C*-algebras Generated by Linear-fractionally-induced Composition Operators

Katie Spurrier Quertermous

James Madison University

March 19, 2011

C*-algebras Generated by Linearfractionallyinduced Composition Operators

Katie Quertermous

Background

The Full Fixed Point Algebra

Singly Generated Subalgebras

Spectral Results

K-theory

Notation

- Let $\mathbb D$ denote the open unit disk and $\mathbb T$ the unit circle.
- H²(D) is the space of all functions f = ∑_{n=0}[∞] a_nzⁿ that are analytic on D and satisfy

$$||f||_{H^2}^2 = \sum_{n=0}^{\infty} |a_n|^2 < \infty.$$

- For $\varphi : \mathbb{D} \to \mathbb{D}$ analytic, $C_{\varphi}f = f \circ \varphi$ for all $f \in H^2(\mathbb{D})$.
- $U_{arphi}=$ partial isometry in the polar decomposition of \mathcal{C}_{arphi}

•
$$T_z =$$
 the forward shift on $H^2(\mathbb{D})$.

𝔅 = the ideal of compact operators on H²(𝔅)

C*-algebras Generated by Linearfractionallyinduced Composition Operators

Katie Quertermous

Background

The Full Fixed Point Algebra

Singly Generated Subalgebras

Spectral Results K-theory

More Notation

• We're interested in composition operators induced by linear-fractional maps $\varphi(z) = \frac{az+b}{cz+d}$ that

• map $\mathbb D$ into but not onto $\mathbb D$

- and fix a point on $\mathbb{T}.$
- Without loss of generality, take the fixed point to be 1.

• Let
$$\mathcal{F} := \{ C_{\varphi} : \varphi : \mathbb{D} \to \mathbb{D} \text{ non-auto, LFT, } \varphi(1) = 1 \}.$$

C*-algebras Generated by Linearfractionallyinduced Composition Operators

Katie Quertermous

Background

The Full Fixed Point Algebra

Singly Generated Subalgebras

Spectral Results

K-theory

Main Questions for Today's Talk

Let
$$\mathcal{F} := \{ C_{\varphi} \, | \, \varphi : \mathbb{D} \to \mathbb{D} \text{ non-auto, } \mathsf{LFT}, \varphi(1) = 1 \}.$$

- What is the structure of C*(F), modulo the ideal of compact operators?
- 2 If C_φ ∈ F, what is the structure of C^{*}(C_φ, K), modulo the ideal of compact operators?
- What spectral information about algebraic combinations of composition operators and their adjoints can we obtain from these structure results?

C*-algebras Generated by Linearfractionallyinduced Composition Operators

Katie Quertermous

Background

The Full Fixed Point Algebra

Singly Generated Subalgebras

Spectral Results

K-theory

Composition Operators Induced by Parabolic Non-automorphisms

 A linear-fractional, non-automorphism self-map of D that fixes the point 1 is parabolic if φ'(1) = 1.

• In this case,
$$\varphi = \rho_a = \frac{(2-a)z+a}{-az+(2+a)}$$
, where $\operatorname{Re} a > 0$.

• Let
$$\mathbb{P} = \{C_{\rho_a} : \operatorname{Re} a > 0\}.$$

Theorem (Kriete, MacCluer, and Moorhouse) If $C_{\varphi} \in \mathbb{P}$, then $C^*(C_{\varphi}, \mathcal{K}) = C^*(C_{\varphi}) = C^*(\mathbb{P})$ and there exists a unique *-isomorphism

 $\Gamma: \mathit{C}([0,1]) \to \mathit{C}^*(\mathbb{P})/\mathcal{K}$

such that, for all $a \in \mathbb{C}$ with $\operatorname{Re} a > 0$, $\Gamma(x^a) = [C_{\rho_a}]$.

C*-algebras Generated by Linearfractionallyinduced Composition Operators

Katie Quertermous

Background

The Full Fixed Point Algebra

Singly Generated Subalgebras

Spectral Results

(-theory

Rewriting Operators in ${\cal F}$

For
$$t > 0$$
, define the map $\Psi_t(z) = \frac{(t+1)z + (1-t)}{(1-t)z + (1+t)}$, which is an automorphism of \mathbb{D} .

If
$$C_{arphi}\in \mathcal{F}$$
, set $t=arphi'(1)$ and $a=rac{arphi''(1)-t^2+t}{t}.$ Then $C_{arphi}=C_{
ho_a}C_{\Psi_t}.$

Applying results of Bourdon and MacCluer, Jury, and Kriete, MacCluer, and Moorhouse, we can then rewrite C_{φ} as

$$C_{\varphi} = \frac{1}{\sqrt{t}} C_{\rho_{a}} U_{\Psi_{t}} + K,$$

where $K \in \mathcal{K}$ and U_{Ψ_t} is the unitary operator appearing in the polar decomposition of C_{Ψ_t} .

C*-algebras Generated by Linearfractionallyinduced Composition Operators

Katie Quertermous

Background

The Full Fixed Point Algebra

Singly Generated Subalgebras

Spectral Results

Composition Operators Induced by Automorphisms

Let G be a collection of automorphisms of \mathbb{D} that form an abelian group under composition.

Theorem (Jury, 2007)

$$C^*(T_z, \{C_\gamma : \gamma \in G\})/\mathcal{K} = C^*(T_z, \{U_\gamma : \gamma \in G\})/\mathcal{K}$$
$$\cong C(\mathbb{T}) \rtimes_\alpha G_d$$

•
$$lpha_\gamma(f) = f \circ \gamma$$
 for all $f \in C(\mathbb{T})$ and $\gamma \in G$

• *G_d* denotes the locally compact group obtained from *G* by applying the discrete topology.

C*-algebras Generated by Linearfractionallyinduced Composition Operators

Katie Quertermous

Background

The Full Fixed Point Algebra

Singly Generated Subalgebras

Spectral Results

K-theory

Crossed Product C*-algebras (Discrete Version)

- Let G be a discrete group, and let A be a C*-algebra.
- An action α of G on A is a homomorphism
 α : G → Aut(A), g ↦ α_g.
- The crossed product $\mathcal{A} \rtimes_{\alpha} G$ is the completion of

$$C_{c}(G, \mathcal{A}) = \begin{cases} \sum_{s \in G} A_{s} \chi_{s} : & A_{s} \in \mathcal{A}, A_{s} = 0 \text{ for all} \\ & \text{but finitely many } s \end{cases}$$

in a norm that is built from a set of representations of $C_c(G, A)$ that come from covariant representations of (A, G, α) .

C*-algebras Generated by Linearfractionallyinduced Composition Operators

Katie Quertermous

Background

The Full Fixed Point Algebra

Singly Generated Subalgebras

Spectral Results

K-theory

1. What is the structure of $C^*(\mathcal{F})/\mathcal{K}$?

•
$$C^*(\mathcal{F})/\mathcal{K} \subset C^*(\mathbb{P}, \{U_{\Psi_t} : t \in \mathbb{R}^+\})/\mathcal{K}$$

• $C^*(\mathbb{P})/\mathcal{K}\cong C([0,1])$ Kriete, MacCluer, and Moorhouse

•
$$C^*(T_z, \{U_{\Psi_t} : t \in \mathbb{R}^+\})/\mathcal{K} \cong C(\mathbb{T}) \rtimes \mathbb{R}^+_d$$
 Jury

C*-algebras Generated by Linearfractionallyinduced Composition Operators

Katie Quertermous

Background

The Full Fixed Point Algebra

Singly Generated Subalgebras

Spectral Results

K-theory

1. What is the structure of $C^*(\mathcal{F})/\mathcal{K}$?

$$\mathcal{C}^*(\mathbb{P}, \{\mathcal{U}_{\Psi_t} : t \in \mathbb{R}^+\})/\mathcal{K} = \mathcal{C}^*(\mathcal{C}^*(\mathbb{P})/\mathcal{K}, \{[\mathcal{U}_{\Psi_t}] : t \in \mathbb{R}^+\})$$

- {[U_{Ψt}] : t ∈ ℝ⁺} is an abelian group of cosets of unitary operators. (Jury 2007)
- $[U_{\Psi_t}]\Gamma(g)[U_{\Psi_t}^*] = \Gamma(\beta_t(g))$

for all $g \in C([0, 1])$ and $t \in \mathbb{R}^+$, where $\beta_t(g)(x) = g(x^t)$ and Γ is the *-isomorphism from C([0, 1]) onto $C^*(\mathbb{P})/\mathcal{K}$ (Obtained by applying results of Bourdon, MacCluer 2007; Jury 2007: Kriete, MacCluer, Moorhouse 2007, 2009) C*-algebras Generated by Linearfractionallyinduced Composition Operators

Katie Quertermous

Background

The Full Fixed Point Algebra

Singly Generated Subalgebras

Spectral Results

K-theory

We can show that the action β is topologically free and then apply the machinery of Karlovich or Lebedev.

Theorem (Q)

$$C^*(\mathbb{P}, \{U_{\Psi_t} : t \in \mathbb{R}^+\})/\mathcal{K} \cong C([0,1]) \rtimes_{\beta} \mathbb{R}^+_d.$$

The *-isomorphism $F: C([0,1]) \rtimes_{\beta} \mathbb{R}^+_d \to C^*(\mathbb{P}, \{U_{\Psi_t} : t \in \mathbb{R}^+\})/\mathcal{K} \text{ satisfies}$

$$F(\sum_{finite} g_t \chi_t) = \sum_{finite} \Gamma(g_t)[U_{\Psi_t}]$$

for all $\sum_{\text{finite}} g_t \chi_t \in C_c(\mathbb{R}^+_d, C([0,1])).$

Corollary

 $C^*(\mathcal{F})/\mathcal{K}$ is isomorphic to a subalgebra of $C([0,1]) \rtimes_{\beta} \mathbb{R}^+_d$.

C*-algebras Generated by Linearfractionallyinduced Composition Operators

Katie Quertermous

Background

The Full Fixed Point Algebra

Singly Generated Subalgebras

Spectral Results K-theory

Identifying the Full Fixed Point Algebra

- All cosets of words in $\mathcal{F} \cup \mathcal{F}^*$ look like $[bC_{\rho_a}U_{\Psi_t}]$.
- Let $C_0([0,1]) := \{g \in C([0,1]) : g(0) = 0\}$ and set

$$N = \left\{ \sum_{ ext{finite}} \mathsf{\Gamma}(g_t)[U_{\Psi_t}] : g_t \in C_0([0,1])
ight\}.$$

Then $\mathbb{C}[I] + N$ is dense in $C^*(\mathcal{F})/\mathcal{K}$.

• Under the iso, N maps onto $C_c(\mathbb{R}^+_d, C_0([0, 1]))$.

Theorem (Q)

Define $\beta : \mathbb{R}_d^+ \to Aut(C_0([0,1]))$ by $\beta_t(g)(x) := g(x^t)$ for all $t \in \mathbb{R}_d^+$, $g \in C_0([0,1])$, and $x \in [0,1]$.

Then $C^*(\mathcal{F})/\mathcal{K}$ is isometrically *-isomorphic to the unitization of $C_0([0,1]) \rtimes_{\beta} \mathbb{R}^+_d$.

C*-algebras Generated by Linearfractionallyinduced Composition Operators

Katie Quertermous

Background

The Full Fixed Point Algebra

Singly Generated Subalgebras

Spectral Results

_ _ _

2. If $C_{\varphi} \in \mathcal{F}$ and $\varphi'(1) \neq 1$, what is the structure of $C^*(C_{\varphi}, \mathcal{K})/\mathcal{K}$?

Theorem (Q)

Let φ be a linear-fractional, non-automorphism self-map of \mathbb{D} with $\varphi(1) = 1$ and $\varphi'(1) = t \neq 1$.

Define $\beta^t : \mathbb{Z} \to Aut(C_0([0,1]))$ by $\beta_n^t g(x) := g(x^{t^n})$ for all $n \in \mathbb{Z}$, $g \in C_0([0,1])$, and $x \in [0,1]$.

Then $C^*(C_{\varphi}, \mathcal{K})/\mathcal{K}$ is isometrically *-isomorphic to the unitization of $C_0([0, 1]) \rtimes_{\beta^t} \mathbb{Z}$.

C*-algebras Generated by Linearfractionallyinduced Composition Operators

Katie Quertermous

Background

The Full Fixed Point Algebra

Singly Generated Subalgebras

Spectral Results

Essential Spectra

Consider cosets in $C^*(C_{\varphi},\mathcal{K})/\mathcal{K}$ of the form

$$[A] = \sum_{n=-N}^{N} \Gamma(g_n) \left[U_{\Psi_t n}^* \right]$$

for $t = \varphi'(1)$, $N \in \mathbb{N}$, $g_n \in C([0,1])$, and $g_n(0) = 0$ for $n \neq 0$.

Trajectorial Approach: [A] is invertible \Leftrightarrow the discrete operator $\pi_x([A])$ is invertible for all $x \in [0, 1]$.

When is $\pi_{x}([A])$ invertible?

If $x \in (0,1)$ and $t>1$, then $\pi_x([A])=$										
	·	·.	·						0	
		$g_1(1)$	$g_0(1)$	$g_{-1}(1)$						
_			$g_1(1)$	$g_0(1)$	0	(-)				
				0	$g_0(0)$	$g_{-1}(0)$				+ K
					$g_1(0)$	$g_{0}(0)$	$g_{-1}(0)$			
						$g_1(0)$	$g_0(0)$	$g_{-1}(0)$		
	0						·	·	·	

By results of Gohberg and Fel'dman, $\pi_x([A])$ is Fredholm with index zero if and only if

$$p_{A,0}(z) := \sum_{n=-N}^{N} g_n(0) z^n$$
 and $p_{A,1}(z) := \sum_{n=-N}^{N} g_n(1) z^n$

do not vanish on $\ensuremath{\mathbb{T}}$ and have the same winding number.

When is $\pi_{x}([A])$ invertible?

If
$$x \in (0,1)$$
 and $t > 1$, then $\pi_x([A]) = \begin{bmatrix} \ddots & \ddots & & & & & & \\ g_1(1) & g_0(1) & g_{-1}(1) & & & & & \\ g_1(1) & g_0(1) & 0 & & & & \\ g_1(1) & g_0(1) & 0 & & & & \\ g_0(0) & 0 & & & & & \\ 0 & & & g_0(0) & 0 & & \\ 0 & & & & & \ddots & \ddots & \\ 0 & & & & & & \ddots & \ddots & \\ \end{array} \right] + \kappa$

By results of Gohberg and Fel'dman, $\pi_x([A])$ is Fredholm with index zero if and only if

$$p_{A,0}(z) := g_0(0)$$
 and $p_{A,1}(z) := \sum_{n=-N}^N g_n(1) z^n$

do not vanish on \mathbb{T} , and $p_{A,1}(z)$ has winding number 0.

When is
$$\pi_{x}([A]) = \left[g_{i-j}\left(x^{t^{j}}\right)\right]_{i,j=-\infty}^{\infty}$$
 invertible?

If $g_0(0) \neq 0$, $p_{A,1}$ does not vanish on \mathbb{T} , and $p_{A,1}$ has winding number 0, define

$$\begin{aligned} \pi_{x}([A])^{\nu} &= [g_{i-j}(x^{t^{j}})]_{i,j=-\nu+1}^{\nu-1} \\ \pi_{x}([A])^{\nu}_{\mu} &= [g_{i-j}(x^{t^{j}})]_{i,j\in\{-\nu+1,\dots,-\mu,\mu,\dots,\nu-1\}} \end{aligned}$$

Theorem (Karlovich and Kravchenko, 1984)

 $\pi_x([A])$ is invertible on $\ell^2(\mathbb{Z})$ if and only if the conditions above hold and there exists $\mu_0 > 0$ such that for all $\mu \ge \mu_0$,

$$\lim_{\nu \to \infty} \frac{\det \pi_{x}([A])^{\nu}}{\det \pi_{x}([A])^{\nu}_{\mu}} \neq 0.$$
 (1)

If $\pi_x([A])$ is lower-triangular, then (1) is equivalent to the condition that $g_0(x^{t^j}) \neq 0$ for all j.

C*-algebras Generated by Linearfractionallyinduced Composition Operators

Katie Quertermous

Background

The Full Fixed Point Algebra

Singly Generated Subalgebras

Spectral Results

K-theory

Theorem

Let $t = \varphi'(1) \neq 1$, and suppose $A \in C^*(C_{\varphi}, \mathcal{K})$ satisfies

$$[A] = \sum_{n=0}^{N} \Gamma(g_n) \left[U_{\Psi_t n}^* \right]$$

for some $N \in \mathbb{N}$, $g_0 \in C([0,1])$, and $g_1, ..., g_n \in C_0([0,1])$. Then $\sigma_e(A) = g_0([0,1]) \cup p_{A,1}(\overline{\mathbb{D}})$. C*-algebras Generated by Linearfractionallyinduced Composition Operators

Katie Quertermous

Background

The Full Fixed Point Algebra

Singly Generated Subalgebras

Spectral Results

K-theory

Example

Let $b_1, \ldots, b_n \in \mathbb{C}$ and suppose that $\varphi_1, \ldots, \varphi_n$ are linear fractional, non-automorphism self-maps of \mathbb{D} that fix the point 1 and satisfy $\varphi'_1(1) = \ldots = \varphi'_n(1) = s \neq 1$.

f
$$A = \sum_{j=1}^{n} b_j C_{\varphi_j}$$
, then $p_{A,1}(z) = \left(\frac{1}{\sqrt{s}} \sum_{j=1}^{n} b_j\right) z$ and $g_0 \equiv 0$,

SO

I

$$\sigma_{e}\left(\sum_{j=1}^{n}b_{j}C_{\varphi_{j}}\right) = \left\{\lambda \in \mathbb{C}: |\lambda| \leq \frac{1}{\sqrt{s}}\left|\sum_{j=1}^{n}b_{j}\right|\right\}.$$

C*-algebras Generated by Linearfractionallyinduced Composition Operators

Katie Quertermous

Background

The Full Fixed Point Algebra

Singly Generated Subalgebras

Spectral Results

K-theory

K-theory

We can apply the Pimsner-Voiculescu exact sequence for crossed products by \mathbb{Z} and the six-term exact sequence to determine the K-theory of $C^*(C_{\varphi}, \mathcal{K})$.

Theorem (Q, 2009)

If φ is a linear-fractional, non-automorphism self-map of $\mathbb D$ with $\varphi(1) = 1$ and $\varphi'(1) \neq 1$, then

 $K_0(C^*(C_{\varphi},\mathcal{K}))\cong \mathbb{Z}\oplus \mathbb{Z}$ and $K_1(C^*(C_{\varphi},\mathcal{K}))\cong 0.$

C*-algebras Generated by Linearfractionallyinduced Composition Operators

Katie Quertermous

Background

The Full Fixed Point Algebra

Singly Generated Subalgebras

Spectral Results

K-theory

References

A. Antonevich and A. Lebedev, *Functional differential equations: I. C*-theory*, Longman Scientific & Technical, Harlow 1994.

P. Bourdon and B. MacCluer. Selfcommutators of automorphic composition operators. *Complex Var. Elliptic Equ.*, **52**(2007), 85–104.

I. Gohberg and I. Fel'dman, *Convolution equations and projection methods for their solution*, American Mathematical Society, Providence, R.I. 1974.

M. Jury, C*-algebras generated by groups of composition operators, *Indiana Univ. Math. J.*, **56**(2007), 3171–3192.

M. Jury, The Fredholm index for elements of Toeplitz-composition C^* -algebras, *Integral Equations Operator Theory*, **58**(2007), 341–362.

Y. Karlovich, A local-trajectory method and isomorphism theorems for nonlocal C*-algebras, *Modern operator theory and applications*, 137–166, Oper. Theory Adv. Appl., 170, Birkhäuser, Basel 2007. C*-algebras Generated by Linearfractionallyinduced Composition Operators

Katie Quertermous

Background

The Full Fixed Point Algebra

Singly Generated Subalgebras

Spectral Results

K-theory

References

Y. Karlovich and V. Kravchenko, An algebra of singular integral operators with piecewise-continuous coefficients and a piecewise-smooth shift on a composite contour, *Math. USSR Izvestiya*, **23**(1984)307–352.

T. Kriete, B. MacCluer, and J. Moorhouse, Toeplitz-composition C^* -algebras, J. Operator Theory, **58**(2007), 135–156.

T. Kriete, B. MacCluer, and J. Moorhouse, Spectral theory for algebraic combinations of Toeplitz and composition operators, *J. Funct. Anal.*, **257**(2009), 2378–2409.

T. Kriete, B. MacCluer, and J. Moorhouse, Composition operators within singly generated composition C^* -algebras, *Israel J. Math.*, **179**(2010), 449-477.

M. Pimsner and D. Voiculescu, Exact sequences for *K*-groups and Ext-groups of certain cross-product C*-algebras, *J. Operator Theory*, **4**(1980), 93–118.

C*-algebras Generated by Linearfractionallyinduced Composition Operators

Katie Quertermous

Background

The Full Fixed Point Algebra

Singly Generated Subalgebras

Spectral Results

K-theory

Slides will be posted at http://www.math.jmu.edu/~querteks/Research.html C*-algebras Generated by Linearfractionallyinduced Composition Operators

Katie Quertermous

Background

The Full Fixed Point Algebra

Singly Generated Subalgebras

Spectral Results

K-theory

Example of an Essential Spectrum Calculation

Let $a, c_1, c_2 \in \mathbb{C}$ with $\operatorname{Re} a > 0$. Suppose that φ is a linear-fractional, non-automorphism self-map of \mathbb{D} with $\varphi(1) = 1$ and $\varphi'(1) = s \neq 1$.

Then, there exists $b \in \mathbb{C}$ with $\operatorname{Re} b > 0$ such that

$$\left[c_{1}C_{\rho_{a}}+c_{2}C_{\varphi}\right]=\Gamma(c_{1}x^{a})\left[U_{\Psi_{(1/s)^{0}}}^{*}\right]+\Gamma\left(\frac{c_{2}}{\sqrt{s}}x^{b}\right)\left[U_{\Psi_{(1/s)^{1}}}^{*}\right]$$

Thus,
$$g_0(x) = c_1 x^a$$
, and $p_{(c_1 C_{\rho_a} + c_2 C_{\varphi}),1}(z) = c_1 + \frac{c_2}{\sqrt{s}} z$.

Hence

$$\sigma_e(c_1 C_{\rho_a} + c_2 C_{\varphi})$$

= { $c_1 x^a : x \in [0, 1]$ } $\cup \left\{ \lambda \in \mathbb{C} : |\lambda - c_1| \le \frac{c_2}{\sqrt{s}} \right\}.$

C*-algebras Generated by Linearfractionallyinduced Composition Operators

Katie Quertermous

Background

The Full Fixed Point Algebra

Singly Generated Subalgebras

Spectral Results

K-theory