(1) (i) Given $f: X \rightarrow Y$ and $B \subset Y$, define $f^{-1}(B)$, the inverse image of B under f;
(ii) Define the least upper bound of a subset S of \mathbb{R};
(iii) Define open set U in a metric space X;
(iv) For sets A and B, define A is equivalent to B.
(2) (a) Give an example, if possible, of a subset S of \mathbb{R} which is bounded above but has no least upper bound;
(b) Give an example, if possible, of a subset S of \mathbb{R} which has a least upper bound α, but $\alpha \notin S$;
(c) Give an example, if possible, of a function $f: X \rightarrow Y$ and subsets $A, B \subset X$ such that $f(A \cap B) \neq f(A) \cap f(B)$;
(d) Give an example, if possible, of an onto mapping $f: \mathbb{N} \rightarrow P(\mathbb{N})$.
(3) Do one of the following.
(i) Prove carefully, if $A \subset B$ are nonempty bounded subsets of \mathbb{R}, then $\sup (A) \leq$ $\sup (B)$;
(ii) Prove carefully that a (open) neighborhood $N_{\delta}(x)$ in a metric space X is an open set.

