2 realλ ⟨h− f0, f⟩+ |λ|2∥f∥2

=
[
−2t+ t2 ∥f∥2

] ∣∣⟨h− f0, f⟩
∣∣2

for all t. Thus |⟨h− f0, f⟩| = 0.
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Conversely, suppose f0 ∈ M and (h − f0) ⊥ M . In particular, we have (h − f0) ⊥
(f0 − f) for all f ∈M . Therefore, by Theorem

thm:pythagoreanthm:pythagorean
5.11, for all f ∈M

∥h− f∥2 = ∥(h− f0) + (f0 − f)∥2

= ∥h− f0∥2 + ∥f0 − f∥2 ≥ ∥h− f0∥2.

Thus ∥h− f0∥ = dist(h,M). □

cor:m_perp_perp Corollary 5.20. If H is a Hilbert space and M ≤ H, then (M⊥)⊥ =M .

Proof. By Lemma
lem:perpbasicslem:perpbasics
5.10, M ⊆ (M⊥)⊥. Now suppose that x ∈ (M⊥)⊥. By Theorem

thm:dropaperpthm:dropaperp
5.19

applied to x and M , there exists m ∈ M such that x −m ∈ M⊥. On the other hand,
both x and m are in (M⊥)⊥ and thus by Lemma

lem:perpbasicslem:perpbasics
5.10, x−m ∈ (M⊥)⊥. Hence x−m = 0

by Lemma
lem:perpbasicslem:perpbasics
5.10, and x ∈M . □

If E is a subset of the Banach space X, and E is the collection of all closed subspaces
N of X such that E ⊆ N , then

M = ∩N∈EN
is the smallest closed subspace containing E.

cor:e_perp_perp Corollary 5.21. If E is a subset of H, then (E⊥)⊥ is equal to the smallest closed
subspace of H containing E. In particular, if E is a linear manifold (vector subspace)
in H, then E = (E⊥)⊥.

Proof. The proof uses Lemma
lem:perpbasicslem:perpbasics
5.10 freely. In particular, E ⊆ (E⊥)⊥ and (E⊥)⊥ is a

closed subspace. If M is a closed subspace containing E, then E⊥ ⊇ M⊥ and hence
(E⊥)⊥ ⊆ (M⊥)⊥ =M by Corollary

cor:m_perp_perpcor:m_perp_perp
5.20.

For the last statement, from the fact that E and E⊥⊥ are both the smallest closed
subspace containing the linear maniforld E. See Corollary

cor:m_perp_perpcor:m_perp_perp
5.20. □

END Monday 2025-02-17

Corollary 5.22. A vector subspace E of a Hilbert space H is dense in H if and only if
E⊥ = {0}.

prop:Hilby:dir-sum Proposition 5.23. Suppose M,N ≤ H. If M and N are orthogonal, then M + N is
closed. In particular, M +N is again a subspace of H.

Proof. It suffices to prove that M +N is complete. Accordingly suppose (mk + nk) is a
Cauchy sequence from M +N . From orthogonality, for k, ℓ ∈ N,

∥mk −mℓ∥2 + ∥nk − nℓ∥2 = ∥(mk + nk)− (mℓ + nℓ)∥2

and hence (mk) and (nk) are both Cauchy. Since H is complete and M,N are closed,
M and N are each complete. Thus (mk) converges to some m ∈ M and (nk) converges
to some n ∈ N and thus (mk + nk) converges to m+ n ∈M +N . □
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def:Hilby:dir:sum Definition 5.24. Given subspacesM,N ≤ H of a Hilbert space H, the notationM⊕N
is used for M +N in the case M and N are closed subspaces and M ⊥ N and is called
the orthogonal direct sum. Hence, M ⊕ N indicates that M,N are orthogonal closed
subspaces of H.

The following corollary should be compared with Problem
prob:complement-v-bddprob:complement-v-bdd
3.10.

cor:MplusMperp Corollary 5.25. If M ≤ H, then H =M ⊕M⊥.

Proof. Given x ∈ H, there exists m ∈ M such that x − m ∈ M⊥ by Theorem
thm:dropaperpthm:dropaperp
5.19.

Hence x = m+ (x−m) ∈M ⊕M⊥. □

Example 5.26. In a Banach space, a best approximation to a subspace need not exist as
the following example illustrates. Consider the real Banach space C([0, 1]), the subspace
U = kerλ1 ∩kerλ2 where λj are the linear functionals on C([0, 1]) defined by λ1(f) =

∫
f

and λ2(f) = f(1). Since these linear functionals are bounded with norm 1, the linear
manifold U is closed (so a subspace). Let f = 1 − x and observe, for g ∈ U, that
(f − g)(1) = 0 and

∫
(f − g) = 1

2
. Thus the average of f − g is 1

2
but (f − g)(1) < 1

2
.

Consequently, there is a point p ∈ [0, 1] such that (f − g)(p) > 1
2
and we conclude that

there does not exists a g ∈ U such that ∥g − f∥ = 1
2
.

Given 0 < ϵ < 1
2
, choose 0 < δ =

1
2
−ϵ+2ϵ2

1+2ϵ
< 1 Let γ = 1

2
− ϵ−δ and let g = gϵ denote

the piecewise linear function that takes values 1
2
− ϵ−x for 0 ≤ x ≤ δ, and then connects

the points (δ, γ) to (1, 0) (draw the picture). By construction, g ∈ C([0, 1]) and g(1) = 0.
Further, δ was chosen to insure that

∫
g = 0. Thus g ∈ U and ∥f − g∥∞ = 1

2
+ ϵ. Hence

dist(f, U) = 1
2
but there does not exist a g ∈ U where this distance is achieved.

Example 5.27. This example show that in a Banach space, there can be more than
one closest point from a point to a subsapce.

Consider the real Banach space (R2, ∥ · ∥∞) (thus ∥(x1, x2)∥∞ = max{|x1|, |x2|}. Let
M = {(x1, 0) : x1 ∈ R} ⊆ R2 and noteM is a subspace of R2. Let y = (0, 1) and observe
dist(y,M) = 1 and this distance is attained for each (x, 0) ∈M with |x| ≤ 1.

END Wednesday 2025-02-19 - we also discussed Corollary
cor:Lp-v-pointwisecor:Lp-v-pointwise
4.19 and example

eg:typewritereg:typewriter
4.20.

sec:riesz

5.4. The Riesz Representation Theorem and Hilbert space adjoint operators.
In this section we investigate the dual H∗ of a Hilbert space H. One way to construct
bounded linear functionals on Hilbert space is as follows. Given a vector g ∈ H define,

Lg(h) = ⟨h, g⟩.

Indeed, linearity of L is just the linearity of the inner product in the first entry, and the
boundedness of L follows from the Cauchy-Schwarz inequality,

|Lg(h)| = |⟨h, g⟩| ≤ ∥g∥∥h∥.



65

So ∥Lg∥ ≤ ∥g∥, but in fact it is easy to see that ∥Lg∥ = ∥g∥; just apply Lg to the unit
vector g/∥g∥ (assuming g ̸= 0). Hence, L : H → H∗ defined by g 7→ Lg is a conjugate
linear isometry (thus linear in the case of real scalars).

In fact, it is clear from linear algebra that every linear functional on Fn takes the
form Lg. More generally, every bounded linear functional on a Hilbert space has the form
just described.

thm:riesz_rep Theorem 5.28 (The Riesz RepresentationTheorem). If H is a Hilbert space and λ :
H → F is a bounded linear functional, then there exists a unique vector g ∈ H such that
λ = Lg. Thus the conjugate linear mapping L is isometric and onto.

Proof. It has already been established that L is isometric and in particular one-one.
Thus it only remains to show L is onto. Accordingly, let λ ∈ H∗ be given. If λ = 0, then
λ = L0. So, assume λ ̸= 0. Since λ is continuous, by Proposition

prop:bdd-iff-cnsprop:bdd-iff-cns
1.32 kerλ = λ−1({0})

is a proper, closed subspace of H. Thus, by Theorem
thm:dropaperpthm:dropaperp
5.19 (or Corollary

cor:MplusMperpcor:MplusMperp
5.25) there exists

a nonzero vector f ∈ (kerλ)⊥ and by rescaling we may assume λ(f) = 1.

Given h ∈ H, observe

λ(h− λ(h)f) = λ(h)− λ(h)λ(f) = 0.

Thus h− λ(h)f ∈ kerλ and consequently,

0 = ⟨h− λ(h)f, f⟩
= ⟨h, f⟩ − λ(h)⟨f, f⟩.

Thus λ = Lg, where g =
f

∥f∥2 and the proof is complete. □

5.4.1. Duality for Hilbert space. In the case F = R the Riesz representation theorem
identifies H∗ with H. In the case F = C, the mapping sending λ ∈ H∗ to the vector
h0 is conjugate linear and thus H∗ is not exactly H (under this map). However, it is
customary when working in complex Hilbert space not to make this distinction. This
convention creates some conflicts that must kept in mind. For instance, given Banach
spaces X and Y and a bounded linear map T : X → Y , the adjoint of T, denoted T ∗

is the uniquely determined (by Hahn-Banach) linear map T ∗ : Y∗ → X ∗ defined by
Tf = f ◦ T so that Tf(x) = f(T (x)) for x ∈ X . See Theorem

thm:adjointmapthm:adjointmap
2.32 Because of our

conjugate linear identification of H with H∗, the notion of the adjoint of a operator
in the context of Hilbert space differs from the of operators between Banach spaces as
described in the following proposition.

prop:Hilby:adjoint Proposition 5.29. If H,K are Hilbert spaces and T : H → K is a bounded operator,
then there is a unique bounded operator S : K → H satifying,

⟨Th, k⟩ = ⟨h, Sk⟩.

Moreover, ∥S∥ = ∥T∥.
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Definition 5.30. The operator S associated to T in Proposition
prop:Hilby:adjointprop:Hilby:adjoint
5.29 is the (Hilbert

space) adjoint of T, denoted T ∗ (sic). Note that Proposition
prop:Hilby:adjointprop:Hilby:adjoint
5.29 says ∥T ∗∥ = ∥T∥. It

is easy to verify that (T ∗)∗ = T and if c ∈ F, then (cT )∗ = cT ∗.

The following elementary lemma will be used in the proof of Proposition
prop:Hilby:adjointprop:Hilby:adjoint
5.29 and

elsewhere without comment.

l:Thk=0 Lemma 5.31. Suppose H,K are Hilby spaces and Y : H → K. If ⟨Th, k⟩ = 0 for all
h ∈ H and k ∈ K, then Y = 0

Proof. Given h choose k = Th and use positive definitiness of the inner product. □

lem:Hilby-norm:alt Lemma 5.32. Suppose H and K are Hilbert spaces. A linear mapping T : H → K is
bounded if and only if there is a C such that |⟨Th, k⟩| ≤ C∥h∥ ∥k∥ for all h ∈ H and
k ∈ K. Moreover, in this case ∥T∥ is the smallest such C.

Proof sketch. Suppose C exists. Given h ∈ H and choosing k = Th gives,

∥Th∥2 = |⟨Th, Th⟩| ≤ C∥h∥ ∥Th∥.
If Th ̸= 0, it follows that ∥Th∥ ≤ C∥h∥. Hence T is bounded and ∥T∥ ≤ C.

Assuming T is bounded, it is immediate from the Cauchy-Schwarz inequality that
|⟨Th, k⟩| ≤ ∥T∥ ∥h∥ ∥k∥.

Assuming T is bounded, the argument in the first paragraph shows ∥T∥ is the
smallest possible C. □

Proof of Proposition
prop:Hilby:adjointprop:Hilby:adjoint
5.29. Define S : K → H as follows. Given k ∈ K, observe that the

mapping λ : H → C defined by λ(f) = ⟨Tf, k⟩ is (linear and) continuous. Hence, by the
Reisz Representation Theorem (for Hilbert space),

thm:riesz_repthm:riesz_rep
5.28, there is a vector Sk such that

⟨Tf, h⟩ = λ(f) = ⟨f, Sk⟩.
It is an exercise to verify that S is linear.

Conversely, if S ′ : K → H is linear and

⟨Tf, k⟩ = ⟨f, S ′k⟩
for all f,∈ H and k ∈ K, then ⟨(S − S ′)k, f⟩ = 0 for all f ∈ H and k ∈ K and hence
S ′ = S.

Finally to prove that S is bounded and ∥S∥ = ∥T∥, observe, given h ∈ H and k ∈ K

that
|⟨h, Sk⟩| = |⟨Th, k⟩| ≤ ∥T∥∥h∥ ∥k∥.

Hence, by Lemma
lem:Hilby-norm:altlem:Hilby-norm:alt
5.32, S is bounded and ∥S∥ ≤ ∥T∥. By symmetry, it follows that

∥T∥ ≤ ∥S∥. Hence equality holds. □

Further properties of the adjoints on Hilbert space appear in Problem
prob:Hilbyadjointprob:Hilbyadjoint
5.2.

A bounded operator T on a Hilbert space H is self-adjoint or hermitian if T ∗ = T .
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prop:polarizeT Proposition 5.33. If T is a bounded self-adjoint operator on a Hilbert space H, then
[·, ·] : H ×H → F defined by [f, g] = ⟨Tf, g⟩ is a bilinear/sesquilinear form on H. If, in
addition, ⟨Th, h⟩ = 0 for all h ∈ H, then T = 0.

Proof. Define [·, ·] : H ×H → F by

[f, g] = ⟨Tf, g⟩.

Since T is self-adjoint, [g, f ] = ⟨Tg, f⟩ = ⟨g, Tf⟩ = ⟨Tf, g⟩ = [f, g], from which it
follows that [·, ·] is a bilinear/sesquilinear form on H. Hence, by the polarization identity
(Theorem

thm:polarizationthm:polarization
5.13),

4⟨Tf, g⟩ =
3∑

k=0

ik⟨T (f + ikg), f + ikg⟩ = 0,

for all f, g ∈ H. By Lemma
l:Thk=0l:Thk=0
5.31, T = 0. □

5.4.2. Projections. Returning to Theorem
thm:dropaperpthm:dropaperp
5.19, if M ≤ H and h ∈ H, there exists

a unique f0 ∈ M such that (h − f0) ⊥ M . We thus obtain a well-defined function
P : H → H (or, we could write P : H →M) defined by

projn_defprojn_def (33) Ph = f0.

That is, Ph is characterized by Ph ∈M and (h− Ph) ∈M⊥. If the space M needs to
be emphasized we will write PM for P .

def:Hilby:projection Definition 5.34. A bounded operator Q on a Hilbert space H (meaning Q : H → H is
linear and bounded) is a projection if Q∗ = Q and Q2 = Q. □

The following Theorem says if Q is a projection, then Q = PN , where N is the
range of Q; that is, Q is uniquely determined by its range, justifying the use of the in
Definition

def:Hilby:projectiondef:Hilby:projection
5.34; and conversely, if M ≤ H, then PM is a projection (onto M).

Theorem 5.35. Suppose M ≤ H. The mapping P = PM is a projection with range M .
Moreover, if Q is a projection with range N , then

(i) if h ∈ N , then Qh = h;
(ii) ∥Qh∥ ≤ ∥h∥ for all h ∈ H;
(iii) N ≤ H;
(iv) N⊥ is the kernel of Q;
(v) I −Q is a projection with range N⊥; and
(vi) Q = PN .

def:Hilby:projection+ Definition 5.36. ForM ≤ H and Q the operator PM is called the orthogonal projection
of H on M and, for h ∈ H, the vector PMh is the orthogonal projection of h onto M .

Proof. In view of Corollary
cor:MplusMperpcor:MplusMperp
5.25, M ⊕M⊥ = H, from which it follows readily that P is

a linear map.
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Evidently P maps into M and if f ∈ M, then Pf = f and hence P maps onto M
and PPf = Pf (and so P 2 = P ).

If h ∈ H, then h = Ph+ (h−Ph). But (h−Ph) ∈M⊥ and Ph ∈M , and thus, by
the Pythagorean Theorem

∥h∥2 = ∥h− Ph∥2 + ∥Ph∥2.

Hence ∥Ph∥ ≤ ∥h∥. In particular, P is a bounded operator on H. (See also Problem
prob:complement-v-bddprob:complement-v-bdd
3.10.)

Given g, f ∈ H, since g − Pg is orthogonal to M and Pf is in M ,

⟨Pf, Pg⟩ =⟨Pf, Pg⟨+⟨Pf, (g − Pg)⟩
=⟨Pf, g⟩ = ⟨f, P ∗g⟩.

On the other hand, by the same reasoning

⟨Pf, Pg⟩ =⟨Pf + (I − P )f, Pg⟩
=⟨f, Pg⟩.

Hence P ∗ = P and all the claims about P have now been proved.

Turning to Q, suppose Q is a projection and let N denote the range of Q. Since
Q2 = Q it follows that Qh = h for h ∈ N (the range of Q). Also from Q2 = Q we have
Q(I −Q) = 0. Thus if h, f ∈ H, then

⟨Qh, (I −Q)f⟩ = ⟨h,Q(I −Q)f⟩ = 0.

Choosing f = h, it follows that h = Qh+ (I −Q)h is an orthogonal decomposition and
hence ∥Qh∥ ≤ ∥h∥ and so Q is continuous.

If (hn) is a sequence from the range of Q that converges to h ∈ H, then, by continuity
of Q, the sequence (hn = Qhn) converges to Qh and thus h = Qh so that the range of
Q is closed.

Next, f ∈ N⊥ if and only if

0 = ⟨Qh, f⟩ = ⟨h,Qf⟩

for every h ∈ H; if and only if Qf = 0. Thus N⊥ = ker(Q).

An easy argument shows I −Q is a projection too. In particular, f is in the range
of I − Q if and only if (I − Q)f = f . On the other hand (I − Q)f = f if and only if
Qf = 0. Thus the range of I − Q is the kernel of Q. Finally, given h ∈ H, we have
Qh ∈ N and h−Qh = (I −Q)h ∈ N⊥. Thus Q = PN . □

END Friday 2025-02-21 Though we had not proved the assertions about Q in Propo-
sition

prop:Hilby:adjointprop:Hilby:adjoint
5.29 nor Proposition

prop:polarizeTprop:polarizeT
5.33.
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5.5. Orthonormal Sets and Bases. Recall, a subset E of a Hilbert space H is or-
thonormal if ∥e∥ = 1 for all e ∈ E, and if e, f ∈ E and e ̸= f , then e ⊥ f .

def:Hilby:basis Definition 5.37. An orthonormal set is maximal if it is not contained in any larger
orthonormal set. A maximal orthonormal set is called an (orthonormal) basis or a Hilbert
space basis for H.

prop:Hilby:basis:alts Proposition 5.38. An orthonormal set E is maximal if and only if E⊥ = {0} if and
only if the spanE = H.

An subset E of a Hilbert space H is a complete orthonormal set if E is orthonormal
and E⊥ = {0}. Thus, E is a Hilbert space basis if and only if E is a complete orthonormal
set.

Proof. Suppose E is not maximal. Hence there is an orthonormal set F ⊇ E and a vector
f ∈ F \ E. In particular, 0 ̸= f ∈ E⊥. Conversely, if 0 ̸= f ∈ E⊥, then F = E ∪ { f

∥f∥}
is an orthormal set that properly contains E and hence E is not maximal.

For the second part, from what has been proved, E is maximal if and only if E⊥ =
{0} if and only if E⊥⊥ = H. On the other hand spanE = E⊥⊥ by Corollary

cor:MplusMperpcor:MplusMperp
5.25 □

Remark 5.39. It must be stressed that a basis in the above sense need not be a basis
in the sense of linear algebra; that is, a basis for H as a vector space. In particular,
it is always true that an orthonormal set is linearly independent (Exercise: prove this
statement), but in general an orthonormal basis need not span H. In fact, if E is an
infinite orthonormal subset of H, then E does not span H. See Problem

prob:Hamel-basisprob:Hamel-basis
3.6.

If E is an orthonormal set in a Hilbert space H, then E is a basis for the Hilbert
space spanE.

Example 5.40. Here are some common examples of orthonormal bases.

(a) Of course the standard basis {e1, . . . , en} is an orthonormal basis of Fn.

(b) In much the same way we get a orthonormal basis of ℓ2(N); for each n define

en(k) =

{
1 if k = n

0 if k ̸= n

It is straightforward to check that the set E = {en}∞n=1 is orthonormal. In fact, it is
a basis. To see this, notice that if h : N → F belongs to ℓ2(N), then ⟨h, en⟩ = h(n),
and hence if h ⊥ E, we have h(n) = 0 for all n, so h = 0.

(c) Let H = L2[0, 1]. Consider for n ∈ Z the set of functions E = {en(x) = e2iπnx : n ∈
Z}. An easy exercise shows this set is orthonormal. Though not obvious, it is in
fact a basis. (See Problem

prob:basisL201prob:basisL201
5.6.) Here is an outline of a proof. Given a (Lebesgue)

measurable set E ⊆ [0, 1], by regularity there exists an open set U and a closed set
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F such that F ⊆ E ⊆ U and m(U \ F ) < ϵ, where m is Lebesgue measure. Let
K = [0, 1] \ U and define f : [0, 1] → R by

f(t) =
d(t,K)

d(t, F ) + d(t,K)
,

where d(t, S) = inf{|t−s| : s ∈ S} is the distance from a point t to the set S ⊆ [0, 1].
Because F,K are compact, the infima in these distance are attained. In particular,
f(t) = 1 for t ∈ F, and f(t) = 0 for t ∈ K, while otherwise 0 ≤ f(t) ≤ 1. It follows
that ∫ 1

0

|f − χE|2 dm ≤ µ(U \ F ) < ϵ,

Since simple functions are dense in L2([0, 1]) (an exercise), it follows that con-
tinuous functions are too. Stone Weierstrass implies that the span of E (the set of
trigonmetric polynomials) is uniformly dense in C([0, 1]).

END Monday 2025-02-24

Theorem 5.41. Every Hilbert space H ̸= {0} has an orthonormal basis.

Proof. The proof is essentially the same as the Zorn’s lemma proof that every (non-
trivial) vector space has a basis. Let H be a Hilbert space and E the collection of
orthonormal subsets of H, partially ordered by inclusion. Since H ̸= (0), the collection
E is not empty. If (Eα) is an ascending chain in E , then it is straightforward to verify
that ∪αEα is an orthonormal set, and is an upper bound for (Eα). Thus by Zorn’s
lemma, E has a maximal element, say E. □

prop:Bessel Proposition 5.42 (Bessel’s Inequality). If E is an orthornormal set in a Hilbert space
H, then, for each h ∈ H, ∑

e∈E

|⟨h, e⟩|2 ≤ ∥h∥2.

In particular, Eh = {e ∈ E : ⟨h, e⟩ ≠ 0} is at most countable.

Proof. For a finite subset F of E, observe that h is the sum of the orthogonal vectors
f =

∑
e∈F ⟨h, e⟩e and h− f. Hence,

∥h∥2 = ∥f∥2 + ∥h− f∥2 ≥ ∥f∥2 =
∑
e∈F

|⟨h, e⟩|2.

Thus,

∥h∥2 ≥ sup{
∑
e∈F

|⟨h, e⟩|2 : F ⊆ E, |F | <∞} =
∑
e∈E

|⟨h, e⟩|2. □
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5.6. Convergent series in Hilbert space and basis expansions. This section be-
gins with a discussion of convergence of infinite series in Hilbert space before turning to
basis expansions and Parseval’s equality.

We have already encountered ordinary convergence and absolute convergence in our
discussion of completeness: recall that the series

∑∞
n=1 hn converges if limN→∞

∑N
n=1 hn

exists; its limit h is called the sum of the series. The series converges absolutely if∑∞
n=1 ∥hn∥ <∞ and absolute convergence implies convergence.

def:uncond:Hilby Definition 5.43. Suppose H is a Hilbert space and (hn)
∞
n=1 is a sequence from H. The

series
∑∞

n=1 hn is unconditionally convergent if there exists an h ∈ H such that for
each bijection φ : N → N the series

∑∞
n=1 hφ(n) converges to h. (In other words, every

reordering of the series converges, and to the same sum.)

rem:uncond:Hilby Remark 5.44. Of course absolute convergence implies unconditional convergence. For
ordinary scalar series, or in a finite dimensional Hilbert space such as Fn, unconditional
convergence implies absolute convergence; however in infinite dimensional Hilbert space
unconditional convergence need not imply absolute convergence as example

eg:uncon-not-abseg:uncon-not-abs
5.46 follow-

ing the proof of Theorem
thm:uccthm:ucc
5.45 shows.

thm:ucc Theorem 5.45. Suppose E = {e1, e2, . . . } ⊆ H is a countable orthonormal set and (an)
is a sequence of complex numbers. The following are equivalent.

it:converge (i) the series
∑∞

j=1 ajej converges;

it:squares (ii)
∑∞

j=1 |aj|2 converges; and

it:uncond (iii) the series
∑∞

j=1 ajej converges unconditionally.

If
∑∞

j=1 ajej converges to g, then ⟨g, ej⟩ = aj for all j.

Further, if h ∈ H, then the series

eqn:ucceqn:ucc (34)
∞∑
j=1

⟨h, ej⟩ej

is unconditionally convergent and, letting g denote the (unconditional) sum,

⟨g, ej⟩ = ⟨h, ej⟩

for all j.

Proof. Let sn denote the partial sums of the series
∑∞

j=1 aj ej,

sn =
n∑
j=1

aj ej.
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Since H is complete, the series
∑∞

j=1 ajej converges (meaning (sn) converges) if and only
if for each ϵ > 0 there is an N so that for all m ≥ n ≥ N ,

eq:sjgeq:sjg (35) ∥sm − sn∥2 =
m∑

j=n+1

|aj|2 < ϵ

(meaning (sn) is Cauchy) if and only if the series
∑m

j=1 |aj|2 converges. Hence items (
it:convergeit:converge
i)

and (
it:squaresit:squares
ii) are equivalent.

Now suppose sn =
∑n

j=1 ajej converges to, say, g and φ : N → N is a permutation

(bijection). Let s′n =
∑n

j=1 aφ(j)eφ(j). Given ϵ > 0, choose N so that (
eq:sjgeq:sjg
35) holds. In

particular,
∞∑

j=N+1

|aj|2 ≤ ϵ.

Now choose M ≥ N5 so that

JN = {1, 2, . . . N} ⊆ {φ(1), φ(2), . . . φ(M)}.
For n ≥ M let Jn = {1, . . . n} and J ′

n = {φ(1), . . . φ(n)} and let Gn denote their
symmetric difference; that is Gn = (An \Bn) ∪ (Bn \ An). From

sn − s′n =
∑
j∈Jn

ajej −
∑
j∈J ′

n

ajej =
∑

j∈Jn\J ′
n

ajej −
∑

j∈J ′
n\Jn

ajej,

it follows that
∥sn − s′n∥2 =

∑
k∈Gn

∥ak∥2.

On the other hand Gn ⊆ J cN , since JN ⊆ Jn, J
′
n. Therefore,

∥sn − s′n∥2 =
∑
k∈Gn

|ak|2 ≤
∞∑
N+1

|ak|2 ≤ ϵ.

Hence (s′n) converges to g too. Hence item (
it:squaresit:squares
ii) implies item (

it:uncondit:uncond
iii) and the proof of the

first part of the theorem is complete, since evidently item (
it:uncondit:uncond
iii) implies item (

it:convergeit:converge
i).

Now suppose
∑∞

j=1 ajej converges to g and set sn =
∑n

j=1 ajej. Using Lemma
lem:inner-product-continuitylem:inner-product-continuity
5.4,

since (sn) converges to g, for each m, the sequence (⟨sn, em⟩)n converges to ⟨g, em⟩. On
the other hand, ⟨sn, em⟩ = am for n ≥ m. Hence ⟨g, em⟩ = am.

For h ∈ H Bessel’s inequality, Theorem
prop:Besselprop:Bessel
5.42, implies the convergence of

∑
|⟨h, ej⟩|2

and thus, by what has already been proved, the series
∑

⟨h, ej⟩ ej converges (uncondi-
tionally) to some g ∈ H and ⟨g, em⟩ = ⟨h, em⟩ for all m. □

eg:uncon-not-abs Example 5.46. Suppose {e1, e2, . . . } is a countable orthonormal set in a Hilbert space
H. The series

∞∑
j=1

1

j
ej

5For instance M = maxφ−1(JN ).
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is Cauchy (verify this as an exercise) and hence converges to some h ∈ H. From
Theorem

thm:uccthm:ucc
5.45 it follows that ⟨h, ej⟩ = 1

j
and the series above converges unconditionally

to h. On the other hand, this series does not converge absolutely and hence unconditional
convergence does not imply absolute convergence.

END Wednesday 2025-02-26

There is another notion of convergence in Hilbert space.

d:converges:net Definition 5.47. Suppose ∅ ̸= S ⊆ H and let F denote the collection of finite subsets
of S. The series ∑

s∈S

s

converges as a net if there exists h ∈ H such that for every ϵ > 0 there exists an F ∈ F
such that for every F ⊆ G ∈ F ,

∥
∑
s∈G

s− h∥ < ϵ.

Often S is presented as an indexed set, so that S = {hi : i ∈ I} for some set I, in which
case the series is written as

∑
i∈I hi.

prop:net Proposition 5.48. If E is an orthonormal subset of a Hilbert space H and h ∈ H, then
the series ∑

e∈E

⟨h, e⟩e

converges (as a net). Moreover, if g is the limit (as a net) of this series, then, for each
e ∈ E,

⟨g, e⟩ = ⟨h, e⟩.

Proof. Let Eh = {e ∈ E : ⟨h, e⟩ ≠ 0}. From Bessel’s inequality, Proposition
prop:Besselprop:Bessel
5.42, Eh is at

most countable. Suppose Eh is countable and choose an enumeration, Eh = {e1, e2, . . . }.
By Theorem

thm:uccthm:ucc
5.45, the series

∞∑
j=1

⟨h, ej⟩ej

converges unconditionally to some g ∈ H and moreover ⟨g, ej⟩ = ⟨h, ej⟩ for all j. On
the other hand, since the partial sums sn =

∑n
j=1⟨h, ej⟩ej converge to h (in norm), for

each e ∈ E \Eh, the sequence (0 = ⟨sn, e⟩)n converges to ⟨g, e⟩ and so ⟨g, e⟩ = 0. Hence
⟨g, e⟩ = ⟨h, e⟩ for all e ∈ E. In particular, Eg = Eh.

To prove the series
∑

e∈E⟨h, e⟩e converges to g as a net, let ϵ > 0 be given. There
is an N so that

∥g −
N∑
j=1

⟨h, ej⟩ej∥ < ϵ
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and hence
∞∑

j=N+1

|⟨h, ej⟩|2 < ϵ2.

Let F = {e1, . . . , eN}. If G ⊆ E is finite and F ⊆ G, then, letting T = G \ F,

∥
∑
e∈T

⟨h, e⟩e∥2 = ∥
∑

e∈Eh∩T

⟨h, e⟩e +
∑

e∈(E\Eh)∩T

⟨h, e⟩e∥2

= ∥
∑

e∈Eh\F

⟨h, e⟩e∥2 ≤
∞∑

j=N+1

|⟨h, ej⟩|2 < ϵ2.

Hence

∥g −
∑
e∈G

⟨h, e⟩ e∥ ≤ ∥g −
∑
e∈F

⟨h, e⟩∥+ ∥
∑
e∈T

⟨h, e⟩∥

= ∥g −
N∑
j=1

⟨g, ej⟩ ej∥+ ∥
∑
e∈T

⟨g, e⟩e∥ < 2ϵ.

Hence
∑

e∈E⟨h, e⟩ converges as a net to g. □

Item (
i:parseval:di:parseval:d
d) in the following theorem is known as Parseval’s equality . For each h ∈ H,

the series in item (
it:basisit:basis
b) converges (as a net) to some g ∈ H by Proposition

prop:netprop:net
5.48.

thm:parseval Theorem 5.49. If E ⊆ H is an orthonormal set, then the following are equivalent:

i:parseval:a (a) E is a (orthonormal) basis for H;

it:basis (b) h =
∑

e∈E⟨h, e⟩e for each h ∈ H;

i:parseval:c (c) ⟨g, h⟩ =
∑

e∈E⟨g, e⟩⟨e, h⟩ for each g, h ∈ H; and

i:parseval:d (d) ∥h∥2 =
∑

e∈E |⟨h, e⟩|2 for each h ∈ H.

Proof. Suppose E is an orthonormal set in H, but item (
it:basisit:basis
b) does not hold. Thus there

is an h ∈ H such that h ̸=
∑

e∈E⟨h, e⟩e. By Proposition
prop:netprop:net
5.48,∑

e∈E

⟨h, e⟩e

converges (as a net) to some g ∈ H and moreover ⟨g, e⟩ = ⟨h, e⟩ for all e ∈ E. By
assumption, f = g − h ̸= 0. On the other hand,

⟨f, e⟩ = ⟨g − h, e⟩ = 0,

and thus E⊥ ̸= {0} so that, by Proposition
prop:Hilby:basis:altsprop:Hilby:basis:alts
5.38, E is not maximal. Hence item (

i:parseval:ai:parseval:a
a)

implies item (
it:basisit:basis
b).
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Now suppose item (
it:basisit:basis
b) holds and let h, g ∈ H be given. Given ϵ, choose a finite

subset F of E such that if F ⊆ G ⊆ E, then

∥h−
∑
e∈G

⟨h, e⟩e∥, ∥g −
∑
e∈G

⟨g, e⟩e∥ <
√
ϵ

and observe, using the Cauchy-Schwarz inequality,

ϵ >
∣∣⟨h−

∑
e∈G

⟨h, e⟩e, g −
∑
f∈G

⟨g, f⟩f
∣∣

=
∣∣⟨h, g⟩ −∑

e∈G

⟨h, e⟩ ⟨e, g⟩
∣∣.

Hence item (
it:basisit:basis
b) implies item (

i:parseval:ci:parseval:c
c).

Item (
i:parseval:di:parseval:d
d) follows from item (

i:parseval:ci:parseval:c
c) by choosing g = h. Finally, suppose that item (

i:parseval:ai:parseval:a
a)

does not hold. In that case there exists a unit vector h ∈ H such that h is orthogonal
to E. Thus ⟨h, e⟩ = 0 for all e ∈ E so that∑

e∈E

|⟨h, e⟩|2 = 0 ̸= 1 = ∥h∥2

and item (
i:parseval:di:parseval:d
d) does not hold. □

Given a set E, let V denote the vector space of finite linear combinations of elements
of E and define an inner product on V by declaring ⟨e, f⟩ = 0 if e, f ∈ E and e ̸= f and
⟨e, e⟩ = 1 for e ∈ E. The completion H of V (see Proposition

prop:complete-a-spaceprop:complete-a-space
2.31) is a Hilbert space,

denoted ℓ2(E).

Corollary 5.50. If E is a basis for a Hilbert space H, then H is isomorphic, as a Hilbert
space, to ℓ2(E).

5.7. Gram-Schmidt and Hilbert space dimension.

thm:fd_proj Theorem 5.51. Let {e1, . . . en} be an orthonormal set in H, and letM = span{e1, . . . en}.
The orthogonal projection P = PM onto M is given by, for h ∈ H,

eqn:fd_projeqn:fd_proj (36) Ph =
n∑
j=1

⟨h, ej⟩ej.

Proof. Given h ∈ H, let g =
∑n

j=1⟨h, ej⟩ej. Since g ∈M, it suffices to show (h−g) ⊥M .
For 1 ≤ m ≤ n,

⟨h− g, em⟩ =⟨h, em⟩ −

〈
n∑
j=1

⟨h, ej⟩ej, em

〉

= ⟨h, em⟩ −
n∑
j=1

⟨h, ej⟩⟨ej, em⟩

= ⟨h, em⟩ − ⟨h, em⟩ = 0.
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It follows that h− g is orthogonal to {e1, . . . , en} and hence to M . □

END Friday 2025-02-28

Theorem 5.52 (Gram-Schmidt process). If (fn)
∞
n=1 is a linearly independent sequence

in H, then there exists an orthonormal sequence (en)
∞
n=1 such that span{f1, . . . fn} =

span{e1, . . . en} for each n.

Proof. The proof proceeds by induction. Put e1 = f1/∥f1∥ and note {e1} is an orthormal
set and span{e1} = span{f1}. Assuming e1, . . . en have been constructed satisfying the
conditions of the theorem, let P = PMn where Mn = span{e1, . . . , en} and let gn+1 =
fn+1 −

∑n
j=1⟨fn+1, ej⟩ej = fn+1 − Pf. By Theorem

thm:fd_projthm:fd_proj
5.51 gn+1 is orthogonal to Mn. It is

also not 0 by the independence assumption on the fj. Let en+1 =
gn+1

∥gn+1∥ . □

cor:Hilby:finite-dim Corollary 5.53. Suppose H is a Hilbert space. If H has finite dimension n ≥ 1 as
a vector space, then there exists an orthonormal set {e1, . . . , en} in H that spans H.
Conversely, if there is a positive integer n and an orthonormal set {e1, . . . , en} that
spans H, then H has finite dimension n as a vector space.

In particular, if H contains a finite maximal orthonormal set, then every maximal
orthornormal set in E has the same cardinality and moreover this cardinality is the
dimension of H as a vector space.

Remark 5.54. If H has a finite orthonormal basis E = {e1, . . . , en}, then by Theorem
thm:parsevalthm:parseval
5.49(

it:basisit:basis
b), E spans (in the sense of linear algebra) and is therefore a vector space (Hamel)

basis for H. Hence H has dimension n as a vector space and further every orthonormal
basis of H has exactly n elements.

On the other hand, if H has an infinite orthonormal basis E, then it contains an
infinite linearly independent set (the basis E) and so has infinite dimension as a vector
space. □

thm:Hilby:dim Theorem 5.55. Any two bases of a Hilbert space H have the same cardinality.

The proof uses some basic facts about cardinality. Two sets A and B have the same
cardinality, written |A| = |B| if there is a bijection f : A → B. If there is a one-one
map f : A → B we write |A| ≤ |B|. By the Cantor–Schröder–Bernstein theorem, if
|A| ≤ |B| and |B| ≤ |A|, then |A| = |B|. If A is an infinite set, then |A × N| = |A|6
and if A is an infinite set and Ba is an at most countable set for each a ∈ A, then
| ∪a∈ABa| ≤ |A×B| = |A|. The theorem says if E,F are orthonormal bases for H, then
|E| = |F |.

6That |S × S| = |S| for an infinite set S in full generality requires the axiom of choice. On the other
hand, since |N| = |N×N the proof of Theorem

thm:Hilby:dimthm:Hilby:dim
5.55 given below shows if H has a countable orthonormal

basis, then all orthonormal basis of H are countable.
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Proof. Suppose E,F are orthonormal bases for H. If E is finite, then E is a basis in
the vector space sense and thus H is finite dimensional as a vector space. Since F is
orthonormal, it is linearly independent and hence |F | ≤ |E|; in particular, F is finite.
By symmetry, either both E and F are finite and have the same cardinality or both are
infinite. Accordingly suppose both are infinite.

Fix e ∈ E and consider the set

Fe = {f ∈ F | ⟨f, e⟩ ≠ 0}.
Since F is orthonormal, each Fe is at most countable by Proposition

prop:Besselprop:Bessel
5.42 and since E

is a basis, each f ∈ F belongs to at least one Fe. Thus
⋃
e∈E Fe = F , and

|F | =

∣∣∣∣∣⋃
e∈E

Fe

∣∣∣∣∣ ≤ |E × N| = |E|,

where the last equality holds since E is infinite.

By symmetry, |E| ≤ |F | and the proof is complete. □

In light of this theorem, we make the following definition.

def:Hilby:dim Definition 5.56. The (orthogonal) dimension of a Hilbert space H is the cardinality
of any orthonormal basis, and is denoted dimH. If dimH is finite or countable, H is
separable and in this case the terminology H is a separable Hilbert space is commonly
used.

cor:Hilby:separable-dim Corollary 5.57. Suppose H is a Hilbert space. If H is finite dimensional as a vector
space, then H is separable as a metric space.

If H is not finite dimensional as a vector space, then H is separable as a metric
space if and only if there is a a countable orthonormal set E = {e1, e2, . . . } such that
spanE = H.

Proof. We consider the complex case of F = C, the real case being similar. If H has
a countable orthonormal basis E = {e1, e2, . . . }, then the set D = {

∑n
j=1 ajej : aj ∈

Q+ iQ, n ∈ N} is dense in H since E ⊆ D so that H = spanE ⊆ spanD ⊆ H.

The proof that a finite dimensional Hilbert space is separable as a metric space is
similar to the proof above.

Now suppose a basis of E contains uncountably many elements (and thus all bases
of E are uncountable by Theorem

thm:Hilby:dimthm:Hilby:dim
5.55). Since ∥e− f∥ =

√
2 for all e, f ∈ H such that

e ̸= f, if C is a countable subset of H, then E ̸⊆ ∪c∈CB(c, 1) and hence C is not dense.
Thus H is not separable as a metric space. □

5.8. Weak convergence. [Optional] In addition to the norm topology, Hilbert spaces
carry another topology called the weak topology . In these notes we will stick to the
seperable case and just study weakly convergent sequences.
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Definition 5.58. Let H be a seperable Hilbert space. A sequence (hn) in H converges
weakly to h ∈ H if for all g ∈ H,

⟨hn, g⟩ → ⟨h, g⟩.

The Cauchy-Schwarz inequality implies if (hn) converges to h in norm, then (hn)
converges weakly to h. However, when H is infinite-dimensional, the converse can fail.
For instance, let {en}∞n=1 be an orthonormal basis for H. Then (en) converges to 0
weakly. (The proof is an exercise, see Problem

prob:hilbert-weakprob:hilbert-weak
5.9). On the other hand, the sequence

(en) is not norm convergent, since it is not Cauchy. In this section weak convergence is
characterized as “bounded coordinate-wise convergence” and it is shown that the unit
ball of a separable Hilbert space is weakly sequentially compact.

prop:weakconverge Proposition 5.59. Let H be a Hilbert space with orthonormal basis {ej}∞j=1. A sequence
(hn) in H is weakly convergent if and only if

i) supn ∥hn∥ <∞, and
ii) limn⟨hn, ej⟩ exists for each j.

Proof. Suppose (hn) converges to h weakly. For each n

Ln(g) = ⟨g, hn⟩

is a bounded linear functional on H. Since, for fixed g, the sequence |Ln(g)| converges, it
is bounded. Thus, the family of linear functionals (Ln) is pointwise bounded and hence,
by the Principle of Uniform boundedness, sup ∥hn∥ = sup ∥Ln∥ <∞, showing (i) holds.
Item (ii) is immediate from the definition of weak convergence.

Conversely, suppose (i) and (ii) hold, let M = sup ∥hn∥. Define

ĥj = lim⟨hn, ej⟩.

We will show that
∑

j |ĥj|2 ≤ M (so that the series
∑
ĥjej is norm convergent in H);

we then define h to be the sum of this series and show that hn → h weakly.

For positive integers J and all n,

J∑
j=1

|⟨hn, ej⟩|2 ≤ ∥hn∥2 ≤M2

by Bessel’s inequality. Thus,

J∑
j=1

|ĥj|2 =
J∑
j=1

lim
n

|⟨hn, ej⟩|2 = lim
n

J∑
j=1

|⟨hn, ej⟩|2 ≤M2.

Thus
∑

j |ĥj|2 ≤M2 and therefore the series
∑

j ĥjej is norm convergent to some h ∈ H

such that ⟨h, ej⟩ = ĥj by Theorem
thm:uccthm:ucc
5.45. By Theorem

thm:parsevalthm:parseval
5.49, ∥h∥ ≤M .
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Now we prove that (hn) converges to h weakly. Fix g ∈ H and let ϵ > 0 be given.
Since g =

∑
j⟨g, ej⟩ej (where the series is norm convergent) there exists an positive

integer J large enough so that∥∥∥∥∥g −
J∑
j=1

⟨g, ej⟩ej

∥∥∥∥∥ =

∥∥∥∥∥
∞∑

j=J+1

⟨g, ej⟩ej

∥∥∥∥∥ < ϵ.

Let g0 =
∑J

j=1⟨g, ej⟩ej, write g = g0 + g1, observe ∥g1∥ < ϵ and estimate,

|⟨hn − h, g⟩| ≤ |⟨hn − h, g0⟩|+ |⟨hn − h, g1⟩|.
By (ii), the first term on the right hand side goes to 0 with n, since g0 is a finite sum of
ej’s. By Cauchy-Schwarz, the second term is bounded by 2Mϵ. As ϵ was arbitrary, we
see that the left-hand side goes to 0 with n. □

It turns out, if (hn) converges to h weakly, then ∥h∥ ≤ lim inf ∥hn∥ and further, still
assuming (hn) converges weakly to h, ∥h∥ = lim ∥hn∥ if and only if (hn) converges to h
in norm. See Problem

prob:hilbert-weakprob:hilbert-weak
5.9.

thm:weak-compactness Theorem 5.60 (Weak compactness of the unit ball in Hilbert space). If (hn) is a bounded
sequence in a separable Hilbert space H, then (hn) has a weakly convergent subsequence.

Proof. Using the previous proposition, it suffices to fix an orthonromal basis (ej) and
produce a subsequence (hnk

)k such that ⟨hnk
, ej⟩ converges for each j. This is a standard

“diagonalization” argument, and the details are left as an exercise (Problem
prob:weak-compactnessprob:weak-compactness
5.11) □

5.9. Problems.

Problem 5.1. Prove the complex form of the polarization identity: if H is a Hilbert
space over C, then for all g, h ∈ H

⟨g, h⟩ = 1

4

(
∥g + h∥2 − ∥g − h∥2 + i∥g + ih∥2 − i∥g − ih∥2

)
prob:Hilbyadjoint Problem 5.2. (Adjoint operators) Let H be a Hilbert space and T : H → H a bounded

linear operator.

a) Prove there is a unique bounded operator T ∗ : H → H satisfying ⟨Tg, h⟩ =
⟨g, T ∗h⟩ for all g, h ∈ H, and ∥T ∗∥ = ∥T∥.

b) Prove, if S, T ∈ B(H), then (aS+T )∗ = aS∗+T ∗ for all a ∈ F, and that T ∗∗ = T .
c) Prove ∥T ∗T∥ = ∥T∥2.
d) Prove kerT is a closed subspace of H, (ranT ) = (kerT ∗)⊥ and kerT ∗ = (ranT )⊥.

prob:hilby-isometries Problem 5.3. Let H,K be Hilbert spaces. A linear transformation T : H → K is
called isometric if ∥Th∥ = ∥h∥ for all h ∈ H, and unitary if it is a surjective isometry.
Prove the following:

a) T is an isometry if and only if ⟨Tg, Th⟩ = ⟨g, h⟩ for all g, h ∈ H, if and only if
T ∗T = I (here I denotes the identity operator on H).
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b) T is unitary if and only if T is invertible and T−1 = T ∗, if and only if T ∗T =
TT ∗ = I.

c) Prove, if E ⊆ H is an orthonormal set and T is an isometry, then T (E) is an
orthonormal set in K.

d) Prove, if H is finite-dimensional, then every isometry T : H → H is unitary.
e) Consider the shift operator S ∈ B(ℓ2(N)) defined by

eqn:shift-defeqn:shift-def (37) S(a0, a1, a2, . . . ) = (0, a0, a1, . . . )

Prove S is an isometry, but not unitary. Compute S∗ and SS∗.

Problem 5.4. For any set J , let ℓ2(J) denote the set of all functions f : J → F such
that

∑
j∈J |f(j)|2 <∞. Then ℓ2(J) is a Hilbert space.

a) Prove ℓ2(I) is isometrically isomorphic to ℓ2(J) if and only if I and J have the
same cardinality. (Hint: use Problem

prob:hilby-isometriesprob:hilby-isometries
5.3(c).)

b) Prove, if H is any Hilbert space, then H is isometrically isomorphic to ℓ2(J) for
some set J .

prob:simple-dense-in-L2 Problem 5.5. Let (X,M , µ) be a σ-finite measure space. Prove the simple functions
that belong to L2(µ) are dense in L2(µ).

Problem 5.6. (The Fourier basis) Prove the set E = {en(t) := e2πint|n ∈ Z} is anprob:basisL201
orthonormal basis for L2[0, 1]. (Hint: use the Stone-Weierstrass theorem to prove that

the set of trigonometric polynomials P = {
∑N

n=−M cne
2πint} is uniformly dense in the

space of continuous functions f on [0, 1] that satisfy f(0) = f(1). Then show that this
space of continuous functions is dense in L2[0, 1]. Finally show that if fn is a sequence
in L2[0, 1] and fn → f uniformly, then also fn → f in the L2 norm.)

Problem 5.7. Let (gn)n∈N be an orthonormal basis for L2[0, 1], and extend each function
to R by declaring it to be 0 off of [0, 1]. Prove the functions hmn(x) := 1[m,m+1](x)gn(x−
m), n ∈ N,m ∈ Z form an orthonormal basis for L2(R). (Thus L2(R) is separable.)

Problem 5.8. Let (X,M , µ), (Y,N , ν) are σ-finite measure spaces, and let µ×ν denote
the product measure. Prove, if (fm) and (gn) are orthonormal bases for L2(µ), L2(ν)
respectively, then the collection of functions {hmn(x, y) = fm(x)gn(y)} is an orthonromal
basis for L2(µ × ν). Use this result to construct an orthonormal basis for L2(Rn), and
conclude that L2(Rn) is separable.

Problem 5.9. (Weak Convergence)prob:hilbert-weak

a) Prove, if (hn) converges to h in norm, then also (hn) converges to h weakly.
(Hint: Cauchy-Schwarz.)

b) Prove, if H is infinite-dimensional, and (en) is an orthonormal sequence in H,
then en → 0 weakly, but en ̸→ 0 in norm. (Thus weak convergence does not
imply norm convergence.)
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c) Prove (hn) converges to h in norm if and only if (hn) converges to h weakly and
∥hn∥ → ∥h∥.

d) Prove if (hn) converges to h weakly, then ∥h∥ ≤ lim inf ∥hn∥.

Problem 5.10. Suppose H is countably infinite-dimensional (separable Hilbert space).
Prove, if h ∈ H and ∥h∥ < 1, then there is a sequence hn in H with ∥hn∥ = 1 for all n,
and (hn) converges to h weakly, but hn does not converge to h strongly.

prob:weak-compactness Problem 5.11. Prove Theorem
thm:weak-compactnessthm:weak-compactness
5.60.

Problem 5.12. Prove, if (an) is a sequence of complex numbers, then the following are
equivalent.

(1)
∑

n∈N an converges as a net;
(2)

∑∞
n=1 an converges unconditionally;

(3)
∑∞

n=1 an converges absolutely.

Problem 5.13. Suppose (hn) is a sequence from a Hilbert space H. Show, if
∑∞

n=1 hn
converges absolutely, then

∑∞
n=1 hn converges unconditionally and as a net.

prob:netvuncond Problem 5.14. Suppose H is a Hilbert space and (hj) is a sequence from H. Show,∑∞
j=1 hj converges unconditionally if and only if

∑
j∈N hj converges as a net. (Warning:

showing unconditional convergence implies convergence as a net is challenging.)

6. Signed measures

In this section we consider measures with codomain F (either R of C) instead of
[0,∞].

6.1. Definitions, examples and elementary properties.

def:signed:measure Definition 6.1. Let (X,M ) be a measurable space. A signed measure or an F-measure
is a countably additive function ρ : M → F; that is, if (En)∞n=1 is a disjoint sequence of
measurable sets, then

e:countably:additive:Fe:countably:additive:F (38)
∞∑
n=1

ρ(En) = ρ(
∞⋃
n=1

En).

Sometimes the terminology positive measure. is used instead of simply measure to
indicate ρ takes values in [0,∞] and then finite positive measure indicates ρ takes values
in [0,∞).

rem:signed:measure Remark 6.2. Several remarks are in order before proceeding.

(a) Choosing En = ∅ for all n obtains ρ(∅) =
∑∞

n=1 ρ(∅). Hence ρ(∅) = 0.

(b) Since ρ(∅) = 0, it follows that the countable additivity condition also includes finite
additivity by choosing En = ∅ as needed to pass from a finite set of sets to a
countable one.
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i:signed:measure:c (c) Given a permutation π : N → N, since ρ(
⋃∞
n=1En) = ρ(

⋃∞
n=1Eπ(n)), the series in

equation (
e:countably:additive:Fe:countably:additive:F
38) converges unconditionally and hence, by Riemann’s rearrangement

theorem, absolutely.
Alternately, one can see directly that the series in equation (

e:countably:additive:Fe:countably:additive:F
38) must converges

absolutely as follows. First take F = R and let Let K+ = {k : ρ(Ek) ≥ 0} and let
K− = {k : ρ(Ek) < 0}. The collections A± = {Ek : k ∈ K±} are at most countable
and their elements are pairwisde disjoint. Hence,

±ρ(∪k∈K±Ek) = ±
∑
k∈K±

ρ(Ek) =
∑
k∈K±

|ρ(Ek)|,

where the fact that the order of summation is immaterial for series with non-negative
terms has been used. The complex case follows from the real case, since real ρ and
image ρ are both real-measures and |ρ(E)| ≤ | real ρ(E)|+ | image ρ(E)|.

(d) The argument in item (
i:signed:measure:ci:signed:measure:c
c) also proves the following in the case F = R. Given disjoint

sets E1, . . . , En ∈ M , let A = ∪{Ek : ρ(Ek) ≥ 0} and B = ∪{Ek : ρ(Ek) < 0} and
observe

(i) ρ(A), −ρ(B) ≥ 0;

(ii) E = ∪Ej = A ∪B;

(iii) ρ(E) = ρ(A)− ρ(B); and

(iv)
∑

|ρ(Ej)| = |ρ(A)|+ |ρ(B)| = ρ(A)− ρ(B).

(e) In the case F = R the theory can be developed allowing ρ to take values in either
(−∞,∞] or [−∞,∞) (so as to avoid ∞−∞). We will eschew this extra generality.

(f) If ρ1, . . . , ρn are finite positive measures on a measure space (X,M ) and a1, . . . , an ∈
F, then ρ =

∑n
j=1 ajρj is an F-measure on M . In this way MF(M ), the set of

measures on (X,M ) becomes a vector space.

(g) If µ is a finite positive measure on a measure space (X,M ) and F ∈ M , then

ρ(E) = µ(E ∩ F )− µ(E ∩ F c)

defines an R-measure on M .

END Monday 2025-03-03, though we had not yet discussed items (d), (e) and (f) in
the remark above

prop:rhosubf Proposition 6.3. If (X,M , µ) is a measure space and f ∈ L1(µ), then the function
µf : M → F defined by

µf (E) =

∫
E

f dµ

is a signed measure.
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In particular, if F = R and f = f+ − f− is the decomposition of f into is positive
and negative parts, then

µf = µf+ − µf− .

Proof. First consider the case F = R. If f is unsigned, then we have already seen µf
is a finite positive measure. Dropping the assumption that f is unsigned, consider the
decomposition of f into is positive and negative parts, f = f+ − f−. Each of µf± is a
finite positive measure and hence so is µf = µf+ − µf− .

For the complex case, write f = g + ih, for real valued functions h, g ∈ L1(µ) and
apply the already proven real case of to each of h and g. □

Remark 6.4. The measure µf is often denoted f dµ.

Note that in the real case the real case, by choosing E+ = {f ≥ 0} and E− =
{f < 0}, the proof actually shows there exists finite positive measures µ± such that
µf = µ+ − µ− and also such that µ±(E) = µf (E ∩ E±) and of course E+ ∩ E− = ∅. In
particular, if F ⊆ E±, the µ±(F ) ≥ 0. □

6.2. Total variation.

def:total:variation Definition 6.5. The total variation, |ρ|, of an F-measure ρ on a measure space (X,M )
is the function |ρ| : M → [0,∞] defined for E ∈ M by

|ρ|(E) = sup{
n∑
j=1

|ρ(Ej)| : n ∈ N, {E1, . . . , En} is a measurable partition of E}.

rem:total:variation Remark 6.6. In the notation of Definition
def:total:variationdef:total:variation
6.5, for E ∈ M ,

(i) |ρ(E)| ≤ |ρ|(E);

(ii) ρ(E) = |ρ(E)| if ρ is a positive measure;

i:rem:total:iii (iii) |ρ(E)| = 0 if and only if ρ(A ∩ E) = 0 for all A ∈ M ;

(iv) If F ∈ M and F ⊆ E, then |ρ|(F ) ≤ |ρ|(E);

i:rem:total:v (v) |ρ|(E) = sup{
∑n

j=1 |ρ(Ej)| : E1, . . . , En ∈ M are disjoint and ∪nj=1 Ej ⊆ E}.

i:rem:total:vii (vi) If µ is a (positive) measure on (X,M ) and |ρ(f)| ≤ µ(F ) for all F ∈ M , then
|ρ| ≤ µ in the sense that |ρ|(E) ≤ µ(E) for all E ∈ M .

i:rem:total:vi (vii) If F = R, then |ρ(E)| = sup{|ρ(A)|+ |ρ(B)| : A,B ∈ M , A∩B = ∅, A∪B ⊆ E}.

prop:|fdu| Proposition 6.7. Suppose (X,M , µ) is a measure space. If h ∈ L1(µ), then |h dµ| =
|h| dµ; that is |h dµ|(E) =

∫
E
|h| dµ for all E ∈ M .

Before proving the theorem, we establish a couple of lemmas.

lem:|fdu|:1 Lemma 6.8. In the context of Proposition
prop:|fdu|prop:|fdu|
6.7, |h dµ| ≤ |h| dµ.
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Proof. For notational ease, let µh = h dµ. Given E ∈ M and a measurable partition
{E1, . . . , En} of E,

n∑
j=1

|µh(Ej)| =
n∑
j=1

∣∣ ∫
Ej

h dµ
∣∣ ≤ n∑

j=1

∫
Ej

|h| dµ =
n∑
j=1

µ|h|(Ej).

Thus |h dµ|(E) ≤ |h| dµ(E) as desired. □

END Wednesday 2025-03-05

lem:|fdu|:2 Lemma 6.9. Proposition
prop:|fdu|prop:|fdu|
6.7 holds for measurable simple functions h.

Proof. Since h is simple, there exists a measuarable partition {F1, . . . , Fm} of X and
scalars c1, . . . , cm ∈ F such that h =

∑m
k=1 ckχFk

. (Since h ∈ L1(µ), for each k either
µ(Fk) < ∞ or ck = 0.) Let E ∈ M and a measurable partition {E1, . . . , En} of E be
given. Thus,

hχE =

m,n∑
j,k=1

ckχEj∩Fk

and {Ej ∩ Fk : 1 ≤ j ≤ n, 1 ≤ k ≤ m} is a measurable partition of E. Further,

m,n∑
j,k=1

|µh(Ej ∩ Fk)| =
m,n∑
j,k=1

|
∫
Ej∩Fk

h dµ| ≤
m,n∑
j,k=1

|ck|µ(Ej ∩ Fk)

=
n∑
j=1

m∑
k=1

∫
Ej∩Fk

|h| dµ =
n∑
j=1

∫
Ej

|h| dµ

=

∫
E

|h| dµ = µ|h|(E).

Thus |h dµ|(E) ≥ |h| dµ(E). An application of Lemma
lem:|fdu|:1lem:|fdu|:1
6.8 completes the proof. □

Proof of Proposition
prop:|fdu|prop:|fdu|
6.7. Let ϵ > 0 be given. Since simple functions are dense in L1(µ),

there is a simple function g ∈ L1(µ) such that ∥h− g∥1 < ϵ. For a measurable set E,

µ|g|(E) =

∫
E

|g| dµ ≥
∫
E

|h| dµ−
∫
E

|h− g| dµ ≥ µ|h|(E)− ∥h− g∥1 > µ|h|(E)− ϵ.

Thus |g| dµ(E) > |h| dµ(E)− ϵ.
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Similarly, for a measurable partition {E1, . . . , En} of E,
n∑
j=1

|µh(Ej)| =
n∑
j=1

|
∫
Ej

h dµ| ≥
n∑
j=1

|
∫
Ej

g dµ| −
n∑
j=1

|
∫
Ej

(g − h) dµ|

≥
n∑
j=1

|µg(Ej)| −
n∑
j=1

∫
Ej

|g − h| dµ

≥
n∑
j=1

|µg(Ej)| − ∥g − h∥1 ≥
n∑
j=1

|µg(Ej)| − ϵ.

Thus, |h dµ|(E) ≥ |g dµ|(E) = ϵ and using Lemma
lem:|fdu|:2lem:|fdu|:2
6.9, |h dµ|(E) ≥ |g dµ|(E) − ϵ =

|g| dµ(E)− ϵ > |h| dµ(E)− 2ϵ. It follows that |h dµ|(E) ≥ |h| dµ(E). □

prop:total:var:measure Proposition 6.10. If ρ is an F-measure on a measurable space (X,M ), then |ρ| is a
(positive) measure on M .

Later we will see that |ρ| is a finite measure.

Proof. Since ρ(∅) = 0 it follows that |ρ|(∅) = 0.

Now suppose E1, E2, . . . is a disjoint sequence from M and let E = ∪∞
k=1Ej. Given

measurable partitions {Ek,1, . . . , Ek,nk
} of Ek, for each N ∈ N the collection of sets

{Ek,j : 1 ≤ k ≤ N, 1 ≤ j ≤ nk} is a finite disjoint collection of measurable sets such
that ∪Nk=1 ∪

nk
j=1 Ek,j ⊆ E. Thus, using Remark

rem:total:variationrem:total:variation
6.6 item

i:rem:total:vi:rem:total:v
v,

N∑
k=1

nk∑
j=1

|ρ(Ek,j)| ≤ |ρ|(E).

Since
∑nk

j=1 |ρ(Ek,j)| ≤ |ρ|(Ek) for each k, it follows that
N∑
k=1

|ρ|(Ek) ≤ |ρ|(E)

and therefore
∞∑
k=1

|ρ|(Ek) ≤ |ρ|(E).

To prove the reverse inequality, let {F1, . . . , Fn} be a given measurable partition of
E. Thus, Ej,k = Fj∩Ek for 1 ≤ j ≤ n are disjoint measurable subsets Ek. By Remark

rem:total:variationrem:total:variation
6.6

item (
i:rem:total:vi:rem:total:v
v),
∑n

j=1 |ρ(Fj ∩ Ek)| ≤ |ρ|(Ek) for each k. Therefore, since ρ is an F-measure,

n∑
j=1

|ρ(Fj)| =
n∑
j=1

|
∞∑
k=1

ρ(Fj ∩ Ek)| ≤
n∑
j=1

∞∑
k=1

|ρ(Fj ∩ Ek)|

=
∞∑
k=1

n∑
j=1

|ρ(Fj ∩ Ek)| ≤
∞∑
k=1

|ρ|(Ek).
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Thus |ρ|(E) ≤
∑∞

k=1 |ρ|(Ek) and the proof is complete. □

prop:signed-measure:finite Proposition 6.11. If ρ is an F measure on the measurable space (X,M ), then |ρ| is a
finite measure. Equivalently, |ρ|(X) <∞.

The proof of Proposition
prop:signed-measure:finiteprop:signed-measure:finite
6.11 uses the following lemma whose proof, based upon

disjointification, is the same as for the case of a finite positive measure.

lem:signed-measure:decreasing Lemma 6.12. If ρ is an F-measure on the measurable space (X,M ) and E0 ⊇ E1 ⊇
E2 . . . is a decreasing sequence of measurable sets, then

ρ(∩∞
n=1En) = lim

n→∞
ρ(En).

Similarly, if E0 ⊆ E1 ⊆ E2 . . . is an increasing sequence from M , then

ρ(∪∞
n=1En) = lim ρ(En).

END Friday 2025-03-07

Proof of Proposition
prop:signed-measure:finiteprop:signed-measure:finite
6.11. As a first step in proving the result in the case that ρ is a

real measure, suppose E ∈ M and |ρ|(E) = ∞ and let C > 0 be given. By item (
i:rem:total:vii:rem:total:vi
vii)

of Remark
rem:total:variationrem:total:variation
6.6, there exists disjoint sets A,B ∈ M such that A,B ⊆ E and |ρ(A)| +

|ρ(B)| ≥ 2(C + |ρ(E)|). Thus, without loss of generality,
|ρ(A)| ≥ C + |ρ(E)|.

Since |ρ| is a measure (Theorem
prop:signed-measure:finiteprop:signed-measure:finite
6.11),

|ρ|(A) + |ρ|(E \ A)| = |ρ|(E) = ∞,

so that either |ρ|(A) = ∞ or |ρ|(E \A)| = ∞. We will show that |ρ(A)|, |ρ(E \A)| ≥ C,
which shows that E contains a subset F ∈ M such that |ρ|(F ) = ∞ and |ρ(F )| ≥ C.

By construction, |ρ(A)| ≥ C. From ρ(E \ A) + ρ(A) = ρ(E), it follows that

|ρ(E \ A)| =
∣∣ρ(E) − ρ(A)

∣∣ = ∣∣ρ(A) − ρ(E)
∣∣ ≥ |ρ(A)| − |ρ(E)| ≥ C.

To prove the proposition still assuming ρ is a real measure, it suffices to show
|ρ|(X) < ∞. Arguing by contradiction, suppose |ρ|(X) = ∞. Choosing A = X and
C = 1, there is a measurable set E1 ⊆ X such that |ρ(E1)| ≥ 1 and |ρ|(E1) = ∞.
Suppose now measurable sets E1 ⊇ E2 ⊆ E3 · · · ⊇ Em have been constructed such
that |ρ(En)| ≥ n and |ρ|(En) = ∞ for 1 ≤ n ≤ m. It follows that, with A = Em and
C = m + 1, there is a measurable set Em+1 ⊆ Em such that |ρ(Em+1)| ≥ m + 1 and
|ρ|(Em+1) = ∞. Thus recursion produces a nested decreasing sequence of measurable sets
(En)

∞
n=1 such that |µ(En)| ≥ n. An application of Lemma

lem:signed-measure:decreasinglem:signed-measure:decreasing
6.12 produces the contradiction

that |ρ(∩En)| = ∞.

To complete the proof, suppose now ρ is a F-measure. From what is already proved,
| real ρ|(X), | image ρ|(X) <∞. On the other hand, |ρ(F )| ≤ | real ρ(F )|+ | image ρ(F )|.
Hence |ρ|(E) ≤ | real ρ|(E) + | image ρ|(E) and thus |ρ|(X)| real ρ|(X) + | image ρ|(X) <
∞. □
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6.3. Banach spaces of measures.

Proposition 6.13. Suppose (X,M ) is a measurable space. The mapping ∥·∥ : MF(M ) →
[0,∞) defined by ∥ρ∥ = |ρ|(X) is a norm on the space of measures.

Proof. Suppose ρ, τ ∈ MF(M ) and c ∈ F. From Remark
rem:total:variationrem:total:variation
6.6 item (

i:rem:total:vii:rem:total:vi
vii), ∥ρ∥ = 0 if and

only if ρ = 0. It is straightforward to verify that ∥cρ∥ = |c| ∥ρ∥.
Finally, to prove the triangle inequality, simply note that

∥ρ+ τ∥ = |(ρ+ τ)(X)| = |ρ(X) + τ(X)| ≤ |ρ(X)|+ |τ(X)| = ∥ρ∥ + ∥τ∥. □

Proposition 6.14. Suppose (X,M ) is a measurable space. The normed space MF(M )
is a Banach space.

It is straightforward to show that if (ρn)n is a Cauchy sequence from MF(M ),
then, for each E ∈ M the sequence (ρn(E))n converges. That ρ : M → F given by
ρ(E) = limn ρn(E) that ρ ∈ MF(M ) and (ρn) converges to ρ (in the normed vector space
MF(M )) is left to the gentle reader.

6.4. The Hahn decomposition.

def:totally:positive Definition 6.15. Suppose ρ is an R-measure on a measurable space (X,M ). A set E ∈
M is totally positive (resp. totally negative) for ρ if ρ(F ∩E) ≥ 0 (resp. ρ(F ∩E) ≤ 0)
for all F ∈ M ; the set E totally null if ρ(F ∩ E) = 0 for all F ∈ M .

rem:totally:positive Remark 6.16. A set E is totally null for ρ if and only if it is both totally positive and
totally negative for ρ.

A set E ∈ M is totally positive for ρ if and only if ρ(F ) ≤ ρ(E) for all F ⊆ E.
(Consider E \ F ).

If E is totally positive for ρ, then ρ̃ : M → F defined by ρ̃(F ) = ρ(E ∩F ) is a finite
positive measure.

If (En)n is a sequence of totally positive sets, then ∪∞
n=1En is also totally positive;

that is X+ is totally positive for ρf and X− is totally negative for ρf . □

eg:Hahn:decomp Example 6.17. In the context of Proposition
prop:|fdu|prop:|fdu|
6.7, decompose a real-valued function f ∈

L1(µ) into its positive and negative parts f = f+ − f−, the sets X+ := {x : f+(x) > 0}
and X− := {x : f−(x) > 0} are disjoint and totally positive for µf .

thm:hahn-decomposition Theorem 6.18 (Hahn Decomposition Theorem). If ρ is an R-measure on the measur-
able space (X,M ), then there exists a partition of X into disjoint measurable totally
positive sets X = X+ ∪X−.

The decomposition is unique in the sense that if X ′
+, X

′
− is another such pair, then

X+∆X
′
+ and X−∆X

′
− are totally null for ρ.
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END Monday 2025-03-10

The following lemma will be used in the proof of Theorem
thm:hahn-decompositionthm:hahn-decomposition
6.18

lem:hahn:decomp:warmup Lemma 6.19. Suppose ρ is an R-measure on a measurable space (X,M ). If ρ(G) > 0,
then there exists a subset E ⊆ G such that E is totally positive and ρ(E) ≥ ρ(G).

The proof uses the greedy algorithm.

Proof. For notational convenience, let E1 = G.

If E1 is totally positive, then there is nothing to prove. Otherwise, there is a
measurable set H ⊆ E1 such that ρ(H) < 0 and thus ρ(E1 \ H) > ρ(E1); that is,
there is a measurable set F ⊆ E1 such that ρ(F ) > ρ(E1). Thus the set

J1 = {n ∈ N+ : there is an F ⊆ E1 such that ρ(F ) ≥ ρ(E1) +
1

n
}

is nonempty and therefore has a smallest element n1. Choose E2 such that ρ(E2) ≥
ρ(E1) + 1/n1. If E2 is totally positive, then the proof is complete. Otherwise, let n2

denote the smallest element of

J2 = {n ∈ N+ : there is an F ⊆ E2 such that ρ(F ) ≥ ρ(E2) +
1

n
}

and choose E3 ⊆ E2 such that ρ(E3) ≥ ρ(E2) + 1/n2. (Note that n2 ≥ n1 and it could
be the case that n2 = n1.) Either this recursion terminates after finitely many steps
producing a totally positive subset E of E1 with ρ(E) ≥ ρ(E1); or it generates a nested
decreasing sequence of measurable sets (Ej) and a sequence of positive integers (nj) such
that

ρ(Ej+1) ≥ ρ(Ej) +
1

nj
,

where

eqn:hahn-greedyeqn:hahn-greedy (39) nj = min{n ∈ N+ : there is an F ⊆ Ej such that ρ(F ) ≥ ρ(Ej) +
1

n
}.

In particular,

eqn:hann-greedy:2eqn:hann-greedy:2 (40) ρ(Ej+1) ≥
j∑

k=1

1

nk
+ ρ(E1).

Assuming this latter case, let X+ =
⋂∞
j=1Ej. We will show that ρ(X+) > ρ(E1) and X+

is totally positive.

By Lemma
lem:signed-measure:decreasinglem:signed-measure:decreasing
6.12, ρ(Ej) increases to ρ(E) > ρ(G). Thus, by equation (

eqn:hann-greedy:2eqn:hann-greedy:2
40) and

the assumption that ρ is a finite measure, the sequence (nj)j converges to infinity (as
otherwise ρ(E) = ∞). To show that E must be totally positive, suppose, by way of
contradiction, there exists a measurable F ⊆ E such that ρ(F ) > ρ(E). There is an
m ∈ N+ such that ρ(F ) > ρ(E) + 1/m. There is a j such that nj > m. Now F ⊆ Ej and

ρ(F ) > ρ(E) + 1/m > ρ(Ej) +
1

m
> ρ(Ej) + 1/m,
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contradicting the choice of nj in equation (
eqn:hahn-greedyeqn:hahn-greedy
39) and completing the proof. □

Proof of Theorem
thm:hahn-decompositionthm:hahn-decomposition
6.18. If ρ(G) ≤ 0 for all G ∈ M , then ρ is totally negative and the

choices X+ = ∅ and X− = X satisfies the conclusion of the theorem.

Otherwise, by Proposition
prop:signed-measure:finiteprop:signed-measure:finite
6.11,

∞ > a = sup{ρ(G) : G ∈ M } > 0.

For each n ∈ N such that a > 1/n, there exists a set Gn such that ρ(Gn) > a− 1/n > 0.
By Lemma

lem:hahn:decomp:warmuplem:hahn:decomp:warmup
6.19, there exists a totally positive set En such that En ⊆ Gn and ρ(En) ≥

ρ(Gn) > 0. Let Fm = ∪mn=1En and note that Fm is totally positive by Remark
rem:totally:positiverem:totally:positive
6.16. Thus

ρ(Fm \ Em+1) ≥ 0 and therefore

ρ(Fm+1) = ρ(Em+1) + ρ(Fm \ Em+1) ≥ ρ(Em+1).

By Lemma
lem:signed-measure:decreasinglem:signed-measure:decreasing
6.12, (ρ(Fm))m converges to ρ(E) where E = ∪∞Fm = ∪∞En. On the other

hand, (ρ(Fm)) converges to a. Hence ρ(E) = a. By Remark
rem:totally:positiverem:totally:positive
6.16, E is totally positive.

Further, if F ⊆ Ec, then a ≥ ρ(E∪F ) = ρ(E)+ρ(F ) = a+ρ(F ) and therefore ρ(F ) ≤ 0.
Hence Ec is totally negative and {E,Ec} partition X.

For the final statement, observe if F ⊆ X+ \X ′
+ = X+∩X ′

−, then ρ(F ) ≥ 0 since F
is a subset of the totally positive set X+; also ρ(F ) ≤ 0 since F is a subset of the totally
negative set X ′

−. Hence ρ(F ) = 0 and thus X+\X ′
+ is totally null. The remaining details

are left to the gentle reader. □

6.5. The Jordan decomposition.

def:support:Fmeasure Definition 6.20. Suppose ρ is an F-measure on a measurable space (X,M ). A set E
is a support set for ρ if Ec is totally null for ρ. Two signed measures ρ, σ are mutually
singular , denoted ρ⊥σ, if they have disjoint support sets; that is, there exists disjoint
measurable sets E and F such that Ec is totally null for ρ and F c is totally null for σ.

Remark 6.21. Two positive measures ρ and σ on the same measurable space (X,M )
are mutually singular if and only if there exists disjoint (measurable) sets E and F such
that ρ(Ec) = 0 = σ(F c) (in which case it can be assumed that F = Ec if desired).

Example 6.22. Letm denote Lebesgue measure on (R,L) (where L is the sigma-algebra
of Lebesgue measurable subsets of R) and let δ : L → R denote point mass at 0; that is

δ(E) =

{
1 if 0 ∈ E

0 if 0 /∈ E.

It is immediate that m⊥δ.

thm:jordan-decomposition Theorem 6.23 (Jordan Decomposition). If ρ is an R-measure on (X,M ), then there
exist unique positive measures ρ+, ρ− such that ρ+⊥ρ− and ρ = ρ+ − ρ−. Moreover,
|ρ| = ρ+ + ρ−.
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Proof. Let X = X+ ∪ X− be a Hahn decomposition for ρ (Theorem
thm:hahn-decompositionthm:hahn-decomposition
6.18) and define

ρ± : M → R by ρ±(E) = ±ρ(E ∩X±). It is immediate from the properties of the Hahn
decomposition that ρ+, ρ− have the desired properties; uniqueness is left as an exercise.

To prove the last statement let τ = ρ+ + ρ−. For E ∈ M ,

|ρ|(E) ≥ |ρ(E ∩X+)|+ |ρ(E ∩X−)| = ρ+(E) + ρ−(E) = τ(E).

On the other hand,

τ(F ) = ρ+(F ) + ρ−(F ) = |ρ(F ∩X+)|+ |ρ(F ∩X−)|
≥ |ρ(F ∩X+) + ρ(F ∩X−)| = |ρ(F )|

for F ∈ M and hence τ ≥ |ρ| by Remark
rem:total:variationrem:total:variation
6.6 item (

i:rem:total:viii:rem:total:vii
vi). □

END Wednesday 2025-03-12

Example 6.24. Referring to Proposition
prop:rhosubfprop:rhosubf
6.3 and example

eg:Hahn:decompeg:Hahn:decomp
6.17, it is now immediate that

the decomposition µf = µf+ − µf− is the Jordan decomposition of µf . Thus the Jordan
decomposition theorem is analogous to the decomposition of a real-valued function into
its positive and negative parts.

6.6. The Radon-Nikodym derivative.

def:absolutely:continuous Definition 6.25. Suppose (X,M , µ) is a measure space. An F-measure ρ : M → F
is absolutely continuous with respect to µ, written ρ ≪ µ provided ρ(E) = 0 whenever
E ∈ M and µ(E) = 0.

rem:absolute:continuity Remark 6.26. Given a measure space (X,M , µ) and an f ∈ L1(µ), the measure µf :
M → F defined by

µf (E) =

∫
E

f dµ

(see Proposition
prop:rhosubfprop:rhosubf
6.3) is absolutely continuous with respect to µ. That is µf = f dµ≪ µ.

If ρ is an F-measure on (X,M ), then ρ≪ |ρ|. □

thm:RN Theorem 6.27 (Radon-Nikodym). Suppose µ and ν are σ-finite positive measures on a
measurable space (X,M ). If ν ≪ µ, then there exists (an essentially unique) measurable
function h : X → [0,∞) such that ν = µh; that is

ν(E) =

∫
E

h dµ

for all E ∈ M .

In the case that ν is finite, h ∈ L1(µ).

The function h is the Radon-Nikodym derivative of ν with respect to µ, denoted dν
dµ
.

cor:RN:signed Corollary 6.28. Suppose (X,M , µ) is a σ-finite measure space and ρ : M → F is an
F-measure. If ρ≪ µ, then there exists an h ∈ L1(µ) such that ρ = h dµ.
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Proof. Suppose ρ is an R-measure and let ρ = ρ+ − ρ− denote its Jordan decomposi-
tion. It is routine to check if µ(E) = 0, then both ρ±(E) = 0. Two applications of
Theorem

thm:RNthm:RN
6.27 produces unsigned functions h± ∈ L1(µ) such that ρ± = h± dµ. Hence the

function h = h+ − h− is in L1(µ) and ρ = h dµ.

Finally, if ρ is a C-measure, then real ρ and image ρ are R-measures. Thus there
exists h, g ∈ L1(µ) such that real ρ = h dµ and image ρ = g dµ. Hence (h + ig) ∈ L1(µ)
and ρ = (h+ ig) dµ. □

cor:RN:total Corollary 6.29. If ρ is an F-measure on a measurable space (X,M ), then, there exists
an h ∈ L1(µ) such that |h| = 1 a.e. |ρ| and ρ = h dµ; that is

ρ(E) =

∫
E

h d|ρ|

for all E ∈ M .

Proof. Note that ρ is absolutely continuous with respect to µ = |ρ| and hence the Radon-
Nikodym Theorem, Theorem

thm:RNthm:RN
6.27, produces an h ∈ L1(µ) such that ρ = h dµ. To see

that |h| = 1 almost everywhere µ, note that Proposition
prop:|fdu|prop:|fdu|
6.7 implies µ = |ρ| = |h| dµ. In

particular, ∫
E

(1− |h|) dµ = 0

and the result follows by choosing E = {|h| ≠ 1}. □

A consequence of the Lebesgue-Radon-Nikodym theorem is the existence of condi-
tional expectations .

prop:CE Corollary 6.30. Suppose (X,M , µ) be a σ-finite measure space (µ a positive measure),
N a sub-σ-algebra of M , and ν = µ|N is σ-finite. If f ∈ L1(µ) then there exists
g ∈ L1(ν) (unique modulo ν-null sets) such that∫

E

f dµ =

∫
E

g dν

for all E ∈ N . (The function g is called the conditional expectation of f on N .)

Sketch of proof. Since f is M -measurable, it is also N measurable and moreover f ∈
L1(ν) Thus, we may define ρ : N → F by

e:CEe:CE (41) ρ(E) =

∫
E

f dν =

∫
E

f dµ.

It is immediate that ρ is absolutely continuous with respect to ν. Thus, by Corollary
cor:RN:signedcor:RN:signed
6.28,

there is an essentially unique g ∈ L1(ν) such that equation
e:CEe:CE
41 holds. □

END Friday 2025-03-14
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Proof of Theorem
thm:RNthm:RN
6.27. As a first step, assume µ and ν are finite positive measures.

This step is key and the proof given here is due to von Neumann.

Let m = ν + µ. Thus m is a finite positive measure and in particular 1 ∈ L2(m),
where L2(m) denotes the real Hilbert space of real valued square integrable (with respect
to m) functions. Given f ∈ L2(m), observe that the Cauchy-Schwarz inequality gives

e:RN:0e:RN:0 (42)

∫
|f | dν ≤

∫
|f | 1 dm =

∣∣⟨|f |, 1⟩L2(m)

∣∣ ≤ ∥f∥2 ∥1∥2.

Hence it is sensible to define φ : L2(m) → R by

φ(f) =

∫
f dν

and moreover, the estimate of equation (
e:RN:0e:RN:0
42) gives |φ(f)| ≤ ∥1∥2 ∥f∥2 so that φ is a

bounded linear functional (with norm at most ∥1∥2).
By the Reisz representation Theorem (for Hilbert space), Theorem

thm:riesz_repthm:riesz_rep
5.28, there exists

a g ∈ L2(m) (real-valued) such that∫
f dν = φ(f) =

∫
f g dm =

∫
f g dµ+

∫
f g dν.

and therefore,

e:RN:1e:RN:1 (43)

∫
f(1− g) dν =

∫
f g dµ

for all f ∈ L2(µ). With G1 = {g ≥ 1}, equation (
e:RN:1e:RN:1
43) we have

0 ≤ µ(G1) =

∫
G1

dµ =

∫
χG1g dµ =

∫
χG1(1− g) dν ≤ 0.

Hence µ(G1) = 0. Since ν ≪ µ, it also is the case the ν(G1) = 0 = m(G1).
7 Now let

Gn = {g < − 1
n
} and observe, again using equation (

e:RN:1e:RN:1
43) that

− 1

n
µ(Gn) ≥

∫
χGng dµ =

∫
χGn(1− g) dν ≥ 0.

Thus µ(Gn) = 0 and hence µ(G0) = 0, where G0 = ∪Gn = {g < 0}. As before it follows
that ν(G0) = 0 = m(G0).

Since m(G0) = 0 = m(G1), it is harmless to assume, as we now do, that 0 ≤ g < 1
pointwise. Let ψ = 1

1−g , set h = gψ and note both ψ and h are unsigned. The sequence

(ψn) defined by

ψn = ψχ{ψ≤n}

is a pointwise increasing sequence of bounded non-negative functions that converges
pointwise to ψ. Thus each ψn ∈ L2(m) and by the monotone convergence theorem

7Compare with the proof of Theorem
thm:LDthm:LD
6.31 in Subsection

sec:LDsec:LD
6.7, where absolute continuity is not assumed.
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(twice) and equation (
e:RN:1e:RN:1
43) the sequence∫

ψn(1− g)χE dν =

∫
ψn g χE dµ

converges to both
∫
χE dν and

∫
hχE dµ; that is

ν(E) =

∫
E

h dµ = µh(E)

for all E ∈ M . Choosing E = X shows h ∈ L1(µ) completing the proof in this special
case that both ν and µ are finite.

We now sketch a proof of the case that both ν and µ are σ-finite (positive) measures.
Since ν and µ are σ-finite, there exists a sequence X1 ⊆ X2 ⊆ . . . of measurable
sets of finite measure such that X = ∪Xn. For n ∈ N define µn : M → [0,∞) by
µn(E) = µ(E∩Xn) and define νn similarly. The pair (νn, µn) are finite positive measures
and νn ≪ µn. Hence, by what has already been proved and with n = 1, there exists
h1 ∈ L1(µ1) such that dν1 = h1 dµ1. Without loss of generality, we assume h1 = 0 on
Xc
n. With n = 2, there is an h2 ∈ L2(µ) such that dν2 = h2 dµ2 and h2 = 0 on Xc

2.
Moreover, since h1 and h2 agree µ a.e. on X1, we also assume, without loss of generality,
that h1 = h2 on X1. Continuing in this fashion constructs an increasing sequence (hn) of
unsigned functions that converges pointwise to some h and satisfies νn = hn dµn for each
n. Finally, given E ∈ M , let En = E∩En and apply the monotone convergence theorem
to the sequences χEn and hχEn and the measures ν and µ respectively to conclude that
the sequence ∫

χEn dν = νn(E) = hndµn(E) =

∫
hχEndµ

converges to both ν(E) and to
∫
E
h dµ. Hence ν = h dµ. In the case that ν is finite,

choosing E = X and using ν(X) <∞ gives h ∈ L1(µ). □
sec:LD

6.7. The Lebesgue decomposition.

thm:LD Theorem 6.31 (Lebesgue Decomposition - positive measure version). Suppose (X,M , µ)
is a σ-finite measure space. If ν is a finite positive measure on (X,M ), then there exist
unique positive measures νa and νs such that

(i) νa ≪ µ;
(ii) νs⊥µ; and
(iii) ν = νa + νs.

Moreover, there exists a measurable set F such that

(i) νa(E) = ν(E ∩ F ) = 0;
(ii) νs(E) = ν(E ∩ F c) = 0; and
(iii) µ(F c) = 0.
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Remark 6.32. The result holds if ν is assumed σ-finite, a result that follows easily from
the case of ν finite. The details are left to the interested reader. □

The uniqueness asserted in Theorem
thm:LDthm:LD
6.31 is a consequence of the following lemma.

lem:both:abs-cont:singular Lemma 6.33. Suppose (X,M , µ) is a measure space and ρ : M → R is a measure. If
ρ≪ µ and ρ⊥µ, then ρ = 0.

Proof. Since ρ⊥µ, there exist a set F ∈ M such that ρ(E) = ρ(E ∩ F c) and µ(E) =
µ(E ∩ F ) for all E ∈ M . Hence, for E ∈ M ,

µ(E ∩ F c) = µ(E ∩ F c ∩ F ) = 0.

Since ρ ≪ µ, it follows that ρ(E ∩ F c) = 0. Thus both F and F c are totally null for ρ.
Hence ρ = 0. □

Proof of Theorem
thm:LDthm:LD
6.31. Let m = ν + µ. In particular, m is σ-finite and ν ≪ m. Hence,

by the Radon Nikodym Theorem, Theorem
thm:RNthm:RN
6.27. there is a uniquely (a.e. m) determined

unsigned function g : X → [0,∞) such that ν = mg. Thus, for all measurable E,

ν(E) =

∫
E

g d(µ+ ν) =

∫
E

g dm

An easy argument shows g ≤ 1 a.e. m.

Let F = {g < 1} and note F c = {g = 1}.8 Define νa(E) = ν(E ∩ F ) and νs(E) =
ν(E ∩ F c) for E ∈ M . Both are positive measures, νs(F ) = 0 and ν = νa + νs. Next,

ν(F c) =

∫
F c

g d(µ+ ν) = µ(F c) + ν(F c).

Since ν(F c) ∈ [0,∞) it follows that, µ(F c) = 0 and thus νs⊥µ.
To prove νa is absolutely continuous with respect to µ, suppose E is measurable and

µ(E) = 0. Letting Fn = {g < 1− 1
n
} ⊆ F (for positive integers n),

ν(E ∩ Fn) ≤ (1− 1

n
)[µ+ ν](E ∩ Fn) = (1− 1

n
)ν(E ∩ Fn).

Hence ν(E ∩ Fn) = 0. Since E ∩ F = ∪(E ∩ Fn) it follows that νa(E) = ν(E ∩ F ) = 0
and therefore νa ≪ µ.

To prove uniqueness, suppose ν = ρa+ρs. Since these are finite measures, ρa− νa =
νs − ρs. Now the R-measure on the right hand side is singular with respect to µ while
the R-meaure on the left hand side is absolutely continuous with respect to µ. Hence,
by Lemma

lem:both:abs-cont:singularlem:both:abs-cont:singular
6.33, both are 0. □

END Monday 2025-03-24

The Lebesgue decomposition easily extends to the case of F-measures

8In the case that ν ≪ µ ≪ m the set F c is m-null. Compare with the proof of Theorem
thm:RNthm:RN
6.27.
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thm:LD+ Theorem 6.34 (Lebesgue Decomposition - F-measure version). Suppose (X,M , µ) is
a σ-finite measure space. If ρ : M → F is an F-measure, then then there exist unique
measures ρa and ρs such that ρa ≪ µ and ρs⊥µ and ρ = ρa + ρs.

Proof. Let ν = |ρ|. By Theorem
thm:LDthm:LD
6.31 there exists measures νs and νa such that νa⊥µ

and νs ≪ µ. Moreover, there exists a measurable set F such that νa(E) = ν(E ∩ F )
and νs(E) = ν(E ∩ F c) for E ∈ M and µ(F c) = 0. In particular, νs(F ) = 0. Define
ρa, ρs : M → F by ρa(E) = ρ(E ∩ F ) and ρs(E) = ρ(E ∩ F c). If E ⊆ F is measurable,
then ρs(E) = ρ(E ∩F c) = ρ(∅) = 0 and hence F is totally null for ρs. Thus ρs⊥µ, since
also µ(F c) = 0. On the other hand, if µ(E) = 0, then, writing E = (E ∩ F ) ∪ (E ∩ F c)

|ρa(E)| = |ρ(E ∩ F )| ≤ |ρ|(E ∩ F ) = νa(E) = 0,

since νa ≪ µ.Hence ρa(E) = 0 and we conclude that ρa ≪ µ. By construction ρ = ρa+ρs.

Once again, uniqueness follows from Lemma
lem:both:abs-cont:singularlem:both:abs-cont:singular
6.33. □

6.8. Duality for Lebesgue spaces - conclusion. This subsection contains a sketch
of a proof, based on the Radon-Nikodym Theorem (Theorem

thm:RNthm:RN
6.27), that the isometric

map of Proposition
p:pre:Lp-Lq:dualityp:pre:Lp-Lq:duality
4.14 is in fact onto (unitary). Recall, given 1 ≤ p ≤ ∞ and a

g ∈ Lq(µ), where q is the conjugate index to p, that for f ∈ Lp(µ), Hölder’s inequality
(Theorem

thm:holderthm:holder
4.8) implies gf ∈ L1(µ) and moroever ∥fg∥1 ≤ ∥f∥p ∥g∥q. Thus, we obtain a

bounded linear functional Lg : L
p(µ) → F of norm at most ∥g∥q defined by

Lg(f) = gf.

Let Φ : Lq(µ) → Lp(µ)∗ denote the bounded map (with norm at most one) given by
Φ(g) = Lg.

thm:Lp-Lq:duality Theorem 6.35. If (X,M , µ) is a σ-finite measure space and 1 ≤ p < ∞, then the
mapping Φ : Lq(µ) → Lp(µ)∗ defined by Φ(g) = Lg is an isometric isomorphism.

Recall, Problems
prob:ell-infty-dualprob:ell-infty-dual
2.12 and

prob:dual-of-linftyprob:dual-of-linfty
4.6 says that the result fails in the case of p = ∞. Likewise

the result fails for p = 1 without the σ-finite hypothesis. See Remark
rem:post:pre:Lp-Lq:dualityrem:post:pre:Lp-Lq:duality
4.15.

Proof of Theorem
thm:Lp-Lq:dualitythm:Lp-Lq:duality
6.35 in the case of a finite measure. Proposition

p:pre:Lp-Lq:dualityp:pre:Lp-Lq:duality
4.14 says Φ is iso-

metric. Thus it remains to show that Φ is onto under the assumption that µ is a
finite (positive) measure. Let φ ∈ Lp(µ)∗ be given. Define ν : M → F as follows.
Given E ∈ M the function χE ∈ L1(µ) since µ is finite. Set ν(E) = φ(χE). In par-
ticular, ν(∅) = 0. To prove that ν is countably additive and hence an F-measure,
suppose (En)

∞
n=1 is a sequence of disjoint measurable sets and let E = ∪∞

j=1Ej. Let
sn =

∑n
j=1 1Ej

. In particular, (sn) increases pointwise with limit s = 1E. Further,

0 ≤ (s − sn)
p ≤ 1 ∈ Lp(µ) and thus, by dominated convergence, (sn) converges to s in
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Lp(µ).9 Using continuity and linearity of φ,

ν(E) = φ(s) = lim
n→∞

φ(sn) = lim
n→∞

n∑
j=1

ν(Ej) =
∞∑
j=1

ν(Ej).

If µ(E) = 0, then χE = 0 in Lp and therefore ν(E) = 0. Thus, the measure
ν is absolutely continuous with respect to µ. Consequently, by the Radon-Nikodym
Theorem, there exists an h ∈ L1(µ) such that

e:Lp-Lq:dual:1e:Lp-Lq:dual:1 (44) φ(χE) = ν(E) =

∫
E

h dµ.

Temporarily, view Lh as defined (and continuous) on L∞(µ). (See Proposition
p:pre:Lp-Lq:dualityp:pre:Lp-Lq:duality
4.14.)

If s is a measurable simple function, then, by equation (
e:Lp-Lq:dual:1e:Lp-Lq:dual:1
44),

φ(s) =

∫
X

s h dµ.

Now suppose f is a bounded unsigned measurable function. Since µ is a finite
measure, f is in Lp(µ) as well as L∞(µ). Hence, both λh(f) and φ(f) are defined.
There exists a sequence (sn) of measurable simple functions 0 ≤ sn ≤ f such that (sn)
converges to f uniformly and therefore in both Lp(µ) and L∞(µ) (again because µ is
finite). It follows

φ(f) = limφ(sn) = Lh(sn) = Lh(f).

It now follows that if f is bounded and measurable, then φ(f) = Lh(f).

To prove h ∈ Lq, first assume p > 1. For positive integers N , let EN = {|h| ≤ N}
and let hN = hχEn . Thus hN is bounded and so is fN = hN |hN |q−2 (where we set
fN(x) = 0 if x /∈ EN). Thus all are in each Lr(µ) since µ is finite. By Lp(µ) continuity
of φ,

eqn:dual-lp-stepeqn:dual-lp-step (45) ∥fN∥p ∥φ∥ ≥ |φ(fN)| = |Lh(fN)| =
∫
X

fNh dµ =

∫
X

|hN |q dµ = ∥hN∥qq.

On the other hand, ∥fN∥p = ∥hN∥q−1
q , and combining this equality with (

eqn:dual-lp-stepeqn:dual-lp-step
45) we see that

∥hN∥q ≤ ∥φ∥. By monotone congvergence, h ∈ Lq(µ) and moreover ∥h∥q ≤ ∥φ∥.
In the p = 1 case, put Et = {|h| > t} and let ft =

h
|h|χEt . Thus ∥ft∥1 = µ(Et) for

all t, and, since f ∈ L∞(µ),

eq:5eq:5 (46) µ(Et) ∥φ∥ = ∥φ∥ ∥ft∥1 ≥ |φ(ft)| = |Lh(ft)| =
∫
X

ft h dµ =

∫
Et

|h| dµ ≥ t µ(Et).

Hence µ(Et) = 0 for t > ∥φ∥ and thus h ∈ L∞(µ) and in fact ∥φ∥ ≥ ∥h∥∞.

Now that we know h ∈ Lq, it follows that Lh is continuous. It also agrees with φ
on simple functions. Since simple functions are dense in Lq(µ), the conclusion φ = Lh
follows. □

9On the other hand, (sn) does not necessarily converge to s in L∞(µ).
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END Wednesday 2025-03-26

The following lemmas will be used to prove Theorem
thm:Lp-Lq:dualitythm:Lp-Lq:duality
6.35 in the case µ is σ-finite.

lem:wsig1 Lemma 6.36. If µ (X,M , µ) is a σ-finite measure space, then there exists a measurable
function w ∈ L1(µ) such that 0 < w(x) < 1 for all x.

Proof. Write X = ∪∞
n=1Xn, a countable union of disjoint measurable sets of finite mea-

sure. Let wn = 1
2n(µ(Xn)+1)

1Xn and w =
∑∞

n=1wn. □

lem:wsig2 Lemma 6.37. Suppose µ is a σ-finite measure, w ∈ L1(µ) and 0 < w(x) < 1 for all x.
Let τ denote the measure w dµ.

For 1 < p <∞, a measurable function f is in Lp(µ) if and only if g = w− 1
pf ∈ Lp(τ)

and in this case ∥f∥p = ∥g∥p; that is, the mapping Ψp : L
p(τ) → Lp(µ) defined by

Ψp(f) = w
1
pf

is a (linear) isometric isomorphism.

Proof. It is easy to check that Ψp is isometric with inverse given by f 7→ w− 1
pf . □

Proof of Theorem
thm:Lp-Lq:dualitythm:Lp-Lq:duality
6.35. For the σ-finite case with p > 1, let w be as in Lemma

lem:wsig1lem:wsig1
6.36.

Likewise, let τ = w dµ. By Lemma
lem:wsig2lem:wsig2
6.37 the mappings Ψr : L

p(τ) → Lp(µ) defined by

Ψrh = w
1
rh are linear isometric isomorphisms. Thus, ψ = φ ◦ Φp is a bounded linear

functional on Lp(τ). Since τ is a finite measure, by what is already proved, there is a

g ∈ Lq(τ) such that ψ = Lg. Let h = Ψqg = w
1
qh. Thus h ∈ Lq(µ) and ∥h∥q = ∥g∥q.

Moreover, if f ∈ Lp(µ), then F := Ψ−1
p f = w− 1

pf ∈ Lp(τ) and

φ(f) =ψ(F ) = Lg(F )

=

∫
F g dτ =

∫
F g w dµ

=

∫
w

1
pF (w

1
q g) dµ =

∫
f h dµ = Lh(f).

In the case p = 1, writeX = ∪∞
n=1Xn, whereXn are measurable sets of finite measure

and apply what has already been proven in the to the measure space (Xn,Mn, µn), where
Mn = {E ∈ M : E ⊆ Xn} and µn = µ|Mn . The details are left to the gentle reader. □

6.9. Problems.

prob:CE Problem 6.1. a) Prove Proposition
prop:CEprop:CE
6.30. b) In the case µ = Lebesgue measure on

[0, 1), fix a positive integer k and let N be the sub-σ-algebra generated by the intervals
[ j
k
, j+1

k
) for j = 0, . . . k − 1. Give an explicit formula for the conditional expectation g

in terms of f . c) Show that the σ-finite hypothesis on ν is needed.
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7. The Fourier transform

We assume all functions are complex-valued unless stated otherwise.

Definition 7.1. [The Fourier transform] Let f ∈ L1(R). The Fourier transform of f is

the function F(f) = f̂ : R → C defined at each t ∈ R by

eqn:fhat-defeqn:fhat-def (47) f̂(t) :=

∫ ∞

−∞
f(x)e−2πitx dx.

The terminology Fourier transform is often used for the mapping that sends f to f̂ . □

Note that f̂ makes sense, since f ∈ L1(R) and, for each t, the function exp(−2πitx) ∈
L∞(R). In fact, |f̂(t)| ≤ ∥f∥1 so that f̂ ∈ Fb(R), the Banach space of bounded functions

on R with the supremum norm, and ∥f̂∥∞ ≤ ∥f∥1.
The basic properties of the Fourier transform listed in the following proposition stem

from two basic facts: (1) Lebesgue measure is translation invariant; and (2) that, for
each t ∈ R, the function

χt : x→ exp(2πitx)

is a character of the additive group (R,+);10 that is, χt is a homomorphism from R into
the mulitplicative group of unimodular complex numbers. Explicitly for all x, y, t ∈ R

χt(x+ y) = χt(x)χt(y).

eg:cF:Xinterval Example 7.2. Given real numbers a < b, let f = χ[a,b] (that the interval is closed, open,
or neither is not important here) and verify

f̂(t) =

{
i e

−2πibt−e−2πiat

2πt
t ̸= 0

b− a t = 0.

Note that the derivative of exp(−2πiαt) at t = 0 is −2πiα. In particular, for b > 0 and
f = 1

2b
χ[−b,b],

f̂(t) = sinc(2πbt).

(The sinc : R → R is the function sin(x)
x
.) Since for k ∈ N,∫ (k+1)π

kπ

∣∣∣∣ sin(x)(k + 1)

∣∣∣∣ ≥ 2

k + 1
,

the sinc function is not in L1(R); that is, in general f ∈ L1(R), does not imply f̂ ∈
L1(R). □

The following example will be used later when the Poisson kernel for the upper half
plane is introduced.

10The characters of the multiplicative group T (the unit circle in the complex plane) are parameterized
by Z with n ∈ Z corresponding to the character χn(γ) = γn; that is χn(e

it) = eint (for t ∈ R).
Proceeding in this way lead to the theory of Fourier Series.
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lem:poisson-computation Example 7.3. For a > 0, let

def:Qsubadef:Qsuba (48) Qa(t) = e−2aπ|t|

(the extra factor of 2π turns out to be a convenient normalization).

Q̂a(−t) =
∫
R
Qa(t)e

2πitx dt =
1

π

a

a2 + x2
.

Note, this function Q is, in a sense, a smoother version of the indicator function from
example

eg:cF:Xintervaleg:cF:Xinterval
7.2. It has the virtue that is Fourier transform is in L1(R). □

7.1. Basic Properties. Before going further we introduce some notation: for fixed
y ∈ R and a function f : R → C, define fy(x) := f(x− y).

prop:fourier-basic Proposition 7.4 (Basic properties of the Fourier transform). Let f, g ∈ L1(R) and let
α ∈ R.

(a) (Linearity) ĉf + g = cf̂ + ĝ

(b) (Translation) f̂y(t) = e−2πityf̂(t)

(c) (Modulation) If g(x) = e2πiαxf(x), then ĝ(t) = f̂(t− α)

(d) (Reflection) If g(x) = f(−x), then ĝ(t) = f̂(t).

(e) (Scaling) If λ > 0 and g(x) = f(x/λ) then ĝ(t) = λf̂(λt).

Proof. Each of these properties is verified by elementary transformations of the integral

defining f̂ ; the details are left as an exercise. □

prop:fourier-continuity Proposition 7.5. If f ∈ L1(R), then f̂ is continuous and bounded (f̂ ∈ Cb(R)) and

∥f̂∥∞ ≤ ∥f∥1. In particular, the mapping L1(R) ∋ f 7→ f̂ ∈ Cb(R) is a bounded linear
map of norm at most 1.

Proof. Fix t ∈ R and a sequence tn → t. The sequence f(x)e−2πitnx converges to
f(x)e−2πitx pointwise on R, and since trivially |f(x)e−2πitnx| ≤ |f(x)| for all n, we have
by dominated convergence

f̂(t) =

∫ ∞

−∞
f(x)e−2πitx dx

=

∫ ∞

−∞
lim
n→∞

[f(x)e−2πitnx] dx

= lim
n→∞

∫ ∞

−∞
f(x)e−2πitnx dx

= lim
n→∞

f̂(tn).

The second statement of the theorem follows immediately from the estimate supt∈R |f̂(t)| ≤
∥f∥1. □
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In fact, f̂ always belongs to C0(R), a result that is known as the Riemann-Lebesgue
Lemma. To prove it we first need the following result, which we will apply often (recall
the notation fy(x) := f(x− y)):

lem:L1-translation Lemma 7.6 (Translation is continuous on Lp). If 1 ≤ p < ∞ and f ∈ Lp(R), then
limy→0 ∥fy − f∥p = 0. In particular, if (yn) converges to y, then (fyn)n converges to fy
in Lp(R).

Sketch. We sketch the proof of an approximation argument, leaving the details as an
exercise. Let X ⊆ Lp denote the set of all f for which the conclusion of the theorem is
true.

Verify X is a vector space and contains χI for all finite intervals I. By Littlewood’s
first principle, a measurable set of finite measure is nearly a finite union of intervals. Thus
X contains the indicator functions of all sets of finite measure and therefore all simple Lp

functions. Since simple Lp functions are dense in Lp, it suffices to show that X is closed.
Toward this end, note if f, g ∈ Lp and ∥f − g∥p < ϵ, then ∥f − g∥p = ∥fy − gy∥p < ϵ for
all y ∈ R by the translation invariance of Lebesgue measure. Now suppose that g is in
the closure of X and let ϵ > 0 be given. Choose f ∈ X with ∥f − g∥p < ϵ, and choose
δ > 0 so that ∥fy − f∥p < ϵ for all |y| < δ. Then for all |y| < δ,

∥gy − g∥p < ∥gy − fy∥p + ∥fy − f∥p + ∥f − g∥p < 3ϵ.

Thus g ∈ X as well and hence X is closed. The proof is finished. □

END Friday 2025-03-28

lem:RL Lemma 7.7 (The Riemann-Lebesgue Lemma). If f ∈ L1(R), then f̂ ∈ C0(R).

Proof. From Proposition
prop:fourier-continuityprop:fourier-continuity
7.5, f̂ is continuous.

The proof here that f vanishes at infinity appeals to the continuity of translation
in L1 (Lemma

lem:L1-translationlem:L1-translation
7.6), and a simple trick. First, since e−πi = −1,

e:RL:1e:RL:1 (49) f̂(t) = −
∫
R
f(x)e−2πit(x+(1/2t)) dx = −

∫
R
f

(
x− 1

2t

)
e−2πixt dx.

Combining equation (
e:RL:1e:RL:1
49) with the usual definition of f̂ , we have

f̂(t) =
1

2

∫
R

(
f(x)− f

(
x− 1

2t

))
e−2πixt dx.

Thus

|f̂(t)| ≤ 1

2
∥f − f 1

2t
∥1.

By Lemma
lem:L1-translationlem:L1-translation
7.6 ∥f − f 1

2t
∥1 → 0 as t→ ±∞. □

Continuing our catalog of basic properties, we see that the Fourier transform also
interacts nicely with differentiation.
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prop:mult-to-diff Proposition 7.8 (Multiplication becomes differentiation). Suppose f ∈ L1(R). If g(x) :=
xf(x) belongs to L1(R), then f̂ is differentiable and

ĝ(t) =
−1

2πi

d

dt
f̂(t),

for all t ∈ R.

The proof uses the standard estimate,

|1− eit| ≤ |t|

for t real and dominated convergence.

Proof. For real numbers s ̸= t

eqn:fourier-diff-step0eqn:fourier-diff-step0 (50)
f̂(s)− f̂(t)

s− t
=

∫ ∞

−∞

e−2πisx − e−2πitx

s− t
f(x) dx.

The estimate ∣∣∣∣e−2πisx − e−2πitx

s− t

∣∣∣∣ ≤ 2π|x|

holds for all s ̸= t. Thus, by the assumption xf(x) ∈ L1, a dominated convergence
argument in (

eqn:fourier-diff-step0eqn:fourier-diff-step0
50) shows that the limit as s→ t exists and moreover

lim
s→t

f̂(s)− f̂(t)

s− t
= lim

s→t

∫ ∞

−∞

e−2πisx − e−2πitx

s− t
f(x) dx

=

∫ ∞

∞
(−2πi)e−2πitxxf(x) dx

= −2πiĝ(t).

Thus f̂ is differentiable and the claimed formula holds. □

Note that if f ∈ L1 and also g(x) := xnf(x) ∈ L1 for some integer n ≥ 1, then
xkf(x) belongs to L1 for all 0 ≤ k ≤ n. The previous proposition can then be applied
inductively to conclude:

cor:mult-to-diff-higher Corollary 7.9. If f ∈ L1 and g := xnf ∈ L1, then f̂ is n times differentiable, and

x̂kf =

(
−1

2πi

)k
f̂ (k) for each 0 ≤ k ≤ n.

One also expects a theorem in the opposite direction: the Fourier transform should
convert differentiation to multiplication by the independent variable. Under reasonable
hypotheses, this is the case.

prop:diff-to-mult Proposition 7.10. If f ∈ C0(R) and f ′ is continuous and in L1, then

F(f ′)(t) = f̂ ′(t) = 2πitf̂(t).
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Proof. Compute

f̂ ′(t) =

∫ ∞

−∞
f ′(x)e−2πitx dx

= lim
b→∞

∫ b

−b
f ′(x)e−2πitx dx

= lim
b→∞

(
[f(b)e−2πibt − f(−b)e2πibt] + 2πit

∫ b

−b
f(x)e−2πixt dx

)
= 2πitf̂(t),

where the second equality follows from the Dominated Convergence Theorem, the third
using integration by parts, and the fourth from the C0(R) assumption on f and another
application of Dominated Convergence. □

eg:FT:gaussian Example 7.11. For a > 0 let g = ga denote the Gaussian,

g(x) := e−πax
2

.

(The factor of π will be convenient given our choice of normalization in the definition of
the Fourier transform.)

Rather than computing the transform of ga directly, we exploit Propositions
prop:mult-to-diffprop:mult-to-diff
7.8 and

prop:diff-to-multprop:diff-to-mult
7.10. We may also assume a = 1 since the general case follows from this by scaling
(Proposition

prop:fourier-basicprop:fourier-basic
7.4(e)). Note that h ∈ L1(R) and g′ = −2πh. Thus,

(ĝ)′(t) = −2πiĥ(t)

= −2πiF(− 1

2π
g′)

= i2πitĝ(t)

= −2πtĝ(t),

eq:ftgausseq:ftgauss (51)

where the first equality follows from Proposition
prop:mult-to-diffprop:mult-to-diff
7.8, the second from g′ = −2πh and

the third from Proposition
prop:diff-to-multprop:diff-to-mult
7.10. It follows from equation (

eq:ftgausseq:ftgauss
51) and the product rule that

d

dt
(eπt

2

ĝ(t)) = 0.

Hence the function eπt
2
ĝ(t) is constant. To evaluate the constant, we set t = 0 and use

the well-known Gaussian integral

ĝ(0) =

∫ ∞

−∞
e−πx

2

dx = 1.

We note in passing that F(h1) = −ih1 too.

As a final remark, the F(H4ng1) = H4ng1, where Hn are (appropriately normalized)
hermite polynomials. □
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7.2. Convolution and the Fourier transform. The last set of basic properties of the
Fourier transform concern its interaction with convolution, which we now introduce. If
f, g are measurable functions on R, the convolution of f and g is the function

eqn:convolution-defeqn:convolution-def (52) (f ∗ g)(x) :=
∫
R
f(x− y)g(y) dy

defined at each x for which the integral makes sense. In particular, if f ∈ L∞ and
g ∈ L1, then f ∗ g is defined on all of R. Observe, using the invariance of Lebesgue
measure with respect to x→ −x and a simple change of variable,

eq:convolution-alteq:convolution-alt (53) f ∗ g(x) =
∫
R
g(x− y)f(y) dy = g ∗ f(x).

The next most basic facts about convolution are the following.

prop:convo-L1 Proposition 7.12. If f, g ∈ L1(R) and g ∈ L1(R), then

(a) The function H : R2 → C defined by H(x, y) = f(x− y)g(y) is (jointly) measurable
and in L1(R2) and ∥H∥1 = ∥f∥1 ∥g∥p;

(b) f ∗ g is defined for almost every x ∈ R;
(c) f ∗ g is measurable;

i:convo-L1:c (d) f ∗ g ∈ L1(R); and
(e) ∥f ∗ g∥1 ≤ ∥f∥1 ∥g∥.

Proof. That H is jointly measurable as a function of x and y is left as an easy exercise.
By Tonelli

e:convo-L1:1e:convo-L1:1 (54)

∫∫
|H(x, y)| dxdy =

∫
R
|g(y)|

(∫
R
|f(x− y)| dx

)
dy = ∥f∥1∥g∥1,

where we have used the translation invariance of Lebesgue measure in the second equal-
ity. Hence H is in L1(R2). Thus by Fubini,

∫
R |f(x−y)g(y)| dy =

∫
R |H(x, y)| dy is finite

for almost every x ∈ R and the function x 7→
∫
R f(x−y)g(y) dy is measurable (and real)

for almost every x; that is f ∗ g is defined almost everywhere, in L1 and

|f ∗ g(x)| ≤
∫
R
|H(x, y)| dy.

Hence, by equation (
e:convo-L1:1e:convo-L1:1
54),

∥f ∗ g∥1 =
∫
R

∣∣∣∣∫
R
f(x− y)g(y) dy

∣∣∣∣ dx ≤
∫∫

|H(x, y)| dydx = ∥f∥1∥g∥1. □

We will also have use of the following result when studying the L2 theory of the
Fourier transform on R. It holds more generally with 2 replaced by 1 ≤ p ≤ ∞.

prop:L1astLp Proposition 7.13. If g ∈ L1(R) and f ∈ L2(R), then f ∗g is defined almost everywhere
and in L2(R) and ∥f ∗ g∥2 ≤ ∥f∥1 ∥g∥2.
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Sketch of proof. First suppose f, g : X → [0,∞). Thus the function f ∗ g : R → [0,∞]
is defined everywhere. If also h ∈ L2, then hf−t ∈ L1 for each t and thus, using Tonelli
and Cauchy-Schwartz,∫

R
|f ∗ g(x)h(x)| dx =

∫
R

∫
R
|h(x)|

∫
f(x− t)g(t)dt dx =

∫
R
g(t)

∫
R
|h(x)|f(x− t)dx dt

≤ ∥g∥1∥f∥2∥h∥2.

It follows that the function (f ∗ g)h is in L1(R) for each h ∈ L2. In particular, f ∗ g is
finite almost everywhere. Further, the mapping λ : L2(R) → C defined by

λ(h) =

∫
R
(f ∗ g)h

is continuous (with norm at most ∥g∥1∥f∥2). Hence, by the Riesz Representation The-
orem (Theorem

thm:riesz_repthm:riesz_rep
5.28), there is an L2(R) function ψ such that

λ(h) =

∫
R
hψ =

∫
R
h (f ∗ g).

Thus f ∗ g = ψ almost everywhere and so f ∗ g is in L2 and ∥f ∗ g∥2 = ∥λ∥ ≤ ∥g∥1 ∥f∥2.
Finally, dropping the assumption that f, g map into [0,∞), from what is already

proved, |f | ∗ |g| ∈ L2(R). Thus, since |f ∗ g| ≤ |f | ∗ |g| pointwise, it follows that f ∗ g ∈
L2(R) and ∥f ∗ g∥2 ≤ ∥|f | ∗ |g|∥2 = ∥g∥1∥f∥2. □

END Monday 2025-03-31

prop:convolution-basics Proposition 7.14. Let f, g, h ∈ L1(R).

a) (Commutativity) f ∗ g = g ∗ f .
b) (Associativity) (f ∗ g) ∗ h = f ∗ (g ∗ h).
c) (Distributivity) (f + g) ∗ h = f ∗ g + f ∗ h.
d) (Scalar multiplication) If c ∈ C, then (cf) ∗ g = c(f ∗ g).

Remark 7.15. The properties listed in Proposition
prop:convolution-basicsprop:convolution-basics
7.14, taken together, say L1(R) with

the usual addition of functions and convolution as multiplication is a commutative ring.
(In fact it has even more structure, that of a Banach algebra, but we will not pursue
this direction in this course). □

We can now describe how convolution behaves under the Fourier transform.

prop:convo-mult Proposition 7.16 (Convolution becomes multiplication). Let f, g ∈ L1(R). Then f̂ ∗ g(t) =
f̂(t)ĝ(t).
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Proof. By virtue of Proposition
prop:convo-L1prop:convo-L1
7.12 the function G(x, y) = f(x − y)g(y)e−2πixt is in

L1(R2) and thus we can use Fubini to compute f̂ ∗ g(t):

f̂ ∗ g(t) =
∫
R

(∫
R
f(x− y)g(y) dy

)
e−2πixt dx

=

∫
R
g(y)

(∫
R
f(x− y)e−2πixt dx

)
dy

=

∫
R
f̂(t)e−2πiytg(y) dy

= f̂(t)ĝ(t),

where we have used Proposition
prop:fourier-basicprop:fourier-basic
7.4(b) to obtain the third equality. □

Given what we have proved so far, it follows that the Fourier transform is a ring
homomorphism from L1(R) (with addition and convolution) to C0(R) (with pointwise
addition and multiplication). We will see later that the Fourier transform is injective.
It turns out that it is not surjective, however. (See Problem

prob:FTnotontoprob:FTnotonto
7.7.)

The following basic properties of convolution are immediate. Their proofs are left
as an exercise.

7.3. The Poisson kernel for the upper half plane. Let us fix the notation

eqn:poisson-defeqn:poisson-def (55) Pa(x) :=
1

π

a

a2 + x2
.

Notice that P1(x) is nonnegative and
∫
R P1(x) dx = 1. Moreover, Pa(x) =

1
a
P1(

x
a
).

rem:Pkernel Remark 7.17. The function Pa(x) (viewed as a function of the two arguments (a and
x) is known as the Poisson kernel .

Viewing (x, a) ∈ R2 = C, the set UHP = {(x, a) : x ∈ R, a > 0} is the upper half
plane. Thus Pa(x) = P (x, a) determines a function P : UHP → R. It is not hard to

verify that P (x, a) is harmonic; that is ∂2P
∂2a

+ ∂2P
∂2x

= 0. □

def:approx-unit Definition 7.18. An L1 approximate unit is a collection of functions ϕλ ∈ L1(R) in-
dexed by λ > 0 such that:

i:AI:a (a) ϕλ(t) ≥ 0 almost everywhere, for each λ,
i:AI:b (b)

∫
R ϕλ(t) dt = 1 for all λ, and

i:AI:c (c) For each fixed δ > 0, we have ∥1|t|>δϕλ∥1 → 0 as λ→ 0.

Proposition 7.19. The Poisson kernel {Pa}a>0 is an L1 approximate unit.

thm:Paf-to-f:L1 Theorem 7.20. If 1 ≤ p <∞ and f ∈ Lp(R), then Pa ∗ f converges to f in Lp(R).

Only the cases p = 1, 2 of Theorem
thm:Paf-to-f:L1thm:Paf-to-f:L1
7.20 are needed for the purposes here and that

is what is proved below. The proof uses the following lemma.
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lem:continuity-approx-unit Lemma 7.21. Suppose ϕλ is an L1(R) approximate unit and g : R → C is a bounded
measurable function. If g is continuous at a point x ∈ R, then

lim
λ→0

(g ∗ ϕλ)(x) = g(x).

Proof. Using the trick g(x) =
∫
R ϕλ(y)g(x) dy (item (

i:AI:ai:AI:a
a)),

(g ∗ ϕλ)(x)− g(x) =

∫
R
(g(x− y)− g(x))ϕλ(y) dy.

By positivity of ϕλ (item (
i:AI:bi:AI:b
b)),

eqn:approx-unit-lemma-stepeqn:approx-unit-lemma-step (56) |(g ∗ ϕλ)(x)− g(x)| ≤
∫
R
|g(x− y)− g(x)|ϕλ(y) dy

To estimate the right-hand side, let ϵ > 0 be given. By the continuity of g at x, choose
δ > 0 so that |g(x− y)− g(x)| < ϵ when |y| < δ. We then split the integral in (

eqn:approx-unit-lemma-stepeqn:approx-unit-lemma-step
56) into

two integrals, over the regions |y| ≤ δ and |y| > δ:∫
R
|g(x− y)− g(x)|ϕλ(y) dy

=

∫
{|y|≤δ}

|g(x− y)− g(x)|ϕλ(y) dy +
∫
{|y|>δ}

|g(x− y)− g(x)|ϕλ(y) dy.

The first integrand is bounded by ϵϕλ, so

∫
{|y|≤δ}

|g(x− y)− g(x)|ϕλ(y) dy ≤ ϵ

∫
{|y|≤δ}

ϕλ(y) dy ≤ ϵ

since
∫
R ϕλ(y) dy = 1. The second integrand is bounded by 2∥g∥∞χ{|y|>δ}ϕλ(y), so goes

to 0 as λ→ 0 by item (
i:AI:ci:AI:c
c) in the definition of approximate unit. □

END Wednesday 2025-04-02

Proof of Theorem
thm:Paf-to-f:L1thm:Paf-to-f:L1
7.20. Let p = 1 or p = 2. By continuity of translation in Lp(R)

(Lemma
lem:L1-translationlem:L1-translation
7.6), the function

h(t) = ∥f − ft∥pp =
∫
R
|f(x)− f(x− t)|p dx

is continuous and in particular it is continuous at 0. It is also in L∞(R) since h(t) =
∥f − ft∥p ≤ 2∥f∥p for all t. Consequently, as a function of a > 0, the function Pa ∗ h(0)
has limit h(0) at 0 by Lemma

lem:continuity-approx-unitlem:continuity-approx-unit
7.21.

For a > 0 the function Pa is in L
1(R) and f is Lp(R) and thus, by Proposition

prop:convo-L1prop:convo-L1
7.12 in

the L1(R) case and Proposition
prop:L1astLpprop:L1astLp
7.13 in the L2(R) case, Pa ∗ f is measurable and defined
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almost everywere and in Lp(R). Using items (
i:AI:ai:AI:a
a) and (

i:AI:bi:AI:b
b) of the approximate identity

property of the Poisson kernel,

|f(x)− Pa ∗ f(x)| = |f(x)−
∫
R
f(x− t)Pa(t) dt|

= |
∫
R
(f(x)− f(x− t)) Pa(t) dt|.

e:Paf-to-f:L1:1e:Paf-to-f:L1:1 (57)

Let µ denote the measure Pa(t)dt. In particular µ(R) = 1 and therefore applying the
Cauchy-Schwarz inequality to (f(x) − f(x − t) and the function 1 in the Hilbert space
L2(µ) when p = 2 and the obvious inequality when p = 1, equation (

e:Paf-to-f:L1:1e:Paf-to-f:L1:1
57) gives

e:Paf-to-f:L1:2e:Paf-to-f:L1:2 (58) |f(x)− Pa ∗ f(x)| ≤
(∫

R
|f(x)− f(x− t)|p Pa(t)dt

) 1
p

Hence by Tonelli and equation (
e:Paf-to-f:L1:2e:Paf-to-f:L1:2
58),∫

R
|f(x)− Pa ∗ f(x)|pdx ≤

∫
R

∫
R
|f(x)− f(x− t)|p Pa(t)dt dx

=

∫
R

[∫
R
|f(x)− f(x− t)|p dx

]
Pa(t) dt

=

∫
R
∥f(x)− f(x− t)∥ppPa(t) dt

=

∫
R
h(t)Pa(t) dt

=

∫
R
h(t)Pa(0− t) dt = Pa ∗ h(0).

Therefore, ∥f − Pa ∗ f∥p tends to 0 as a tends to 0+ and the proof is complete. □

7.4. Inversion and uniqueness. In this section we study the problem of recovering

f from f̂ . Loosely, the Fourier transform can be thought of as a resolution of f as a

superposition of sinusoidal functions e2πitx; the value of f̂(t) measures the “amplitude”
of f in the “frequency” t. This suggests that a formula like

eqn:inversion-introeqn:inversion-intro (59) f(x) =

∫
R
f̂(t)e2πitx dt

ought to hold, at least if f̂ ∈ L1. If we formally substitute the definition of f̂ and switch
the order of integration, we are confronted with∫

R
f(u)

(∫
R
e2πi(x−u)t dt

)
du

and the inner integral is not convergent, regardless of any assumption on f̂ . In fact (
eqn:inversion-introeqn:inversion-intro
59)

does hold when f̂ ∈ L1, but a more delicate argument is necessary. So, the goal of this
section will be to prove:
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thm:L1-inversion Theorem 7.22 (Fourier inversion, L1 case). If f and f̂ belong to L1, then

eqn:L1-inversioneqn:L1-inversion (60) f(x) =

∫
R
f̂(t)e2πixt dt

for almost every x ∈ R.

rem:f-fhat-in-L1 Remark 7.23. If both f and f̂ are in L1, then, by Theorem
thm:L1-inversionthm:L1-inversion
7.22,

f(x) =

∫
R
f̂(−t)e−2πixt dt.

Thus f is the Fourier transform of the L1 function f̂(−x) and therefore f ∈ C0(R). By
symmetry f̂ ∈ C0(R) too.

From f(x) = F f̂(−x) it follows that F4 = I. □

The inversion formula implies that L1 functions are determined by their Fourier
transforms.

Corollary 7.24. Suppose f, g ∈ L1. If f̂ = ĝ, then f = g a.e.

Proof. From the inversion theorem, if f ∈ L1 and f̂ = 0, then f = 0. By the linearity of

the Fourier transform, f̂ − g = f̂ − ĝ, and the corollary follows. □

So, in principle, f is fully determined by f̂ , even if f̂ /∈ L1; and this is often the case;

e.g., for b > 0 the the function f = χ[−a,a] from example
eg:cF:Xintervaleg:cF:Xinterval
7.2. To recover f from f̂ in

these cases, we turn to summability methods ; in fact summability methods will already
be of use in proving the inversion theorem. The idea is this: suppose we have a divergent
integral ∫

R
h(t) dt

where the function h is, say, locally L1, but not L1. We might try to make sense of the
integral as

lim
a→+∞

∫ a

−a
h(t) dt,

effectively we have introduced the cutoff function ψa(t) := 1[−a,a], which is positive,
integrable, and increases to 1 pointwise as a → ∞. Given any family of functions ψa
with these three propertes, we can consider the integrals∫

R
h(t)ψa(t) dt.

The square cutoff χ[−a,a] has some undesirable properties; e.g., its Fourier transform is
not L1 (and not of constant sign).
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We will work first the smoother cutoff functions Qa(t) from example
lem:poisson-computationlem:poisson-computation
7.3. Note that

example also computes the inverse Fourier transform of Qa for a > 0 as

e:poisson-computatione:poisson-computation (61)

∫
R
Qa(t)e

2πitx dt =
1

π

a

a2 + x2
= Pa(x),

the Poisson kernel. Further, Qa(t) increases pointwise to the constant function 1 as a
tends to 0.

We are now able to compute the integral (
eqn:inversion-introeqn:inversion-intro
59) modified by the cutoff function Qa(t):

prop:poisson-convolution Proposition 7.25. If f ∈ L1, then for all a > 0 and all x ∈ R

(f ∗ Pa)(x) =
∫
R
Qa(t)f̂(t)e

2πitx dt.

In particular, ga
∫
RQa(t)f̂(t)e

2πitx dt converges to f in L1.

Remark 7.26. The last statement of Proposition
prop:poisson-convolutionprop:poisson-convolution
7.25 recovers f from f̂ , but only

in the L1 norm. The proposition says nothing about the pointwise covergence of the
reguralized integrals. In fact, it is true that the integrals (see Proposition

prop:poisson-convolutionprop:poisson-convolution
7.25) converge

to f a.e., but this requires a more delicate argument. In the proof below, it is shown
that there is a sequence an such that gan converges to f pointwise (almost everywhere.

Proof. For a > 0 and x fixed, let G(t, y)[a, x] = Qa(t)f(y)e
−2πi(x−y)t. Observe that∫

|G(t, y)[a, x]|dydt = ∥f∥1 ∥Qa∥1 =
∥f∥1
πa

.

Thus G[a, x] is L1(R2) and hence we can apply Fubini (explaining the role of the cut-off
function Qa) ∫

R
Qa(t)f̂(t)e

2πix dt =

∫
R
Qa(t)

∫
R
f(y)e2πi(x−y)t dy dt

=

∫
R
Qa(t)

∫
R
f(x− y)e2πiyt dy dt

=

∫
R
f(x− y)

∫
R
Qa(t)e

2πiyt dt dy

= (f ∗ Pa)(x),

where the second equality comes from a change of variable; the third from Fubini, and
the last from equation (

e:poisson-computatione:poisson-computation
61). □

Proof of Theorem
thm:L1-inversionthm:L1-inversion
7.22. Assume f, f̂ ∈ L1(R). Define

g(x) =

∫
R
f̂(t)e2πitx dt.

We are to show g = f a.e.
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For a > 0 and x ∈ R, let

ha,x(t) = Qa(t)f̂(t)e
2πitx.

and for a > 0, let

ga(x) =

∫
R
Qa(t)f̂(t)e

2πitx dt =

∫
R
ha,x dt.

From Proposition
prop:poisson-convolutionprop:poisson-convolution
7.25 ga(x) = f ∗ Pa(x). Fix a sequence an → 0. Since Qan increases

pointwise to the constant function 1, for fixed x, the sequence ha,x converges pointwise

to hx = f̂ te2πitx and at the same time |ha,x(t)| ≤ ∥hx(t)∥ = |f̂(t)∥ for all t; that is, ha,x
is dominated by the L1(R) function f̂ . Thus, by the dominated convergence theorem,

lim
n
gan(x) = lim

n

∫
R
hn,x dt =

∫
R
hx dt = g(x).

On the other hand, gn = f ∗ Pan converges to f in L1(R) by Theorem
thm:Paf-to-f:L1thm:Paf-to-f:L1
7.20. By

Lemma
l:pre:Lp:Banachl:pre:Lp:Banach
4.17, there is a subsequence (gnk

)k of (gn) that converges to f pointwise al-
most everywhere. Thus f = g almost everywhere as claimed. □

Remark 7.27. Observe that the above proof did not really use the explicit form of Pa;
rather the point was that Qa(t) = {e−2aπ|t|}a>0 was a cutoff function (uniformly bounded
and converging pointwise to the constant function 1) whose Fourier transform {Pa} was
an L1 approximate unit. Any other cutoff function with this property could have been
used. □

END 2025-04-04

7.5. The L2 theory. In this section we study the Fourier transform on L2. There is an
immediate problem, of course, since by Problem

prob:lp-no-containments-rnprob:lp-no-containments-rn
4.5 L2 ̸⊆ L1, so the integral (

eqn:fhat-defeqn:fhat-def
47) need

not be defined. However, we can observe that L1 ∩ L2 is dense in L2 (why?), and start
there.

lem:plancherel Lemma 7.28. If f ∈ L1 ∩ L2, then f̂ belongs to L2 and ∥f̂∥2 = ∥f∥2.

Proof. Let f̃(x) := f(−x). Since f, f̃ ∈ L1, the convolution g = f ∗ f̃ is defined a.e. and
g ∈ L1 by Proposition

prop:convo-L1prop:convo-L1
7.12. Now

e:L1capL2:1e:L1capL2:1 (62) g(x) =

∫
R
f(x− y)f(−y) dy =

∫
R
f(x+ y)f(y) dy.

Since f and f−x are both in L2(R) equation (
e:L1capL2:1e:L1capL2:1
62) can be interpreted as g(x) = ⟨f−x, f⟩L2

almost everywhere. By Lemma
lem:L1-translationlem:L1-translation
7.6, the map x→ f−x is continuous from R into L2 and

of course the vector f determines a continuous linear functional. Thus g is a continuous
function of x, and g(0) = ∥f∥22. By Cauchy-Schwarz again,

|g(x)| ≤ ∥f−x∥2 ∥f∥2 = ∥f∥22,

so g is bounded.
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Let, as before Qa(t) = exp(−2aπ|t|). Since g ∈ L1(R) we can apply Proposition
prop:poisson-convolutionprop:poisson-convolution
7.25

to compute

(g ∗ Pa)(0) =
∫
R
Qa(t)ĝ(t) dt.

As g is continuous, by Lemma
lem:continuity-approx-unitlem:continuity-approx-unit
7.21

eqn:plancherel-stepeqn:plancherel-step (63) ∥f∥22 = g(0) = lim
a→0

(g ∗ Pa)(0) = lim
a→0

∫
R
Qa(t)ĝ(t) dt.

Let us compute the limit of this last integral in a different way. Recall that by

definition g = f ∗ f̃ , so by Propositions
prop:convo-multprop:convo-mult
7.16 and

prop:fourier-basicprop:fourier-basic
7.4(d),

ĝ(t) = |f̂(t)|2.

Making this substitution in the integral in (
eqn:plancherel-stepeqn:plancherel-step
63) and applying the monotone convergence

theorem (recall 0 < Qa(t) ≤ 1 converges pointwise increasing to 1 as a→ 0+),

∥f∥22 = lim
a→0

∫
R
Qa(t)ĝ(t) dt = lim

a→0
lim
a→0

∫
R
Qa(t)|f̂(t)|2 dt =

∫
R
|f̂ |2.

Consequently f̂ ∈ L2(R) and ∥f̂∥2 = ∥f∥2. □

thm:fourier-L2 Theorem 7.29 (The Fourier transform on L2). There is a unique bounded linear trans-
formation F : L2 → L2 satisfying the following conditions:

i:F:L2:a (a) For all f ∈ L1 ∩ L2, Ff = f̂ .
i:F:L2:b (b) (The Plancherel theorem) ∥Ff∥2 = ∥f∥2 for all f ∈ L2.
i:F:L2:c (c) The mapping f → Ff is an Hilbert space isomorphism of L2 onto L2.
i:F:L2:d (d) (The Parseval identity) ⟨f, g⟩ = ⟨Ff,Fg⟩ for all f, g ∈ L2.

Remark: Note that when f, g ∈ L1 ∩ L2, the Parseval identity reads∫
R
f(x)g(x) dx =

∫
R
f̂(t)ĝ(t) dt.

Proof of Theorem
thm:fourier-L2thm:fourier-L2
7.29. By Lemma

lem:plancherellem:plancherel
7.28, the map f → f̂ is bounded linear transforma-

tion from a dense subspace of L2 into L2. Thus, since the codomain L2 is complete,

by Proposition
prop:extending-bounded-operatorsprop:extending-bounded-operators
1.34 the map f → f̂ has a unique bounded linear extension to a map

F : L2 → L2. Hence item (
i:F:L2:ai:F:L2:a
a) holds and (

i:F:L2:bi:F:L2:b
b) follows since ∥f∥2 = ∥Ff∥2 on a dense set

(namely L1 ∩ L2). item (
i:F:L2:di:F:L2:d
d) follows from item (

i:F:L2:bi:F:L2:b
b) by Polarization (Theorem

thm:polarizationthm:polarization
5.13). See

Problem
prob:hilby-isometriesprob:hilby-isometries
5.3(a). It remains to prove item (

i:F:L2:ci:F:L2:c
c); what we must show is that F is onto.

We show that F has dense range; combined with the fact that F is an isometry, it
follows that F is in fact onto. (The proof of this last assertion is left as an exercise). Let

M denote the set of all functions g ∈ L2 such that g = f̂ for some f ∈ L1 ∩ L2. Clearly
the range of F contains M , so it will suffice to prove that M is dense, or equivalently,
that M⊥ = {0}.
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Recall the cutoff functions Qa(x) = e−2aπ|x|, a > 0 introduced in equation (
def:Qsubadef:Qsuba
48).

The functions e2πibxe−2aπ|x| belong to L1 ∩ L2 for all a > 0 and b ∈ R, so their Fourier
transforms

Pa(t− b) =

∫
R
e2πibxQa(x) e

−2πitx dx

belong to M . So, let h ∈M⊥ be given and let H(x) = h(−x). Thus,

(Pa ∗H)(−b) =
∫
R
Pa(−b− t)h(−t) dt =

∫
R
Pa(t− b)h(t) dt = 0

for all b. Theorem
thm:Paf-to-f:L1thm:Paf-to-f:L1
7.20 implies Pa ∗ H converges to H in L2. Hence h = 0 and conse-

quently M is dense in L2 and the proof is finished. □

thm:L2-inversion Theorem 7.30 (L2 inversion). Let f ∈ L2. Define

ϕN(t) =

∫ N

−N
f(x)e−2πixt dx, ψN(t) =

∫ N

−N
(Ff)(t)e2πixt dt.

Then ∥ϕN −Ff∥2 → 0 and ∥ψN(t)− f∥2 → 0 as N → ∞.

Proof. Let fN := 1[−N,N ]f . Then fN ∈ L1 ∩ L2, and ϕN = f̂N . An application of
dominated convergence shows that (fN)N converges to f in the L2 norm. Hence, (ϕN =

f̂N = FfN)N converges in L2 to Ff by Theorem
thm:fourier-L2thm:fourier-L2
7.29.

The statement for ψN is proved by similar methods and is left as an exercise (Prob-
lem

prob:L2-inversionprob:L2-inversion
7.9). □

Remark 7.31. It is important to note that, for a general function f ∈ L2, its Fourier
transform is defined only as an element of L2. In particular it is defined only a.e., and

cannot be evaluated at points. It is customary to write f̂ for Ff when f ∈ L2, with the
understanding that the integral definition is only valid when f ∈ L1 ∩ L2.

END Monday 2025-04-07

7.6. Problems.

Problem 7.1. Prove Proposition
prop:fourier-basicprop:fourier-basic
7.4

Problem 7.2. Complete the proof of Lemma
lem:L1-translationlem:L1-translation
7.6.

prob:continuous-convo Problem 7.3. Prove, if E ⊆ [0, 1] has positive Lebesgue measure, then the set

E − E = {x− y : x, y ∈ E}
contains an interval centered at the origin. (Hint: let −E = {−x : x ∈ E} consider the
function h(x) = 1−E ∗ 1E.)

prob:scaled-approx-unit Problem 7.4. Suppose ϕ is an unsigned L1 function with
∫
ϕ = 1, and let ϕλ(x) =

1
λ
ϕ
(
x
λ

)
.

a) Prove {ϕλ}λ>0 is an L1 approximate unit.
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b) Give a simpler proof of Lemma
lem:continuity-approx-unitlem:continuity-approx-unit
7.21 by making a change of variables in equa-

tion (
eqn:approx-unit-lemma-stepeqn:approx-unit-lemma-step
56).

prob:smooth-dense-Lp Problem 7.5. a) Prove, if f ∈ C1
c (R) and g is a compactly supported L1 function,

then f ∗ g is C1 with compact support. (Hint: justify differentiation under the
integral sign.)

b) By induction, conclude that if f ∈ C∞
c (R) and g ∈ L1 is compactly supported,

then f ∗ g ∈ C∞
c (R).

c) Conclude that C∞
c (R) is dense in Lp for all 1 ≤ p < ∞. (Suggestion: Construct

a C∞ approximate identity with compact support.)

prob:poisson-computation Problem 7.6. Compute the integral in Lemma
lem:poisson-computationlem:poisson-computation
7.3.

prob:FTnotonto Problem 7.7. This problem gives a proof that the Fourier transform̂: L1 → C0(R) is
not surjective.

a) Draw a picture of hn := 1[−n,n] ∗ 1[−1,1] and determine its C0(R) norm.
b) Show that hn is, up to a multiplicative constant independent of n, the Fourier

transform of the L1 function

fn :=
sin 2πx sin 2πnx

x2
.

(Hint: you can compute integrals, or use the L1 inversion theorem.)
c) Show that ∥fn∥1 → ∞ as n → ∞. Conclude that the Fourier transform is not

surjective. (Hint: if it were surjective... .)

Problem 7.8. Suppose that f ∈ L1, f is differentiable a.e., f ′ ∈ L1, and f(x) =∫ x
−∞ f ′(y) dy for a.e. x ∈ R. Prove f̂ ′ = 2πitf̂(t).

prob:L2-inversion Problem 7.9. Complete the proof of Theorem
thm:L2-inversionthm:L2-inversion
7.30.

Problem 7.10. Let φλ be an L1(T) approximate unit. Prove, if f ∈ C(T), then
f ∗ φλ → f uniformly as λ→ 0.

Problem 7.11. State and prove an analog of Proposition
prop:fourier-basicprop:fourier-basic
7.4 for Fourier series.

Problem 7.12. Show if f : R → R is twice continuously differentiable and has compact

support, then f̂ ∈ L1(R). Now show the Fourier transform F : L1(R) → C0(R) has
dense range. (It is not onto by Problem

prob:FTnotontoprob:FTnotonto
7.7.)

8. Compact operators on Hilbert space

We begin our treatment of compact self-adjoint operators on Hilbert space with the
following introductory extended example.

eg:integral:operator Example 8.1. Let (X,M , µ) and (Y,N , ν) be σ-finite measure spaces and fix K ∈
L2(µ×ν).
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For x ∈ X, let Kx : Y → C denote the slice function Kx(y) = K(x, y). Since K is
µ×ν measurable, each Kx is ν-measurable. Since K2 ∈ L1(µ × ν), by Fubini K2

x is in
L1(ν) for almost every x; that is Kx ∈ L2(ν) for almost every x. Thus, if f ∈ L2(ν),
then Kxf ∈ L1(ν) for almost every x. Define ψ : X → C by

ψ(x) =

∫
Y

Kxf dν

and, by Cauchy-Schwarz,

|ψ(x)| ≤
∫
Y

|Kx| |f | dν ≤ ∥Kx∥ ∥f∥.

Given f ∈ L2(ν) and g ∈ L2(µ) it is straightforward to check that f(y)g(x) ∈ L2(µ)

and therefore, K(x, y)f(y)g(x) ∈ L1(µ×ν). Hence, by Fubini,

g(x)ψ(x) =

∫
Y

g(x)Kxf dν

(exists almost everywhere and) is a measurable function. Given E ∈ M with µ(E) <∞,
choosing g = χE, gives χEψ is measurable. Since X is σ-finite, ψ is measurable.

Using Tonelli∫
X

|ψ(x)|2 dµ =

∫
X

∣∣∣∣ ∫
Y

K(x, y)f(y)dν

∣∣∣∣2dµ
≤
∫
X

(∫
Y

|Kx||f | dν
)2

dµ

≤
∫
X

∥Kx∥2∥f∥2dµ

= ∥f∥2
∫
X

(∫
Y

|K(x, y)|2dν
)
dµ = ∥f ||22∥K∥22.

Hence ψ ∈ L2(µ) and ∥ψ∥2 ≤ ∥K∥2∥f∥2. In this way we obtain a bounded mapping
IK : L2(ν) → L2(µ) given by

IKf(x) =
∫
Y

Kxf dν

with ∥IK∥ ≤ ∥K∥2.
The mapping IK is known as an integral operator . Note that, for f ∈ L2(ν) and

g ∈ L2(µ),

⟨IKf, g⟩ =
∫

(

∫
Kxf dν)g dµ =

∫ ∫
K(x, y)f(y)g(x)dνdµ

=

∫
K(x, y)f(y)g(x)d µ×ν.
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Setting K∗(y, x) = K(x, y) a similar computation reveals,

⟨f, IK∗g⟩ =
∫
Y

f(z)I∗
Kg(z) dν

=

∫
Y

f(z)

∫
X

K∗(z, w)g(w)

=

∫
f(z)K∗(z, w)g(w)dµ×ν(w, z)

=

∫
f(z)K(w, z)g(w) dµ×ν(w, z) = ⟨IKf, g⟩.

Thus I∗
K = IK∗ .

It is instructive to consider the case where the measure spaces are the following.
Let X = {1, 2, . . . ,m} and Y = {1, 2, . . . , n}; let M and N denote the power sets of
X and Y respectively and let µ and ν denote the counting measures Thus L2(µ) and
L2(ν) are naturally identified with Cm and Cn respectively. A function K : X × Y → C
is identified with the matrix K = (K(j, k))m,nj,k=1. Given a function f : Y → C (a vector
in Cn)

IKf(ℓ) =
n∑
j=1

K(ℓ, j)f(j).

Thus KKf = Kf is just the product of the matrix K times the vector f. Finally,
K∗(ℓ, j) = K(j, ℓ) is just the usual adjoint of the matrix K.

The Volterra operator is the following integral operator V : L2([0, 1]) → L2([0, 1])
defined by

V f(x) =

∫ x

0

f(y)dy.

Thus here (X,M , µ) = ([0, 1],L,m) = (Y,N , ν) and

K(x, y) =

{
1 if x > y

0 if x ≤ y.

Now

K∗(x, y) = K(y, x) =

{
0 if x > y

1 if x ≤ y.

and therefore,

V ∗f(x) =

∫ 1

x

f(y) dy =

∫ 1

0

f dy −
∫ x

0

f(y) dy

Suppose now that V ∗f = 0. Since L2([0, 1]) ⊆ L1([0, 1]) the Lebesgue differentiation
theorem implies V ∗f is differentiable almost every where and

0 = (V ∗f)′(x) = −f(x)

almost everywhere. Thus V ∗ is injective.
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Finally, if T : H → K is a bounded linear operator and kerT ∗ = {0} (equivalently
T ∗ is injective), then the range of T is dense. Indeed, if k ∈ (ranT )⊥, then, for all h,

0 = ⟨Th, k⟩ = ⟨h, T ∗ k⟩

and therefore T ∗k = 0. Thus k = 0 and consequently (ranT )⊥ = {0}. In fact, this
argument proves11 (ranT )⊥ = kerT ∗ and consequently ranT = (kerT ∗)⊥. □

END Wednesday 2025-04-09

8.1. B(H) as a C-star algebra. The second item in the lemma below is the C-star
identity. It says that B(H) is a C-star algebra. We leave it to the interested reader to
read more about C-star algebras.

lem:pre:spec:rad:normal Lemma 8.2. If T ∈ B(H), then ∥T ∗T∥ = ∥T∥2.

Proof. Using Lemma
lem:Hilby-norm:altlem:Hilby-norm:alt
5.32, observe

∥T ∗T∥ = sup{|⟨T ∗Tg, h⟩| : ∥g∥ = 1 = ∥h∥}
= sup{|⟨Th, Tg⟩| : ∥g∥ = 1 = ∥h∥}.

pre:gelfand:apre:gelfand:a (64)

Cauchy-Schwarz gives |⟨Tg, Th⟩| ≤ ∥T∥2. Thus,

pre:gelfand:bpre:gelfand:b (65) ∥T∥2 ≥ sup{|⟨Th, Tg⟩| : ∥g∥ = 1 = ∥h∥} ≥ sup{⟨Tg, Tg⟩ : ∥g∥ = 1} = ∥T∥2.

Combining equations (
pre:gelfand:apre:gelfand:a
64) and (

pre:gelfand:bpre:gelfand:b
65) completes the proof. □

8.2. Invertible operators. Throughout this subsection H is a Hilbert space; B(H) is
the space of bounded linear operators on H viewed as a Banach space with the operator
norm; and I ∈ B(H) is the identity operator on H.

Recall, by The Banach Isomorphism Theorem, Corollary
cor:banach-isomorphismcor:banach-isomorphism
3.12, if H and K are

Hilbert spaces and T : H → K is bijective, then the (algebraic) inverse of T is also
bounded; that is, T Is boundedly invertible.

prop:Iminusnorm Proposition 8.3. If A ∈ B(H) and ∥A∥ < 1, then

(i) I − A is invertible;

(ii) the (geometric) series (Sn)

Sn =
n∑
j=0

Aj

converges in the operator norm to (I − A)−1; and

11The relations between kerT ∗ and rangeT from matrices that you are familiar with from under-
graduate linear algebra extend to bounded operators on Hilbert space with the caveat that at times
ranT needs to be replaced by ranT .
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(iii)

∥(I − A)−1∥ ≤ 1

1− ∥A∥
.

Proof. Since, ∥ST∥ ≤ ∥S∥ ∥T∥ for S, T ∈ B(H), for all n ∈ N we have ∥An∥ ≤ ∥A∥n.
Thus, the triangle inequality and ∥A∥ < 1, give (An) converges to 0 and

e:Iminusnorm:1e:Iminusnorm:1 (66) ∥Sn∥ ≤
n∑
j=0

∥A∥j ≤ 1

1− ∥A∥

for all n. Hence the series (Sn) is absolutely convergent in the Banach space B(H). It
follows from Proposition

prop:abs-cvg-completeprop:abs-cvg-complete
1.7 that there is an S ∈ B(H) such that (Sn) converges to S.

Now since (Sn) and (An) converge to S and A respectively and

(I − A)Sn = I − An+1 = Sn(I − A),

it follows that (I − A)S = I = S(I − A). Hence I − A is invertible and S = (I − A)−1.
From equation (

e:Iminusnorm:1e:Iminusnorm:1
66) and continuity of the norm, ∥S∥ ≤ (1− ∥A∥)−1. □

rem:spec:rad:Iminusnorm Remark 8.4. Note, for T ∈ B(H) the inequality ∥T n∥ ≤ ∥T∥n, implies

r = lim sup ∥T n∥
1
n ≤ ∥T∥.

The obvious modification of the proof of Proposition
prop:Iminusnormprop:Iminusnorm
8.3 shows if r < 1, then (I − T ) is

invertible and the series Sn converges to (I − T )−1 in operator norm.

prop:invopen-more Proposition 8.5. The set I(H) of invertible operators on H is an open subset of B(H)
and the mapping F : I → I defined by

F (A) = A−1

is continuous.

Proof. Fix A ∈ I(H). Choose η = 1
2∥A−1∥ and suppose ∥H∥ < η. In this case,

∥ − A−1H∥ ≤ ∥A−1∥ ∥H∥ < 1

2

and hence I + A−1H is invertible by Proposition
prop:Iminusnormprop:Iminusnorm
8.3. Consequently,

A+H = A(I + A−1H)

is invertible, proving that the η-neighborhood of A lies in In (since if B is in this η
neighborhood, then H = B − A has (operator) norm at most η). Proposition

prop:Iminusnormprop:Iminusnorm
8.3 also

gives

∥(A+H)−1∥ ≤ ∥A−1∥ 1

1− ∥A−1H∥
≤ 2∥A−1∥.
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To see that F is continuous, again suppose ∥H∥ < η and note

∥F (A+H)− F (A)∥ =∥(A+H)−1[A− (A+H)]A−1∥
≤∥A+H∥−1 ∥H∥ ∥A−1∥
≤2∥A−1∥2 ∥H∥.

To complete the proof, given ϵ > 0, choose 0 < δ ≤ η and such that δ < ϵ
2∥A−1∥ . □

8.3. The spectrum of a bounded linear operator on Hilbert space.

Definition 8.6. The spectrum of T ∈ B(H), traditionally denoted by σ(T ), is set

σ(T ) = {λ ∈ F : T − λI is not invertible }.

The set ρ(T ) = F \ σ(T ) is the resolvent set of T.

Remark 8.7. It is customary to write T − λ instead of T − λI.

Example 8.8. When F = R it is possible that σ(T ) = ∅. For instance, consider the
matrix

T =

(
0 1
−1 0

)
viewed as an element of B(R2) (where of course R2 is the usual real Euclidean space).
For λ ∈ R, it is routine to verify that

S = Sλ = − 1

1 + λ2

(
λ 1
−1 λ

)
satisfies both ST = I = TS. Thus T is invertible for each λ ∈ R.

Lemma 8.9. The spectrum σ(T ) of an operator T ∈ B(H) is closed and bounded (and
hence compact). In fact σ(T ) ⊆ {λ ∈ F : |λ| ≤ ∥T∥}.

Proof. If |λ| > ∥T∥, then ∥T
λ
∥ < 1 and hence A = T

λ
is invertible. Thus λA = T is also

invertible. Hence σ(T ) ⊆ {λ ∈ F : |λ| ≤ ∥T∥}.
If λ ∈ ρ(T ), then T − λ is invertible. Since I(H) is open, there is a δ > 0 such

that if |λ − µ| < δ, then T − µ is invertible. Hence ρ(T ) is open. Equivalently σ(T ) is
closed. □

In particular, ρ(T ) is an open subset of C.

prop:inverse:analytic Proposition 8.10. If H is a complex Hilbert space and T ∈ B(H), then for each h, k ∈
H, the function f : ρ(T ) → C defined by

f(z) = ⟨(T − z)−1h, k⟩

is analytic.

Further, σ(T ) ̸= ∅.
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The proof assumes some knowledge of Liouville’s Theorem from complex analysis.
Given an open set Ω ⊆ C, a function f : Ω → C is analytic if, for each z ∈ Ω the limit

lim
w→z

f(z)− f(w)

z − w

exists (and naturally we call this limit the derivative of f at z, denoted f ′(z).) An analytic
function f : C → C is entire. Liouville’s Theorem says a bounded entire function is
constant.

Proof. To prove f is analytic, suppose z ∈ ρ(T ) and N is a neighborhood of z that lies
in ρ(T ). For w ∈ N,

(T−z)−1−(T−w)−1 = (T−z)−1 ((T − w)− (T − z)) (T−w)−1 = (w−z)(T−z)−1(T−w)−1.

Hence

f(z)− f(w)

z − w
=

1

(z − w)

(
⟨(T − z)−1h, k⟩ − ⟨(T − w)−1h, k⟩

)
= −⟨(T − z)−1(T − w)−1h, k⟩

By Proposition
prop:invopen-moreprop:invopen-more
8.5, the right hand side converges to −⟨(T − z)−2h, k⟩ as w tends to z

through ρ(T ). Hence f is analytic.

Arguing by contradiction, suppose σ(T ) = ∅. In this case, ρ(T ) = C and f is entire.
Now suppose |z| > 2∥T∥. In this case ∥1

z
T∥ < 1

2
and thus, by Proposition

prop:Iminusnormprop:Iminusnorm
8.3,

∥(T − z)−1∥ =
1

|z|
∥(I − T

z
)−1∥ ≤ 2

|z|
.

It now follows that f has limit 0 as |z| tends to infinity. Thus f is constantly 0 and
therefore ⟨(T − z)−1h, k⟩ = 0 for all h, k and all z ∈ C, which gives the contradiction
(T − z)−1 = 0. □

END Friday 2025-04-11

Proposition 8.11. An operator T ∈ B(H,K) is invertible if and only if T ∗ ∈ B(K,H)
is and in this case (T ∗)−1 = (T−1)∗.

In particular, σ(T ∗) = σ(T ) for T ∈ B(H).

We sometimes write T−∗ for (T ∗)−1 = (T−1)∗.

Sketch of proof. For all g, h ∈ H,

⟨g, h⟩ = ⟨T−1Tg, h⟩ = ⟨g.T ∗(T−1)∗h⟩

and for all f, k ∈ K,

⟨f, k⟩ = ⟨TT−1f, k⟩ = ⟨f, (T−1)∗T ∗k⟩. □
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8.4. Gelfand’s spectral radius formula.

Definition 8.12. The spectral radius of T ∈ B(H) is

r(T ) = max{|µ| : µ ∈ σ(T )}.

rem:spec:rad:more Remark 8.13. Recall from Remark
rem:spec:rad:Iminusnormrem:spec:rad:Iminusnorm
8.4 that r(T ) ≤ ∥T∥ and if r(T ) < 1, then I − T

is invertible.

thm:spec:r Theorem 8.14. For an operator T ∈ B(H) on a complex Hilbert space H,

r(T ) = lim sup ∥T n∥
1
n .

The proof of Theorem
thm:spec:rthm:spec:r
8.14 is very similar to the proof that the radius of convergence

of the power series of a function f is the radius of the largest disc (centered to 0) to
which the function extends analytically. Not surprisingly, it involves the Cauchy integral
formula.

Proof. Set s = r(T )−1 and t = lim sup ∥T n∥ 1
n . Let ρ < s be given and sD = {z ∈ C :

|z| < s}. For z ∈ sD, the operator I − zT is invertible as |1
z
| > 1

s
= r(T ). Moreover, for

|z| < ∥T∥−1,

(I − zT )−1 =
∑

T nzn

with convergence in the operator norm. For unit vectors g, h ∈ H, the function f : sD →
C defined by f(z) = ⟨(I − zT )−1g, h⟩ is analytic and hence the power series

⟨(I − zT )−1g, h⟩ =
∑

⟨T ng, h⟩zn

has radius of convergence at least s. Consequently, by Cauchy’s integral formula, for
n ∈ N, ∫

|z|=ρ

fg,h(z)

zn+1
dz = ⟨T ng, h⟩.

Arguing by contradiction, suppose there does not exists a c > 0 such that ∥(T −
z)h∥ ≥ c∥h∥ for all |z| = ρ. Thus there exists a sequence of unit vectors (hn) and
complex numbers (zn) with |zn| = ρ such that (|(T − zn)hn∥) converges to 0. Passing to
a subsequence as needed, there is a z such that (zn) conveges to z. Now,

∥(T − z)hn∥ = ∥[(T − zn) + (zn − z)]hn∥ ≤ ∥(T − zn)hn∥+ |zn − z|.

The right hand side tends to 0 with n and hence so does the left. Hence T − z is
not bounded below and therefore not invertible, a contradiction that shows there is a
constant Cρ such that ∥(T − zI)−1∥ ≤ Cρ for all |z| = ρ. Hence, since g, h are unit
vectors,

|fg,h(z)
zn

| ≤ Cρ
ρn

for |z| = ρ. Thus

Cρ ≥ ρn|⟨T ng, h⟩|.
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Taking the supremum g, h,
Cρ ≥ ρn∥T n∥.

Thus n
√
Cr ≥ ρ∥T n∥ 1

n and hence 1 ≥ ρ t. Finally, 1 ≥ t
r
so that r ≥ t.

For the other inequality, note that the proof that I−A is invertible in Proposition
prop:Iminusnormprop:Iminusnorm
8.3

really only requires lim sup ∥An∥ 1
n < 1. Thus, for |z| < t, we have I − zT is invertible.

Equivalently, if |z| > t then T − z is invertible and so z /∈ σ(T ). Hence if z ∈ σ(T ), then
|z| ≤ t and thus r ≤ t. □

8.5. The spectrum of normal and self-adjoint operators. As a convention and
in context, when a set S is generically a subset of C (e.g., σ(T ) for a complex Hilbert
space), by S ⊆ R we mean S ⊆ {λ ∈ C : imageλ = 0}.

prop:spec:self-adjoint Proposition 8.15. If H is a complex Hilbert space and T ∈ B(H) is self-adjoint, then
σ(T ) ⊆ R.

If H is a real Hilbert space and T ∈ B(H) is self-adjoint, then σ(T ) ̸= ∅.

lem:Fred:alt Lemma 8.16 (The Fredholm alternative). If T ∈ B(H,K), then

(a) ranT⊥ = kerT ∗; and
(b) ranT = (kerT ∗)⊥.

Proof. Fix k ∈ K and let h ∈ H be given and observe

⟨Th, k⟩ = ⟨h, T ∗k⟩ = 0

for all h if and only if k ∈ kerT ∗ if and only if k ∈ ranT⊥.

Taking orthogonal complements in the first identity and noting that (ranT )⊥⊥ =
ranT gives the second identity. □

An operator T : H → K is bounded below if there is a c > 0 such that ∥Th∥ ≥ c∥h∥
for all h ∈ H.

lem:bounded:below Lemma 8.17. If T ∈ B(H,K) is bounded below, then T has closed range.

Proof. By assumption there is c > 0 such that ∥h∥ ≤ ∥Th∥
c

for all h ∈ H. Suppose

g ∈ ranT . Thus there exists a sequence (hn) from H such that (Thn) converges to g.

From ∥hn − hm∥ ≤ ∥Thn−Thm∥
c

. it follows that (hn) Cauchy and so converges to some
h ∈ H. Thus (Thn) converges to Th and g. So g = Th ∈ ranT. □

Proof of Proposition
prop:spec:self-adjointprop:spec:self-adjoint
8.15. The proof of the second statement is accomplished by com-

plexification and applying Proposition
prop:inverse:analyticprop:inverse:analytic
8.10. The interested reader can find the details

outlined in an exercise in Axler.

Let a + bi ∈ C with b ̸= 0 be given. Since, for h ∈ H, both ⟨Ah, h⟩ and ⟨h, h⟩ are
real, by the Cauchy-Schwarz inequality,

|b|∥h∥2 ≤ |⟨Ah, h⟩+ ib⟨h, h⟩| = |⟨(A+ ib)h, h⟩| ≤ ∥(A+ ib)∥ ∥h∥.
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Thus, by Lemma
lem:bounded:belowlem:bounded:below
8.17, A+ ib is bounded below and hence has closed range. Replacing

b with −b it also follows that ker(A− ib) = {0}. Hence the range of (A− ib)∗ = A+ ib
is dense by Lemma

lem:Fred:altlem:Fred:alt
8.16. Consequently, ran(A + ib) = H. Thus A + ib is bijective and

hence invertible so that a+ ib /∈ σ(T ).

∥(A + ib)h∥ ≥ ∥h∥ for all h ∈ H. Thus, if ((A + ib)hn) is a Cauchy, then so is
(hn). Hence (hn) converges to some h and therefore, (A+ ib)hn converges to (A+ ib)h.
Consequently the range of A− ib is closed. Since it also dense, A− ib is onto and thus
A− ib is invertible. □

def:eigenvalue Definition 8.18. A µ ∈ C is an eigenvalue for T ∈ B(H) provided there is an 0 ̸= h ∈
H such that Th = µh. The vector h is an eigenvector of T corresponding to µ.

The set of eigenvalues for T is denoted σp(T ). (The point spectum of T .)

Note if λ is an eigenvalue for T, then λ ∈ σ(T ); that is σp(T ) ⊆ σ(T ).

eg:no:point:spec Problem 8.1. Let D = {z ∈ C : |z| < 1} denote the open unit disc in C. Show σ(S) = D
and σp(S) = ∅ where S is the shift operator. Suggestion, first show σp(S) = ∅ and
then argue as follows:

(i) ∥S∥ = ∥S∗∥ = 1 so that σ(S∗) ⊆ D;
(ii) σp(S

∗) = D;
(iii) σ(S∗) = D;
(iv) σ(S) = D.

def:normal:op Definition 8.19. An operator N ∈ B(H) is normal if N∗N = NN∗.

It is evident that if T is either self-adjoint or unitary operators, then T is normal.

prop:pointspec:normal Proposition 8.20. If N ∈ B(H) is normal g, h ∈ H and λ, µ ∈ C, then

(i) ⟨Ng,Nh⟩ = ⟨N∗g,N∗h⟩;
(ii) if Nh = 0, then N∗h = 0;
(iii) if Nh = µh, and Ng = λg, then N∗h = µh, and, assuming λ ̸= µ,

⟨Nh, g⟩ = 0.

Proof. If A is normal and g, h ∈ H, then

⟨Ag,Ah⟩ = ⟨A∗Ag, h⟩ = ⟨AA∗g, h⟩ = ⟨A∗g, A∗h⟩.
Thus Ah = 0 if and only if A∗h = 0.

Now suppose N is normal and Nh = µh. It is straightforward to verify that (N −
µ)∗ = N∗ − µ and N − µ is normal. Setting A = N − µ, we have Ah = 0 and hence
A∗h = 0; that is (N∗ − µ)h = 0 as desired.

To complete the proof, suppose also that Ng = λg and observe,

µ⟨h, g⟩ = ⟨Nh, g⟩ = ⟨h,N∗g⟩ = λ⟨h, g⟩.
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Since µ ̸= λ it must be the case that ⟨h, g⟩ = 0. □

Note Proposition
prop:pointspec:normalprop:pointspec:normal
8.20 says that σp(N

∗) = σp(N) for a normal operator N.

thm:spec:rad:normal Theorem 8.21. If N ∈ B(H) is normal and H is a complex Hilbert space, then there
exists a µ ∈ σ(N) such that |µ| = ∥N∥.

Proof of Theorem
thm:spec:rad:normalthm:spec:rad:normal
8.21. It suffices to prove the spectral radius r(N) is equal ∥N∥. For

N ∈ B(H) a normal operator, N∗2N2 = (N∗N)2. Thus for h ∈ H,

∥N2h∥2 = ⟨N2h,N2h⟩ = ⟨N∗2N2h, h⟩ = ⟨N∗NN∗Nh, h⟩ = ∥N∗Nh∥2.

It follows that ∥N2∥ = ∥N∗N∥ = ∥N∥2, where the second equality is the C-star identity.
See Lemma

lem:pre:spec:rad:normallem:pre:spec:rad:normal
8.2.

Replacing N by the normal operator Nn, gives ∥N2n∥ = ∥N∥2n. Thus,

lim sup ∥N2n∥
1
2n = ∥N∥.

On the other hand, ∥Nn∥ ≤ ∥N∥n and thus ∥Nn∥ 1
n ≤ ∥N∥ for all n, from which it

follows immediately that from Theorem
thm:spec:rthm:spec:r
8.14 that

lim sup ∥Nn∥
1
n = ∥N∥ = r(N),

the spectral radius of N. The result follows. □

While it was not needed in the proof of Theorem
thm:spec:rad:normalthm:spec:rad:normal
8.21, it is not hard to verify that

in fact ∥Nn∥ = ∥N∥n for all n ∈ N for a normal operator N.

8.6. Introduction to compact operators on Hilbert space. We continue to let
B(H,K) denote the bounded linear maps from the Hilbert space H to the Hilbert space
K.

def:compact:op Definition 8.22. An operator T ∈ B(H,K) is compact if every bounded sequence (hn)n
from H has a subsequence (hnk

)k such that (Thnk
)k converges.

Remark 8.23. It is enough to assume that T : H → K is linear; that is, if T is linear
and satisfies the compactness condition, then T is bounded.

If either H or K is finite dimensional, then every T ∈ B(H,K) is compact.

END Monday 2025-04-14

Definition 8.24. An operator T ∈ B(H,K) is finite rank if its range is finite dimen-
sional. In this case the rank of T is the dimension of its range.

prop:finite:rank:cpt Proposition 8.25. Finite rank operators are compact.
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Example 8.26. Given h ∈ H and k ∈ K, define kh∗ : H → K by

kh∗x = ⟨x, h⟩k, x ∈ H.

It is easy to verify kh∗ is bounded. Its range is one-dimensional. Hence kh∗ is compact.

More generally, given h1, . . . , hm ∈ H and k1, . . . , km ∈ K, the operator
∑
kjh

∗
j :

H → K is also compact. Its range is (contained in) the span of {k1, . . . , km}.

prop:finite:rank Proposition 8.27. If T : K → H is finite rank, then there exists h1, . . . , hm ∈ H and
k1, . . . , km ∈ K, such that T =

∑
kjh

∗
j .

Proof. Choose an orthonormal basis {k1, . . . , km} for the range of T. Thus, for h ∈ H,

Th =
∑

⟨Th, kj⟩kj =
∑

⟨h, T ∗kj⟩kj.

Thus T =
∑

(T ∗kj)
∗kj. □

Let C(H,K) ⊆ B(H,K) denote the compact operators from H to K. Let C(H) =
C(H,H).

prop:CH:ideal Proposition 8.28. The set C(H,K) is subspace of B(H,K).

If either of T ∈ B(H,K) or S ∈ B(K,L) is compact, then ST is compact; Hence
C(H) = C(H) is a two sided ideal in B(H).

Importantly, C(H,K) is a closed subspace of B(H,K), a fact we will prove if time
permits.

Proof. Suppose (hn) is a bounded sequence. Suppose T is compact (and S is bounded).
Since T is compact, there is a subsequence (gk = hnk

)k of (hn) such that Tgk converges.
Thus, by continuity of S, the sequence (STgk) converges. Hence ST is compact.

Now suppose S is compact (and T is bounded). To prove TS is compact, first
note (Thn) is a bounded sequence. Hence, by compactness of S, there is a subsequence
(fk = Thnk

)k of (Thn)n such that (STgk) converges. Thus ST is compact.

The proof that C(H) is a subspace of B(H) is left as an exercise. □

8.7. The spectrum of compact operators.

prop:cpt:0 Proposition 8.29. If H is an infinite dimensional Hilbert space and T ∈ B(H) is
compact, then 0 ∈ σ(T ).

Proof. We prove the contrapositive. If 0 /∈ σ(T ), then T is invertible. Since H is infinite
dimensional it contains an orthonormal sequence (en)n. This sequence is bounded, but
has no convergent subsequence. The sequence (hn = Ten) is bounded and (T−1hn) =
(en) has no convergent subsequence. Hence (hn) has no convergent subsequence and
thus T is not compact. □
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END Wednesday 2025-04-16

prop:cpt:normal:eigs Proposition 8.30. If N ∈ B(H) is compact and normal, then σ(N)\{0} = σp(N)\{0}.

The result holds without the normality assumption.

Example 8.31. Let {en : n ∈ N} denote the usual basis for ℓ2(N) and let (an) be any
sequence from C \ {0}. that converges to 0. The operator D ∈ B(ℓ2(N)) defined by
Den = anen is easily seen to be compact and of course it is evident that σp(T ) = {an :
n ∈ N}. Thus

σp(T ) ∪ {0} = {an : n ∈ N} ⊆ σ(D) ⊆ σp(T ) ∪ {0}.
The claim follows. □

The proof of Proposition
prop:cpt:normal:eigsprop:cpt:normal:eigs
8.30 given below uses the following lemma.

lem:pre:cpt:normal:eigs Lemma 8.32. If T ∈ B(H) is compact and µ ̸= 0, then, setting S = T − µ,

i:pcne:i (i) if (ψn) is a bounded sequence from H such that (Sψn) converges to g, then there is
a subsequence (ψnk

) that converges to some h ∈ H such that Sh = g. In particular,
g ∈ ranS;

i:pcne:ii (ii) range(T − µ) is closed; and

i:pcne:iii (iii) ker(T − µ) is finite dimensional.

Proof. To prove item (
i:pcne:ii:pcne:i
i), by compactness of T, there is an f and a subsequence (ψnk

)k
such that (Tψnk

)k converges to f. Since also (Sψnk
) converges to g and

µψnk
= Tψnk

− (T − µ)ψnk
,

it now follows that (ψnk
) converges to some h and (Sψnk

) converges to both Sh and g;
that is Sh = g and Sh = g ∈ ranS, completing the proof of item (

i:pcne:ii:pcne:i
i).

Turning to item (
i:pcne:iii:pcne:ii
ii), suppose g ∈ ranS. Thus there exists a sequence (hn) from

kerS⊥ such that (Shn) converges to g. If (hn) is bounded, then g ∈ ranS by item (
i:pcne:ii:pcne:i
i). If

(hn) is not bounded, then, passing to a subsequence if needed, it can be assumed that
(∥hn∥)n tend to infinity with n. Let ψn = hn

∥hn∥ . Hence (ψn) is a sequence of unit vectors

and (Sψn) converges to 0. Hence, by item (
i:pcne:ii:pcne:i
i), there is an h and a subsequence (ψnk

) of
(ψn) that converges h and Sh = 0. On the other hand, ψnk

∈ kerS⊥ and thus h ∈ kerS⊥

so that Sh ̸= 0. This contradiction completes of item (
i:pcne:iii:pcne:ii
ii).

Finally, for item (
i:pcne:iiii:pcne:iii
iii), a simple exercise shows that, for µ ̸= 0 compactness and

infinite dimensionality of ker(T − µ) are incompatible. □

Proof of Proposition
prop:cpt:normal:eigsprop:cpt:normal:eigs
8.30. Suppose N is normal and compact and 0 ̸= µ /∈ σp(N). Thus

ker(N − µ) = {0}. By Proposition
prop:pointspec:normalprop:pointspec:normal
8.20, ker(N − µ)∗ = {0} too. Hence the range of

N − µ is dense in H. This range is also closed by Lemma
lem:pre:cpt:normal:eigslem:pre:cpt:normal:eigs
8.32. Thus N − µ is bounded

and bijective and hence invertible. Hence µ /∈ σ(N). □
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prop:cpt:normal:eigs:2 Proposition 8.33. If N is compact and normal, then

i:cpt:normal:a (a) for each ϵ > 0 the set {λ : |λ| > ϵ} ∩ σ(N)} is finite;
i:cpt:normal:b (b) the set σp(N) \ {0} is at most countable;
i:cpt:normal:c (c) for each µ ∈ σ(N) the eigenspace ker(N − µ) is finite dimensional.

Remark 8.34. Again, the proposition is true without the normality assumption.

Proof. Suppose N ∈ B(H) is normal, ϵ > 0 and

Sϵ = {λ : |λ| > ϵ} ∩ σ(N)

is not finite. Choose a countable set {µn : n ∈ N} from Sϵ. For each n there is a unit
vector hn such that Nhn = µnhn by Proposition

prop:cpt:normal:eigsprop:cpt:normal:eigs
8.30. The set {hn : n ∈ N} is bounded.

Since N is normal, an application of Proposition
prop:pointspec:normalprop:pointspec:normal
8.20 gives ⟨hn, hm⟩ = 0 for n ̸= m.

and therefore (Nhn = µnhn)n is an orthgonal sequence of vectors each with norm at
least ϵ so that ∥hn − hm∥ ≥ ϵ

√
2. It follows that (Nhn) does not contain a convergent

subsequence and hence N is not compact, completing the proof of item (
i:cpt:normal:ai:cpt:normal:a
a).

To prove item (
i:cpt:normal:bi:cpt:normal:b
b), note that σ(N)\{0} = ∪∞

n=1S 1
n
is a countable union of finite sets

and hence at most countable. □

8.8. Diagonalization.

def:diagonalizable Definition 8.35. Two (orthogonal) projections P,Q ∈ B(H) are mutually orthorgonal
if their ranges are orthogonal. Equivalently, PQ = QP = 0.

lem:pre:norm:diag Lemma 8.36. Suppose (Pj)j is a sequence of non-zero finite rank pairwise orthogonal
projections and (µj)j is a sequence of complex numbers. The following are equivalent,

i:pre:norm:diag:a (a) The series

e:pre:norm:diag:1e:pre:norm:diag:1 (67)
∞∑
j=1

µjPj

converges in the operator norm;

i:pre:norm:diag:b (b) the sequence (µj) converges to 0;

i:pre:norm:diag:c (c) the series in equation (
e:pre:norm:diag:1e:pre:norm:diag:1
67) converges unconditionally; that is there is an operator S

such that if τ : N → N is a bijection, then the series then the series∑
j

µτ(j)Pτ .

converges in operator norm to S.

The condition in item (
i:pre:norm:diag:bi:pre:norm:diag:b
b) is equivalent for each ϵ > 0 the set {j ∈ N : |µj| ≥ ϵ} is

finite.
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Proof. First simply assume that (µj) is a bounded sequence; that is, there is a C such
that |µj| ≤ C. Given h ∈ H, by Bessel’s inequality,

∑
j ∥Pjh∥2 ≤ ∥h∥2. With

Sn =
n∑
j=1

µjPj,

by orthogonality,

∥Snh∥2 =
n∑
j=1

|µj|2∥Pjh∥2 ≤ C∥h∥2.

Thus
∑n

j=1 µjPjh converges absolutely (in H) to some S. In particular, Sh does not
depend upon the order of summation. By Corollary

cor:PUBcor:PUB
3.9 of the PUB, it follows that S is

bounded. Thus it suffices to prove items (
i:pre:norm:diag:ai:pre:norm:diag:a
a) and (

i:pre:norm:diag:bi:pre:norm:diag:b
b) are equivalent.

For m > n, let Mn,m = max{|µj|2 : n+ 1 ≤ j ≤ mj}. and apply Bessel’s inequality
and orthogonality as above to obtain,

∥(Sn − Sm)h∥2 =
∥∥∥∥ m∑
j=n+1

|µj|2 Pjh
∥∥∥∥2 = m∑

j=n+1

|µj|2∥Pjh∥2

≤Mn,m

m∑
j=n+1

∥Pjh∥2 ≤Mn,m∥h∥2.
e:pre:norm:diag:2e:pre:norm:diag:2 (68)

Now suppose there is an ϵ > 0 such that the set {j ∈ N : |µj| ≥ ϵ} is infinite. In
this case, for each N there is an m > N such that |µn| ≥ ϵ. Setting n = m − 1 ≥ N,
equation (

e:pre:norm:diag:2e:pre:norm:diag:2
68) gives,

∥Sm − Sn∥2 = |µm|2∥Pm∥ = |µm|2 ≥ ϵ2.

Thus (Sn) is not Cauchy. Hence item (
i:pre:norm:diag:ai:pre:norm:diag:a
a) implies item (

i:pre:norm:diag:bi:pre:norm:diag:b
b).

Conversely, suppose item (
i:pre:norm:diag:bi:pre:norm:diag:b
b) holds and let ϵ > 0 be given. By assumption there

is an N such that if j ≥ N, then |µj| < ϵ. For m > n ≥ N, equation (
i:pre:norm:diag:ai:pre:norm:diag:a
a) gives,

∥Sn − Sm∥ < ϵ. Thus the sequence (Sn) is Cauchy and hence converges to in operator
norm to S =

∑
j µjPj. □

END Friday 2025-04-18
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Definition 8.37. An operator T ∈ B(H) is norm unitarily diagonalizable12 if there is
exists

(i) κ ∈ N ∪ {∞};

(ii) µn ∈ C for 1 ≤ n < κ; and

i:diag:iii (iii) non-zero mutual orthogonal finite rank projections Pn for 1 ≤ n < κ,

such that

e:strong:diage:strong:diag (69) T =
κ∑

m=1

νnPn

with the sum converging in the operator norm.

Remark 8.38. If P is a finite rank projection of rankm and h1, . . . , hm is an orthonormal
basis for ranP, then

P =
m∑
j=1

hjh
∗
j ;

that is,

Px =
∑

⟨x, hj⟩hj,
for x ∈ H.

Assuming T is norm diagonalizable as in equation (
e:strong:diage:strong:diag
69) and writing

Pn =
mn∑
j=1

hn,jh
∗
n,j

we have, for the obvious choices of λk ∈ C \ {0} and orthonormal sequence (uk)k

T =
∑
k

λkuku
∗
k,

with the sum converging in the operator norm.

8.9. Invariant and reducing subspaces.

def:invariant:subspace Definition 8.39. An invariant subspace for T ∈ B(H) is a subspace M ≤ H such that
TM ⊆M.

An invariant subspace M ≤ H for T ∈ B(H) is reducing if M⊥ is also invariant for
T.

prop:invariant:subpace Proposition 8.40. Suppose H is Hilbert space, M ≤ H and T ∈ B(H).

(i) If M is invariant for T, then M⊥ is invariant for T ∗.

(ii) M is reducing for T if and only if it is invariant for both T and T ∗.

12Non-standard terminology: there are several notions of diagonalizable and unitarily diagonalizable.
Here norm and unitarily refers to item (

i:diag:iiii:diag:iii
iii).
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(iii) If T is self-adjoint and M ≤ H is invariant for T, then M reduces T.

(iv) If T is normal and M reduces T, then T |M is also normal.

Proof. Suppose M ≤ H is invariant for T and h ∈M⊥. Given m ∈M, since Tm ∈M,

⟨T ∗h,m⟩ = ⟨h, Tm⟩ = 0.

It follows that T ∗h ∈M⊥ and so M⊥ is invariant for T ∗.

Assuming M is invariant for T, note M⊥ is invariant for T if and only if M =M⊥⊥

is invariant for T ∗.

Likewise since M⊥ is invariant for T, it follows that M = M⊥⊥ is invariant for T ∗.

Thus M reduces T ∗.

That an invariant subspace for a self-adjoint operator is reducing is a consequence
of what has already been proved.

Now suppose M ≤ H is reducing for T and let g, h ∈M be given. Using Tg, T ∗h ∈
M,

⟨(T |M)g, h⟩M = ⟨Tg, h⟩H = ⟨g, T ∗h⟩H = ⟨g, T ∗ |M h⟩M .
Thus (T |M)∗ = S∗ = T ∗ |M . Finally, under the assumption that T is normal,

(T |M)∗ T |M= T ∗ |M T |M= (T ∗T ) |M= (TT ∗) |M= T |M T ∗ |M= T |M (T |M)∗

and thus T |M is normal. □

lem:dense:invariant Lemma 8.41. Suppose M ≤ H and D ⊆M is dense in M. If T ∈ B(H) and TD ⊆M,
then M is invariant for T.

Proof. Given m ∈ M, there is a sequence (hn) from D such that (hn) converges to m.
By continuity (Thn) converges to Tm. Since Thm ∈ M for each m and M is closed,
Tm ∈M. □

8.10. Unitary equivalence and diagonalization. This subsection is optional. It is
not needed for further developments here.

Definition 8.42. Recall an operator U ∈ B(H,K) is unitary if U∗U = IH and UU∗ =
IK .

Likewise an operator V ∈ B(H,K) is an isometry if V ∗V = I.

Operators T ∈ B(H) and S ∈ B(K) are unitarily equivalent if there is a unitary
operator U ∈ B(H,K) such that UT = SU.

Remark 8.43. Note, if U ∈ B(H,K) is unitary, then U is an isometry and U∗ ∈
B(K,H) is also unitary.

If S and T are unitarily equivalent, then ∥S∥ = ∥T∥.
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Proposition 8.44. If V ∈ B(H,K) is an isometry, then ⟨V g, V h⟩ = ⟨g, h⟩ for g, h ∈ H.

If V ∈ B(H,K) is an isometry and M ≤ H, then VM ≤ K; that is VM is closed.

If U ∈ B(H,K) is unitary and P,Q ∈ B(K) are mutually orthogonal projections,
then U∗PU,U∗QU ∈ B(H) are mutually orthogonal projections. Moreover, U∗PU is the
projection onto U∗ ranP.

If H ⊆ K, then the inclusion V : H → K is an isometry and moreover, V V ∗ is the
projection of K onto H.

Proof. We leave it as an exercise to verify the first two claims.

Assuming U ∈ B(H,K) is unitary and P,Q ∈ B(K) are mutually orthogonal
projections, observe U∗PU is self-adjoint and

(U∗AU)(U∗BU) = U∗A(UU∗)BU = U∗ABU =


U∗PU if A = P = B;

0 if A = P, B = Q

0 if A = Q, B = P.

Thus U∗PU,U∗QU are mutually orthogonal projections. It is evident that kerU∗PU is
the set U∗ kerP and (U∗ kerP )⊥ = U∗ kerP⊥ = U∗ ranP. Hence ranU∗PU = U∗ ranP.

Note that V V ∗ is self adjoint and (V V ∗)(V V ∗) = V (V ∗ V )V ∗ = V V ∗. Hence
P = V V ∗ is a projection. If Pk = 0, then for all f ∈ K,

0 = ⟨Pk, k⟩ = ⟨V ∗k, V ∗k⟩ = ∥V ∗k∥2

Thus V ∗k = 0. The converse is immediate. Hence kerP = kerV ∗ and consequently,
ranP = kerP⊥ = (kerV ∗)⊥ = ranV. □

Proposition 8.45. If S ∈ B(K) is norm diagonalizable and T ∈ B(H) is unitarily
equivalent to S, then T is norm diagonalizable.

Sketch of proof. By assumption,

S =
∑
j

νjPj,

where µj ∈ C and the Pj are mutually orthogonal projections on K and the sum con-
verges in the operator norm. By continuity of P,∑

j

µjU
∗
j PjUj = U∗

j

[∑
µjPj

]
U = U∗SU = T,

with the sum on the right hand side converging in the operator norm. □

rem:invariant:subspace Remark 8.46. If M ≤ H is invariant for T ∈ B(H), then T |M :M →M is in B(M).

Suppose M ≤ H is reducing for T. Letting M1 = M and M2 = M⊥ and let
K = M1 ⊕M2. Let and Tj = T |Mj

: Mj → Mj and define S : K → K by Sm1 ⊕m2 =
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T1m1 ⊕ T2m2, for mj ∈Mj :

S =

(
T1 0
0 T2

)
:
M1

⊕
M2

7→
M1

⊕
M2

.

Let Vj : Mj → H denote the inclusion and define U : K → H by U(m1 ⊕ m2) =
V1m1 + V2m2. It is an easy exercise to verify that U is unitary and UT = SU ; that is, T
and S are unitarily equivalent.

8.11. The spectral theorem for compact operators on Hilbert space.

thm:spec:cpt:sa Theorem 8.47 (Spectral Theorem for compact normal operators). Suppose H is an in-
finite dimensional complex Hilbert space. If 0 ̸= N ∈ B(H) is normal and compact, then
N is norm diagonalizable.

In fact either,

(a) N is finite rank and there exists an n and µ1, . . . , µn ∈ C (not necessarily distinct)
and mutually orthogonal projections P1, . . . , Pn such that

N =
n∑
j=1

µjPj

and σ(N) = {µ1, . . . , µn}; or
(b) N is not finite rank and there exists a sequence (µn)

∞
n=1 from C\{0} and a sequence

of mutually orthogonal projections (Pn) such that (|µn|)n converges to 0

N =
∑
n

µnPn

and σ(N) = {0} ∪ {µn : n ∈ N}.

Further, N is self-adjoint if and only if the µj are real.

The result remains true in for compact self-adjoint operators on real Hilbert space.

Proof of Theorem
thm:spec:cpt:sathm:spec:cpt:sa
8.47. By Proposition

prop:cpt:normal:eigs:2prop:cpt:normal:eigs:2
8.33, σ(N) is an at most countable set. Enumer-

ate (either finite or countable) σ(N)\{0} as µ1, µ2, . . . . For each j let Kj = ker(N −µj)
and let Pj denote the projection of H onto Kj. Let K0 = kerN and P0 the projection
onto K0. By Proposition

prop:pointspec:normalprop:pointspec:normal
8.20, the Pj are mutually orthogonal; equivalently, Kj⊥Kℓ for

j ̸= ℓ.

Let K denote the closure of the span of the Kj. Explicitly, letting D denote the
linear manifold (vector subspace of H)

D = {
ℓ∑

j=0

fj : ℓ ∈ N, fj ∈ Kj},
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K is the closure of D. If f ∈ Kj then Nf = µjf and N∗f = µjf. Hence if f =
∑ℓ

j=1 fj ∈
D, then

e:spec:1e:spec:1 (70) Nf =
ℓ∑

j=1

µjfj, N∗f =
ℓ∑

j=1

µjfj ∈ D.

Hence D is invariant for both N and N∗ and it follows from Lemmas
lem:dense:invariantlem:dense:invariant
8.41 and

prop:invariant:subpaceprop:invariant:subpace
8.40 that

K is reducing for N.

Suppose M ̸= {0}. Since M = K⊥ reduces N the operator S = N |M is a normal
operator acting on a non-zero Hilbert space by Proposition

prop:invariant:subpaceprop:invariant:subpace
8.40. If S ̸= 0, then N |M

has a (non-zero) eigenvalue µ ∈ C by Theorem
thm:spec:rad:normalthm:spec:rad:normal
8.21 with corresponding eigenvector

0 ̸= h ∈ M. Now µ is an eigenvalue of N. Hence µ = µj for some j and we reach
the contradiction 0 ̸= h ∈ Kj ∩ M = {0}. If S = 0, then M ⊆ K0, which is also a
contradiction. Hence M = 0 and K = H.

By Propostion
prop:cpt:normal:eigs:2prop:cpt:normal:eigs:2
8.33 the sequences (Pj) and (µj) satisfy the hypothesis of Lemma

lem:pre:norm:diaglem:pre:norm:diag
8.36.

Hence

T =
κ∑
j=1

µjPj

converges in operator norm. It is immediate that Th = Nh for h ∈ D and since both
T and N are continuous and D is dense in H we conclude that N =

∑κ
j=1 µjPj and is

thus norm diagonalizable. □

END Monday 2025-04-21

8.12. The polar decomposition for compact operators.

Definition 8.48. An operator T ∈ B(H) is positive if T = T ∗ and ⟨Th, h⟩ ≥ 0 for all
h ∈ H.

Remark 8.49. If A ∈ B(H,K), then, as is easily seen, A∗A ∈ B(H) is positive. The
converse, if T ∈ B(H) is positive, then there exists an A ∈ B(H) such that T = A∗A, is
also true, but beyond the scope of these notes.

It is straightforward to verify if T is compact and positive, then σ(T ) ⊆ [0,∞).

prop:pos:ops Proposition 8.50. If T ∈ B(H) is compact with diagonalization

T =
∑

νjPj

and if f : σ(T ) → C is continuous at 0 (if applicable), then

f(T ) :=
∑

f(νj)Pj

is also compact. In the case f takes non-negative values, f(T ) ⪰ 0.

When T is positive and f : [0,∞) → R is the square root function, f(T ) is positive

and f(T )2 = T and ker f(T ) = ker(T ). We write f(T ) = T
1
2 =

√
T .
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Proof. The first statement follows Lemma
lem:pre:norm:diaglem:pre:norm:diag
8.36 since continuity of f at 0 implies (f(νj))j

converges to 0. If f takes real values then

f(T ) =
∑

f(νj)Pj =
∑

τjPj

then, letting Tn =
∑
f(νj)Pj, from τj = f(νj) ∈ R it follows that T ∗

n = Tn and hence Tn
converges to both f(T ) and f(T )∗ in norm. If f takes non-negative values, then τj ≥ 0
and we find,

⟨f(T )h, h⟩ =
∑
j

τj⟨Pjh, h⟩ ≥ 0.

Hence f(T ) is positive.

Assuming T is positive, σ(T ) ⊆ [0,∞). Hence f(T ) is defined for the square root
function and further,

f(T ) =
∑√

νjPj

with the sum converging in operator norm. Thus f(T ) is positive and straightforward
calculations, along the lines of those above, shows f(T )2 = T. □

Definition 8.51. An operator W : H → K is a partial isometry if W |kerW⊥ : W⊥ → K
is an isometry.

prop:PD Proposition 8.52 (The polar decomposition for a compact operator). If A ∈ B(H,K)
and T = A∗A is compact, then A is compact and there is a positive operator R ∈ B(H)
and a partial isometry W ∈ B(H,K) such that A = UR.

Proof. Let T = A∗A. Since T is positive and compact, by Proposition
prop:pos:opsprop:pos:ops
8.50 there is (a

unique) positive compact operator R such that T = R2 and ker(R) = ker(T ); equiva-
lently, M := ranR = ranT . Define V : ranR → K by V Rx = Ax and observe,

⟨V Rx, V Ry⟩ = ⟨Ax,Ax⟩ = ⟨A∗Ax, x⟩
= ⟨Tx, x⟩ = ⟨R2, x⟩ = ⟨Rx,Rx⟩.

Hence V extends to an isometry V : M → K. Extend V to a partial isometry W ∈
B(H,K) by declaring W = V on M and W = 0 on M⊥. Finally WRx = V Rx = Ax
for x ∈ H, since Rx ∈M. □

cor:PD:1 Corollary 8.53. If A ∈ B(H,K) is compact, then there is a positive operator R ∈ B(H)
and a partial isometry W ∈ B(H,K) such that A = WR.

Proof. Since A is compact, A∗A is compact by Proposition
prop:CH:idealprop:CH:ideal
8.28. Now apply Proposi-

tion
prop:PDprop:PD
8.52. □

Corollary 8.54. If A ∈ B(H) and A∗A is compact, then A is compact.

Proof. By Proposition
prop:PDprop:PD
8.52, A = WR where R is compact and W is bounded. Hence,

by Proposition
prop:CH:idealprop:CH:ideal
8.28, A is compact. □

Corollary 8.55. If A ∈ B(H,K) is compact, then A∗ ∈ B(K,H) is also compact.



134

Proof. Apply Proposition
prop:CH:idealprop:CH:ideal
8.28 and Corollary

cor:PD:1cor:PD:1
8.53. Namely, A∗ = WR for some compact

self-adjoint operator R and partial isometry W. Now A = RW ∗ is the product of a
compact operator and a bounded operator and is hence compact. □

cor:cpt:lim:fr Corollary 8.56. Compact operators are norm limits of finite rank operators.

Proof. By the Spectral Theorem a compact self-adjoint operator R is norm limits of
finite rank operator. Indeed,

R =
∑

νjPj,

where the sum converges in operator norm and each finite sum is a finite sum of finite
rank operators and hence finite rank.

Now if T ∈ B(H,K) is compact, then T = WR for some compact self-adjoint
R ∈ B(H) and W ∈ B(H,K) by the polar decomposition. Hence T = WR is a norm
limit of finite rank operators. □

thm:C(H):closed Theorem 8.57. The subspace C(H,K) is closed.

The proof of Theorem
thm:C(H):closedthm:C(H):closed
8.57 will use the following variant of the usual diagonalization

argument.

lem:pre:C(H):closed Lemma 8.58. Suppose (Tn) is a sequence of compact operators from B(H). If (hk) is
a bounded sequence from H, then there is a subsequence (gℓ) of (hk) such that (Tngℓ)ℓ
converges for each n.

Proof. Since T1 is compact, and (hk) is bounded, there is a subsequence (h1,k) of (hk)
such that (T1h1,k)k converges. Since (h1, k)k is bounded and T2 is compact, there is a
subsequence (h2,k)k of (h1,k) such that (T2h2,k)k converges. Continuing in this fashion
constructs a sequence of sequences (hn,k)k)n such that each (Tnhn,k)k converges. Let
gℓ = hℓ,ℓ. Thus for each ℓ the sequence (gℓ)ℓ is, eventually, a subsequence of each (hn,k)k
and thus (Tngℓ)ℓ conveges for each ℓ. □

Proof of Theorem
thm:C(H):closedthm:C(H):closed
8.57. Suppose (Tn) is a sequence from C(H,K) that converges to

T ∈ B(H,K). To prove T is compact, let a bounded sequence (hn) from H be given. By
Lemma

lem:pre:C(H):closedlem:pre:C(H):closed
8.58, (hn) has a subsequence (fj)j such that (Tnfj)j converges for each n. Now,

∥Tfj − Tfk∥ ≤ ∥Tfj − Tnfj∥+ ∥Tn(fj − fk)∥+ ∥Tnfk − Tfk∥
≤ ∥T − Tn∥(∥fj∥+ ∥fk∥) + ∥Tn(fj − fk)∥.

The first term on the right hand side goes to 0 with n since (hn) is a bounded sequence
and (Tn) converges to T in norm. The second term can be made small for any given n
by choosing j, k large as (Tnfj) is Cauchy. Hence (Tfj)j is Cauchy and hence converges
and thus T is compact. □

Let C00(H,K) denote the finite rank operators from H to K.

Corollary 8.59. The subspace C(H,K) is the norm closure of C00(H,K).
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Proof. By Corollary
cor:cpt:lim:frcor:cpt:lim:fr
8.56 and Proposition

prop:finite:rank:cptprop:finite:rank:cpt
8.25, C00(H,K) ⊆ C(H,K) ⊆ C00(H,K).

Since C(H,K) is closed by Theorem
thm:C(H):closedthm:C(H):closed
8.57 the result follows. □

Remark 8.60 (An advertisement for the Fredholm index). Thus C(H) is a closed two
sided ideal in B(H) and the quotient space K(H) = B(H)/C(H) is both a ∗-algebra
and a Banach space with the quotient norm ∥ · ∥K . This normed algebra K(H) is the
Calkin algebra. Let π denote the quotient map. The norm on K(H) satisfies the C-star
identity ∥π(T )∗π(T )∥K = ∥π(T ∗T )∥K = ∥π(T )∥2K . The kernel of π is of course exactly
C(H). Now let H = ℓ2 and let S denote the shift operator. I − SS∗ = e0e

∗
0 is rank 1

and thus compact. Consequently, 0 = π(I−SS∗) = π(I)−π(S)π(S)∗. Since π is unital,
π(S)π(S)∗ = 1, where 1 = π(I) is the unit in K(H). Since S∗S = I it is also true that
π(S)∗π(S) = 1. So π(S) is a unitary operator. It turns out that if K is compact, then
S +K is not invertible. Hence the fact that π(S) is unitary is far from obvious.

8.13. Examples.

Example 8.61 (The Volterra operator - again). Let V : L2([0, 1]) → L2([0, 1]) denote
the Volterra operator. Consider S = V − V ∗. Evidently S is normal. In fact S is
skew-symmetry: S∗ = −S. From Example

eg:integral:operatoreg:integral:operator
8.1,

Sf(x) = 2

∫ x

0

f −
∫ 1

0

f.

The function g = Sf is continuous, g(1) = −g(0). Moreover,

g′(x) = 2f(x)

for almost every x. As we show below, the set ek(x) = e2iπxe2ikπx is an orthonormal basis
for L2([0, 1]). Moreover,

Sek(x) = 2

∫ x

0

ek(t) dt−
∫ 1

0

ek(t) dt =
−2i

2k + 1
ek.

We conclude that S is compact and, letting Pk denote the projection onto the span of
ek,

S =
∑
k∈Z

−2i

2k + 1
Pk.

The mapping U : L2([0, 1]) → L2([0, 1]) defined by Uf = ei2πxf has, as is easy to
check, adjoint U∗f = e−i2πxf. It is immediate that UU∗ = I = U∗U. Hence U is unitary.
Thus U maps the orthonormal basis {ei2πnx : n ∈ Z} to an orthonormal basis, namely
{en : n ∈ Z}/
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F (T, V ), 5
F ◦, 40
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L1 approximate unit, 105
Lp(µ), 53
M ≤ H, 58
M ⊕N , 64
PM , 67
D, 122
M(M ), 82
ℓ∞-norm, 3
ℓp-norms, 3
dν
dµ , 90

F-measure, 81
I(H), 117
Lp(µ), 49
µf , 82
⊥, 59
ρ ≪ µ, 90
|ρ|, 83
f dµ, 83
fy, 99
(Hilbert space) adjoint, 66
(orthogonal) dimension, 77
(orthonormal) basis, 69

converges weakly to h ∈ H, 78
convex, 61
isometric, 79
maximal, 69
shift operator, 80
unitary, 79

absolutely, 90
absolutely integrable, 8
adjoint, 65
algebraic direct sum, 11
algebraic quotient, 12
almost convergent, 49
analytic, 119

backward shift, 49

Banach algebra, 15, 104
Banach Limit, 49
Banach limit, 30, 38
Banach space, 1
Banach space of functions, 48
bidual, 29
bilinear form, 60
bounded, 13
bounded below, 121
bounded linear transformation, 13

Calkin algebra, 135
category, 41
Cauchy–Schwarz inequality, 57
chain, 25
character, 98
closed transformation, 47
compact, 123
complete orthonormal set, 69
completion, 31
complex-valued measurable function, 7
conditional expectations, 91
conjugate index, 51
converges absolutely, 2, 71
converges as a net, 73
convolution, 103
cutoff function, 108

dense, 10, 40
double dual, 29
dual exponent, 51
dual space, 20

eigenvalue, 122
eigenvector, 122
entire, 119
equivalent norms, 1
essentially bounded, 50

finite positive measure, 81
finite rank, 123
first category, 41
Fourier transform, 98

Gaussian, 102
graph, 47
greedy algorithm, 88

Hahn Decomposition Theorem, 87
Hamel basis, 24
hermitian, 66
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Hilbert space, 58
Hilbert space basis, 69
horizontal truncation, 57

inner product, 57
integrable, 8
integral operator, 114
interior, 40
invariant subspace, 128
invertible linear transformation, 15
isometrically isomorphic normed spaces, 15
isometry, 16
isomorphic normed spaces, (boundedly), 15

Jordan Decomposition Theorem, 89

Lebesgue space, 53
linear functional, 20
linear manifold, 11
linear transformation, bounded, 13
Lipschitz continuous, 13, 18

meager, 41
Minkowski functional, 25
mutually orthorgonal, 126
mutually singular, 89

norm topology, 1
norm unitarily diagonalizable, 128
normal, 122
nowhere dense, 41

open mapping, 43
open mapping theorem, 44
open unit disc, 122
operator norm, 14
orthogonal, 59
orthogonal complement, 59
orthogonal direct sum, 64
orthogonal projection of H on M , 67
orthonormal, 59, 69

Parseval’s equality, 74
partial isometry, 133
partial order, 25
partial sums, 2
partially ordered set, 25
point spectum, 122
Poisson kernel, 105
poset, 25
positive, 132
positive function, 22
positive linear functional, 22

positive semi-defininite, 60
projection, 67

quotient norm, 12

Radon-Nikodym derivative, 90
rank, 123
reducing, 128
reflexive, 29
regular, 22
resolvent set, 118
Riemann-Lebesgue Lemma, 100

Schauder basis, 24
second category, 41
self-adjoint, 66
separable, 20
separable Hilbert space, 77
series converges, 2
sesquilinear form, 60
shift, 122
shift operator, 16
signed measure, 81
signed measures, 23
smallest closed subspace containing, 63
strictly convex, 61
subspace, 11
summability methods, 108
super-cauhcy, 2
support set, 89

total variation, 83
total variation norm, 18
totally null, 87
totally ordered, 25
totally positive, 87

unconditionally convergent, 71
unit ball, 4
unit sphere, 17
unitarily equivalent, 129
upper bound, 25
upper half plane, 105

vanishes at infinity, 6
vertical truncation, 57

weak topology, 77
weakly bounded, 47

Zorn’s Lemma, 25
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