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Notation

• Let D denote the open unit disk and T the unit circle.

• H2(D) is the space of all functions f =
∑∞

n=0 anzn that
are analytic on D and satisfy

||f ||2H2 =
∞∑

n=0

|an|2 <∞.

• For ϕ : D→ D analytic, Cϕf = f ◦ ϕ for all f ∈ H2(D).

• Uϕ = partial isometry in the polar decomposition of Cϕ

• Tz = the forward shift on H2(D).

• K = the ideal of compact operators on H2(D)
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More Notation

• We’re interested in composition operators induced by

linear-fractional maps ϕ(z) =
az + b

cz + d
that

• map D into but not onto D

• and fix a point on T.

• Without loss of generality, take the fixed point to be 1.

• Let F := {Cϕ : ϕ : D→ D non-auto, LFT,ϕ(1) = 1}.
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Main Questions for Today’s Talk

Let F := {Cϕ |ϕ : D→ D non-auto, LFT, ϕ(1) = 1}.

1 What is the structure of C ∗(F), modulo the ideal of
compact operators?

2 If Cϕ ∈ F , what is the structure of C ∗(Cϕ,K), modulo the
ideal of compact operators?

3 What spectral information about algebraic combinations of
composition operators and their adjoints can we obtain
from these structure results?



C∗-algebras
Generated by

Linear-
fractionally-

induced
Composition

Operators

Katie
Quertermous

Background

The Full
Fixed Point
Algebra

Singly
Generated
Subalgebras

Spectral
Results

K-theory

References

Composition Operators Induced by Parabolic
Non-automorphisms

• A linear-fractional, non-automorphism self-map of D that
fixes the point 1 is parabolic if ϕ′(1) = 1.

• In this case, ϕ = ρa = (2−a)z+a
−az+(2+a) , where Re a > 0.

• Let P = {Cρa : Re a > 0}.

Theorem (Kriete, MacCluer, and Moorhouse)

If Cϕ ∈ P, then C ∗(Cϕ,K) = C ∗(Cϕ) = C ∗(P) and there exists
a unique ∗-isomorphism

Γ : C ([0, 1])→ C ∗(P)/K

such that, for all a ∈ C with Re a > 0, Γ(xa) = [Cρa ].
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Rewriting Operators in F
For t > 0, define the map Ψt(z) =

(t + 1)z + (1− t)

(1− t)z + (1 + t)
, which is

an automorphism of D.

If Cϕ ∈ F , set t = ϕ′(1) and a = ϕ′′(1)−t2+t
t . Then

Cϕ = Cρa CΨt .

Applying results of Bourdon and MacCluer, Jury, and Kriete,
MacCluer, and Moorhouse, we can then rewrite Cϕ as

Cϕ =
1√
t

Cρa UΨt + K ,

where K ∈ K and UΨt is the unitary operator appearing in the
polar decomposition of CΨt .
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Composition Operators Induced by Automorphisms

Let G be a collection of automorphisms of D that form an
abelian group under composition.

Theorem (Jury, 2007)

C ∗(Tz , {Cγ : γ ∈ G})/K = C ∗(Tz , {Uγ : γ ∈ G})/K
∼= C (T) oα Gd

• αγ(f ) = f ◦ γ for all f ∈ C (T) and γ ∈ G

• Gd denotes the locally compact group obtained from G by
applying the discrete topology.
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Crossed Product C∗-algebras (Discrete Version)

• Let G be a discrete group, and let A be a C∗-algebra.

• An action α of G on A is a homomorphism
α : G → Aut(A), g 7→ αg .

• The crossed product Aoα G is the completion of

Cc (G ,A) =

{∑
s∈G

Asχs :
As ∈ A,As = 0 for all

but finitely many s

}

in a norm that is built from a set of representations of
Cc (G ,A) that come from covariant representations of
(A,G , α).
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1. What is the structure of C ∗(F)/K?

• C ∗(F)/K ⊂ C ∗(P, {UΨt : t ∈ R+})/K

• C ∗(P)/K ∼= C ([0, 1]) Kriete, MacCluer, and Moorhouse

• C ∗(Tz , {UΨt : t ∈ R+})/K ∼= C (T) oR+
d Jury

• We want to show that C ∗(P, {UΨt : t ∈ R+})/K is also a
crossed product.
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1. What is the structure of C ∗(F)/K?

C ∗(P, {UΨt : t ∈ R+})/K = C ∗ (C ∗(P)/K, {[UΨt ] : t ∈ R+})

• {[UΨt ] : t ∈ R+} is an abelian group of cosets of unitary
operators. (Jury 2007)

• [UΨt ]Γ(g)[U∗Ψt
] = Γ(βt(g))

for all g ∈ C ([0, 1]) and t ∈ R+, where βt(g)(x) = g(x t)
and Γ is the ∗-isomorphism from C ([0, 1]) onto C ∗(P)/K
(Obtained by applying results of Bourdon, MacCluer 2007;
Jury 2007: Kriete, MacCluer, Moorhouse 2007, 2009)
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We can show that the action β is topologically free and then
apply the machinery of Karlovich or Lebedev.

Theorem (Q)

C ∗(P, {UΨt : t ∈ R+})/K ∼= C ([0, 1]) oβ R+
d .

The ∗-isomorphism
F : C ([0, 1]) oβ R+

d → C ∗(P, {UΨt : t ∈ R+})/K satisfies

F (
∑
finite

gtχt) =
∑
finite

Γ(gt)[UΨt ]

for all
∑

finite gtχt ∈ Cc (R+
d ,C ([0, 1])).

Corollary

C ∗(F)/K is isomorphic to a subalgebra of C ([0, 1]) oβ R+
d .
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Identifying the Full Fixed Point Algebra

• All cosets of words in F ∪ F∗ look like [bCρa UΨt ].

• Let C0([0, 1]) := {g ∈ C ([0, 1]) : g(0) = 0} and set

N =

{∑
finite

Γ(gt)[UΨt ] : gt ∈ C0([0, 1])

}
.

Then C[I ] + N is dense in C ∗(F)/K.

• Under the iso, N maps onto Cc (R+
d ,C0([0, 1])).

Theorem (Q)

Define β : R+
d → Aut(C0([0, 1])) by βt(g)(x) := g (x t) for all

t ∈ R+
d , g ∈ C0([0, 1]), and x ∈ [0, 1].

Then C ∗(F)/K is isometrically ∗-isomorphic to the unitization
of C0([0, 1]) oβ R+

d .
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2. If Cϕ ∈ F and ϕ′(1) 6= 1, what is the structure
of C ∗(Cϕ,K)/K?

Theorem (Q)

Let ϕ be a linear-fractional, non-automorphism self-map of D
with ϕ(1) = 1 and ϕ′(1) = t 6= 1.

Define βt : Z→ Aut(C0([0, 1])) by βt
ng(x) := g(x tn

) for all
n ∈ Z, g ∈ C0([0, 1]), and x ∈ [0, 1].

Then C ∗(Cϕ,K)/K is isometrically ∗-isomorphic to the
unitization of C0([0, 1]) oβt Z.



Essential Spectra
Consider cosets in C ∗(Cϕ,K)/K of the form

[A] =
N∑

n=−N

Γ(gn)
[
U∗Ψtn

]
for t = ϕ′(1), N ∈ N, gn ∈ C ([0, 1]), and gn(0) = 0 for n 6= 0.

For x ∈ [0, 1], define πx ([A]) ∈ B(`2(Z)) by πx ([A]) =

. . .
. . .

. . . 0

g1(x t−2
) g0(x t−2

) g−1(x t−2
)

g1(x t−1
) g0(x t−1

) g−1(x t−1
)

g1(x) g0(x) g−1(x)
g1(x t ) g0(x t ) g−1(x t )

g1(x t2
) g0(x t2

) g−1(x t2
)

0
. . .

. . .
. . .



Trajectorial Approach: [A] is invertible ⇔ the discrete operator
πx ([A]) is invertible for all x ∈ [0, 1].



When is πx([A]) invertible?

If x ∈ (0, 1) and t > 1, then πx ([A]) =

. . .
. . .

. . . 0
g1(1) g0(1) g−1(1)

g1(1) g0(1) 0
0 g0(0) g−1(0)

g1(0) g0(0) g−1(0)
g1(0) g0(0) g−1(0)

0
. . .

. . .
. . .


+ K

By results of Gohberg and Fel′dman, πx ([A]) is Fredholm with
index zero if and only if

pA,0(z) :=
N∑

n=−N

gn(0)zn and pA,1(z) :=
N∑

n=−N

gn(1)zn

do not vanish on T and have the same winding number.



When is πx([A]) invertible?

If x ∈ (0, 1) and t > 1, then πx ([A]) =

. . .
. . .

. . . 0
g1(1) g0(1) g−1(1)

g1(1) g0(1) 0
0 g0(0) 0

0 g0(0) 0
0 g0(0) 0

0
. . .

. . .
. . .


+ K

By results of Gohberg and Fel′dman, πx ([A]) is Fredholm with
index zero if and only if

pA,0(z) := g0(0) and pA,1(z) :=
N∑

n=−N

gn(1)zn

do not vanish on T, and pA,1(z) has winding number 0.
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When is πx([A]) =
[
gi−j

(
x t j
)]∞

i ,j=−∞
invertible?

If g0(0) 6= 0, pA,1 does not vanish on T, and pA,1 has winding
number 0, define

πx ([A])ν = [gi−j (x t j
)]ν−1

i ,j=−ν+1

πx ([A])νµ = [gi−j (x t j
)]i ,j∈{−ν+1,...,−µ,µ,...,ν−1}

Theorem (Karlovich and Kravchenko, 1984)

πx ([A]) is invertible on `2(Z) if and only if the conditions above
hold and there exists µ0 > 0 such that for all µ ≥ µ0,

lim
ν→∞

detπx ([A])ν

detπx ([A])νµ
6= 0. (1)

If πx ([A]) is lower-triangular, then (1) is equivalent to the

condition that g0(x t j
) 6= 0 for all j .
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Theorem

Let t = ϕ′(1) 6= 1, and suppose A ∈ C ∗(Cϕ,K) satisfies

[A] =
N∑

n=0

Γ(gn)
[
U∗Ψtn

]
for some N ∈ N, g0 ∈ C ([0, 1]), and g1, . . . , gn ∈ C0([0, 1]).

Then σe(A) = g0([0, 1]) ∪ pA,1(D).
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Example

Let b1, . . . , bn ∈ C and suppose that ϕ1, . . . , ϕn are linear
fractional, non-automorphism self-maps of D that fix the point
1 and satisfy ϕ′1(1) = . . . = ϕ′n(1) = s 6= 1.

If A =
n∑

j=1

bj Cϕj , then

pA,1(z) =

 1√
s

n∑
j=1

bj

 z and g0 ≡ 0,

so

σe

 n∑
j=1

bj Cϕj

 =

λ ∈ C : |λ| ≤ 1√
s

∣∣∣∣∣∣
n∑

j=1

bj

∣∣∣∣∣∣
 .
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K-theory

We can apply the Pimsner-Voiculescu exact sequence for
crossed products by Z and the six-term exact sequence to
determine the K-theory of C ∗(Cϕ,K).

Theorem (Q, 2009)

If ϕ is a linear-fractional, non-automorphism self-map of D with
ϕ(1) = 1 and ϕ′(1) 6= 1, then

K0(C ∗(Cϕ,K)) ∼= Z⊕ Z and K1(C ∗(Cϕ,K)) ∼= 0.
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Slides will be posted at
http://www.math.jmu.edu/~querteks/Research.html

http://www.math.jmu.edu/~querteks/Research.html
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Example of an Essential Spectrum Calculation

Let a, c1, c2 ∈ C with Re a > 0. Suppose that ϕ is a
linear-fractional, non-automorphism self-map of D with
ϕ(1) = 1 and ϕ′(1) = s 6= 1.

Then, there exists b ∈ C with Re b > 0 such that

[c1Cρa + c2Cϕ] = Γ(c1xa)
[
U∗Ψ(1/s)0

]
+ Γ

(
c2√

s
xb

)[
U∗Ψ(1/s)1

]
.

Thus, g0(x) = c1xa, and p(c1Cρa +c2Cϕ),1(z) = c1 + c2√
s
z .

Hence

σe(c1Cρa + c2Cϕ)

= {c1xa : x ∈ [0, 1]} ∪
{
λ ∈ C : |λ− c1| ≤

c2√
s

}
.
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