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Tangential Nevanlinna-Pick theorems for subalgebras of
multiplier algebras of finite-rank, irreducible, complete
Nevanlinna-Pick kernels and property A;(1).
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A set X
A kernel on X x X, i.e., a function K : X x X — C such that

[K(x,-,xj)]}b-:1 >0 for {x1,..., x5} C X.
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A Hilbert space Hk that is associated to K. The evaluations
f — f(x) are bounded. f(x) = (f, ky).
An algebra M(Hk). The pointwise multipliers of Hg.

v
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Multiplier algebras

The multiplier algebra of Hy is
M(Hk) :={f: X - C : f-Hx C Hg}

Multipliers

» induce a linear transformation My : Hx — Hk;
> are bounded, by the closed-graph theorem;

» have adjoints with lots of eigenvectors Mk, = f(x)ky;

> are abelian dual operator algebras.



Nevanlinna-Pick Interpolation

Given x1,...,x, € X, and wy, ..., w, € C. We have an associated
extremal problem

nf{I1F i) = € M(Hic). o) = wj}



Distance problems

» All solutions fy + g, where
» fo(x;) = wj is a particular solution and
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Distance problems

» All solutions fy + g, where
» fo(x;) = wj is a particular solution and
» g(x;) =0for j=1,...,nis a homogeneous solution.

» 7T ={g € M(Hk) : g(xj) =0} is an ideal.
inf{[[Fllprey = £ € M(Hi), ) = wi} = inf{llfo +- g : g € Z}
= o + Zll mriy/z

M(Hk)/Z is an n-dimensional operator algebra, compute its norm.
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Representations

A natural representation of M(Hk)/Z. L be another RKHS with
kernel K;

» Suppose M(Hk) C M(L); p: M(Hk) — B(L).

» N={fel: f(x)=0}

» K=LON =span{kL,... kL 1.
The representation p factors through 7 to give a representation
M(Hk)/Z — B(K)

f— P/Cp(f)P]C

Always contractive, finite-dimensional; sometimes isometric. Often

(among commonly studied examples!) there is a family of natural
representations with isometric direct sum.

The representation theory of M(Hg)/Z is a measure of the
complexity of the interpolation problem.
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What is a distance formula?

d(f,I) = sup ||PxcM¢Px|| -
Ler

Banach space duality is one way to get them.



I'm going to hide the matrix-positivity conditions

KK =span{ky,, ..., ke, } Mike= f(x)ks

|PcMePel <1 [(1— F(a)F5)K (i )] = 0.



I'm going to hide the matrix-positivity conditions

KK =span{ky,, ..., ke, } Mike= f(x)ks

|PcMePel <1 [(1— F(a)F5)K (i )] = 0.

The particular solution fy(x;) = w;

(1= FODFCa DK ()| = [ = wip)K (i, )] = 0.
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The game

NP problem < Distance in the quotient algebra
(direct sum of) representation(s) of quotient

norm on the span of kernel functions < matrix positivity condition
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History

>

Sarason (1967). Pick's theorem for H°(D) = M(H?). The
Szégo kernel is enough.

Arveson (1975). Distance formula for nest algebras and a
Toplitz corona theorem from this.

Abrahamse (1979). H*°(R), where R is a multiply-connected
domain. More than one representation/kernel is needed.
Fedorov-Vinnikov (1994). McCullough (1998).
McCullough-Paulsen (2001).

Ball (1979). Matrix-valued interpolation on
multiply-connected domains.

Wermer-Cole-Lewis (1993). Uniform algebras and
hyperconvexity.

McCullough (1996). Dual algebras, i.e., weak*-closed
subalgebras of B(H). Approximating in modulus.

» Davidson-Pitts (1998). Free semigroup algebra £,.
» Davidson-Paulsen-R-Singh (2008). f'(0) = 0. Later extended

to arbitrary weak*-closed subalgebras of H*°.
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We want to generalize well-known theorems (see history) to the
case where A is a unital weak*-closed subalgebra of M(Hk).

Why?
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Motivation. Unification

» A generalization of Abrahamse's theorem if we view H*°(R)
as a subalgebra of H>°(D). Fixed-point algebras of H>.
(R-2009).

» A Nevanlinna-Pick theorem on the Neil parabola
{z2 = w3} C D?. (DPRS-2009).



Motivation. Toplitz corona problems.

Theorem (Toplitz Corona. Arveson, Schubert)

Iff,...,f, € H®, with Tf'lT;; + e+ TflT;'; > 62/ in B(HZ),
then there exists g1, ...,g, € H® such that figi + -+ fogn =1
and sup,ep >}y |gj(2)|* < 572,

Theorem (R.-Wick, 2010)

Corresponding theorem for Riemann surfaces and fixed-point
algebras. Generalizes Ball (1981)



Motivation. Interpolating sequences 1.

R : M(Hk) — £, R(f) = (f(2))%1, R surjective.

Theorem (Interpolating sequences. Carleson)

A sequence z; € D is interpolating for H> if and only if it is
strongly separated, i.e.,

_ 7 — 7

|2§ I I ’1’1 > 0.

Jj215 — Zjzj
i#j I
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Theorem (R.-Wick. 2010)

Let A C H> be a fixed-point algebra. Let E = {z;} be a sequence
of points in the unit disk. Let E; = E \ {z;}. The following are
equivalent:

1. E is an interpolating sequence for A.
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Cyclic subspaces

A C M(Hg), A has a representation on Ah, h € Hk. Let K, be
the kernel of Ah. Let Ky =span{k],... kI}

EERAS'

For subalgebras of H* that works, i.e.,

AJT — B(ED Kn) is isometric.
h

In the presence of a group action you can do better, h can be
chosen character automorphic, and there is a bounded
(norm-equivalent to image) representation into B(K1), because the
modules Ah and A = H, are similar.
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X1,...,Xn, all matrices Wi, ..., W, € My(C) there is a function
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Complete Nevanlinna-Pick kernels

Definition (CNP Kernel)

K on X x X is a complete Nevanlinna-Pick kernel (cnp) iff for all
X1,...,Xn, all matrices Wi, ..., W, € My(C) there is a function
F € My(M(Hk)) such that

F(xj) = W, with ||FI| <1« [(1— WiW/)K(xi,x)] > 0.
Examples: Hardy space (Pick), Dirichlet space (Agler), Sobolev

space (Agler).

The natural representation of
M(Hk)/Z — B(span{ky,..., ks, })

is a complete isometry.
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The Drury-Arveson space

By be the unit ball in C¥, Drury-Arveson kernel

1

K(z,w) = T

Theorem (McCullough, Quiggin, Agler-McCarthy)
Every irreducible CNP space is of the form

His =span{ks : x € S C By}

for some set S and some d.
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Tangential interpolation

C(M(Hk)) is the column space of M(Hk). C(M(Hk)) is
multipliers from Hy into Hyx ® ¢2.
Tangential version x1,...,x, € X, wy,...,w, € C and vectors

Vi, ..., Vp € L2

inf{[[F]| = (FOg), vi) = wj, F € C(M(Hk))} = [IFo + Tl

J ={F € C(M(Hk)) : (F(x),v;) = 0}
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for every choice of points x1,...,x, € X, wy,...,w, € C and
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Tangential Pick families

A C M(Hk). £ C Lat(\A) a tangential Nevanlinna-Pick family if
for every choice of points x1,...,x, € X, wy,...,w, € C and
Vi,..., Vs € £2, we have

d(F,J) = sup [[PLME]k,|| -
LeL

Where J = {(F(x;), v;) = 0}, K, = span{kL @ v1,..., kbt ® v,}.
Theorem (Hamilton-R. 2011)

If A C M(Hk), then the cyclic invariant subspaces in Lat(A) form
a tangential NP-family.

Extends results of Davidson-Hamilton (2010).
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Free semigroup algebra

Definition (The noncommutative analytic Toplitz algebra)

Ly is the WOT-closed algebra generated by an d-tuple
(S1,...,Sq) of shifts acting on the space (?(F}) where F} is the
free semigroup.

M(H3) = L4/C, where C is the commutator ideal.

Proposition

Any multiplier algebra M(Hk), where K is a CNP kernel, is a
(complete) quotient of L.



Property A;(1)

Definition (Bercovici-Foias-Pearcy (1985))

A C B(H), unital, weak*-closed has A1(1) iff every
weak*-continuous linear functional ¢, ||¢|| < 1, on A is
¢(A) = (Ax, y) for some x,y € H, with ||x|| |ly] < 1.

» A C B(H) has A1(1) when viewed as
A® 1 C B(H®3).

» Starting point for the Arveson (1975), McCullough (1996)
and R-Wick (2010).



Proof

Theorem (Bercovici (1998))

An algebra of operators has the property A1(1) if its commutant
contains two isometries with pairwise orthogonal ranges.

So Lg, and Ly ® B(£?), have A;(1), in fact has more.

Using the fact that A is a subalgebra of a quotient we get that
C(A) C B(Hk @ (Hk ® 52)) has A;(1).
The rest of the proof is calculations and unwinding.



