Derivational points of Banach bimodules

Z. Patrick Pan
Saginaw Valley State University

March 17-19, 2011
SouthEast Analysts' Meeting
University of Florida

Introduction

Derivable maps

- A linear map δ from an algebra \mathcal{A} to an \mathcal{A}-bimodule \mathcal{M} is called a derivation if $\delta(a b)=\delta(a) b+a \delta(b)$ for all $a, b \in \mathcal{A}$.

Introduction

Derivable maps

- A linear map δ from an algebra \mathcal{A} to an \mathcal{A}-bimodule \mathcal{M} is called a derivation if $\delta(a b)=\delta(a) b+a \delta(b)$ for all $a, b \in \mathcal{A}$.
- A linear map δ from an algebra \mathcal{A} to an \mathcal{A}-bimodule \mathcal{M} is called derivable at a fixed $c \in \mathcal{A}$ if $\delta(a b)=\delta(a) b+a \delta(b)$ for all $a, b \in \mathcal{A}$ with $a b=c$.

Introduction

Derivable maps

- A linear map δ from an algebra \mathcal{A} to an \mathcal{A}-bimodule \mathcal{M} is called a derivation if $\delta(a b)=\delta(a) b+a \delta(b)$ for all $a, b \in \mathcal{A}$.
- A linear map δ from an algebra \mathcal{A} to an \mathcal{A}-bimodule \mathcal{M} is called derivable at a fixed $c \in \mathcal{A}$ if $\delta(a b)=\delta(a) b+a \delta(b)$ for all $a, b \in \mathcal{A}$ with $a b=c$.
- Clearly, a derivation is derivable at every $c \in \mathcal{A}$.

Introduction

Derivable maps

- A linear map δ from an algebra \mathcal{A} to an \mathcal{A}-bimodule \mathcal{M} is called a derivation if $\delta(a b)=\delta(a) b+a \delta(b)$ for all $a, b \in \mathcal{A}$.
- A linear map δ from an algebra \mathcal{A} to an \mathcal{A}-bimodule \mathcal{M} is called derivable at a fixed $c \in \mathcal{A}$ if $\delta(a b)=\delta(a) b+a \delta(b)$ for all $a, b \in \mathcal{A}$ with $a b=c$.
- Clearly, a derivation is derivable at every $c \in \mathcal{A}$.
- Question: If δ is derivable at a fixed $c \in \mathcal{A}$, what can one say about δ ? (Sub-question: Why should one care?)

Why derivable maps?

The study of maps that preserve certain aspects of derivations or homomorphisms

- helps better understand the structure of these maps (derivations or homomorphisms).

Why derivable maps?

The study of maps that preserve certain aspects of derivations or homomorphisms

- helps better understand the structure of these maps (derivations or homomorphisms).
- helps better understand the structure of the underlying algebra.

Why derivable maps?

The study of maps that preserve certain aspects of derivations or homomorphisms

- helps better understand the structure of these maps (derivations or homomorphisms).
- helps better understand the structure of the underlying algebra.
- provides simpler mechanisms for construction of these maps.

Derivable maps at $c=0$

Question:
If $\delta(a b)=\delta(a) b+a \delta(b)$ for all $a, b \in \mathcal{A}$ with $a b=0$, what can one say about δ ?

Derivable maps at $c=0$

Question:
If $\delta(a b)=\delta(a) b+a \delta(b)$ for all $a, b \in \mathcal{A}$ with $a b=0$, what can one say about δ ?

An example:

- Let $\mathcal{A}^{\prime}=\{m \in \mathcal{M}: a m=m a, \forall a \in \mathcal{A}\}$.

Derivable maps at $c=0$

Question:

If $\delta(a b)=\delta(a) b+a \delta(b)$ for all $a, b \in \mathcal{A}$ with $a b=0$, what can one say about δ ?

An example:

- Let $\mathcal{A}^{\prime}=\{m \in \mathcal{M}: a m=m a, \forall a \in \mathcal{A}\}$.
- For any $m \in \mathcal{A}^{\prime}$, let $L_{m}: \mathcal{A} \mapsto \mathcal{M}$ be $L_{m}(a)=m a, \forall a \in \mathcal{A}$ then L_{m} is derivable at $c=0$.

Derivable maps at $c=0$

Question:

If $\delta(a b)=\delta(a) b+a \delta(b)$ for all $a, b \in \mathcal{A}$ with $a b=0$, what can one say about δ ?

An example:

- Let $\mathcal{A}^{\prime}=\{m \in \mathcal{M}: a m=m a, \forall a \in \mathcal{A}\}$.
- For any $m \in \mathcal{A}^{\prime}$, let $L_{m}: \mathcal{A} \mapsto \mathcal{M}$ be $L_{m}(a)=m a, \forall a \in \mathcal{A}$ then L_{m} is derivable at $c=0$.
- Check: $L_{m}(a b)=0=L_{m}(a) b+a L_{m}(b)$

Derivable maps at $c=0$

Question:

If $\delta(a b)=\delta(a) b+a \delta(b)$ for all $a, b \in \mathcal{A}$ with $a b=0$, what can one say about δ ?

An example:

- Let $\mathcal{A}^{\prime}=\{m \in \mathcal{M}: a m=m a, \forall a \in \mathcal{A}\}$.
- For any $m \in \mathcal{A}^{\prime}$, let $L_{m}: \mathcal{A} \mapsto \mathcal{M}$ be $L_{m}(a)=m a, \forall a \in \mathcal{A}$ then L_{m} is derivable at $c=0$.
- Check: $L_{m}(a b)=0=L_{m}(a) b+a L_{m}(b)$

Derivable maps at $c=0$

Question:

If $\delta(a b)=\delta(a) b+a \delta(b)$ for all $a, b \in \mathcal{A}$ with $a b=0$, what can one say about δ ?

An example:

- Let $\mathcal{A}^{\prime}=\{m \in \mathcal{M}: a m=m a, \forall a \in \mathcal{A}\}$.
- For any $m \in \mathcal{A}^{\prime}$, let $L_{m}: \mathcal{A} \mapsto \mathcal{M}$ be $L_{m}(a)=m a, \forall a \in \mathcal{A}$ then L_{m} is derivable at $c=0$.
- Check: $L_{m}(a b)=0=L_{m}(a) b+a L_{m}(b)$

Various results in the literature

Under certain conditions on δ, \mathcal{A}, and \mathcal{M}, if δ is derivable at 0 then there exists a derivation d from \mathcal{A} to \mathcal{M} such that $\delta=d+L_{m}$, where $m=\delta(1) \in \mathcal{A}^{\prime}$.

Derivable maps at $c=0$

Theorem 1 (Alaminos, Bresar, Extremera, and Villena, 2007)

Let δ be a bounded linear map from a unital C^{*}-algebra \mathcal{A} to a unital Banach \mathcal{A}-bimodule \mathcal{M}. If δ is derivable at 0 then there exists a derivation d from \mathcal{A} to \mathcal{M} such that $\delta=d+L_{m}$, where $m=\delta(1) \in \mathcal{A}^{\prime}$.

Derivable maps at $c=0$

Theorem 1 (Alaminos, Bresar, Extremera, and Villena, 2007)

Let δ be a bounded linear map from a unital C^{*}-algebra \mathcal{A} to a unital Banach \mathcal{A}-bimodule \mathcal{M}. If δ is derivable at 0 then there exists a derivation d from \mathcal{A} to \mathcal{M} such that $\delta=d+L_{m}$, where $m=\delta(1) \in \mathcal{A}^{\prime}$.

Theorem 2 (J. Li and Z. Pan, 2010)

Let δ be a bounded linear map from a CSL-algebra \mathcal{A} in a von Neumann algebra on a Hilbert space H. If δ is derivable at 0 then there exists a derivation d from \mathcal{A} to $\mathcal{B}(H)$ such that $\delta=d+L_{m}$, where $m=\delta(1) \in \mathcal{A}^{\prime}$.

An interplay between derivations and homomorphisms

An embedding

- Let $\delta: \mathcal{A} \mapsto \mathcal{M}$.

An interplay between derivations and homomorphisms

An embedding

- Let $\delta: \mathcal{A} \mapsto \mathcal{M}$.
- Define $\mathcal{B}=\left\{\left[\begin{array}{ll}a & m \\ 0 & b\end{array}\right]: a, b \in \mathcal{A}, m \in \mathcal{M}\right\}$.

An interplay between derivations and homomorphisms

An embedding

- Let $\delta: \mathcal{A} \mapsto \mathcal{M}$.
- Define $\mathcal{B}=\left\{\left[\begin{array}{ll}a & m \\ 0 & b\end{array}\right]: a, b \in \mathcal{A}, m \in \mathcal{M}\right\}$.
- Check: \mathcal{B} is an algebra.

An interplay between derivations and homomorphisms

An embedding

- Let $\delta: \mathcal{A} \mapsto \mathcal{M}$.
- Define $\mathcal{B}=\left\{\left[\begin{array}{ll}a & m \\ 0 & b\end{array}\right]: a, b \in \mathcal{A}, m \in \mathcal{M}\right\}$.
- Check: \mathcal{B} is an algebra.
- Define $\phi: \mathcal{A} \mapsto \mathcal{B}$ by $\phi(a)=\left[\begin{array}{cc}a & \delta(a) \\ 0 & a\end{array}\right], \forall a \in \mathcal{A}$.

An interplay between derivations and homomorphisms

An embedding

- Let $\delta: \mathcal{A} \mapsto \mathcal{M}$.
- Define $\mathcal{B}=\left\{\left[\begin{array}{ll}a & m \\ 0 & b\end{array}\right]: a, b \in \mathcal{A}, m \in \mathcal{M}\right\}$.
- Check: \mathcal{B} is an algebra.
- Define $\phi: \mathcal{A} \mapsto \mathcal{B}$ by $\phi(a)=\left[\begin{array}{cc}a & \delta(a) \\ 0 & a\end{array}\right], \forall a \in \mathcal{A}$.
- $\phi(a b)=\left[\begin{array}{cc}a b & \delta(a b) \\ 0 & a b\end{array}\right]$.

An interplay between derivations and homomorphisms

An embedding

- Let $\delta: \mathcal{A} \mapsto \mathcal{M}$.
- Define $\mathcal{B}=\left\{\left[\begin{array}{ll}a & m \\ 0 & b\end{array}\right]: a, b \in \mathcal{A}, m \in \mathcal{M}\right\}$.
- Check: \mathcal{B} is an algebra.
- Define $\phi: \mathcal{A} \mapsto \mathcal{B}$ by $\phi(a)=\left[\begin{array}{cc}a & \delta(a) \\ 0 & a\end{array}\right], \forall a \in \mathcal{A}$.
- $\phi(a b)=\left[\begin{array}{cc}a b & \delta(a b) \\ 0 & a b\end{array}\right]$.
- Check: $\phi(a) \phi(b)=\left[\begin{array}{cc}a b & a \delta(b)+\delta(a) b \\ 0 & a b\end{array}\right]$.

An interplay between derivations and homomorphisms

An embedding

- Let $\delta: \mathcal{A} \mapsto \mathcal{M}$.
- Define $\mathcal{B}=\left\{\left[\begin{array}{ll}a & m \\ 0 & b\end{array}\right]: a, b \in \mathcal{A}, m \in \mathcal{M}\right\}$.
- Check: \mathcal{B} is an algebra.
- Define $\phi: \mathcal{A} \mapsto \mathcal{B}$ by $\phi(a)=\left[\begin{array}{cc}a & \delta(a) \\ 0 & a\end{array}\right], \forall a \in \mathcal{A}$.
- $\phi(a b)=\left[\begin{array}{cc}a b & \delta(a b) \\ 0 & a b\end{array}\right]$.
- Check: $\phi(a) \phi(b)=\left[\begin{array}{cc}a b & a \delta(b)+\delta(a) b \\ 0 & a b\end{array}\right]$.
- δ is a derivation iff ϕ is a homomorphism.

Derivable at $c=0$ and zero-product preserving maps

Definition:

A linear map ϕ from an algebra \mathcal{A} to an algebra \mathcal{B} is called zero-product preserving if $\phi(a b)=\phi(a) \phi(b)$ for all $a, b \in \mathcal{A}$ with $a b=0$.

Derivable at $c=0$ and zero-product preserving maps

Definition:

A linear map ϕ from an algebra \mathcal{A} to an algebra \mathcal{B} is called zero-product preserving if $\phi(a b)=\phi(a) \phi(b)$ for all $a, b \in \mathcal{A}$ with $a b=0$.

Recall:

$$
\text { - } \delta: \mathcal{A} \mapsto \mathcal{M} \text { and } \mathcal{B}=\left\{\left[\begin{array}{cc}
a & m \\
0 & b
\end{array}\right]: a, b \in \mathcal{A}, m \in \mathcal{M}\right\}
$$

Derivable at $c=0$ and zero-product preserving maps

Definition:

A linear map ϕ from an algebra \mathcal{A} to an algebra \mathcal{B} is called zero-product preserving if $\phi(a b)=\phi(a) \phi(b)$ for all $a, b \in \mathcal{A}$ with $a b=0$.

Recall:

- $\delta: \mathcal{A} \mapsto \mathcal{M}$ and $\mathcal{B}=\left\{\left[\begin{array}{cc}a & m \\ 0 & b\end{array}\right]: a, b \in \mathcal{A}, m \in \mathcal{M}\right\}$.
- $\phi: \mathcal{A} \mapsto \mathcal{B}$, defined by $\phi(a)=\left[\begin{array}{cc}a & \delta(a) \\ 0 & a\end{array}\right]$.

Derivable at $c=0$ and zero-product preserving maps

Definition:

A linear map ϕ from an algebra \mathcal{A} to an algebra \mathcal{B} is called zero-product preserving if $\phi(a b)=\phi(a) \phi(b)$ for all $a, b \in \mathcal{A}$ with $a b=0$.

Recall:

- $\delta: \mathcal{A} \mapsto \mathcal{M}$ and $\mathcal{B}=\left\{\left[\begin{array}{ll}a & m \\ 0 & b\end{array}\right]: a, b \in \mathcal{A}, m \in \mathcal{M}\right\}$.
- $\phi: \mathcal{A} \mapsto \mathcal{B}$, defined by $\phi(a)=\left[\begin{array}{cc}a & \delta(a) \\ 0 & a\end{array}\right]$.
- δ is derivable at $c=0$ iff ϕ is zero-product preserving.

Zero-product preserving maps

Various results in the literature

Under certain conditions, if ϕ is a zero-product preserving map from a unital algebra \mathcal{A} to an algebra \mathcal{B} then there exists a homomorphism Φ from \mathcal{A} to \mathcal{B} such that

$$
\phi(a)=\phi(1) \Phi(a) \forall a \in \mathcal{A} .
$$

Derivable maps at $c=1$ and Jordan derivations

- A linear map δ from an algebra \mathcal{A} to an \mathcal{A}-bimodule \mathcal{M} is called a Jordan derivation if $\delta\left(a^{2}\right)=\delta(a) a+a \delta(a)$ for all $a \in \mathcal{A}$.

Derivable maps at $c=1$ and Jordan derivations

- A linear map δ from an algebra \mathcal{A} to an \mathcal{A}-bimodule \mathcal{M} is called a Jordan derivation if $\delta\left(a^{2}\right)=\delta(a) a+a \delta(a)$ for all $a \in \mathcal{A}$.
- If δ is a Jordan derivation and \mathcal{M} is a unital \mathcal{A}-bimodule then $\delta(1)=0$.

Derivable maps at $c=1$ and Jordan derivations

- A linear map δ from an algebra \mathcal{A} to an \mathcal{A}-bimodule \mathcal{M} is called a Jordan derivation if $\delta\left(a^{2}\right)=\delta(a) a+a \delta(a)$ for all $a \in \mathcal{A}$.
- If δ is a Jordan derivation and \mathcal{M} is a unital \mathcal{A}-bimodule then $\delta(1)=0$.
- If δ is a Jordan derivation then
$\delta(b a b)=\delta(b) a b+b \delta(a) b+b a \delta(b)$, for all $a, b \in \mathcal{A}$.

Derivable maps at $c=1$ and Jordan derivations

- A linear map δ from an algebra \mathcal{A} to an \mathcal{A}-bimodule \mathcal{M} is called a Jordan derivation if $\delta\left(a^{2}\right)=\delta(a) a+a \delta(a)$ for all $a \in \mathcal{A}$.
- If δ is a Jordan derivation and \mathcal{M} is a unital \mathcal{A}-bimodule then $\delta(1)=0$.
- If δ is a Jordan derivation then
$\delta(b a b)=\delta(b) a b+b \delta(a) b+b a \delta(b)$, for all $a, b \in \mathcal{A}$.
- There are many papers in the literature studying when Jordan derivations are derivations (dating back to 1957, I.N. Herstein and I. Kaplansky)

Derivable maps at $c=1$ and Jordan derivations

Fact

Every Jordan derivation from \mathcal{A} to \mathcal{M} is derivable at the unit 1.

Derivable maps at $c=1$ and Jordan derivations

Fact

Every Jordan derivation from \mathcal{A} to \mathcal{M} is derivable at the unit 1.

Proof:

- Suppose δ is a Jordan derivation from \mathcal{A} to \mathcal{M}.

Derivable maps at $c=1$ and Jordan derivations

Fact

Every Jordan derivation from \mathcal{A} to \mathcal{M} is derivable at the unit 1.

Proof:

- Suppose δ is a Jordan derivation from \mathcal{A} to \mathcal{M}.
- For any $a, b \in \mathcal{A}$ such that $a b=1$, we need to show

$$
\delta(a) b+a \delta(b)=\delta(1)=0
$$

Derivable maps at $c=1$ and Jordan derivations

Fact

Every Jordan derivation from \mathcal{A} to \mathcal{M} is derivable at the unit 1.

Proof:

- Suppose δ is a Jordan derivation from \mathcal{A} to \mathcal{M}.
- For any $a, b \in \mathcal{A}$ such that $a b=1$, we need to show

$$
\delta(a) b+a \delta(b)=\delta(1)=0
$$

- Note $\delta(b)=\delta(b a b)=\delta(b) a b+b \delta(a) b+b a \delta(b)$.

Derivable maps at $c=1$ and Jordan derivations

Fact

Every Jordan derivation from \mathcal{A} to \mathcal{M} is derivable at the unit 1.

Proof:

- Suppose δ is a Jordan derivation from \mathcal{A} to \mathcal{M}.
- For any $a, b \in \mathcal{A}$ such that $a b=1$, we need to show

$$
\delta(a) b+a \delta(b)=\delta(1)=0
$$

- Note $\delta(b)=\delta(b a b)=\delta(b) a b+b \delta(a) b+b a \delta(b)$.
- It follows $b(\delta(a) b+a \delta(b))=0$.

Derivable maps at a general element c

Definitions:

- $\mathcal{A}=$ Norm-closed unital subalgebra of $B(X)$

Derivable maps at a general element c

Definitions:

- $\mathcal{A}=$ Norm-closed unital subalgebra of $B(X)$
- For any $x \in X$ and $f^{*} \in X^{*}$, we use $x \otimes f^{*}$ to denote the rank-one operator satisfying $x \otimes f^{*}(u)=f^{*}(u) x, \forall u \in X$.

Derivable maps at a general element c

Definitions:

- $\mathcal{A}=$ Norm-closed unital subalgebra of $B(X)$
- For any $x \in X$ and $f^{*} \in X^{*}$, we use $x \otimes f^{*}$ to denote the rank-one operator satisfying $x \otimes f^{*}(u)=f^{*}(u) x, \forall u \in X$.

Derivable maps at a general element c

Definitions:

- $\mathcal{A}=$ Norm-closed unital subalgebra of $B(X)$
- For any $x \in X$ and $f^{*} \in X^{*}$, we use $x \otimes f^{*}$ to denote the rank-one operator satisfying $x \otimes f^{*}(u)=f^{*}(u) x, \forall u \in X$.

Theorem 3 (J. Li and Z. Pan, 2011)
Suppose $\vee\left\{x: \forall x \otimes f^{*} \in \mathcal{A}\right\}=X$ and δ is a linear map from \mathcal{A} to $B(X)$. If δ is derivable at $C \in \mathcal{A}$ and $\operatorname{ran}(C)$ is dense in X then δ is a derivation.

Derivable maps at a general element c

Definitions:

- $\mathcal{A}=$ Norm-closed unital subalgebra of $B(X)$
- For any $x \in X$ and $f^{*} \in X^{*}$, we use $x \otimes f^{*}$ to denote the rank-one operator satisfying $x \otimes f^{*}(u)=f^{*}(u) x, \forall u \in X$.

Theorem 3 (J. Li and Z. Pan, 2011)
Suppose $\vee\left\{x: \forall x \otimes f^{*} \in \mathcal{A}\right\}=X$ and δ is a linear map from \mathcal{A} to $B(X)$. If δ is derivable at $C \in \mathcal{A}$ and $\operatorname{ran}(C)$ is dense in X then δ is a derivation.

Corollary:

If $\vee\left\{x: \forall x \otimes f^{*} \in \mathcal{A}\right\}=X$ then every Jordan derivation from \mathcal{A} to $B(X)$ is a derivation.

Algebras that satisfy $\vee\left\{x: \forall x \otimes f^{*} \in \mathcal{A}\right\}=X$ include

 - Standard algebrasAlgebras that satisfy $\vee\left\{x: \forall x \otimes f^{*} \in \mathcal{A}\right\}=X$ include

- Standard algebras
- many relexive algebras

Reflexive algebras

Definitions

- $\mathcal{L}=$ lattice of subspaces of X with operations " \vee " and " \wedge "

Reflexive algebras

Definitions

- $\mathcal{L}=$ lattice of subspaces of X with operations " \vee " and " \wedge "
- $\operatorname{alg} \mathcal{L}=\{T \in B(X): T L \subseteq L, \forall L \in \mathcal{L}\}$

Reflexive algebras

Definitions

- $\mathcal{L}=$ lattice of subspaces of X with operations " \vee " and " \wedge "
- $\operatorname{alg} \mathcal{L}=\{T \in B(X): T L \subseteq L, \forall L \in \mathcal{L}\}$
- $L_{-}=\vee\{M \in \mathcal{L}: L \nsubseteq M\}$.
(L_{-}is called the predecessor of L)

Reflexive algebras

Definitions

- $\mathcal{L}=$ lattice of subspaces of X with operations " \vee " and " \wedge "
- $\operatorname{alg} \mathcal{L}=\{T \in B(X): T L \subseteq L, \forall L \in \mathcal{L}\}$
- $L_{-}=\vee\{M \in \mathcal{L}: L \nsubseteq M\}$.
(L_{-}is called the predecessor of L)
- Define $\mathcal{J}(\mathcal{L})=\left\{L \in \mathcal{L}: L \neq 0\right.$ and $\left.L_{-} \neq X\right\}$, i.e. $\mathcal{J}(\mathcal{L})$ is the set of L with non-trivial predecessors.

Reflexive algebras that satisfy $\vee\left\{x: \forall x \otimes f^{*} \in \mathcal{A}\right\}=X$

An equivalent condition (for reflexive algebras only)

- For $E \subseteq X$, define $E^{\perp}=\left\{f^{*} \in X^{*}:\left.f^{*}\right|_{E}=0\right\}$.

Reflexive algebras that satisfy $\vee\left\{x: \forall x \otimes f^{*} \in \mathcal{A}\right\}=X$

An equivalent condition (for reflexive algebras only)

- For $E \subseteq X$, define $E^{\perp}=\left\{f^{*} \in X^{*}:\left.f^{*}\right|_{E}=0\right\}$.
- $x \otimes f^{*} \in \operatorname{alg} \mathcal{L}$ iff there exists an $E \in \mathcal{J}(\mathcal{L})$ such that $x \in E$ and $f^{*} \in\left(E_{-}\right)^{\perp}$ (W. Longstaff).

Reflexive algebras that satisfy $\vee\left\{x: \forall x \otimes f^{*} \in \mathcal{A}\right\}=X$

An equivalent condition (for reflexive algebras only)

- For $E \subseteq X$, define $E^{\perp}=\left\{f^{*} \in X^{*}:\left.f^{*}\right|_{E}=0\right\}$.
- $x \otimes f^{*} \in \operatorname{alg} \mathcal{L}$ iff there exists an $E \in \mathcal{J}(\mathcal{L})$ such that $x \in E$ and $f^{*} \in\left(E_{-}\right)^{\perp}$ (W. Longstaff).
- $\vee\left\{x: \forall x \otimes f^{*} \in \mathcal{A}\right\}=X$ iff $\vee\{E: E \in \mathcal{J}(\mathcal{L})\}=X$.

Reflexive algebras that satisfy $\vee\left\{x: \forall x \otimes f^{*} \in \mathcal{A}\right\}=X$

An equivalent condition (for reflexive algebras only)

- For $E \subseteq X$, define $E^{\perp}=\left\{f^{*} \in X^{*}:\left.f^{*}\right|_{E}=0\right\}$.
- $x \otimes f^{*} \in \operatorname{alg} \mathcal{L}$ iff there exists an $E \in \mathcal{J}(\mathcal{L})$ such that $x \in E$ and $f^{*} \in\left(E_{-}\right)^{\perp}$ (W. Longstaff).
- $\vee\left\{x: \forall x \otimes f^{*} \in \mathcal{A}\right\}=X$ iff $\vee\{E: E \in \mathcal{J}(\mathcal{L})\}=X$.

Reflexive algebras that satisfy $\vee\left\{x: \forall x \otimes f^{*} \in \mathcal{A}\right\}=X$

An equivalent condition (for reflexive algebras only)

- For $E \subseteq X$, define $E^{\perp}=\left\{f^{*} \in X^{*}:\left.f^{*}\right|_{E}=0\right\}$.
- $x \otimes f^{*} \in \operatorname{alg} \mathcal{L}$ iff there exists an $E \in \mathcal{J}(\mathcal{L})$ such that $x \in E$ and $f^{*} \in\left(E_{-}\right)^{\perp}$ (W. Longstaff).
- $\vee\left\{x: \forall x \otimes f^{*} \in \mathcal{A}\right\}=X$ iff $\vee\{E: E \in \mathcal{J}(\mathcal{L})\}=X$.

Lattices that satisfy $\vee\{E: E \in \mathcal{J}(\mathcal{L})\}=X$ include
(1) completely distributive subspace lattice \mathcal{L}, in particular a nest. (\mathcal{L} is completely distributive iff $E=\wedge\left\{L_{-}: L \in \mathcal{L}, L \nsubseteq E\right\}$.)

Reflexive algebras that satisfy $\vee\left\{x: \forall x \otimes f^{*} \in \mathcal{A}\right\}=X$

An equivalent condition (for reflexive algebras only)

- For $E \subseteq X$, define $E^{\perp}=\left\{f^{*} \in X^{*}:\left.f^{*}\right|_{E}=0\right\}$.
- $x \otimes f^{*} \in \operatorname{alg} \mathcal{L}$ iff there exists an $E \in \mathcal{J}(\mathcal{L})$ such that $x \in E$ and $f^{*} \in\left(E_{-}\right)^{\perp}$ (W. Longstaff).
- $\vee\left\{x: \forall x \otimes f^{*} \in \mathcal{A}\right\}=X$ iff $\vee\{E: E \in \mathcal{J}(\mathcal{L})\}=X$.

Lattices that satisfy $\vee\{E: E \in \mathcal{J}(\mathcal{L})\}=X$ include
(1) completely distributive subspace lattice \mathcal{L}, in particular a nest. (\mathcal{L} is completely distributive iff $E=\wedge\left\{L_{-}: L \in \mathcal{L}, L \nsubseteq E\right\}$.)
(2) \mathcal{J}-subspace lattices.

Reflexive algebras that satisfy $\vee\left\{x: \forall x \otimes f^{*} \in \mathcal{A}\right\}=X$

An equivalent condition (for reflexive algebras only)

- For $E \subseteq X$, define $E^{\perp}=\left\{f^{*} \in X^{*}:\left.f^{*}\right|_{E}=0\right\}$.
- $x \otimes f^{*} \in \operatorname{alg} \mathcal{L}$ iff there exists an $E \in \mathcal{J}(\mathcal{L})$ such that $x \in E$ and $f^{*} \in\left(E_{-}\right)^{\perp}$ (W. Longstaff).
- $\vee\left\{x: \forall x \otimes f^{*} \in \mathcal{A}\right\}=X$ iff $\vee\{E: E \in \mathcal{J}(\mathcal{L})\}=X$.

Lattices that satisfy $\vee\{E: E \in \mathcal{J}(\mathcal{L})\}=X$ include
(1) completely distributive subspace lattice \mathcal{L}, in particular a nest. (\mathcal{L} is completely distributive iff $E=\wedge\left\{L_{-}: L \in \mathcal{L}, L \nsubseteq E\right\}$.)
(2) \mathcal{J}-subspace lattices.
(3) \mathcal{L} that satisfies $X_{-} \neq X$.

Reflexive algebras that satisfy $\vee\left\{x: \forall x \otimes f^{*} \in \mathcal{A}\right\}=X$

An equivalent condition (for reflexive algebras only)

- For $E \subseteq X$, define $E^{\perp}=\left\{f^{*} \in X^{*}:\left.f^{*}\right|_{E}=0\right\}$.
- $x \otimes f^{*} \in \operatorname{alg} \mathcal{L}$ iff there exists an $E \in \mathcal{J}(\mathcal{L})$ such that $x \in E$ and $f^{*} \in\left(E_{-}\right)^{\perp}$ (W. Longstaff).
- $\vee\left\{x: \forall x \otimes f^{*} \in \mathcal{A}\right\}=X$ iff $\vee\{E: E \in \mathcal{J}(\mathcal{L})\}=X$.

Lattices that satisfy $\vee\{E: E \in \mathcal{J}(\mathcal{L})\}=X$ include
(1) completely distributive subspace lattice \mathcal{L}, in particular a nest. (\mathcal{L} is completely distributive iff $E=\wedge\left\{L_{-}: L \in \mathcal{L}, L \nsubseteq E\right\}$.)
(2) \mathcal{J}-subspace lattices.
(3) \mathcal{L} that satisfies $X_{-} \neq X$.
(9) \mathcal{L} that satisfies $\wedge\left\{L_{-}: L \in \mathcal{J}(\mathcal{L})\right\}=(0)$.

Reflexive algebras that satisfy $\vee\left\{x: \forall x \otimes f^{*} \in \mathcal{A}\right\}=X$

An equivalent condition (for reflexive algebras only)

- For $E \subseteq X$, define $E^{\perp}=\left\{f^{*} \in X^{*}:\left.f^{*}\right|_{E}=0\right\}$.
- $x \otimes f^{*} \in \operatorname{alg} \mathcal{L}$ iff there exists an $E \in \mathcal{J}(\mathcal{L})$ such that $x \in E$ and $f^{*} \in\left(E_{-}\right)^{\perp}$ (W. Longstaff).
- $\vee\left\{x: \forall x \otimes f^{*} \in \mathcal{A}\right\}=X$ iff $\vee\{E: E \in \mathcal{J}(\mathcal{L})\}=X$.

Lattices that satisfy $\vee\{E: E \in \mathcal{J}(\mathcal{L})\}=X$ include
(1) completely distributive subspace lattice \mathcal{L}, in particular a nest. (\mathcal{L} is completely distributive iff $E=\wedge\left\{L_{-}: L \in \mathcal{L}, L \nsubseteq E\right\}$.)
(2) \mathcal{J}-subspace lattices.
(3) \mathcal{L} that satisfies $X_{-} \neq X$.
(9) \mathcal{L} that satisfies $\wedge\left\{L_{-}: L \in \mathcal{J}(\mathcal{L})\right\}=(0)$.
(3) \mathcal{L} that satisfies $(0)_{+} \neq(0)$.

Derivational points

Definition:

An element $c \in \mathcal{A}$ is called a derivational point of $L(\mathcal{A}, \mathcal{M})$ if whenever $\delta \in L(\mathcal{A}, \mathcal{M})$ is derivable at c then δ is a derivation.

Derivational points

Definition:

An element $c \in \mathcal{A}$ is called a derivational point of $L(\mathcal{A}, \mathcal{M})$ if whenever $\delta \in L(\mathcal{A}, \mathcal{M})$ is derivable at c then δ is a derivation.

Theorem 3 says:

If $\vee\left\{x: \forall x \otimes f^{*} \in \mathcal{A}\right\}=X$ then every $C \in \mathcal{A}$ such that $\operatorname{ran}(C)$ is dense in X is a derivational point of $L(\mathcal{A}, B(X))$.

Characterization of derivable maps on nest algebras

Theorem 4:

If \mathcal{A} is a nest algebra on a Hilbert space H then every $0 \neq C \in \mathcal{A}$ is a derivational point of $L(\mathcal{A}, B(H))$.

Characterization of derivable maps on nest algebras

Theorem 4:

If \mathcal{A} is a nest algebra on a Hilbert space H then every $0 \neq C \in \mathcal{A}$ is a derivational point of $L(\mathcal{A}, B(H))$.

Corollary:

Suppose δ is a linear map from a nest algebra \mathcal{A} on a Hilbert space H to $B(H)$ and δ is derivable at $C \in \mathcal{A}$.
(i) If $C=0$ then there exists a derivation d from \mathcal{A} to $B(H)$ and a scalar λ such that $\delta=d+\lambda l$.
(ii) If $C \neq 0$ then δ must be a derivation.

Thank you for your attention!

