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Real title

I used a rather vague title for the talk because I didn’t want to
scare you with the real title, which is:

Tangential Nevanlinna-Pick theorems for subalgebras of
multiplier algebras of finite-rank, irreducible, complete
Nevanlinna-Pick kernels and property A1(1).
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RKHS

I A set X

I A kernel on X × X , i.e., a function K : X × X → C such that
[K (xi , xj)]ni ,j=1 ≥ 0 for {x1, . . . , xn} ⊆ X .

I A Hilbert space HK that is associated to K . The evaluations
f 7→ f (x) are bounded. f (x) = 〈f , kx〉.

I An algebra M(HK ). The pointwise multipliers of HK .



RKHS

I A set X

I A kernel on X × X , i.e., a function K : X × X → C such that
[K (xi , xj)]ni ,j=1 ≥ 0 for {x1, . . . , xn} ⊆ X .

I A Hilbert space HK that is associated to K . The evaluations
f 7→ f (x) are bounded. f (x) = 〈f , kx〉.

I An algebra M(HK ). The pointwise multipliers of HK .



Multiplier algebras

The multiplier algebra of HK is

M(HK ) := {f : X → C : f · HK ⊆ HK}

Multipliers

I induce a linear transformation Mf : HK → HK ;

I are bounded, by the closed-graph theorem;

I have adjoints with lots of eigenvectors M∗f kx = f (x)kx ;

I are abelian dual operator algebras.
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Nevanlinna-Pick Interpolation

Given x1, . . . , xn ∈ X , and w1, . . . ,wn ∈ C. We have an associated
extremal problem

inf{‖f ‖M(HK )
: f ∈ M(HK ), f (xj) = wj}



Distance problems

I All solutions f0 + g , where
I f0(xj) = wj is a particular solution and
I g(xj) = 0 for j = 1, . . . , n is a homogeneous solution.

I I = {g ∈ M(HK ) : g(xj) = 0} is an ideal.

inf{‖f ‖M(HK )
: f ∈ M(HK ), f (xj) = wj} = inf{‖f0 + g‖ : g ∈ I}

= ‖f0 + I‖M(HK )/I

M(HK )/I is an n-dimensional operator algebra, compute its norm.
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Representations

A natural representation of M(HK )/I. L be another RKHS with
kernel KL

I Suppose M(HK ) ⊆ M(L); ρ : M(HK )→ B(L).

I N = {f ∈ L : f (xj) = 0}
I K = L	N = span{kL

x1 , . . . , k
L
xn}.

The representation ρ factors through I to give a representation
M(HK )/I → B(K)

f 7→ PKρ(f )PK

Always contractive, finite-dimensional; sometimes isometric. Often
(among commonly studied examples!) there is a family of natural
representations with isometric direct sum.

The representation theory of M(HK )/I is a measure of the
complexity of the interpolation problem.
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I’m going to hide the matrix-positivity conditions

K = span{kx1 , . . . , kxn}, M∗f kx = f (x)kx

‖PKMf PK‖ ≤ 1⇔
[
(1− f (xi )f (xj))K (xi , xj)

]
≥ 0.

The particular solution f0(xj) = wj[
(1− f (xi )f (xj))K (xi , xj)

]
= [(1− wiwj)K (xi , xj)] ≥ 0.
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(direct sum of) representation(s) of quotient

norm on the span of kernel functions ⇔ matrix positivity condition
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History
I Sarason (1967). Pick’s theorem for H∞(D) = M(H2). The

Szëgo kernel is enough.

I Arveson (1975). Distance formula for nest algebras and a
Töplitz corona theorem from this.

I Abrahamse (1979). H∞(R), where R is a multiply-connected
domain. More than one representation/kernel is needed.
Fedorov-Vinnikov (1994). McCullough (1998).
McCullough-Paulsen (2001).

I Ball (1979). Matrix-valued interpolation on
multiply-connected domains.

I Wermer-Cole-Lewis (1993). Uniform algebras and
hyperconvexity.

I McCullough (1996). Dual algebras, i.e., weak∗-closed
subalgebras of B(H). Approximating in modulus.

I Davidson-Pitts (1998). Free semigroup algebra Ln.
I Davidson-Paulsen-R-Singh (2008). f ′(0) = 0. Later extended

to arbitrary weak∗-closed subalgebras of H∞.
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case where A is a unital weak∗-closed subalgebra of M(HK ).
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Motivation. Unification

I A generalization of Abrahamse’s theorem if we view H∞(R)
as a subalgebra of H∞(D). Fixed-point algebras of H∞.
(R-2009).

I A Nevanlinna-Pick theorem on the Neil parabola
{z2 = w3} ⊆ D2. (DPRS-2009).
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Motivation. Töplitz corona problems.

Theorem (Töplitz Corona. Arveson, Schubert)

If f1, . . . , fn ∈ H∞, with Tf1T ∗f1 + · · ·+ Tf1T ∗fn ≥ δ
2I in B(H2),

then there exists g1, . . . , gn ∈ H∞ such that f1g1 + · · ·+ fngn = 1
and supz∈D

∑n
j=1 |gj(z)|2 ≤ δ−2.

Theorem (R.-Wick, 2010)

Corresponding theorem for Riemann surfaces and fixed-point
algebras. Generalizes Ball (1981)



Motivation. Interpolating sequences 1.

R : M(HK )→ `∞, R(f ) = (f (zj))∞j=1, R surjective.

Theorem (Interpolating sequences. Carleson)

A sequence zj ∈ D is interpolating for H∞ if and only if it is
strongly separated, i.e.,

inf
j≥1

∏
i 6=j

∣∣∣∣ zi − zj
1− zjzi

∣∣∣∣ > 0.



Motivation. Interpolating sequences 2.

Theorem (R.-Wick. 2010)

Let A ⊆ H∞ be a fixed-point algebra. Let E = {zj} be a sequence
of points in the unit disk. Let Ej = E \ {zj}. The following are
equivalent:

1. E is an interpolating sequence for A.

2. E is an interpolating sequence for A = HK ⊆ H2.

3. inf j≥1 d(zj ,Ej) > 0, i.e., strong separation.

4.
∑∞

j=1 |f (zj)|2 K (zj , zj)
−1 ≤ C ‖f ‖22, i.e., Carleson measure,

and (zj) is weakly separated.
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Cyclic subspaces

A ⊆ M(HK ), A has a representation on Ah, h ∈ HK .

Let Kh be
the kernel of Ah. Let Kh = span{kh

x1 , . . . , k
h
xn}

For subalgebras of H∞ that works, i.e.,

A/I 7→ B(
⊕
h

Kh) is isometric.

In the presence of a group action you can do better, h can be
chosen character automorphic, and there is a bounded
(norm-equivalent to image) representation into B(K1), because the
modules Ah and A = HK1 are similar.
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Complete Nevanlinna-Pick kernels

Definition (CNP Kernel)

K on X × X is a complete Nevanlinna-Pick kernel (cnp) iff for all
x1, . . . , xn, all matrices W1, . . . ,Wn ∈ Md(C)

there is a function
F ∈ Md(M(HK )) such that

F (xj) = Wj with ‖F‖ ≤ 1⇔ [(1−WiW
∗
j )K (xi , xj)] ≥ 0.

Examples: Hardy space (Pick), Dirichlet space (Agler), Sobolev
space (Agler).

The natural representation of

M(HK )/I 7→ B(span{kx1 , . . . , kxn})

is a complete isometry.
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∗
j )K (xi , xj)] ≥ 0.

Examples: Hardy space (Pick), Dirichlet space (Agler), Sobolev
space (Agler).

The natural representation of

M(HK )/I 7→ B(span{kx1 , . . . , kxn})

is a complete isometry.



The Drury-Arveson space

Bd be the unit ball in Cd , Drury-Arveson kernel

K (z ,w) =
1

1− 〈z ,w〉
.

Theorem (McCullough, Quiggin, Agler-McCarthy)

Every irreducible CNP space is of the form

H2
d ,S = span{kx : x ∈ S ⊆ Bd}

for some set S and some d.
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Tangential interpolation

C (M(HK )) is the column space of M(HK ). C (M(HK )) is
multipliers from HK into HK ⊗ `2.

Tangential version x1, . . . , xn ∈ X , w1, . . . ,wn ∈ C and vectors
v1, . . . , vn ∈ `2.

inf{‖F‖ : 〈F (xj), vj〉 = wj ,F ∈ C (M(HK ))} = ‖F0 + J ‖

J = {F ∈ C (M(HK )) : 〈F (xj), vj〉 = 0}
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Tangential Pick families

A ⊆ M(HK ). L ⊂ Lat(A) a tangential Nevanlinna-Pick family if
for every choice of points x1, . . . , xn ∈ X , w1, . . . ,wn ∈ C and
v1, . . . , vn ∈ `2, we have

d(F ,J ) = sup
L∈L
‖PLM∗F |KL

‖ .

Where J = {〈F (xj), vj〉 = 0}, KL = span{kL
x1 ⊗ v1, . . . , k

L
xn ⊗ vn}.

Theorem (Hamilton-R. 2011)

If A ⊂ M(HK ), then the cyclic invariant subspaces in Lat(A) form
a tangential NP-family.

Extends results of Davidson-Hamilton (2010).
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Free semigroup algebra

Definition (The noncommutative analytic Töplitz algebra)

Ld is the WOT-closed algebra generated by an d-tuple
(S1, . . . ,Sd) of shifts acting on the space `2(F+

d ) where F+
d is the

free semigroup.

M(H2
d) = Ld/C, where C is the commutator ideal.

Proposition

Any multiplier algebra M(HK ), where K is a CNP kernel, is a
(complete) quotient of Ld .
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Property A1(1)

Definition (Bercovici-Foias-Pearcy (1985))

A ⊆ B(H), unital, weak∗-closed has A1(1) iff every
weak∗-continuous linear functional φ, ‖φ‖ < 1, on A is
φ(A) = 〈Ax , y〉 for some x , y ∈ H, with ‖x‖ ‖y‖ < 1.

I A ⊆ B(H) has A1(1) when viewed as

A⊗ I ⊆ B(H ⊗ `2).

I Starting point for the Arveson (1975), McCullough (1996)
and R-Wick (2010).



Proof

Theorem (Bercovici (1998))

An algebra of operators has the property A1(1) if its commutant
contains two isometries with pairwise orthogonal ranges.

So Ld , and Ld ⊗ B(`2), have A1(1), in fact has more.

Using the fact that A is a subalgebra of a quotient we get that
C (A) ⊆ B(HK ⊕ (HK ⊗ `2)) has A1(1).

The rest of the proof is calculations and unwinding.


