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Introduction

Derivable maps

A linear map δ from an algebra A to an A-bimodule M is
called a derivation if δ(ab) = δ(a)b + aδ(b) for all a, b ∈ A.

A linear map δ from an algebra A to an A-bimodule M is
called derivable at a fixed c ∈ A if δ(ab) = δ(a)b + aδ(b) for
all a, b ∈ A with ab = c .

Clearly, a derivation is derivable at every c ∈ A.

Question: If δ is derivable at a fixed c ∈ A, what can one say
about δ? (Sub-question: Why should one care?)
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Why derivable maps?

The study of maps that preserve certain aspects of derivations or
homomorphisms

helps better understand the structure of these maps
(derivations or homomorphisms).

helps better understand the structure of the underlying
algebra.

provides simpler mechanisms for construction of these maps.

Z. Pan SEAM27-2011



Why derivable maps?

The study of maps that preserve certain aspects of derivations or
homomorphisms

helps better understand the structure of these maps
(derivations or homomorphisms).

helps better understand the structure of the underlying
algebra.

provides simpler mechanisms for construction of these maps.

Z. Pan SEAM27-2011



Why derivable maps?

The study of maps that preserve certain aspects of derivations or
homomorphisms

helps better understand the structure of these maps
(derivations or homomorphisms).

helps better understand the structure of the underlying
algebra.

provides simpler mechanisms for construction of these maps.

Z. Pan SEAM27-2011



Derivable maps at c = 0

Question:

If δ(ab) = δ(a)b + aδ(b) for all a, b ∈ A with ab = 0, what can
one say about δ?

An example:

Let A′ = {m ∈M : am = ma, ∀a ∈ A}.
For any m ∈ A′, let Lm : A 7→M be Lm(a) = ma, ∀ a ∈ A
then Lm is derivable at c = 0.

Check: Lm(ab) = 0 = Lm(a)b + aLm(b)

Various results in the literature

Under certain conditions on δ, A, and M, if δ is derivable at 0
then there exists a derivation d from A to M such that
δ = d + Lm, where m = δ(1) ∈ A′.
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Derivable maps at c = 0

Theorem 1 (Alaminos, Bresar, Extremera, and Villena, 2007)

Let δ be a bounded linear map from a unital C ∗-algebra A to a
unital Banach A-bimodule M. If δ is derivable at 0 then there
exists a derivation d from A to M such that δ = d + Lm, where
m = δ(1) ∈ A′.

Theorem 2 (J. Li and Z. Pan, 2010)

Let δ be a bounded linear map from a CSL-algebra A in a von
Neumann algebra on a Hilbert space H. If δ is derivable at 0 then
there exists a derivation d from A to B(H) such that δ = d + Lm,
where m = δ(1) ∈ A′.
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An interplay between derivations and homomorphisms

An embedding

Let δ : A 7→M.

Define B = {
[

a m
0 b

]
: a, b ∈ A, m ∈M}.

Check: B is an algebra.

Define φ : A 7→ B by φ(a) =

[
a δ(a)
0 a

]
, ∀ a ∈ A.

φ(ab) =

[
ab δ(ab)
0 ab

]
.

Check: φ(a)φ(b) =

[
ab aδ(b) + δ(a)b
0 ab

]
.

δ is a derivation iff φ is a homomorphism.
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Derivable at c = 0 and zero-product preserving maps

Definition:

A linear map φ from an algebra A to an algebra B is called
zero-product preserving if φ(ab) = φ(a)φ(b) for all a, b ∈ A with
ab = 0.

Recall:

δ : A 7→M and B = {
[

a m
0 b

]
: a, b ∈ A, m ∈M}.

φ : A 7→ B, defined by φ(a) =

[
a δ(a)
0 a

]
.

δ is derivable at c = 0 iff φ is zero-product preserving.
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Zero-product preserving maps

Various results in the literature

Under certain conditions, if φ is a zero-product preserving map
from a unital algebra A to an algebra B then there exists a
homomorphism Φ from A to B such that

φ(a) = φ(1)Φ(a) ∀ a ∈ A.
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Derivable maps at c = 1 and Jordan derivations

A linear map δ from an algebra A to an A-bimodule M is
called a Jordan derivation if δ(a2) = δ(a)a + aδ(a) for all
a ∈ A.

If δ is a Jordan derivation and M is a unital A-bimodule then
δ(1) = 0.

If δ is a Jordan derivation then
δ(bab) = δ(b)ab + bδ(a)b + baδ(b), for all a, b ∈ A.

There are many papers in the literature studying when Jordan
derivations are derivations (dating back to 1957, I.N. Herstein
and I. Kaplansky)
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Derivable maps at c = 1 and Jordan derivations

Fact

Every Jordan derivation from A to M is derivable at the unit 1.

Proof:

Suppose δ is a Jordan derivation from A to M.

For any a, b ∈ A such that ab = 1, we need to show

δ(a)b + aδ(b) = δ(1) = 0.

Note δ(b) = δ(bab) = δ(b)ab + bδ(a)b + baδ(b).

It follows b(δ(a)b + aδ(b)) = 0.
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Derivable maps at a general element c

Definitions:

A = Norm-closed unital subalgebra of B(X )

For any x ∈ X and f ∗ ∈ X ∗, we use x ⊗ f ∗ to denote the
rank-one operator satisfying x ⊗ f ∗(u) = f ∗(u)x , ∀ u ∈ X .

Theorem 3 (J. Li and Z. Pan, 2011)

Suppose ∨{x : ∀ x ⊗ f ∗ ∈ A} = X and δ is a linear map from A
to B(X ). If δ is derivable at C ∈ A and ran(C ) is dense in X then
δ is a derivation.

Corollary:

If ∨{x : ∀ x ⊗ f ∗ ∈ A} = X then every Jordan derivation from A
to B(X ) is a derivation.

Z. Pan SEAM27-2011
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Algebras that satisfy ∨{x : ∀ x ⊗ f ∗ ∈ A} = X include

Standard algebras

many relexive algebras
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Reflexive algebras

Definitions

L = lattice of subspaces of X with operations “∨ ” and “∧ ”

algL = {T ∈ B(X ) : TL ⊆ L, ∀ L ∈ L}

L− = ∨{M ∈ L : L 6⊆ M}.

(L− is called the predecessor of L)

Define J (L) = {L ∈ L : L 6= 0 and L− 6= X}, i.e.

J (L) is the set of L with non-trivial predecessors.
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J (L) is the set of L with non-trivial predecessors.
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Reflexive algebras that satisfy ∨{x : ∀ x ⊗ f ∗ ∈ A} = X

An equivalent condition (for reflexive algebras only)

For E ⊆ X , define E⊥ = {f ∗ ∈ X ∗ : f ∗|E = 0}.

x ⊗ f ∗ ∈ algL iff there exists an E ∈ J (L) such that x ∈ E
and f ∗ ∈ (E−)⊥ (W. Longstaff).

∨{x : ∀ x ⊗ f ∗ ∈ A} = X iff ∨{E : E ∈ J (L)} = X .

Lattices that satisfy ∨{E : E ∈ J (L)} = X include

1 completely distributive subspace lattice L, in particular a nest.
(L is completely distributive iff E = ∧{L− : L ∈ L, L * E}.)

2 J -subspace lattices.

3 L that satisfies X− 6= X .

4 L that satisfies ∧{L− : L ∈ J (L)} = (0).

5 L that satisfies (0)+ 6= (0).
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Derivational points

Definition:

An element c ∈ A is called a derivational point of L(A,M) if
whenever δ ∈ L(A,M) is derivable at c then δ is a derivation.

Theorem 3 says:

If ∨{x : ∀ x ⊗ f ∗ ∈ A} = X then every C ∈ A such that ran(C ) is
dense in X is a derivational point of L(A,B(X )).
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Characterization of derivable maps on nest algebras

Theorem 4:

If A is a nest algebra on a Hilbert space H then every 0 6= C ∈ A
is a derivational point of L(A,B(H)).

Corollary:

Suppose δ is a linear map from a nest algebra A on a Hilbert space
H to B(H) and δ is derivable at C ∈ A.

(i) If C = 0 then there exists a derivation d from A to B(H) and a
scalar λ such that δ = d + λI .

(ii) If C 6= 0 then δ must be a derivation.
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Thank you for your attention!
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