Hankel Operators and the $\overline{\partial}$ -Neumann Problem

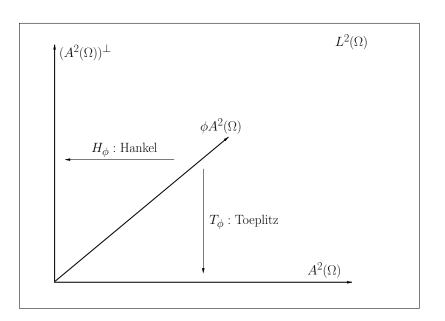
Sönmez Şahutoğlu University of Toledo

Joint work with Željko Čučković and Mehmet Çelik

Hankel Operators on Bergman Spaces

Let $\Omega \subset \mathbb{C}^n$ be a domain. $A^2(\Omega)$: the Bergman space on Ω $(H(\Omega) \cap L^2(\Omega))$. $P: L^2(\Omega) \to A^2(\Omega)$ Bergman (orthogonal) projection. The Hankel operator with symbol $\phi \in L^{\infty}(\Omega)$ is defined as

$$H_{\phi}(f) = (Id - P)(\phi f) = \phi f - P(\phi f)$$
 for $f \in A^2(\Omega)$.



Some Classical Results

[Axler '86] Let $\phi \in H(\mathbb{D})$ where \mathbb{D} is the open unit disc in \mathbb{C} . Then $H_{\overline{\phi}}$ is compact $\Leftrightarrow (1 - |z|^2)|\phi'(z)| \to 0$ as $|z| \to 1^-$.

Peloso in 1994 extended <u>Axler's result</u> to Bergman spaces on smooth bounded strongly pseudoconvex domains in \mathbb{C}^n .

Li in 1994 characterized bounded and compact Hankel operators with symbols in L^2 on smooth bounded strongly pseudoconvex in \mathbb{C}^n .

The method: integral representation

$$H_{\phi}(f)(z) = \int_{\Omega} K(z,w)(\phi(z)-\phi(w))f(w)dV(w) \text{ for } f \in A^2(\Omega).$$

Some Observations on Previous Results

- **1** H_{ϕ} is compact $\Leftrightarrow \phi$ in Ω .
- 2 The method is integral representation.
- 3 Symbols are "general".
- Domains are "simple": Unit ball or more generally strongly pseudoconvex domains.

Some New Results

From now on Ω will be a smooth bounded pseudoconvex domain in \mathbb{C}^n , unless otherwise is stated, and $\phi \in C^{\infty}(\overline{\overline{\Omega}})$

Theorem (Čučković-Ş. '09)

Let $\Omega \subset \mathbb{C}^2$ and H_{ϕ} be compact. Then $\phi \circ f$ is holomorphic for all holomorphic $f : \mathbb{D} \to \partial \Omega$.

Theorem (Čučković-Ş. '09)

Let Ω be convex in \mathbb{C}^2 . Then H_{ϕ} is compact iff $\phi \circ f$ is holomorphic for all holomorphic $f : \mathbb{D} \to \partial \Omega$.

Our Method: The $\overline{\partial}$ -Neumann problem

$\overline{\partial}$ -Neumann Problem

 $\begin{array}{l} (0,1)\text{-form: } \sum f_j d\overline{z}_j \\ (0,2)\text{-form: } \sum f_{jk} d\overline{z}_j \wedge d\overline{z}_k \\ (0,3)\text{-form: } \sum f_{jkl} d\overline{z}_j \wedge d\overline{z}_k \wedge d\overline{z}_l \end{array}$

 $\overline{\partial}\text{-complex:} \qquad L^2(\Omega) \xrightarrow{\overline{\partial}} L^2_{(0,1)}(\Omega) \xrightarrow{\overline{\partial}} L^2_{(0,2)}(\Omega) \xrightarrow{\overline{\partial}} \cdots L^2(\Omega) \xleftarrow{}_{\overline{\partial^*}} L^2_{(0,1)}(\Omega) \xleftarrow{}_{\overline{\partial^*}} L^2_{(0,2)}(\Omega) \xleftarrow{}_{\overline{\partial^*}} \cdots$ $\Box = \overline{\partial}\overline{\partial}^* + \overline{\partial}^*\overline{\partial} : L^2_{(0,1)}(\Omega) \to L^2_{(0,1)}(\Omega).$

[Kohn and Hörmander '60's] \Box has a bounded inverse N if Ω is bounded pseudoconvex. $\overline{\partial}$ -Neumann operator: $N = \Box^{-1}$ $\overline{\partial}$ -Neumann problem: solving $\Box f = g$ Kohn's Formula: $P = I - \overline{\partial}^* N \overline{\partial}$ $H_{\phi}(f) = \overline{\partial}^* N \overline{\partial}(\phi f) = \overline{\partial}^* N(f \overline{\partial} \phi)$ for $f \in A^2(\Omega)$ and $\phi \in C^1(\overline{\Omega})$. N is compact ($\Rightarrow \overline{\partial}^* N$ is compact) $\Rightarrow H_{\phi}$ is compact.

The Converse

N is compact on:

- the unit ball,
- strongly pseudoconvex domains,
- convex domains with no analytic discs in the boundary.

Fact: There exists a convex domain $\Omega \subset \mathbb{C}^n$ and $\phi \in C^{\infty}(\overline{\Omega})$ such that H_{ϕ} is <u>not</u> compact.

Fact: *N* is compact \Rightarrow *H*_{ϕ} is compact.

The converse is still open in general. However, on non-pseudoconvex domains the converse is false.

Result 1 (Çelik and Ş.)

There exists a smooth bounded non-pseudoconvex domain $\Omega \subset \mathbb{C}^3$ such that H_{ϕ} is compact for all $\phi \in C(\overline{\Omega})$ and the $\overline{\partial}$ -Neumann problem on Ω is bounded but not compact.

Comparison of Methods

Integral Rep.:

 $H_{\phi}(f)(z) = \int_{\Omega} K(z, w)(\phi(z) - \phi(w))f(w)dV(w)$

- The symbols are "general"
- The domains are restrictive.
- Relates compactness of H_{ϕ} to the behavior of ϕ in the domain.

 $\overline{\partial}$ -Neumann Problem: $H_{\phi}(f) = \overline{\partial}^* N(f \overline{\partial} \phi)$

- The symbols are restrictive (as least continuous up to the boundary).
- The domains are "general" (pseudoconvex).
- Relates compactness of H_{ϕ} to the behavior of ϕ on the boundary.

References

- Željko Čučković and Sönmez Şahutoğlu, Compactness of Hankel operators and analytic discs in the boundary of pseudoconvex domains, J. Funct. Anal. 256 (2009), no. 11, 3730–3742, arXiv:0809.1901.
- Mehmet Çelik and Sönmez Şahutoğlu, On compactness of the operators, arXiv:1008.4199.