Derivational points of Banach bimodules

Z. Patrick Pan Saginaw Valley State University

March 17-19, 2011 SouthEast Analysts' Meeting University of Florida

Introduction

Derivable maps

A linear map δ from an algebra A to an A-bimodule M is called a derivation if δ(ab) = δ(a)b + aδ(b) for all a, b ∈ A.

Introduction

Derivable maps

- A linear map δ from an algebra A to an A-bimodule M is called a <u>derivation</u> if δ(ab) = δ(a)b + aδ(b) for all a, b ∈ A.
- A linear map δ from an algebra A to an A-bimodule M is called <u>derivable</u> at a fixed c ∈ A if δ(ab) = δ(a)b + aδ(b) for all a, b ∈ A with ab = c.

Introduction

Derivable maps

- A linear map δ from an algebra A to an A-bimodule M is called a <u>derivation</u> if δ(ab) = δ(a)b + aδ(b) for all a, b ∈ A.
- A linear map δ from an algebra A to an A-bimodule M is called <u>derivable</u> at a fixed c ∈ A if δ(ab) = δ(a)b + aδ(b) for all a, b ∈ A with ab = c.
- Clearly, a derivation is derivable at every $c \in \mathcal{A}$.

Derivable maps

- A linear map δ from an algebra A to an A-bimodule M is called a <u>derivation</u> if δ(ab) = δ(a)b + aδ(b) for all a, b ∈ A.
- A linear map δ from an algebra A to an A-bimodule M is called <u>derivable</u> at a fixed c ∈ A if δ(ab) = δ(a)b + aδ(b) for all a, b ∈ A with ab = c.
- Clearly, a derivation is derivable at every $c \in \mathcal{A}$.
- Question: If δ is derivable at a fixed $c \in A$, what can one say about δ ? (Sub-question: Why should one care?)

The study of maps that preserve certain aspects of derivations or homomorphisms

• helps better understand the structure of these maps (derivations or homomorphisms).

The study of maps that preserve certain aspects of derivations or homomorphisms

- helps better understand the structure of these maps (derivations or homomorphisms).
- helps better understand the structure of the underlying algebra.

The study of maps that preserve certain aspects of derivations or homomorphisms

- helps better understand the structure of these maps (derivations or homomorphisms).
- helps better understand the structure of the underlying algebra.
- provides simpler mechanisms for construction of these maps.

Derivable maps at c = 0

Question:

If $\delta(ab) = \delta(a)b + a\delta(b)$ for all $a, b \in A$ with ab = 0, what can one say about δ ?

____ ▶

Derivable maps at c = 0

Question:

If $\delta(ab) = \delta(a)b + a\delta(b)$ for all $a, b \in A$ with ab = 0, what can one say about δ ?

An example:

• Let $\mathcal{A}' = \{m \in \mathcal{M} : am = ma, \forall a \in \mathcal{A}\}.$

If $\delta(ab) = \delta(a)b + a\delta(b)$ for all $a, b \in A$ with ab = 0, what can one say about δ ?

An example:

- Let $\mathcal{A}' = \{m \in \mathcal{M} : am = ma, \forall a \in \mathcal{A}\}.$
- For any m ∈ A', let L_m : A → M be L_m(a) = ma, ∀ a ∈ A then L_m is derivable at c = 0.

If $\delta(ab) = \delta(a)b + a\delta(b)$ for all $a, b \in A$ with ab = 0, what can one say about δ ?

An example:

- Let $\mathcal{A}' = \{m \in \mathcal{M} : am = ma, \forall a \in \mathcal{A}\}.$
- For any m ∈ A', let L_m : A → M be L_m(a) = ma, ∀ a ∈ A then L_m is derivable at c = 0.
- Check: $L_m(ab) = 0 = L_m(a)b + aL_m(b)$

If $\delta(ab) = \delta(a)b + a\delta(b)$ for all $a, b \in A$ with ab = 0, what can one say about δ ?

An example:

- Let $\mathcal{A}' = \{m \in \mathcal{M} : am = ma, \forall a \in \mathcal{A}\}.$
- For any m ∈ A', let L_m : A → M be L_m(a) = ma, ∀ a ∈ A then L_m is derivable at c = 0.
- Check: $L_m(ab) = 0 = L_m(a)b + aL_m(b)$

If $\delta(ab) = \delta(a)b + a\delta(b)$ for all $a, b \in A$ with ab = 0, what can one say about δ ?

An example:

- Let $\mathcal{A}' = \{m \in \mathcal{M} : am = ma, \forall a \in \mathcal{A}\}.$
- For any m ∈ A', let L_m : A → M be L_m(a) = ma, ∀ a ∈ A then L_m is derivable at c = 0.

• Check:
$$L_m(ab) = 0 = L_m(a)b + aL_m(b)$$

Various results in the literature

Under certain conditions on δ , A, and M, if δ is derivable at 0 then there exists a derivation d from A to M such that $\delta = d + L_m$, where $m = \delta(1) \in A'$.

Image: A = A

< ∃ →

Theorem 1 (Alaminos, Bresar, Extremera, and Villena, 2007)

Let δ be a bounded linear map from a unital C^* -algebra \mathcal{A} to a unital Banach \mathcal{A} -bimodule \mathcal{M} . If δ is derivable at 0 then there exists a derivation d from \mathcal{A} to \mathcal{M} such that $\delta = d + L_m$, where $m = \delta(1) \in \mathcal{A}'$.

Theorem 1 (Alaminos, Bresar, Extremera, and Villena, 2007)

Let δ be a bounded linear map from a unital C^* -algebra \mathcal{A} to a unital Banach \mathcal{A} -bimodule \mathcal{M} . If δ is derivable at 0 then there exists a derivation d from \mathcal{A} to \mathcal{M} such that $\delta = d + L_m$, where $m = \delta(1) \in \mathcal{A}'$.

Theorem 2 (J. Li and Z. Pan, 2010)

Let δ be a bounded linear map from a *CSL*-algebra \mathcal{A} in a von Neumann algebra on a Hilbert space H. If δ is derivable at 0 then there exists a derivation d from \mathcal{A} to $\mathcal{B}(H)$ such that $\delta = d + L_m$, where $m = \delta(1) \in \mathcal{A}'$.

An embedding

• Let $\delta : \mathcal{A} \mapsto \mathcal{M}$.

æ

<ロト <部ト < 注ト < 注ト

An embedding

• Let $\delta : \mathcal{A} \mapsto \mathcal{M}$.

• Define
$$\mathcal{B} = \{ \begin{bmatrix} a & m \\ 0 & b \end{bmatrix} : a, b \in \mathcal{A}, m \in \mathcal{M} \}$$

æ

<ロト <部ト < 注ト < 注ト

An embedding

• Let $\delta : \mathcal{A} \mapsto \mathcal{M}$.

• Define
$$\mathcal{B} = \{ \begin{bmatrix} a & m \\ 0 & b \end{bmatrix} : a, b \in \mathcal{A}, m \in \mathcal{M} \}$$

• Check: \mathcal{B} is an algebra.

æ

∃ >

Image: A = A

An embedding

• Let $\delta : \mathcal{A} \mapsto \mathcal{M}$.

• Define
$$\mathcal{B} = \{ \begin{bmatrix} a & m \\ 0 & b \end{bmatrix} : a, b \in \mathcal{A}, m \in \mathcal{M} \}.$$

- Check: \mathcal{B} is an algebra.
- Define $\phi : \mathcal{A} \mapsto \mathcal{B}$ by $\phi(a) = \begin{bmatrix} a & \delta(a) \\ 0 & a \end{bmatrix}, \forall a \in \mathcal{A}.$

э

▲ 同 ▶ → 三 ▶

An embedding

• Let $\delta : \mathcal{A} \mapsto \mathcal{M}$.

• Define
$$\mathcal{B} = \{ \begin{bmatrix} a & m \\ 0 & b \end{bmatrix} : a, b \in \mathcal{A}, m \in \mathcal{M} \}.$$

• Check: \mathcal{B} is an algebra.

0

• Define
$$\phi : \mathcal{A} \mapsto \mathcal{B}$$
 by $\phi(a) = \begin{bmatrix} a & \delta(a) \\ 0 & a \end{bmatrix}$, $\forall a \in \mathcal{A}$.
• $\phi(ab) = \begin{bmatrix} ab & \delta(ab) \\ 0 & ab \end{bmatrix}$.

æ

∃ >

Image: A = A

An embedding

• Let $\delta : \mathcal{A} \mapsto \mathcal{M}$.

• Define
$$\mathcal{B} = \{ \begin{bmatrix} a & m \\ 0 & b \end{bmatrix} : a, b \in \mathcal{A}, m \in \mathcal{M} \}.$$

• Check: \mathcal{B} is an algebra.

• Define
$$\phi : \mathcal{A} \mapsto \mathcal{B}$$
 by $\phi(a) = \begin{bmatrix} a & \delta(a) \\ 0 & a \end{bmatrix}$, $\forall a \in \mathcal{A}$.
• $\phi(ab) = \begin{bmatrix} ab & \delta(ab) \\ 0 & ab \end{bmatrix}$.
• Check: $\phi(a)\phi(b) = \begin{bmatrix} ab & a\delta(b) + \delta(a)b \\ 0 & ab \end{bmatrix}$.

æ

Image: A image: A

An embedding

• Let $\delta : \mathcal{A} \mapsto \mathcal{M}$.

• Define
$$\mathcal{B} = \{ \begin{bmatrix} a & m \\ 0 & b \end{bmatrix} : a, b \in \mathcal{A}, m \in \mathcal{M} \}.$$

 \bullet Check: ${\cal B}$ is an algebra.

• Define
$$\phi : \mathcal{A} \mapsto \mathcal{B}$$
 by $\phi(a) = \begin{bmatrix} a & \delta(a) \\ 0 & a \end{bmatrix}$, $\forall a \in \mathcal{A}$.
• $\phi(ab) = \begin{bmatrix} ab & \delta(ab) \\ 0 & ab \end{bmatrix}$.
• Check: $\phi(a)\phi(b) = \begin{bmatrix} ab & a\delta(b) + \delta(a)b \\ 0 & ab \end{bmatrix}$.

• δ is a derivation iff ϕ is a homomorphism.

э

∃►

< 17 ▶

Derivable at c = 0 and zero-product preserving maps

Definition:

A linear map ϕ from an algebra \mathcal{A} to an algebra \mathcal{B} is called <u>zero-product preserving</u> if $\phi(ab) = \phi(a)\phi(b)$ for all $a, b \in \mathcal{A}$ with $\overline{ab} = 0$.

Derivable at c = 0 and zero-product preserving maps

Definition:

A linear map ϕ from an algebra \mathcal{A} to an algebra \mathcal{B} is called <u>zero-product preserving</u> if $\phi(ab) = \phi(a)\phi(b)$ for all $a, b \in \mathcal{A}$ with ab = 0.

Recall:

•
$$\delta : \mathcal{A} \mapsto \mathcal{M} \text{ and } \mathcal{B} = \{ \begin{bmatrix} a & m \\ 0 & b \end{bmatrix} : a, b \in \mathcal{A}, \ m \in \mathcal{M} \}.$$

Derivable at c = 0 and zero-product preserving maps

Definition:

A linear map ϕ from an algebra \mathcal{A} to an algebra \mathcal{B} is called <u>zero-product preserving</u> if $\phi(ab) = \phi(a)\phi(b)$ for all $a, b \in \mathcal{A}$ with ab = 0.

Recall:

•
$$\delta : \mathcal{A} \mapsto \mathcal{M} \text{ and } \mathcal{B} = \{ \begin{bmatrix} a & m \\ 0 & b \end{bmatrix} : a, b \in \mathcal{A}, \ m \in \mathcal{M} \}.$$

• $\phi : \mathcal{A} \mapsto \mathcal{B}, \text{ defined by } \phi(a) = \begin{bmatrix} a & \delta(a) \\ 0 & a \end{bmatrix}.$

Definition:

A linear map ϕ from an algebra \mathcal{A} to an algebra \mathcal{B} is called <u>zero-product preserving</u> if $\phi(ab) = \phi(a)\phi(b)$ for all $a, b \in \mathcal{A}$ with ab = 0.

Recall:

•
$$\delta : \mathcal{A} \mapsto \mathcal{M} \text{ and } \mathcal{B} = \{ \begin{bmatrix} a & m \\ 0 & b \end{bmatrix} : a, b \in \mathcal{A}, \ m \in \mathcal{M} \}.$$

•
$$\phi : \mathcal{A} \mapsto \mathcal{B}$$
, defined by $\phi(a) = \begin{bmatrix} a & \delta(a) \\ 0 & a \end{bmatrix}$.

• δ is derivable at c = 0 iff ϕ is zero-product preserving.

Various results in the literature

Under certain conditions, if ϕ is a zero-product preserving map from a unital algebra \mathcal{A} to an algebra \mathcal{B} then there exists a homomorphism Φ from \mathcal{A} to \mathcal{B} such that

 $\phi(a) = \phi(1)\Phi(a) \ \forall \ a \in \mathcal{A}.$

A linear map δ from an algebra A to an A-bimodule M is called a Jordan derivation if δ(a²) = δ(a)a + aδ(a) for all a ∈ A.

- A linear map δ from an algebra A to an A-bimodule M is called a <u>Jordan derivation</u> if δ(a²) = δ(a)a + aδ(a) for all a ∈ A.
- If δ is a Jordan derivation and \mathcal{M} is a unital \mathcal{A} -bimodule then $\delta(1) = 0$.

- A linear map δ from an algebra A to an A-bimodule M is called a <u>Jordan derivation</u> if δ(a²) = δ(a)a + aδ(a) for all a ∈ A.
- If δ is a Jordan derivation and \mathcal{M} is a unital \mathcal{A} -bimodule then $\delta(1) = 0$.
- If δ is a Jordan derivation then $\delta(bab) = \delta(b)ab + b\delta(a)b + ba\delta(b)$, for all $a, b \in A$.

- A linear map δ from an algebra A to an A-bimodule M is called a <u>Jordan derivation</u> if δ(a²) = δ(a)a + aδ(a) for all a ∈ A.
- If δ is a Jordan derivation and \mathcal{M} is a unital \mathcal{A} -bimodule then $\delta(1) = 0$.
- If δ is a Jordan derivation then $\delta(bab) = \delta(b)ab + b\delta(a)b + ba\delta(b)$, for all $a, b \in A$.
- There are many papers in the literature studying when Jordan derivations are derivations (dating back to 1957, I.N. Herstein and I. Kaplansky)

Fact

Every Jordan derivation from \mathcal{A} to \mathcal{M} is derivable at the unit 1.

Fact

Every Jordan derivation from \mathcal{A} to \mathcal{M} is derivable at the unit 1.

Proof:

- Suppose δ is a Jordan derivation from \mathcal{A} to \mathcal{M} .
- For any $a, b \in \mathcal{A}$ such that ab = 1, we need to show

$$\delta(a)b + a\delta(b) = \delta(1) = 0.$$

Fact

Every Jordan derivation from \mathcal{A} to \mathcal{M} is derivable at the unit 1.

Proof:

- Suppose δ is a Jordan derivation from \mathcal{A} to \mathcal{M} .
- For any $a, b \in \mathcal{A}$ such that ab = 1, we need to show

$$\delta(a)b + a\delta(b) = \delta(1) = 0.$$

• Note $\delta(b) = \delta(bab) = \delta(b)ab + b\delta(a)b + ba\delta(b)$.

Fact

Every Jordan derivation from \mathcal{A} to \mathcal{M} is derivable at the unit 1.

Proof:

- Suppose δ is a Jordan derivation from \mathcal{A} to \mathcal{M} .
- For any $a, b \in \mathcal{A}$ such that ab = 1, we need to show

$$\delta(a)b + a\delta(b) = \delta(1) = 0.$$

• Note $\delta(b) = \delta(bab) = \delta(b)ab + b\delta(a)b + ba\delta(b)$.

• It follows $b(\delta(a)b + a\delta(b)) = 0$.

Definitions:

• $\mathcal{A} =$ Norm-closed unital subalgebra of B(X)

Definitions:

- $\mathcal{A} =$ Norm-closed unital subalgebra of B(X)
- For any x ∈ X and f* ∈ X*, we use x ⊗ f* to denote the rank-one operator satisfying x ⊗ f*(u) = f*(u)x, ∀ u ∈ X.

Definitions:

- $\mathcal{A} =$ Norm-closed unital subalgebra of B(X)
- For any x ∈ X and f* ∈ X*, we use x ⊗ f* to denote the rank-one operator satisfying x ⊗ f*(u) = f*(u)x, ∀ u ∈ X.

Definitions:

- $\mathcal{A} =$ Norm-closed unital subalgebra of B(X)
- For any $x \in X$ and $f^* \in X^*$, we use $x \otimes f^*$ to denote the rank-one operator satisfying $x \otimes f^*(u) = f^*(u)x$, $\forall u \in X$.

Theorem 3 (J. Li and Z. Pan, 2011)

Suppose $\forall \{x : \forall x \otimes f^* \in A\} = X$ and δ is a linear map from A to B(X). If δ is derivable at $C \in A$ and ran(C) is dense in X then δ is a derivation.

Definitions:

- $\mathcal{A} =$ Norm-closed unital subalgebra of B(X)
- For any $x \in X$ and $f^* \in X^*$, we use $x \otimes f^*$ to denote the rank-one operator satisfying $x \otimes f^*(u) = f^*(u)x$, $\forall u \in X$.

Theorem 3 (J. Li and Z. Pan, 2011)

Suppose $\forall \{x : \forall x \otimes f^* \in A\} = X$ and δ is a linear map from A to B(X). If δ is derivable at $C \in A$ and ran(C) is dense in X then δ is a derivation.

Corollary:

If $\forall \{x : \forall x \otimes f^* \in A\} = X$ then every Jordan derivation from A to B(X) is a derivation.

Algebras that satisfy $\lor \{x : \forall x \otimes f^* \in \mathcal{A}\} = X$ include

• Standard algebras

æ

Algebras that satisfy $\forall \{x : \forall x \otimes f^* \in A\} = X$ include

- Standard algebras
- many relexive algebras

Definitions

- $\mathcal{L} =$ lattice of subspaces of X with operations " \lor " and " \land "
- $alg \mathcal{L} = \{T \in B(X) : TL \subseteq L, \forall L \in \mathcal{L}\}$

Definitions

- $\mathcal{L} =$ lattice of subspaces of X with operations " \lor " and " \land "
- $alg \mathcal{L} = \{ T \in B(X) : TL \subseteq L, \forall L \in \mathcal{L} \}$
- $L_- = \lor \{ M \in \mathcal{L} : L \not\subseteq M \}.$
 - $(L_{-} \text{ is called the predecessor of } L)$

Definitions

- $\mathcal{L} =$ lattice of subspaces of X with operations " \lor " and " \land "
- $alg\mathcal{L} = \{T \in B(X) : TL \subseteq L, \forall L \in \mathcal{L}\}$

•
$$L_- = \lor \{ M \in \mathcal{L} : L \not\subseteq M \}.$$

 $(L_{-} \text{ is called the predecessor of } L)$

• Define $\mathcal{J}(\mathcal{L}) = \{L \in \mathcal{L} : L \neq 0 \text{ and } L_{-} \neq X\}$, i.e.

 $\mathcal{J}(\mathcal{L})$ is the set of L with non-trivial predecessors.

An equivalent condition (for reflexive algebras only)

• For $E \subseteq X$, define $E^{\perp} = \{f^* \in X^* : f^*|_E = 0\}$.

An equivalent condition (for reflexive algebras only)

- For $E \subseteq X$, define $E^{\perp} = \{f^* \in X^* : f^*|_E = 0\}$.
- x ⊗ f* ∈ alg L iff there exists an E ∈ J(L) such that x ∈ E and f* ∈ (E₋)[⊥] (W. Longstaff).

An equivalent condition (for reflexive algebras only)

- For $E \subseteq X$, define $E^{\perp} = \{f^* \in X^* : f^*|_E = 0\}$.
- x ⊗ f* ∈ alg L iff there exists an E ∈ J(L) such that x ∈ E and f* ∈ (E₋)[⊥] (W. Longstaff).
- $\lor \{x : \forall x \otimes f^* \in \mathcal{A}\} = X \text{ iff } \lor \{E : E \in \mathcal{J}(\mathcal{L})\} = X.$

An equivalent condition (for reflexive algebras only)

- For $E \subseteq X$, define $E^{\perp} = \{f^* \in X^* : f^*|_E = 0\}$.
- x ⊗ f* ∈ alg L iff there exists an E ∈ J(L) such that x ∈ E and f* ∈ (E_)[⊥] (W. Longstaff).
- $\lor \{x: \forall x \otimes f^* \in \mathcal{A}\} = X \text{ iff } \lor \{E: E \in \mathcal{J}(\mathcal{L})\} = X.$

An equivalent condition (for reflexive algebras only)

- For $E \subseteq X$, define $E^{\perp} = \{f^* \in X^* : f^*|_E = 0\}$.
- x ⊗ f* ∈ alg L iff there exists an E ∈ J(L) such that x ∈ E and f* ∈ (E_)[⊥] (W. Longstaff).
- $\lor \{x: \forall x \otimes f^* \in \mathcal{A}\} = X \text{ iff } \lor \{E: E \in \mathcal{J}(\mathcal{L})\} = X.$

Lattices that satisfy $\forall \{E : E \in \mathcal{J}(\mathcal{L})\} = X$ include

completely distributive subspace lattice *L*, in particular a nest.
 (*L* is completely distributive iff *E* = ∧{*L*_− : *L* ∈ *L*, *L* ⊈ *E*}.)

・ロト ・同ト ・ヨト ・ヨト

An equivalent condition (for reflexive algebras only)

- For $E \subseteq X$, define $E^{\perp} = \{f^* \in X^* : f^*|_E = 0\}$.
- x ⊗ f* ∈ alg L iff there exists an E ∈ J(L) such that x ∈ E and f* ∈ (E_)[⊥] (W. Longstaff).
- $\lor \{x: \forall x \otimes f^* \in \mathcal{A}\} = X \text{ iff } \lor \{E: E \in \mathcal{J}(\mathcal{L})\} = X.$

Lattices that satisfy $\forall \{E : E \in \mathcal{J}(\mathcal{L})\} = X$ include

- completely distributive subspace lattice *L*, in particular a nest.
 (*L* is completely distributive iff *E* = ∧{*L*_− : *L* ∈ *L*, *L* ⊈ *E*}.)
- **2** \mathcal{J} -subspace lattices.

・ロト ・同ト ・ヨト ・ヨト

An equivalent condition (for reflexive algebras only)

- For $E \subseteq X$, define $E^{\perp} = \{f^* \in X^* : f^*|_E = 0\}$.
- x ⊗ f* ∈ alg L iff there exists an E ∈ J(L) such that x ∈ E and f* ∈ (E_)[⊥] (W. Longstaff).
- $\lor \{x: \forall x \otimes f^* \in \mathcal{A}\} = X \text{ iff } \lor \{E: E \in \mathcal{J}(\mathcal{L})\} = X.$

Lattices that satisfy $\lor \{E : E \in \mathcal{J}(\mathcal{L})\} = X$ include

- completely distributive subspace lattice *L*, in particular a nest.
 (*L* is completely distributive iff *E* = ∧{*L*_ : *L* ∈ *L*, *L* ⊈ *E*}.)
- **2** \mathcal{J} -subspace lattices.

・ロト ・同ト ・ヨト ・ヨト

An equivalent condition (for reflexive algebras only)

- For $E \subseteq X$, define $E^{\perp} = \{f^* \in X^* : f^*|_E = 0\}$.
- x ⊗ f* ∈ alg L iff there exists an E ∈ J(L) such that x ∈ E and f* ∈ (E_)[⊥] (W. Longstaff).
- $\lor \{x: \forall x \otimes f^* \in \mathcal{A}\} = X \text{ iff } \lor \{E: E \in \mathcal{J}(\mathcal{L})\} = X.$

Lattices that satisfy $\lor \{E : E \in \mathcal{J}(\mathcal{L})\} = X$ include

- completely distributive subspace lattice *L*, in particular a nest.
 (*L* is completely distributive iff *E* = ∧{*L*_− : *L* ∈ *L*, *L* ⊈ *E*}.)
- **2** \mathcal{J} -subspace lattices.
- **3** \mathcal{L} that satisfies $X_{-} \neq X$.
- \mathcal{L} that satisfies $\wedge \{L_{-} : L \in \mathcal{J}(\mathcal{L})\} = (0).$

・ロト ・同ト ・ヨト ・ヨト

An equivalent condition (for reflexive algebras only)

- For $E \subseteq X$, define $E^{\perp} = \{f^* \in X^* : f^*|_E = 0\}$.
- x ⊗ f* ∈ alg L iff there exists an E ∈ J(L) such that x ∈ E and f* ∈ (E_)[⊥] (W. Longstaff).
- $\lor \{x: \forall x \otimes f^* \in \mathcal{A}\} = X \text{ iff } \lor \{E: E \in \mathcal{J}(\mathcal{L})\} = X.$

Lattices that satisfy $\forall \{E : E \in \mathcal{J}(\mathcal{L})\} = X$ include

- completely distributive subspace lattice *L*, in particular a nest.
 (*L* is completely distributive iff *E* = ∧{*L*_− : *L* ∈ *L*, *L* ⊈ *E*}.)
- **2** \mathcal{J} -subspace lattices.
- 3 \mathcal{L} that satisfies $X_{-} \neq X_{-}$
- \mathcal{L} that satisfies $\wedge \{L_{-} : L \in \mathcal{J}(\mathcal{L})\} = (0).$
- **(a)** \mathcal{L} that satisfies $(0)_+ \neq (0)$.

・ロト ・同ト ・ヨト ・ヨト

Definition:

An element $c \in A$ is called a derivational point of L(A, M) if whenever $\delta \in L(A, M)$ is derivable at c then δ is a derivation.

Definition:

An element $c \in A$ is called a derivational point of L(A, M) if whenever $\delta \in L(A, M)$ is derivable at c then δ is a derivation.

Theorem 3 says:

If $\forall \{x : \forall x \otimes f^* \in A\} = X$ then every $C \in A$ such that ran(C) is dense in X is a derivational point of L(A, B(X)).

Characterization of derivable maps on nest algebras

Theorem 4:

If A is a nest algebra on a Hilbert space H then every $0 \neq C \in A$ is a derivational point of L(A, B(H)).

Theorem 4:

If A is a nest algebra on a Hilbert space H then every $0 \neq C \in A$ is a derivational point of L(A, B(H)).

Corollary:

Suppose δ is a linear map from a nest algebra \mathcal{A} on a Hilbert space H to B(H) and δ is derivable at $C \in \mathcal{A}$.

(i) If C = 0 then there exists a derivation d from A to B(H) and a scalar λ such that $\delta = d + \lambda I$.

(ii) If $C \neq 0$ then δ must be a derivation.

Thank you for your attention!

