Distance formulas in Nevanlinna-Pick interpolation.

Mrinal Raghupathi joint work with Brett D. Wick (Georgia Tech) Ryan Hamilton (Waterloo)

Vanderbilt University

SEAM 2011. University of Florida Friday, March 18th, 2011

I used a rather vague title for the talk because I didn't want to scare you with the real title, which is:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Real title

I used a rather vague title for the talk because I didn't want to scare you with the real title, which is:

Tangential Nevanlinna-Pick theorems for subalgebras of multiplier algebras of finite-rank, irreducible, complete Nevanlinna-Pick kernels and property $\mathbb{A}_1(1)$.

RKHS

- A set X
- ▶ A kernel on $X \times X$, i.e., a function $K : X \times X \to \mathbb{C}$ such that $[K(x_i, x_j)]_{i,j=1}^n \ge 0$ for $\{x_1, \ldots, x_n\} \subseteq X$.
- A Hilbert space H_K that is associated to K. The evaluations $f \mapsto f(x)$ are bounded. $f(x) = \langle f, k_x \rangle$.

RKHS

- A set X
- ▶ A kernel on $X \times X$, i.e., a function $K : X \times X \to \mathbb{C}$ such that $[K(x_i, x_j)]_{i,j=1}^n \ge 0$ for $\{x_1, \ldots, x_n\} \subseteq X$.
- A Hilbert space H_K that is associated to K. The evaluations $f \mapsto f(x)$ are bounded. $f(x) = \langle f, k_x \rangle$.

• An algebra $M(H_K)$. The pointwise multipliers of H_K .

The **multiplier algebra** of H_K is

$$M(H_{\mathcal{K}}) := \{f : X \to \mathbb{C} : f \cdot H_{\mathcal{K}} \subseteq H_{\mathcal{K}}\}$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

The **multiplier algebra** of H_K is

$$M(H_{\mathcal{K}}) := \{f : X \to \mathbb{C} : f \cdot H_{\mathcal{K}} \subseteq H_{\mathcal{K}}\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Multipliers

• induce a linear transformation $M_f: H_K \to H_K$;

The **multiplier algebra** of H_K is

$$M(H_{\mathcal{K}}) := \{f : X \to \mathbb{C} : f \cdot H_{\mathcal{K}} \subseteq H_{\mathcal{K}}\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Multipliers

- induce a linear transformation $M_f: H_K \to H_K$;
- are bounded, by the closed-graph theorem;

The **multiplier algebra** of H_K is

$$M(H_{\mathcal{K}}) := \{f : X \to \mathbb{C} : f \cdot H_{\mathcal{K}} \subseteq H_{\mathcal{K}}\}$$

Multipliers

- induce a linear transformation $M_f: H_K \to H_K$;
- are bounded, by the closed-graph theorem;
- have adjoints with lots of eigenvectors $M_f^*k_x = \overline{f(x)}k_x$;

The **multiplier algebra** of H_K is

$$M(H_{\mathcal{K}}) := \{f : X \to \mathbb{C} : f \cdot H_{\mathcal{K}} \subseteq H_{\mathcal{K}}\}$$

Multipliers

- induce a linear transformation $M_f: H_K \to H_K$;
- are bounded, by the closed-graph theorem;
- have adjoints with lots of eigenvectors $M_f^*k_x = \overline{f(x)}k_x$;

are abelian dual operator algebras.

Nevanlinna-Pick Interpolation

Given $x_1, \ldots, x_n \in X$, and $w_1, \ldots, w_n \in \mathbb{C}$. We have an associated extremal problem

$$\inf\{\|f\|_{M(H_{K})} : f \in M(H_{K}), f(x_{j}) = w_{j}\}$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Distance problems

- All solutions $f_0 + g$, where
 - $f_0(x_j) = w_j$ is a **particular solution** and
 - $g(x_j) = 0$ for j = 1, ..., n is a homogeneous solution.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Distance problems

All solutions f₀ + g, where
f₀(x_j) = w_j is a particular solution and
g(x_j) = 0 for j = 1,..., n is a homogeneous solution.
I = {g ∈ M(H_K) : g(x_j) = 0} is an ideal.
inf{||f||_{M(H_K)} : f ∈ M(H_K), f(x_j) = w_j} = inf{||f₀ + g|| : g ∈ I} = ||f₀ + I||_{M(H_K)/I}

 $M(H_K)/\mathcal{I}$ is an *n*-dimensional operator algebra, compute its norm.

A natural representation of $M({\cal H}_{\cal K})/{\cal I}.$ L be another RKHS with kernel ${\cal K}_L$

▶ Suppose $M(H_K) \subseteq M(L)$; $\rho : M(H_K) \rightarrow B(L)$.

A natural representation of $M(H_K)/\mathcal{I}$. L be another RKHS with kernel K_L

- ▶ Suppose $M(H_K) \subseteq M(L)$; $\rho : M(H_K) \rightarrow B(L)$.
- $\blacktriangleright \mathcal{N} = \{f \in L : f(x_j) = 0\}$

A natural representation of $M(H_K)/\mathcal{I}$. L be another RKHS with kernel K_L

▶ Suppose $M(H_K) \subseteq M(L)$; $\rho : M(H_K) \to B(L)$.

$$\blacktriangleright \mathcal{N} = \{f \in L : f(x_j) = 0\}$$

$$\blacktriangleright \mathcal{K} = L \ominus \mathcal{N} = \operatorname{span}\{k_{x_1}^L, \ldots, k_{x_n}^L\}.$$

A natural representation of $M(H_K)/\mathcal{I}$. L be another RKHS with kernel K_L

• Suppose $M(H_{\mathcal{K}}) \subseteq M(L)$; $\rho: M(H_{\mathcal{K}}) \to B(L)$.

$$\blacktriangleright \mathcal{N} = \{f \in L : f(x_j) = 0\}$$

 $\blacktriangleright \mathcal{K} = L \ominus \mathcal{N} = \operatorname{span}\{k_{x_1}^L, \ldots, k_{x_n}^L\}.$

The representation ρ factors through \mathcal{I} to give a representation $M(H_K)/\mathcal{I} \to B(\mathcal{K})$

 $f \mapsto P_{\mathcal{K}}\rho(f)P_{\mathcal{K}}$

A natural representation of $M(H_K)/\mathcal{I}$. L be another RKHS with kernel K_L

• Suppose $M(H_{\mathcal{K}}) \subseteq M(L)$; $\rho: M(H_{\mathcal{K}}) \to B(L)$.

$$\blacktriangleright \mathcal{N} = \{f \in L : f(x_j) = 0\}$$

 $\blacktriangleright \mathcal{K} = L \ominus \mathcal{N} = \operatorname{span}\{k_{x_1}^L, \ldots, k_{x_n}^L\}.$

The representation ρ factors through \mathcal{I} to give a representation $M(H_{\mathcal{K}})/\mathcal{I} \to B(\mathcal{K})$

$$f \mapsto P_{\mathcal{K}}\rho(f)P_{\mathcal{K}}$$

Always contractive, finite-dimensional; sometimes isometric.

A natural representation of $M(H_K)/\mathcal{I}$. L be another RKHS with kernel K_L

• Suppose $M(H_{\mathcal{K}}) \subseteq M(L)$; $\rho: M(H_{\mathcal{K}}) \to B(L)$.

$$\blacktriangleright \mathcal{N} = \{f \in L : f(x_j) = 0\}$$

 $\blacktriangleright \mathcal{K} = L \ominus \mathcal{N} = \operatorname{span}\{k_{x_1}^L, \ldots, k_{x_n}^L\}.$

The representation ρ factors through \mathcal{I} to give a representation $M(H_{\mathcal{K}})/\mathcal{I} \to B(\mathcal{K})$

 $f \mapsto P_{\mathcal{K}}\rho(f)P_{\mathcal{K}}$

Always contractive, finite-dimensional; sometimes isometric. Often (among commonly studied examples!) there is a family of natural representations with isometric direct sum.

A natural representation of $M(H_K)/\mathcal{I}$. L be another RKHS with kernel K_L

• Suppose $M(H_K) \subseteq M(L)$; $\rho : M(H_K) \to B(L)$.

$$\blacktriangleright \mathcal{N} = \{f \in L : f(x_j) = 0\}$$

 $\blacktriangleright \mathcal{K} = L \ominus \mathcal{N} = \operatorname{span}\{k_{x_1}^L, \ldots, k_{x_n}^L\}.$

The representation ρ factors through \mathcal{I} to give a representation $M(H_{\mathcal{K}})/\mathcal{I} \to B(\mathcal{K})$

 $f \mapsto P_{\mathcal{K}}\rho(f)P_{\mathcal{K}}$

Always contractive, finite-dimensional; sometimes isometric. Often (among commonly studied examples!) there is a family of natural representations with isometric direct sum.

The representation theory of $M(H_K)/\mathcal{I}$ is a measure of the complexity of the interpolation problem.

What is a distance formula?

$$d(f,\mathcal{I}) = \sup_{L\in\mathcal{L}} \|P_{\mathcal{K}}M_f P_{\mathcal{K}}\|.$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

What is a distance formula?

$$d(f,\mathcal{I}) = \sup_{L\in\mathcal{L}} \|P_{\mathcal{K}}M_f P_{\mathcal{K}}\|.$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Banach space duality is one way to get them.

I'm going to hide the matrix-positivity conditions

$$\mathcal{K} = \operatorname{span}\{k_{x_1}, \dots, k_{x_n}\}, \ M_f^* k_x = \overline{f(x)} k_x$$
$$\|P_{\mathcal{K}} M_f P_{\mathcal{K}}\| \le 1 \Leftrightarrow \left[(1 - f(x_i) \overline{f(x_j)}) \mathcal{K}(x_i, x_j) \right] \ge 0.$$

(ロ)、

I'm going to hide the matrix-positivity conditions

$$\mathcal{K} = \operatorname{span}\{k_{x_1}, \dots, k_{x_n}\}, \ M_f^* k_x = f(x)k_x$$
$$\|P_{\mathcal{K}}M_f P_{\mathcal{K}}\| \le 1 \Leftrightarrow \left[(1 - f(x_i)\overline{f(x_j)})K(x_i, x_j)\right] \ge 0.$$

The particular solution $f_0(x_j) = w_j$

$$\left[(1-f(x_i)\overline{f(x_j)})K(x_i,x_j)\right] = \left[(1-w_i\overline{w_j})K(x_i,x_j)\right] \ge 0.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

NP problem \Leftrightarrow Distance in the quotient algebra

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

NP problem \Leftrightarrow Distance in the quotient algebra (direct sum of) representation(s) of quotient

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

NP problem ⇔ Distance in the quotient algebra (direct sum of) representation(s) of quotient norm on the span of kernel functions ⇔ matrix positivity condition

Sarason (1967). Pick's theorem for H[∞](D) = M(H²). The Szëgo kernel is enough.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Sarason (1967). Pick's theorem for H[∞](D) = M(H²). The Szëgo kernel is enough.
- Arveson (1975). Distance formula for nest algebras and a Töplitz corona theorem from this.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Sarason (1967). Pick's theorem for H[∞](D) = M(H²). The Szëgo kernel is enough.
- Arveson (1975). Distance formula for nest algebras and a Töplitz corona theorem from this.
- ▶ Abrahamse (1979). H[∞](R), where R is a multiply-connected domain. More than one representation/kernel is needed.
 Fedorov-Vinnikov (1994). McCullough (1998).
 McCullough-Paulsen (2001).

- Sarason (1967). Pick's theorem for H[∞](D) = M(H²). The Szëgo kernel is enough.
- Arveson (1975). Distance formula for nest algebras and a Töplitz corona theorem from this.
- ▶ Abrahamse (1979). H[∞](R), where R is a multiply-connected domain. More than one representation/kernel is needed.
 Fedorov-Vinnikov (1994). McCullough (1998).
 McCullough-Paulsen (2001).

 Ball (1979). Matrix-valued interpolation on multiply-connected domains.

- Sarason (1967). Pick's theorem for H[∞](D) = M(H²). The Szëgo kernel is enough.
- Arveson (1975). Distance formula for nest algebras and a Töplitz corona theorem from this.
- ▶ Abrahamse (1979). H[∞](R), where R is a multiply-connected domain. More than one representation/kernel is needed.
 Fedorov-Vinnikov (1994). McCullough (1998).
 McCullough-Paulsen (2001).

- Ball (1979). Matrix-valued interpolation on multiply-connected domains.
- Wermer-Cole-Lewis (1993). Uniform algebras and hyperconvexity.

- Sarason (1967). Pick's theorem for H[∞](D) = M(H²). The Szëgo kernel is enough.
- Arveson (1975). Distance formula for nest algebras and a Töplitz corona theorem from this.
- ► Abrahamse (1979). H[∞](R), where R is a multiply-connected domain. More than one representation/kernel is needed. Fedorov-Vinnikov (1994). McCullough (1998). McCullough-Paulsen (2001).
- Ball (1979). Matrix-valued interpolation on multiply-connected domains.
- Wermer-Cole-Lewis (1993). Uniform algebras and hyperconvexity.
- ► McCullough (1996). Dual algebras, i.e., weak*-closed subalgebras of B(H). Approximating in modulus.

- Sarason (1967). Pick's theorem for H[∞](D) = M(H²). The Szëgo kernel is enough.
- Arveson (1975). Distance formula for nest algebras and a Töplitz corona theorem from this.
- ► Abrahamse (1979). H[∞](R), where R is a multiply-connected domain. More than one representation/kernel is needed. Fedorov-Vinnikov (1994). McCullough (1998). McCullough-Paulsen (2001).
- Ball (1979). Matrix-valued interpolation on multiply-connected domains.
- Wermer-Cole-Lewis (1993). Uniform algebras and hyperconvexity.
- ► McCullough (1996). Dual algebras, i.e., weak*-closed subalgebras of B(H). Approximating in modulus.
- ▶ Davidson-Pitts (1998). Free semigroup algebra \mathcal{L}_n .

- Sarason (1967). Pick's theorem for H[∞](D) = M(H²). The Szëgo kernel is enough.
- Arveson (1975). Distance formula for nest algebras and a Töplitz corona theorem from this.
- ▶ Abrahamse (1979). H[∞](R), where R is a multiply-connected domain. More than one representation/kernel is needed.
 Fedorov-Vinnikov (1994). McCullough (1998).
 McCullough-Paulsen (2001).
- Ball (1979). Matrix-valued interpolation on multiply-connected domains.
- Wermer-Cole-Lewis (1993). Uniform algebras and hyperconvexity.
- ► McCullough (1996). Dual algebras, i.e., weak*-closed subalgebras of B(H). Approximating in modulus.
- ▶ Davidson-Pitts (1998). Free semigroup algebra \mathcal{L}_n .
- ► Davidson-Paulsen-R-Singh (2008). f'(0) = 0. Later extended to arbitrary weak*-closed subalgebras of H[∞].

Subalgebras

We want to generalize well-known theorems (see history) to the case where A is a unital weak*-closed subalgebra of $M(H_K)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Subalgebras

We want to generalize well-known theorems (see history) to the case where A is a unital weak*-closed subalgebra of $M(H_K)$.

Why?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Motivation. Unification

A generalization of Abrahamse's theorem if we view H[∞](R) as a subalgebra of H[∞](D). Fixed-point algebras of H[∞]. (R-2009).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Motivation. Unification

A generalization of Abrahamse's theorem if we view H[∞](R) as a subalgebra of H[∞](D). Fixed-point algebras of H[∞]. (R-2009).

 A Nevanlinna-Pick theorem on the Neil parabola {z² = w³} ⊆ D². (DPRS-2009).

Motivation. Töplitz corona problems.

Theorem (Töplitz Corona. Arveson, Schubert)

If $f_1, \ldots, f_n \in H^\infty$, with $T_{f_1}T_{f_1}^* + \cdots + T_{f_1}T_{f_n}^* \ge \delta^2 I$ in $B(H^2)$, then there exists $g_1, \ldots, g_n \in H^\infty$ such that $f_1g_1 + \cdots + f_ng_n = 1$ and $\sup_{z \in \mathbb{D}} \sum_{j=1}^n |g_j(z)|^2 \le \delta^{-2}$.

Theorem (R.-Wick, 2010)

Corresponding theorem for Riemann surfaces and fixed-point algebras. Generalizes Ball (1981)

$$R: M(H_K) o \ell^\infty$$
, $R(f) = (f(z_j))_{j=1}^\infty$, R surjective.

Theorem (Interpolating sequences. Carleson)

A sequence $z_j \in \mathbb{D}$ is interpolating for H^{∞} if and only if it is strongly separated, i.e.,

$$\inf_{j\geq 1}\prod_{i\neq j}\left|\frac{z_i-z_j}{1-\overline{z_j}z_i}\right|>0.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (R.-Wick. 2010)

Let $A \subseteq H^{\infty}$ be a fixed-point algebra. Let $E = \{z_j\}$ be a sequence of points in the unit disk. Let $E_j = E \setminus \{z_j\}$. The following are equivalent:

1. E is an interpolating sequence for A.

Theorem (R.-Wick. 2010)

Let $A \subseteq H^{\infty}$ be a fixed-point algebra. Let $E = \{z_j\}$ be a sequence of points in the unit disk. Let $E_j = E \setminus \{z_j\}$. The following are equivalent:

- 1. E is an interpolating sequence for A.
- 2. *E* is an interpolating sequence for $\overline{A} = H_K \subseteq H^2$.

Theorem (R.-Wick. 2010)

Let $A \subseteq H^{\infty}$ be a fixed-point algebra. Let $E = \{z_j\}$ be a sequence of points in the unit disk. Let $E_j = E \setminus \{z_j\}$. The following are equivalent:

- 1. E is an interpolating sequence for A.
- 2. *E* is an interpolating sequence for $\overline{A} = H_K \subseteq H^2$.
- 3. $\inf_{j\geq 1} d(z_j, E_j) > 0$, *i.e.*, strong separation.

Theorem (R.-Wick. 2010)

Let $A \subseteq H^{\infty}$ be a fixed-point algebra. Let $E = \{z_j\}$ be a sequence of points in the unit disk. Let $E_j = E \setminus \{z_j\}$. The following are equivalent:

- 1. E is an interpolating sequence for A.
- 2. *E* is an interpolating sequence for $\overline{A} = H_K \subseteq H^2$.
- 3. $\inf_{j\geq 1} d(z_j, E_j) > 0$, *i.e.*, strong separation.
- 4. $\sum_{j=1}^{\infty} |f(z_j)|^2 K(z_j, z_j)^{-1} \leq C ||f||_2^2$, i.e., Carleson measure, and (z_j) is weakly separated.

Theorem (R.-Wick. 2010)

Let $A \subseteq H^{\infty}$ be a fixed-point algebra. Let $E = \{z_j\}$ be a sequence of points in the unit disk. Let $E_j = E \setminus \{z_j\}$. The following are equivalent:

- 1. E is an interpolating sequence for A.
- 2. *E* is an interpolating sequence for $\overline{A} = H_K \subseteq H^2$.
- 3. $\inf_{j\geq 1} d(z_j, E_j) > 0$, *i.e.*, strong separation.
- 4. $\sum_{j=1}^{\infty} |f(z_j)|^2 K(z_j, z_j)^{-1} \leq C ||f||_2^2$, i.e., Carleson measure, and (z_j) is weakly separated.

Cyclic subspaces

 $\mathcal{A} \subseteq M(H_{\mathcal{K}})$, \mathcal{A} has a representation on $\overline{\mathcal{A}h}$, $h \in H_{\mathcal{K}}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Cyclic subspaces

 $\mathcal{A} \subseteq M(H_{\mathcal{K}}), \mathcal{A}$ has a representation on $\overline{\mathcal{A}h}, h \in H_{\mathcal{K}}$. Let \mathcal{K}_h be the kernel of $\mathcal{A}h$. Let $\mathcal{K}_h = \operatorname{span}\{k_{x_1}^h, \ldots, k_{x_n}^h\}$ For subalgebras of H^{∞} that works, i.e.,

$$\mathcal{A}/\mathcal{I}\mapsto B(igoplus_h\mathcal{K}_h)$$
 is isometric.

Cyclic subspaces

 $\mathcal{A} \subseteq M(H_{\mathcal{K}}), \mathcal{A}$ has a representation on $\overline{\mathcal{A}h}, h \in H_{\mathcal{K}}$. Let \mathcal{K}_h be the kernel of $\mathcal{A}h$. Let $\mathcal{K}_h = \operatorname{span}\{k_{x_1}^h, \ldots, k_{x_n}^h\}$ For subalgebras of H^{∞} that works, i.e.,

$$\mathcal{A}/\mathcal{I}\mapsto B(igoplus_h\mathcal{K}_h)$$
 is isometric.

In the presence of a group action you can do better, h can be chosen character automorphic, and there is a bounded (norm-equivalent to image) representation into $B(\mathcal{K}_1)$, because the modules $\overline{\mathcal{A}h}$ and $\overline{\mathcal{A}} = H_{\mathcal{K}_1}$ are similar.

Definition (CNP Kernel)

K on $X \times X$ is a complete Nevanlinna-Pick kernel (cnp) iff for all x_1, \ldots, x_n , all matrices $W_1, \ldots, W_n \in M_d(\mathbb{C})$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition (CNP Kernel)

K on $X \times X$ is a complete Nevanlinna-Pick kernel (cnp) iff for all x_1, \ldots, x_n , all matrices $W_1, \ldots, W_n \in M_d(\mathbb{C})$ there is a function $F \in M_d(M(H_K))$ such that

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition (CNP Kernel)

K on $X \times X$ is a complete Nevanlinna-Pick kernel (cnp) iff for all x_1, \ldots, x_n , all matrices $W_1, \ldots, W_n \in M_d(\mathbb{C})$ there is a function $F \in M_d(M(H_K))$ such that

$$F(x_j) = W_j \text{ with } \|F\| \leq 1 \Leftrightarrow [(1 - W_i W_j^*) K(x_i, x_j)] \geq 0.$$

Examples: Hardy space (Pick), Dirichlet space (Agler), Sobolev space (Agler).

Definition (CNP Kernel)

K on $X \times X$ is a complete Nevanlinna-Pick kernel (cnp) iff for all x_1, \ldots, x_n , all matrices $W_1, \ldots, W_n \in M_d(\mathbb{C})$ there is a function $F \in M_d(M(H_K))$ such that

$$F(x_j) = W_j \text{ with } \|F\| \leq 1 \Leftrightarrow [(1 - W_i W_j^*) K(x_i, x_j)] \geq 0.$$

Examples: Hardy space (Pick), Dirichlet space (Agler), Sobolev space (Agler).

The natural representation of

$$M(H_{\mathcal{K}})/\mathcal{I} \mapsto B(\operatorname{span}\{k_{x_1},\ldots,k_{x_n}\})$$

is a complete isometry.

The Drury-Arveson space

 \mathbb{B}_d be the unit ball in \mathbb{C}^d , Drury-Arveson kernel

$$K(z,w)=rac{1}{1-\langle z,w
angle}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The Drury-Arveson space

 \mathbb{B}_d be the unit ball in \mathbb{C}^d , Drury-Arveson kernel

$$K(z,w)=\frac{1}{1-\langle z,w\rangle}$$

Theorem (McCullough, Quiggin, Agler-McCarthy) Every irreducible CNP space is of the form

$$\mathcal{H}^2_{d,S} = \mathsf{span}\{k_x\,:\, x\in S\subseteq \mathbb{B}_d\}$$

for some set S and some d.

Tangential interpolation

 $C(M(H_{\mathcal{K}}))$ is the **column space** of $M(H_{\mathcal{K}})$. $C(M(H_{\mathcal{K}}))$ is multipliers from $H_{\mathcal{K}}$ into $H_{\mathcal{K}} \otimes \ell^2$.

Tangential interpolation

 $C(M(H_{\mathcal{K}}))$ is the **column space** of $M(H_{\mathcal{K}})$. $C(M(H_{\mathcal{K}}))$ is multipliers from $H_{\mathcal{K}}$ into $H_{\mathcal{K}} \otimes \ell^2$.

Tangential version $x_1, \ldots, x_n \in X$, $w_1, \ldots, w_n \in \mathbb{C}$ and vectors $v_1, \ldots, v_n \in \ell^2$.

 $\inf\{\|F\| : \langle F(x_j), v_j \rangle = w_j, F \in C(M(H_K))\} = \|F_0 + \mathcal{J}\|$ $\mathcal{J} = \{F \in C(M(H_K)) : \langle F(x_j), v_j \rangle = 0\}$

Tangential Pick families

 $\mathcal{A} \subseteq M(\mathcal{H}_{\mathcal{K}})$. $\mathcal{L} \subset Lat(\mathcal{A})$ a tangential Nevanlinna-Pick family if for every choice of points $x_1, \ldots, x_n \in X$, $w_1, \ldots, w_n \in \mathbb{C}$ and $v_1, \ldots, v_n \in \ell^2$, we have

$$d(F,\mathcal{J}) = \sup_{L\in\mathcal{L}} \|P_L M_F^*|_{\mathcal{K}_L}\|.$$

Where $\mathcal{J} = \{ \langle F(x_j), v_j \rangle = 0 \}$, $\mathcal{K}_L = \operatorname{span}\{k_{x_1}^L \otimes v_1, \dots, k_{x_n}^L \otimes v_n \}$.

Tangential Pick families

 $\mathcal{A} \subseteq M(H_K)$. $\mathcal{L} \subset Lat(\mathcal{A})$ a tangential Nevanlinna-Pick family if for every choice of points $x_1, \ldots, x_n \in X$, $w_1, \ldots, w_n \in \mathbb{C}$ and $v_1, \ldots, v_n \in \ell^2$, we have

$$d(F,\mathcal{J}) = \sup_{L\in\mathcal{L}} \|P_L M_F^*|_{\mathcal{K}_L}\|.$$

Where $\mathcal{J} = \{ \langle F(x_j), v_j \rangle = 0 \}$, $\mathcal{K}_L = \operatorname{span}\{k_{x_1}^L \otimes v_1, \dots, k_{x_n}^L \otimes v_n \}$.

Theorem (Hamilton-R. 2011)

If $\mathcal{A} \subset M(\mathcal{H}_{\mathcal{K}})$, then the **cyclic** invariant subspaces in Lat(\mathcal{A}) form a tangential NP-family.

Extends results of Davidson-Hamilton (2010).

Free semigroup algebra

Definition (The noncommutative analytic Töplitz algebra)

 \mathcal{L}_d is the WOT-closed algebra generated by an *d*-tuple (S_1, \ldots, S_d) of shifts acting on the space $\ell^2(\mathbb{F}_d^+)$ where \mathbb{F}_d^+ is the free semigroup.

Free semigroup algebra

Definition (The noncommutative analytic Töplitz algebra)

 \mathcal{L}_d is the WOT-closed algebra generated by an *d*-tuple (S_1, \ldots, S_d) of shifts acting on the space $\ell^2(\mathbb{F}_d^+)$ where \mathbb{F}_d^+ is the free semigroup.

 $M(H_d^2) = \mathcal{L}_d/\mathcal{C}$, where \mathcal{C} is the commutator ideal.

Free semigroup algebra

Definition (The noncommutative analytic Töplitz algebra)

 \mathcal{L}_d is the WOT-closed algebra generated by an *d*-tuple (S_1, \ldots, S_d) of shifts acting on the space $\ell^2(\mathbb{F}_d^+)$ where \mathbb{F}_d^+ is the free semigroup.

 $M(H_d^2) = \mathcal{L}_d/\mathcal{C}$, where \mathcal{C} is the commutator ideal.

Proposition

Any multiplier algebra $M(H_K)$, where K is a CNP kernel, is a (complete) quotient of \mathcal{L}_d .

Property $A_1(1)$

Definition (Bercovici-Foias-Pearcy (1985))

 $\mathcal{A} \subseteq B(H)$, unital, weak*-closed has $\mathbb{A}_1(1)$ iff every weak*-continuous linear functional ϕ , $\|\phi\| < 1$, on \mathcal{A} is $\phi(\mathcal{A}) = \langle Ax, y \rangle$ for some $x, y \in H$, with $\|x\| \|y\| < 1$.

• $\mathcal{A} \subseteq B(H)$ has $\mathbb{A}_1(1)$ when viewed as

 $\mathcal{A}\otimes I\subseteq B(H\otimes \ell^2).$

 Starting point for the Arveson (1975), McCullough (1996) and R-Wick (2010).

Proof

Theorem (Bercovici (1998))

An algebra of operators has the property $A_1(1)$ if its commutant contains two isometries with pairwise orthogonal ranges.

So \mathcal{L}_d , and $\mathcal{L}_d \otimes B(\ell^2)$, have $\mathbb{A}_1(1)$, in fact has more.

Using the fact that \mathcal{A} is a subalgebra of a quotient we get that $C(\mathcal{A}) \subseteq B(H_{\mathcal{K}} \oplus (H_{\mathcal{K}} \otimes \ell^2))$ has $\mathbb{A}_1(1)$.

The rest of the proof is calculations and unwinding.