MAA4211 SAMPLE EXAM I, FALL 2012

- (1) (i) Given f: X → Y and B ⊂ Y, define f⁻¹(B), the *inverse image* of B under f;
 (ii) Define the *least upper bound* of a subset S of ℝ;
 - (iii) Define open set U in a metric space X;
 - (iv) For sets A and B, define A is equivalent to B.
- (2) (a) Give an example, if possible, of a subset S of \mathbb{R} which is bounded above but has no least upper bound;
 - (b) Give an example, if possible, of a subset S of \mathbb{R} which has a least upper bound α , but $\alpha \notin S$;
 - (c) Give an example, if possible, of a function $f: X \to Y$ and subsets $A, B \subset X$ such that $f(A \cap B) \neq f(A) \cap f(B)$;
 - (d) Give an example, if possible, of an onto mapping $f : \mathbb{N} \to P(\mathbb{N})$.
- (3) Do one of the following.
 - (i) Prove carefully, if $A \subset B$ are nonempty bounded subsets of \mathbb{R} , then $\sup(A) \leq \sup(B)$;
 - (ii) Prove carefully that a (open) neighborhood $N_{\delta}(x)$ in a metric space X is an open set.